ROUTE 273 SUPERELEVATED SECTION

ROUTE 273 NORMAL SECTION

LEGEND

1. 5" Reinforced Concrete Pavement
2. 6" Hot-Mix, Hot Lazy Asphaltic Concrete Pavement (1-1/2" Wearing Course and 4-1/2" Binder Course)
3. 3" Hot-Mix, Hot Lazy Asphaltic Concrete (1-1/2" Wearing Course and 1-1/2" Binder Course)
4. Bituminous Surface Treatment
5. 6" Soil Cement Base Course
6. Select Borrow
7. Common Borrow (F101), Existing Ground (Cut)
8. Point of Application of Grade
9. Existing 9" Reinforced Concrete Pavement to Remain Unless Noted on Paving Plans
10. Dowelled Longitudinal Slab-Cut Joint
11. Longitudinal Construction Joint (Drilled and Grouted Dowels)
12. Concrete Median Barrier
13. Portland Cement Concrete Curb, Type I
14. Hot-Mix, Hot Lazy Asphaltic Concrete Curb
15. 4" Toppin, Seeding and Mulching
16. Seeding and Mulching
17. 6" Perforated Corrugated Metal Pipe Underdrain

TYPICAL SECTION GENERAL NOTES

1. Salvage cross-slope to be same as roadway cross-slope, except as specifically shown on sections or as controlled by note 2.
2. Salvage cross-slope shall be not less than 0.015 ft/ft to provide drainage for the Sabkha. In some transitions where the pavement centerline becomes less than 0.015 ft/ft, the minimum cross-slope shall be maintained until the area has returned to the original grades.
3. Unacceptable material below the pavement grade shall be removed to the limits specified by the Engineer and replaced with select borrow. When required by the Engineer, underdrainage shall be installed in areas from which unacceptable material has been removed.
5. Side slopes in cut or fill generally conform to the following criteria:
 - 0' to 4' height, use 6:1
 - 4' to 16' height, grade to zero at 40'
 - 0' to 12' height, use 3:1
 - Graded to 12' height, use 3:1
 - Requires Guard Rail
 - Graded to 20' height, use 2:1
6. For the location and limits of pavement removal, median barrier, curb and guard rail see Paving Plan details.
7. For type, depth and location of side ditch, see "Drainage and Electrical Pipe and Topping Plan" sheets.
8. For pavement cross-slope see Profile sheets.
9. All typical sections are drawn to a scale of 1/8" = 1'-0".
TYPICAL ACCELERATION & DECELERATION LANE

Adjacent to Existing Del. Tpke.

RAMP B
Tangent Section

RAMP B
Superelevated Section

TYPICAL LOOP
Ramp A B C

TYPICAL NOSE PAVEMENT SECTION

NOTE:
See Typical Section Schematic Notes and Legend on Sheet No.A
TYPICAL SLIP RAMP
(Ramp J & Tangent Section of Ramp C)

RAMP E

RAMP 'F' BEFORE TOLL PLAZA

RAMP F AFTER TOLL PLAZA

TYPICAL DITCH SECTION

NOTE:
For Typical Section General Notes and Legend
See Sheet No. 4.
ACCESS ROAD NORMAL SECTION

ACCESS ROAD SUPereLEVATED SECTION

CURB AT APPROACH NOSE

NO SCALE

Note: For Typical Section
See Sheet No. 1

Note: For Typical Section
See Sheet No. 1
MEDIAN BARRIER DETAILS
Table of Offsets from Tangent for Placing Guardrail Taper

<table>
<thead>
<tr>
<th>Offset</th>
<th>Post</th>
<th>Post</th>
<th>Post</th>
<th>Post</th>
<th>Post</th>
<th>Post</th>
<th>Post</th>
<th>Post</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6'6"</td>
<td>6'6"</td>
<td>6'6"</td>
<td>6'6"</td>
<td>6'6"</td>
<td>6'6"</td>
<td>6'6"</td>
<td>6'6"</td>
</tr>
<tr>
<td>6'6"</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6'6"</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6'6"</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6'6"</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6'6"</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6'6"</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6'6"</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Standard Terminal Section

- Edge of Shoulder or Outer Line
- 6'6" Steel Posts
- 6'6" Steel Shoulder Installation
- Direction of Traffic

TYPICAL SHOULDER INSTALLATION

Scale: 1/4" = 1'-0"

GUARDRAIL TREATMENT AT OBSTRUCTIONS IN CENTER OF MEDIAN

- Type B Anchor Block
- Type B Post
- Standard Post
- Post A
- Post B

Top View Single Rail

Scale: 1/4" = 1'-0"

Short Posts at Piers

Note: Concrete block to be 8'6" x 8'6" except for those above of parapet where short posts are required or parapets or any other sub-divided structure where the fill is not deep enough for a normal length post.
Wing Walls - Bar List

Type

<table>
<thead>
<tr>
<th>Section</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>WW-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WW-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WW-3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WW-4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WW-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bar List & Details

- **Headwall for key ellipse B.C.D.**

Notes:

1. For location of materials, see Drainage and Elevation Plan Sheets.
2. For dimensions of headwall, see Sheet 13.

Culvert Head Walls - Bar List

Type 1

- **A:**
- **B:**
- **C:**
- **D:**

Type 2

- **A:**
- **B:**
- **C:**
- **D:**

NOT TO SCALE
Steps:
1. For alignment curve data and coordinates see Sheet 16.
2. For grading see Sheet 23.
3. For drainage and utilities see Sheet 43.
Profiles
SCALE: %, V=5%

Ramp slopes are defined by Ramps F R.I.L.
and Westbound Delaware Tributary existing outside pavement edge.

6% Super-elevation
Transition

Existing Ground

Proposed Profile Grade

400 ft. C.C.

Transition

1.5% Crown Section
Transition

0% Cross Slope

1.5% Cross Slope

Delaware Turnpike

Data No.
T000
Profiles
20

Ramp F

Crown line located 80' right of R.I.L.

Crown line varies from 20' to 80' right of R.I.L.

Crown line is located to the right of
the crown line are defined by
Ramps F R.I.L., and the front crown line.

Proposed Profile Grade

Existing Ground

Realigned Route 13
PROFILES
SCALE: 800' = 1'-0"
VERTICAL SCALE

6% Subdivision

Proposed Profile Grade

Existing Ground

RAMP C

Transition
3% Subdivision

Reservoir hill 279

Ramp F

Ramp B

15% Cross Slope

Transition

Proposed Profile Grade

Existing Ground

Transition
4% Subdivision

Ramp C Profile Grade Line

200% VC

Transition

Ramp E and Ramp F Profile Grade Lines

+0.80%
ELECTRICAL NOTES

1. For legend and general notes, see Sheet No. 6.
2. For various construction details regarding lighting installations, see Sheet No. 8.
3. Braid & Metallic Conduit from junction box to conduct and provided by others. Connect 50A service cable to enclosed circuit breaker.
4. Terminate existing conduct with bell and ground using provided with circuit breaker in new junction box.
5. Remove existing 3/4" conductors, remove concrete base or junction box, and install new 1" conductors.
6. Cut into existing conduit at approved location and connect new conduit.
7. Remove existing 3/4" conductors and install new cables.
ELECTRICAL NOTES
1. For Legend and General Notes, see Sheet No. 2.
2. For various construction details regarding lighting installation, see Sheet No. 5 & 6.
3. Test cap on conductors at junction box for connection by others.
4. Cut into conductor at coupling point, cancel new conduct and extend to junction box.
5. Remove working 12" (or 16") conductors and install new cable.
6. Remove existing 12" conductors and install new sheath wire.
7. Disconnect conduct at coupling point and install cap at the end of conduct to remain.
ELECTRICAL NOTES

1. For Legend and General Notes, see Sheet No. 2.
2. For various construction details regarding lighting infrastructure, see Sheet No. 3.
3. Cut any existing conductors at coupling point, connect new conductors, and extend to junction box.
4. Remove existing 240 conductors and install new cables.
ELECTRICAL NOTES

1. For legend and general notes, see Sheet No. 2.

2. For various construction details regarding lighting installations, see Sheet No. 6.163.

3. The phase connections for existing lighting systems shall be revised to conform to the circuitry shown.

4. Extend 1" metallic conduit from junction box to conduit box provided by others. Connect 5 #2 service cables to separate circuit breaker.

5. Terminate all cables in junction box for connection by others.

6. The phase cables of existing #2 conductors for lighting systems 1-2-3-4, 5-6-7-8, and 9-10-11 shall be provided with cable connectors with 15A fuses at first junction box.

7. Cut into existing conduit of coupling point, connect new conduit on extend 6" junction box.

8. Nominal size: #2 conductors with bell end or grounding bushing (as reqd.) in new junction box.

9. Remove existing #2 conductors and install new cables.

10. Remove existing #2 conductors and install new 12-gauge wire.
ELECTRICAL NOTES

1. Per Legend and General Notes, see Sheet No. 2.

2. For detailed construction details regarding lighting installations, see Sheet No. 6.

3. All existing conduits and #14 conductors therein, on this sheet are to remain unless otherwise noted.

4. The phase connections to existing lighting standards shall be revised to conform to the wiring shown.

5. Remove existing #14 conductors and install new cables.

6. Connect conduits to sides provided by others. Extent conduits to Panel "P", provide sufficient space for connections by others.
MODIFICATION OF EXISTING SERVICE POLE AT COUNTY ROAD 347

ELEVATION ANCHOR BOLT DETAIL

NOTES: ELECTRICAL

1. All modifications are Service Pole which conform to the Utility Company requirements.
2. Remove existing cables and install new service cables as noted.
3. Replace existing fuses with new fuse fuses.
4. Circuit breaker panel shall be furnished with three poles, 400A, 2204/2304 (70%) frame (blue) projecting at time of line (red) and neutral, in an RMA enclosure.
5. Ground breaker panel shall be furnished with disconnecting means and complete ground identification with existing service.
6. Remove existing cables (Coord.4) and install new 34A cables (Coord.4).

NOTES: FOUNDATIONS

All fillings and offsets are taken off of existing service line.
All concrete Masonry for Lighting Special Foundation including conduits and chain splices shall be paid for as P.L.C Masonry Miscellaneous.
Anchorage assembly 41/8" Mason. Pipe shall be paid for under item:
Anchorage Assembly for future High Mast Lighting Swe.
All our reinforcement, except anchor bars to be ASTMA416, Grade 40.
GENERAL NOTES:

These maintenance and protection of traffic and construction schedule plans are intended to provide a general guide to be followed by the Contractor during construction and cannot be used for contract purposes without the written consent of the Engineer. It is recognized that minor changes of this plan will be subject to daily modifications. Any change in the general plan must be approved by the Engineer.

All lane closures must have prior approval of the Engineer.

Cone placement for approaches to barrier curb resistors shall be 50 feet in length except as otherwise shown or noted.

For details see sheets 65.9-66.

Two Flashing Lights shall be placed on the first unit of each section of Timber Barrier Curb.

Two Flashing Lights shall be placed on each Sign Support.

ROUTE 273 INTERCHANGE IMPROVEMENT
Scale 1"=200'

LEGEND:
— Direction of Traffic
— Area Available for Construction
— Temporary Pavement for Denerving Traffic
— Timber Curb
— Temporary Sign for messages see sheet 66.
NEW SHEET ADDED

TELEPHONE DUCT DETAIL AT ABUTMENT

TYPICAL SUPPORT FOR TELEPHONE DUCTS

* All work and material shown to be done or furnished by the Delmar State Telephone Co.

NOTES:
For details of construction, see Fig. 401.

DELWARE TURNPIKE
ROUTE 573
INTERCHANGE IMPROVEMENTS
ROUTE 273 BRIDGE OVER DELAWARE TURNPIKE

TELEPHONE DUCT SUPPORTS & DETAILS

DELWARE STATE HIGHWAY DEPARTMENT
RECEIVED: M. B. S. 2-7-52
ENGINEER: R. M. \ 1-6-52
NEW SHEET ADDED
REINFORCEMENT PLACEMENT

Transverse full length bars are to be placed
parallel to the roadway and with the spacing
measured along the steel fabric reinforcement.
Transverse spacing bars are to be placed
parallel to the traffic lanes and spaced at
3'-0" (except for corner bars).

For Sandwiched bars, see Dwg. No. 4-A.

SECTION A-A

SECTION B-B

SECTION C-C

SECTION D-D

REINFORCING BAR SCHEDULE

MARK NO. | 48 | 47 | 46 | 45 | 44 | 43 | 42 | 41 | 40 | 39 | 38 | 37 | 36 | 35 | 34 | 33 | 32 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | -1 | -2 | -3 | -4 | -5 | -6 | -7 | -8 | -9 | -10
TYPE | 48 | 47 | 46 | 45 | 44 | 43 | 42 | 41 | 40 | 39 | 38 | 37 | 36 | 35 | 34 | 33 | 32 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | -1 | -2 | -3 | -4 | -5 | -6 | -7 | -8 | -9 | -10
A | 48 | 47 | 46 | 45 | 44 | 43 | 42 | 41 | 40 | 39 | 38 | 37 | 36 | 35 | 34 | 33 | 32 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | -1 | -2 | -3 | -4 | -5 | -6 | -7 | -8 | -9 | -10
B | 48 | 47 | 46 | 45 | 44 | 43 | 42 | 41 | 40 | 39 | 38 | 37 | 36 | 35 | 34 | 33 | 32 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | -1 | -2 | -3 | -4 | -5 | -6 | -7 | -8 | -9 | -10
LENGTH | 48 | 47 | 46 | 45 | 44 | 43 | 42 | 41 | 40 | 39 | 38 | 37 | 36 | 35 | 34 | 33 | 32 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | -1 | -2 | -3 | -4 | -5 | -6 | -7 | -8 | -9 | -10

NOTES:
For Sandwiched bars see Dwg. No. A-A.

INTERMEDIATE PARALLEL JOINT

ELEVATION

SECTION F-F

Aluminum Railing shall be fabricated in accordance with the details shown on the Delaware State Highway Department Dwg. No. 4-A. All Aluminum railings will be turned to the curvature of the bridge.

Section 4-D shall be turned to the curvature of the bridge.

Aluminum railings shall be measured along buffer line.
<table>
<thead>
<tr>
<th>ITEM</th>
<th>DESCRIPTION</th>
<th>UNIT</th>
<th>NEAT</th>
<th>PROPOSAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Portland Cement Concrete - No. 3 Reinforced Concrete</td>
<td>L.F.</td>
<td>917.8</td>
<td>917.8</td>
</tr>
<tr>
<td>16</td>
<td>Portland Cement Concrete Reinforced Slabs 4"</td>
<td>L.F.</td>
<td>2.445</td>
<td>2.445</td>
</tr>
<tr>
<td>17</td>
<td>Portland Cement Concrete Reinforced Slabs 6"</td>
<td>L.F.</td>
<td>1.420</td>
<td>1.420</td>
</tr>
<tr>
<td>18</td>
<td>Portland Cement Concrete Reinforced Slabs 8"</td>
<td>L.F.</td>
<td>1.270</td>
<td>1.270</td>
</tr>
<tr>
<td>19</td>
<td>Slip Form Reinforced Concrete Slabs</td>
<td>L.F.</td>
<td>7.895</td>
<td>7.895</td>
</tr>
<tr>
<td>20</td>
<td>Slip Form Reinforced Concrete Slabs</td>
<td>L.F.</td>
<td>5.263</td>
<td>5.263</td>
</tr>
<tr>
<td>21</td>
<td>Slip Form Reinforced Concrete Slabs</td>
<td>L.F.</td>
<td>5.263</td>
<td>5.263</td>
</tr>
<tr>
<td>22</td>
<td>Slip Form Reinforced Concrete Slabs</td>
<td>L.F.</td>
<td>3.413</td>
<td>3.413</td>
</tr>
<tr>
<td>23</td>
<td>Slip Form Reinforced Concrete Slabs</td>
<td>L.F.</td>
<td>6.007</td>
<td>6.007</td>
</tr>
<tr>
<td>24</td>
<td>Slip Form Reinforced Concrete Slabs</td>
<td>L.F.</td>
<td>5.000</td>
<td>5.000</td>
</tr>
<tr>
<td>25</td>
<td>Slip Form Reinforced Concrete Slabs</td>
<td>L.F.</td>
<td>3.413</td>
<td>3.413</td>
</tr>
<tr>
<td>26</td>
<td>Slip Form Reinforced Concrete Slabs</td>
<td>L.F.</td>
<td>3.413</td>
<td>3.413</td>
</tr>
<tr>
<td>27</td>
<td>Slip Form Reinforced Concrete Slabs</td>
<td>L.F.</td>
<td>3.413</td>
<td>3.413</td>
</tr>
<tr>
<td>28</td>
<td>Slip Form Reinforced Concrete Slabs</td>
<td>L.F.</td>
<td>3.413</td>
<td>3.413</td>
</tr>
<tr>
<td>29</td>
<td>Slip Form Reinforced Concrete Slabs</td>
<td>L.F.</td>
<td>3.413</td>
<td>3.413</td>
</tr>
<tr>
<td>30</td>
<td>Slip Form Reinforced Concrete Slabs</td>
<td>L.F.</td>
<td>3.413</td>
<td>3.413</td>
</tr>
<tr>
<td>31</td>
<td>Slip Form Reinforced Concrete Slabs</td>
<td>L.F.</td>
<td>3.413</td>
<td>3.413</td>
</tr>
<tr>
<td>32</td>
<td>Slip Form Reinforced Concrete Slabs</td>
<td>L.F.</td>
<td>3.413</td>
<td>3.413</td>
</tr>
<tr>
<td>33</td>
<td>Slip Form Reinforced Concrete Slabs</td>
<td>L.F.</td>
<td>3.413</td>
<td>3.413</td>
</tr>
<tr>
<td>34</td>
<td>Slip Form Reinforced Concrete Slabs</td>
<td>L.F.</td>
<td>3.413</td>
<td>3.413</td>
</tr>
<tr>
<td>35</td>
<td>Slip Form Reinforced Concrete Slabs</td>
<td>L.F.</td>
<td>3.413</td>
<td>3.413</td>
</tr>
<tr>
<td>36</td>
<td>Slip Form Reinforced Concrete Slabs</td>
<td>L.F.</td>
<td>3.413</td>
<td>3.413</td>
</tr>
<tr>
<td>37</td>
<td>Slip Form Reinforced Concrete Slabs</td>
<td>L.F.</td>
<td>3.413</td>
<td>3.413</td>
</tr>
<tr>
<td>38</td>
<td>Slip Form Reinforced Concrete Slabs</td>
<td>L.F.</td>
<td>3.413</td>
<td>3.413</td>
</tr>
<tr>
<td>39</td>
<td>Slip Form Reinforced Concrete Slabs</td>
<td>L.F.</td>
<td>3.413</td>
<td>3.413</td>
</tr>
<tr>
<td>40</td>
<td>Slip Form Reinforced Concrete Slabs</td>
<td>L.F.</td>
<td>3.413</td>
<td>3.413</td>
</tr>
</tbody>
</table>

Delaware Turnpike Summary of Quantities:

- **Total:** 118,863,000 L.F.