SIGNIFICANT FINDINGS SUMMARY

A special underwater inspection of Bridge No. 1-744-059 was performed on January 19 and 20, 2015. The underwater substructure units were generally in Fair condition. The reinforced concrete stems typically exhibit scaling up to 1-inch deep. Areas of moderate scaling up to 3-inches deep are present at isolated locations with and without exposed steel reinforcement with moderate section loss. The West Stem of Pier 5 exhibits up to 6-inch deep scaling with exposed steel reinforcement with up to 90% section loss. The top of the footings are exposed at Piers 2, 4 and 5. Steel sheet piling is present at Piers 1 through 5; the sheet piling typically protrudes up to 3-feet from the mudline. In accordance with the National Bridge Inspection Standards, DelDOT Underwater Bridge Inspection Guidelines, and based on the inspection findings it is recommended that the submerged substructure units of Bridge No. 1-744-059 be placed on an accelerated routine underwater inspection interval of 24 months.

1.0 INTRODUCTION

1.1 Purpose and Scope
DelDOT Bridge No. 1-744-059 carries Interstate 95 over the Christina River in New Castle County, Delaware. On January 19 and 20, 2015, Pennoni Associates Inc. performed a special underwater inspection at the bridge to verify the condition of all substructure units from the high water mark to the channel bottom. This report includes a description of the structure, the method of investigation, and a detailed description of the conditions noted. In addition, this report contains a condition assessment of the bridge components evaluated and presents recommendations for follow-up actions. River depth soundings were obtained around the substructure units, along the centerline of the bridge, along each fascia, and at cross sections of the channel at 50 and 100 feet upstream and downstream of the bridge.

1.2 General Description of the Structure
DelDOT Bridge No. 1-744-059 is a seven span bridge over the Christina River. The bridge is supported on two abutments and six piers. The North and South Abutments are each constructed of a reinforced concrete pile cap supported by cast in place concrete piles and were situated out of the water at the time of inspection. Piers 1 through 6 each consist of 3 reinforced concrete hammerhead style pier stems supported on individual footings founded on piles of unknown length and material. A location map for the bridge can be found in Appendix A. Photographs 1 and 2 in Appendix B show the overall views of the bridge. Refer to Figure 1 in Appendix C for a sketch of the bridge site.

1.3 Method of Investigation
A dive team consisting of commercially trained divers, led by a Delaware-registered Professional Engineer, conducted the underwater investigation. The team members and their duties for this inspection were as follows: Nicholas Ward, PE – Team Leader/Dive Supervisor; Andrew Fulton, EIT – Dive Inspector; Martin Anderson, EIT – Dive Inspector/Dive Tender; William Clinton – Dive Tender. The inspection was conducted using commercial surface supplied air diving equipment. During the inspection, the diver worked out of a 27-foot dive boat where the Dive Supervisor recorded the inspection notes. Access to the bridge was obtained via a public boat launch 1/2 miles east of the bridge.

2.0 EXISTING CONDITIONS

At the time the soundings were recorded on January 20, 2015, the waterline reference was measured from the southeast corner of Pier 4 from the bottom of the cap at the stem and
measured to be 18.0-feet. Depth soundings indicated that the maximum water depth at the bridge structure was 20.0 feet at the southwest corner of the Center Stem of Pier 4. Refer to Figure 1 in Appendix C for a Sounding Plan of the bridge. At the time of inspection, there were less than 6 inches of visibility and a water velocity of approximately 0 to 2.0 feet per second. The river is tidally influenced and has a tidal swing of approximately 6 feet.

The reinforced concrete stems typically exhibit scaling up to 1-inch deep from the mean high waterline to the channel bottom. The stems typically exhibit steel sheet piling that protrude from the mudline up to 3-feet high; the sheet piling typically exhibits minor to moderate surface corrosion. The top of the footing is exposed at Piers 2, 4 and 5. Timber debris up to 12-inch Diameter is typical around the stems of all piers. The channel bottom consisted of sand and silty sand with up to 3-feet of probe rod penetration outside the steel sheet piling and predominately gravel with up to 4 inches of probe rod penetration inside the steel sheet piling. Refer to Photographs 3 and 4 in Appendix B for a view of a typical pier and typical scale.

Overall, Pier 1 was in satisfactory condition. The previously noted area of riprap (stones measuring 1 to 3 feet in diameter) between the West Stem and the Center Stem was not observed. A 6-foot long section of steel H-pile is on the channel bottom just north of the steel sheet pile at the East Stem. Refer to Figure 2 in Appendix C for detailed inspection notes of Pier 1.

Overall, Pier 2 was in fair condition. The east and west ends of the Cent and East Stem’s typically exhibit scaling up to 2-inches deep. The west face of the West Stem exhibits a 2’ H x 3’-6” W x 3” D area of scaling with exposed corroded steel reinforcement (5 vertical and 3 horizontal steel bars) with up to 60% section loss at the waterline. The west end of the East Stem exhibits scaling up to 2-’6” H x 3’-6” W x up to 2 1/2” D with exposed corroded steel reinforcement (6 vertical and 2 horizontal steel bars) with up to 30% section loss at the waterline. The East Stem exhibits up to 1 1/2-inch deep scaling at the bottom 2-feet of stem on all faces. The top of the footing is exposed along the north and south faces of the Center Stem inside the steel sheet piling. A 6-foot long section of a steel H-pile is on the channel bottom along the north face of the exposed steel sheet pile at the Center Stem and a 3-foot long section of steel H-pile is at the southwest corner of the steel sheet piling. A 2 to 3-feet concrete overpour exists along the north face of the steel sheet pile from the west quarter point to the northeast corner at the East Stem. Refer to Figure 3 in Appendix C for detailed inspection notes of Pier 2.

Overall, Pier 3 was in fair condition. The stems typically exhibit a 2’ H x 1 1/2” D band of scaling on all faces, 6-feet below the waterline. The west end of the West Stem exhibits a 5’ H x 3’-6” W x 3” D area of scaling with exposed corroded steel reinforcement (3 vertical and 2 horizontal steel bars) with up to 20% section loss at the waterline. The west face of the East Stem exhibits a 2’-6” H x 3’-6” W x 3” D area of scaling with exposed corroded steel reinforcement (one horizontal bar with only the outer surface of the steel reinforcement exposed) at the waterline. A 10’ L x 1’ D scour depression extends 3-feet north of the north face of the West Stem; a 3’ L x 1’ D scour depression extended 3-feet out from the west face of the Center Stem; a 3’ L x FW x 1’ D scour depression extended 3-feet away from the north face of the East Stem. There is a 14’ H x up to 1/16” W vertical crack on the east face of the Center Stem that terminates 4 feet below the waterline. Refer to Figure 4 in Appendix C for detailed inspection notes of Pier 3.

Overall, Pier 4 was in satisfactory condition. The east face of the West Stem exhibits 2’ H x 3’-6” W x 3” D scaling with exposed corroded steel reinforcement (with 1 horizontal steel bar) at the waterline. The west face of the West Stem exhibits 2’ H x 3’-6” W x 3” D scaling with exposed corroded steel reinforcement (1 vertical and 1 horizontal steel bar) at the waterline. At the center of the west face of the West Stem is a vertical crack up to 30’ H x up to 1/16” W that terminates 5-feet
below the waterline. The previously reported area of scaling with exposed corroded steel reinforcement on the east and west faces of the East Stem 2-feet above the mudline was not observed. The top of the footing was exposed along the south face of the East Stem. Steel debris, up to 4-feet long, is on the channel bottom at the west face of the East Stem. Refer to Figure 5 in Appendix C for detailed inspection notes of Pier 4.

Overall, Pier 5 was in fair condition. The West Stem exhibits scaling, up to 2’ H x FW x 6” D with exposed corroded steel reinforcement (4 horizontal and 5 vertical steel bars) with up to 90% section loss, 4-feet from the mudline on the west face. The West Stem exhibits 4’ H x FW x up to 3” D scale with one horizontal steel bar exposed on the south, east and north faces, 2-feet from the mudline. The top of the footing was exposed around the entire Center Stem. There is map cracking and a 1/32-inch wide vertical crack extending 15-feet up from the band of scaling on the west face of the West Stem. The East Stem exhibits scaling up to 2’ H x 8’ L x 3” D with one exposed horizontal steel bar on the north face and 2’ H x FW x 3” D with an exposed horizontal and vertical steel bar on the west face. Refer to Figure 6 in Appendix C for detailed inspection notes of Pier 5.

Overall, Pier 6 was in satisfactory condition. Refer to Figure 7 in Appendix C for detailed inspection notes of Pier 6.

The north embankment west of the bridge consisted of small cobbles up to 4 inches in diameter with minor vegetation. The South Embankment east of the bridge consisted of minor vegetation. Refer to Photographs 5 and 6 for channel views. Refer to Figure 1 in Appendix C for detailed inspection results of the embankments.

3.0 CONCLUSIONS AND RECOMMENDATIONS

3.1 Evaluation and Assessments
Overall, the submerged substructure units of Structure No. 1-744-059 are in fair condition. A comparison of the soundings recorded during the previous inspection on April 3, 2014 and the soundings taken during this inspection revealed no significant change in the channel bottom profile in the vicinity of the structure. The footing exposure at Piers 2, 4, and 5 are not of concern at this time given that the bottom of the footing was embedded below the current channel bottom, restrained within the steel sheet pile walls, and the footings are supported by piles. The scour depressions observed at Piers 2 and 3 are also not of concern at this time given that the bottom of the footing is embedded below the current channel bottom.

The timber debris accumulations does not affect the channel flow, and as a result, do not require removal at this time. If the debris accumulations increase in size or density, it may be necessary to remove the debris to reduce excessive lateral loads on the pier, limit further debris accumulation, and reduce the likelihood of general channel bottom and localized scour.

3.2 Recommended NBI Condition Ratings

<table>
<thead>
<tr>
<th>Substructure Code (Item 60)</th>
<th>Channel and Channel Protection Code (Item 61)</th>
<th>Underwater Inspection Code (Item 92B) (Months)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>6</td>
<td>24</td>
</tr>
</tbody>
</table>
The recommended NBI Rating for Item 60 (Substructure) is a 5. This rating is recommended due to the size of the scaling on the pier stems along with the exposed steel reinforcement.

The current NBI Rating for Item 61 (Channel and Channel Protection) is a 6. This rating is recommended due to the scour depressions at Piers 2 and 3 and the exposed footings at Piers 2, 4 and 5.

3.3 Recommendations
The bands of scaling and associated concrete deterioration at Piers 2 through 5 should be repaired. In lieu of traditional concrete patching repairs, which may be short-lived, consideration should be given to installing a fiberglass jacket system (or similar method) around each pier stem to provide a longer-life repair.

The channel bottom configuration should continue to be closely monitored during future underwater inspections to ensure that the footing exposure at Piers 2, 4, and 5 remains minimal and the scour depressions at Piers 2 and 3 are not increasing.

In accordance with the National Bridge Inspection Standards, DelDOT Underwater Bridge Inspection Guidelines, and based on the inspection findings it is recommended that the submerged substructure units of Bridge No. 1-744-059 be placed on an accelerated routine underwater inspection interval of 24 months. It is also recommended that soundings be recorded at the substructure units during biennial inspections and during or immediately following any significant high water event to check if significant localized scour is occurring, in which case an underwater inspection interval less than 24 months may be warranted.
Photograph 1. Overall View of the East Elevation, Looking West.

Photograph 2. Overall View of the West Elevation, Looking East.
Photograph 3. Overall View of Pier 2, North Face, Looking South.

Photograph 4. View of Pier 4, South Face, Looking North.
Note: Typical 1/4” Deep Scale along the waterline.
Photograph 5. Tidal View, Looking West.

Photograph 6. Tidal View, Looking East.
APPENDIX C – FIGURES
DEPARTMENT OF TRANSPORTATION
INTERSTATE 95 OVER CHRISTINA RIVER
BRIDGE NO. 1-744-059
PIER 1 INSPECTION DETAILS

LEGEND

- X.X. indicates water depth at the time of inspection in feet
- F indicates inspection note number
DELAWARE
DEPARTMENT OF TRANSPORTATION
INTERSTATE 95 OVER CHRISTINA RIVER
BRIDGE NO. 1-744-059
PIER 2 INSPECTION DETAILS

PLAN

SOUTH ELEVATION

NORTH ELEVATION

INSCRIPTION NOTES:

1. The concrete surfaces of all Pier 2 Stems exhibit a bond of up to 3/4-inch scaling from 1-foot up from the mudline to 5-feet above the mudline.

2. Spalling on the west face of the West Stem extending from the waterline to 2-feet below the waterline measuring 3.5" x 3". 0 with exposed corroded steel reinforcement (5 vertical and 2 horizontal steel bars) with up to 60% section loss.

3. The channel bottom in the vicinity of the West Stem consists of gravel with up to 1-inch of prime rod penetration.

4. Steel sheet pile was exposed around the Center Stem, the top of the steel sheet pile was 2 to 2.5-feet from the mudline. The top of the footing was exposed along the north and south faces of the Center Stem inside the steel sheet pile. Within the steel sheet pile along the east and west faces of the Center Stem, sandy gravel with up to 1-foot prime rod penetration exists.

5. A section of steel sheet pile, 6-foot long, is on the channel bottom along the north face of the exposed steel sheet pile at the Center Stem.

6. Minor timber debris is present at the west face of the Center Stem and extends 6-feet east down the south face of the steel sheet pile.

7. The channel bottom outside the steel sheet pile at the stems consists of sand with up to 4-inches probe rod penetration.

8. An area of spalling is present on the west face of the East Stem extending from the waterline to 2.5-feet below the waterline measuring 3.5" x 2.5". 0 with exposed corroded steel reinforcement (6 vertical and 2 horizontal rebar) with up to 30% section loss.

9. Steel sheet pile is exposed around the entire East Stem with the top of the steel sheet pile located 2 to 2.5-feet from the mudline. Within the steel sheet pile, there is gravel with 2-inches of prime rod penetration covering the footing. At the west face there was a 3-foot long section of steel r=3/4-inch on the sheet.

10. Concrete overpour exists along the north face of the steel sheet pile from the west corner to 2.5-feet from the north face of the steel sheet pile with 6 to 18-inches of vertical exposure.

11. There is scaling in the East Stem measuring 2" x 1/2". 0. The scaling starts at gravel inside sheeting and extends around the perimeter.

12. The West and East Stem footings are exposed around the full perimeter.

LEGEND:

X X Indicates water depth at the time of inspection in feet
1 Inscription note number
8 Timber debris
__PLAN__

1. The concrete surfaces of all Pier 3 Stems exhibit a bond of up to 1-inch deep cracking from the high water mark to the waterline.
2. Area of spalling on the west face of the West Stem extending from the waterline to 5-feet below the waterline measuring 3.5' W x 3' D with exposed corroded steel reinforcement (3 vertical and 2 horizontal steel bars) with 20% section loss.
3. Minor accumulations of timber debris measuring 3 to 6-inches in diameter exists at the east and west noses of the West Stem at the channel bottom.
4. A 10-foot long depression extended 3-feet off the north face of the West Stem and was 1-foot deep.
5. Minor accumulations of timber debris measuring 3 to 12-inches in diameter exists at the west nose of the Center Stem.
6. Steel sheet pile is exposed 14-feet below the waterline from the northwest corner of the Center Stem, along the north face, and terminated into the channel bottom of the northwest corner of the west face.
7. An area of spalling/spalling on the west nose of the East Stem extending from the waterline to 2.5-feet below the waterline measuring 3.5' W x 3' D with exposed corroded steel reinforcement (1 horizontal bar).
8. Minor accumulations of timber debris consisting of branches measuring up to 12-inches in diameter exists at the west nose of the East Stem.
9. The channel bottom in the vicinity of the pier consists of sand and gravel with up to 8-inches of coarse rock formation.
10. There is a bond of deterioration 6-feet below the waterline measuring 2' W x 1/2' D on all faces of the pier stems.
11. A 3-foot wide arc depression extended 2-feet from the east face of the Center Stem and was 2-foot deep.
12. There is a 1/4-inch by up to 1/16-inch vertical crack on the east face of the Center Stem, starting at 4 feet below the waterline and extending up.
13. A full-width arc depression extended 3-feet off the north face of the East Stem and was 1-foot deep.

__SOUTH ELEVATION__

__NORTH ELEVATION__

__LEGEND__

- XX: Indicates water depth at the time of inspection in feet
- : Inspection note number
- Timber debris
The concrete surfaces of all Piers 5-8 stems exhibit a bond of 1 to 1-inch deep scaling from the lower water mark to 5 feet below the waterline.

Steel sheet pile is exposed around the Center Stem and extended approximately 3 feet out from the channel bottom. The top of the footing is exposed within the steel sheet pile.

Area of scaling on the north and west faces of the East Stem measuring 2 feet x 2 feet with 2 feet x 2 feet, respectively, with exposed corroded vertical and horizontal steel reinforcement, 4 feet off the mudline.

The channel bottom in the vicinity of the pier consists of gravel and concrete debris measuring 3 to 9 inches in diameter.

There is one masonry pier volute extending 15 feet up from the face of the West Stem.

The scaling on the west face of the West Stem is 2 feet x 2 feet with exposed corroded steel reinforcement (4 horizontal and 9 vertical steel bars) up to 30 feet, 4 feet off the mudline.

The scaling on the north, south, and east faces of the West Stem is 4 feet x 2 feet with exposed steel reinforcement (1 horizontal steel bar), 2 feet off the mudline.
INSPECTION NOTES:

1. The concrete surfaces of all PIER 6 stems exhibit a band of up to 1/2-inch deep scaling from the mean high waterline to the midline.

2. The channel bottom in the vicinity of the pier consists of gravel and concrete debris measuring 3 to 8-inches in diameter with ripsrap between pier stems.

DELWARE
DEPARTMENT OF TRANSPORTATION
INTERSTATE 95 OVER CHRISTINA RIVER
BRIDGE NO. 1-744-059
PIER 6 INSPECTION DETAILS

SOUTH ELEVATION
GENERAL NOTES:
1. At the time of the inspection, the waterline reference was measured from the southeast corner of the wetland 
or from the center to the center of the bridge. The waterline elevation corresponded to an actual elevation of 
22.1 feet, and measured 22.1 feet. This waterline elevation corresponds to the actual waterline elevation of 
22.1 feet observed from the center of the bridge. The waterline elevation was determined by 

2. The river is likely influenced.