VIA WEBSITE POSTING

November 7, 2018

Contract No. T201606114.01
Federal Aid Project No. NH-N018(20)
Main Street Newark Rehabilitation and Pedestrian Improvements
New Castle County

Ladies and Gentlemen:

Enclosed is Addendum No. 3 for the referenced contract consisting of the following:

1. The Bid Proposal Cover, revised, to be substituted for the same page in the Proposal.
2. One (1) page, Table of Contents, page iv, revised, to be substituted for the same page in the Proposal.
3. Fourteen (14) pages, Special Provision 401699-Quality Control/Quality Assurance of Bituminous Concrete, has been added to the Proposal.
4. One (1) page, 763564-Special Bidding Procedure, A+B Bidding Form, revised, to be substituted for the same page in the Proposal.
5. The Mandatory Pre-Bid Meeting Attendance Sign-In Sheet has been posted.
6. The Mandatory Pre-Bid Meeting Transcript has been posted.

Please note the revisions listed above and submit your bid based upon this information.

Sincerely,

~signature on file~

Robert A. Kovacs
Competitively Bid Contracts Coordinator
Delaware Department of Transportation
STATE OF DELAWARE

DEPARTMENT OF TRANSPORTATION

BID PROPOSAL

for

CONTRACT T201606114.01

FEDERAL AID PROJECT NO. NH-N018(20)

CFDA NO. 20.205

Main Street Newark Rehabilitation and Pedestrian Improvements

New Castle County

ADVERTISEMENT DATE: October 15, 2018

COMPLETION TIME: 763564 - SPECIAL BIDDING PROCEDURES

PROSPECTIVE BIDDERS ARE ADVISED THAT THERE WILL BE A MANDATORY PRE-BID MEETING
THURSDAY NOVEMBER 2, 2018 AT 2:00 P.M. IN THE DeIDOT ADMINISTRATION BUILDING, 800 BAY
ROAD, DOVER, DELAWARE, 19903.

SPECIFICATIONS FOR ROAD AND BRIDGE CONSTRUCTION
DELAWARE DEPARTMENT OF TRANSPORTATION
AUGUST 2016

Bids will be received in the Bidder's Room at the Delaware Department of Transportation's Administration Building, 800 Bay Road, Dover, Delaware prior to 2:00 P.M. local time November 20, 2018
TABLE OF CONTENTS

GENERAL DESCRIPTION ... i

- LOCATION .. i
- DESCRIPTION .. i
- COMPLETION TIME .. i
- PROSPECTIVE BIDDERS NOTES ... i
- CONSTRUCTION ITEMS UNITS OF MEASURE iii

GENERAL NOTICES .. 1

- SPECIFICATIONS .. 1
- CLARIFICATIONS .. 1
- ATTESTING TO NON-COLLUSION .. 1
- QUANTITIES ... 1
- EQUALITY OF EMPLOYMENT OPPORTUNITY ON PUBLIC WORKS 1
- TAX CLEARANCE .. 2
- LICENSE ... 2
- DIFFERING SITE CONDITIONS ... 2
- CONFLICT WITH FEDERAL STATUTES OR REGULATIONS ... 3
- FEDERAL LABOR AND EMPLOYMENT REQUIREMENTS 3
- CONVICT PRODUCED MATERIALS: 3
- TO REPORT BID RIGGING ACTIVITIES 4
- NOTICE OF REQUIREMENT FOR AFFIRMATIVE ACTION 5
- STANDARD FEDERAL EQUAL EMPLOYMENT OPPORTUNITY 6
- TRAINING SPECIAL PROVISIONS 9
- INTERMODAL SURFACE TRANSPORTATION EFFICIENCY ACT 10
- DISADVANTAGED BUSINESS ENTERPRISE (DBE) PROGRAM SPECIFICATION 10
- CRITICAL DBE REQUIREMENTS .. 12
- GUIDANCE FOR GOOD FAITH EFFORT 13

REQUIRED CONTRACT PROVISIONS - FEDERAL-AID CONSTRUCTION CONTRACTS ... 15

I. GENERAL .. 15

II. NONDISCRIMINATION .. 15

III. NONSEGREGATED FACILITIES 19

IV. DAVIS-BACON AND RELATED ACT PROVISIONS 19

V. CONTRACT WORK HOURS AND SAFETY STANDARDS ACT 24

VI. SUBLETTING OR ASSIGNING THE CONTRACT 24

VII. SAFETY: ACCIDENT PREVENTION 25

VIII. FALSE STATEMENTS CONCERNING HIGHWAY PROJECTS 26

IX. IMPLEMENTATION OF CLEAN AIR & WATER POLLUTION CONTROL ACT 26

X. CERTIFICATION REGARDING DEBARMENT, SUSPENSION, INELIGIBILITY 27

XI. CERTIFICATION REGARDING USE OF CONTRACT FUNDS FOR LOBBYING 29

CARGO PREFERENCE ACT .. 30

BUY AMERICA ... 30

APPENDICES TO THE TITLE VI ASSURANCE 32

PREVAILING WAGES .. 34

PREVAILING WAGE REQUIREMENTS 34

APPLICABILITY OF DAVIS-BACON LABOR STANDARD PROVISIONS TO FLAGGERS 38

ALL AGENCY MEMORANDUM NO. 130 38

SPECIAL PROVISIONS .. 40

- 401502 - ASPHALT CEMENT COST ADJUSTMENT 41

- 401580 – RIDE QUALITY OF HOT-MIX PAVEMENT 42

- 401699 - QUALITY CONTROL/QUALITY ASSURANCE OF BITUMINOUS CONCRETE 46A

- 602502 - CONVERTING EXISTING CATCH BASIN TO MANHOLE 47

- 701500 - P.C.C. CURB, TYPE 1, MODIFIED 48

- 705504 - BRICK AND/OR BLOCK SIDEWALK 49

- 705510 - TREE GRATE ... 51

- 705511 - BIKE RACKS ... 53

- 709501 - TRENCH DRAIN, 20" WIDE 55

iv
.01 Description

This item shall govern the Quality Assurance Testing for supplying bituminous asphalt plant materials and constructing bituminous asphalt pavements and the calculation for incentives and disincentives for materials and construction. The Engineer will evaluate all materials and construction for acceptance. The procedures for acceptance are described in this Section. Include the costs for all materials, labor, equipment, tools, and incidentals necessary to meet the requirements of this specification in the bid price per ton for the bituminous asphalt. Payment to the Contractor for the bituminous asphalt item(s) will be based on the Contract price per ton and the pay adjustments described in this specification.

.02 Bituminous Concrete Production – Quality Acceptance

(a) Material Production - Tests and Evaluations.

All acceptance tests shall be performed by qualified technicians at qualified laboratories following AASHTO or DelDOT procedures, and shall be evaluated using Quality Level Analysis. The Engineer will conduct acceptance tests. The Engineer will directly base acceptance on the acceptance test results, the asphalt cement quality, the Contractor’s QC Plan work, and the comparisons of the acceptance test results to the QC test results. The Engineer may elect to utilize test results of the Contractor in some situations toward judging acceptance.

Supply and capture samples, as directed by the Engineer under the purview of the Engineer from delivery trucks before the trucks leave the production plant. Hand samples to the Engineer to be marked accordingly. The sample shall represent the material produced by the Contractor, and shall be of sufficient size to allow the Engineer to complete all required acceptance tests. The Engineer will direct the Contractor when to capture these samples, on a statistically random, unbiased basis, established before production begins each day based upon the anticipated production tonnage. The captured sample shall be from the Engineer specified delivery truck. The Contractor may visually inspect the specified delivery load during sampling and elect to reject the load. If the contractor elects to reject the specified delivery truck, each subsequent load will be inspected until a visually acceptable load is produced for acceptance testing. All visually rejected loads shall not be sent to a Department project.

The first sample of the production day will be randomly generated by the Engineer between loads 0 and 12 (0-250 tons). Subsequent samples will be randomly generated by the Engineer on 500-ton sub-lots for the production day. Samples not retrieved in accordance with the Contractor’s QC plan will be deemed unacceptable and may be a basis for rejection of material produced. Parallel tests or dispute resolution tests will only be performed on material captured at the same time and location as the acceptance test sample. Parallel test samples or Dispute Resolution samples will be created by splitting a large sample or obtaining multiple samples that equally represent the material. The Engineer will perform all splitting and handling of material after it is obtained by the Contractor.

The Contractor may retain dispute resolution samples or perform parallel tests with the Engineer on any acceptance sample.

The Engineer will evaluate and accept the material on a lot basis. All the material within a lot shall have the same JMF (mixture ID). The lot size shall be targeted for 2000 tons or a maximum period of three days, whichever is reached first. If the 2000th ton target lot size is achieved during a production day, the lot size shall extend to the end of that production day. The Contractor may interrupt the production of one JMF in order to produce different material; this type of interruption will not alter the determination of the size or limits of material represented by a lot. The Engineer will evaluate each lot on a sublot basis. The size for each sublot shall be 100 to 500 tons and testing for the sub lots will be completed on a daily basis. For each sublot, the Engineer will evaluate one sample.
The target size of sub-lots within each lot, except for the first sample of the production day, is equal-sized 500 ton sub lots and will be based upon anticipated production, however, more or fewer sublots, with differing sizes, may result due to the production schedule and conditions. If the actual production is less than anticipated, and it’s determined a sample will not be obtained (based upon the anticipated tonnage), a new sample location will be determined on a statistically random, unbiased basis based upon the new actual production. If the actual production is going to be 50 tons or greater over the anticipated sub lot production, a new sample location will be determined on a statistically random, unbiased basis based upon the new actual production. The Engineer will combine the evaluation and test results for all of the applicable sublots in order to evaluate each individual lot.

If the Engineer is present, and the quantity exceeds 25 tons, a statistically random sample will be used for analysis. When the anticipated production is less than 100 tons and greater than 25 tons, and the Engineer is not present, the contractor shall randomly select a sample using the Engineer’s random location program. The captured sample shall be placed in a suitable box, marked to the attention of the Engineer, and submitted to the Engineer for testing. A box sample shall also be obtained by the contractor at the same time and will be used as the Dispute Resolution sample if requested by the Engineer. The Contractor shall also obtain one liquid asphalt sample (1 pint) per grade of asphalt used per day and properly label it with all pertinent information.

The Engineer will conduct the following tests in order to characterize the material for the pavement compaction quality and to judge acceptance and the pay adjustment for the material:

- AASHTO T312 - Preparing and Determining the Density of Hot Mix Asphalt (HMA) Specimens by Means of the Superpave Gyratory Compactor
- AASHTO T166, Method C (Rapid Method) - Bulk Specific Gravity of Compacted Hot Mix Asphalt (HMA) Using Saturated Surface Dry Specimens
- AASHTO T308 - Determining the Asphalt Binder Content of Hot Mix Asphalt (HMA) by the Ignition Method
- AASHTO T30 - Mechanical Analysis of Extracted Aggregate
- AASHTO T209 - Theoretical Maximum Specific Gravity and Density of Hot Mix Asphalt (HMA)
- ASTM D7227 - Standard Practice for Rapid Drying of Compacted Asphalt Specimens using Vacuum Drying Apparatus

(b) Pavement Construction - Tests and Evaluations.

The Engineer will directly base acceptance on the compaction acceptance test results, and on the inspection of the construction, the Contractor’s QC Plan work, ride smoothness as referenced in the contract documents, lift thickness as referenced in the contract documents, joint quality as referenced in the contract documents, surface texture as referenced in the contract documents, and possibly the comparisons of the acceptance test results to the independent test results. For the compaction acceptance testing, the Engineer will sample the work on a statistically random basis, and will test and evaluate the work based on daily production.

Notify the Engineer of any locations within that road segment that may not be suitable to achieve minimum (93%) compaction due to existing conditions prior to paving the road segment. Schedule and hold a meeting in the field with the Engineer in order to discuss all areas that may potentially be applicable to Table 5a before paving starts. Areas that will be considered for Table 5a will be investigated in accordance to the method described in Appendix B. If this meeting is not held prior to paving, no areas will be considered for Table 5a. Areas of allowable exemptions that will not be cored include the following: partial-depth patch areas, driveway entrances, paving locations of less than 100 tons, areas around manholes and driveway entrances, and areas of paving that are under 400 feet in continuous total length and/or 5 feet in width.
The exempt areas around manholes will be a maximum of 4 feet transversely on either side from the center of the manhole, and 20 feet longitudinally on either side from the center of the manhole. The exempt areas around driveway entrances shall be the entire width of the driveway, and 3 feet from the edge of the longitudinal joint next to the driveway. Areas of exemption that will be cored for informational purposes only include: areas where the mat thickness is less than three times the nominal maximum aggregate size as directed by the Engineer, violations of Section 401.08 in the Standard Specifications as directed by the Engineer, and areas shown to contain questionable subgrade properties as proven by substantial yielding under a fully legally loaded truck. Failure to obtain core samples in these areas will result in zero payment for compaction regardless of the exempt status.

The Engineer will evaluate and accept the compaction work on a daily basis. Payment for the compaction will be calculated by using the material production lots as referenced in .02 Acceptance Plan (a) Material Production - B Tests and Evaluation and analyzing the compaction results over the individual days covered in the material production lot. The compaction results will be combined with the material results to obtain a payment for this item.

The minimum size of a compaction lot shall be 100 tons. If the compaction lot is between 101 and 1000 tons, the Engineer shall randomly determine four compaction acceptance test locations. If the compaction lot is between 1001 and 1500 tons, the Engineer shall randomly determine six compaction acceptance test locations. If the compaction lot is between 1501 and 2000 tons, the Engineer shall randomly determine eight compaction acceptance test locations. If the compaction lot is greater than 2000 tons, the Engineer shall randomly determine two compaction acceptance test locations per 500 tons.

If a randomly selected area falls within an Engineer approved exemption area, the Engineer will select one more randomly generated location to be tested per the requirements of this Specification. If that cannot be accomplished, or if an entire location has been declared exempt, the compaction testing shall be performed as per these Specifications but a note will be added to the results that the location was an Engineer approved exempt location.

Testing locations will be a minimum of 1.0 feet from the newly placed longitudinal joint and 50 feet from a new transverse joint.

Cut one six (6) inch diameter core through the full lift depth at the exact location marked by the Engineer. Cores submitted that are not from the location designated by the Engineer will not be tested and will be paid at zero pay.

Notify the Engineer prior to starting paving operations with approximate tonnage to be placed. The Contractor is then responsible for notifying the appropriate Engineer test personnel within 12 hours of material placement. The Engineer will mark core locations within 24 hours of notification. After determination of locations, the Contractor shall complete testing within two operational days of the locations being marked. If the cores are not cut within two operational days, the area in question will be paid at zero pay for compaction testing.

Provide any traffic control required for the structural number investigation, sampling, and testing work at no additional cost to the Department.

Commence coring of the pavement after the pavement has cooled to a temperature of 140°F or less. Cut each core with care in order to prevent damaging the core. Damaged cores will not be tested. Label each core with contract number, date of construction, and number XX of XX upon removal from the roadway. Place cores in a 6-inch diameter plastic concrete cylinder mold or approved substitute for protection. Separate cores in the same cylinder mold with paper. Attach a completed QC test record for the represented area with the corresponding cores. The Engineer will also complete a test record for areas tested for the QA report and provide to Materials & Research. Deliver the cores to the Engineer for testing, processing, and report distribution at the end of each production day.
Repair core holes per Appendix A, Repairing Core Holes in Bituminous Asphalt Pavements. Core holes shall be filled immediately. Failure to repair core holes at the time of coring will result in zero pay for compaction testing for the area in question.

The Engineer will conduct the following tests on the applicable portion of the cores in order to evaluate their quality:

- AASHTO T166, Method C (Rapid Method) – Bulk Specific Gravity of Compacted Hot Mix Asphalt (HMA) Using Saturated Surface Dry Specimens
- AASHTO T209 - Theoretical Maximum Specific Gravity and Density of Hot Mix Asphalt
- ASTM D7227 - Standard Practice for Rapid Drying of Compacted Asphalt Specimens using Vacuum Drying Apparatus

The Engineer will use the average of the last five test values of the same JMF (mixture ID) material at the production plant in order to calculate the average theoretical maximum specific gravity of the cores. The average will be based on the production days test results and as many test results needed from previous days production to have an average of five samples. If there are less than five values available, the Engineer will use the JMF design value in addition to the available values to calculate the average theoretical maximum specific gravity.

.03 Payment and Pay Adjustment Factors.

The Engineer will determine pay adjustments for the bituminous asphalt item(s) in accordance with this specification. The Engineer will determine a pay adjustment factor for the material produced and a pay adjustment factor for the pavement construction. Pay adjustments for material and construction will be calculated independently. When the pay adjustment calculation for either material or construction falls to zero payment per tables 4, 5, or 5a, the maximum pay adjustment for the other factor will not exceed 100.

Pay Adjustment factors will only be calculated on in place material. Removed material will not be used in payment adjustment calculations.

Material Production Pay Adjustments will be calculated based upon 70% of the contract unit price and calculated according to section .03(a) of this specification. Pavement construction Pay Adjustments will be calculated based upon 30% of the contract unit price and calculated according to section .03(b) of this specification.

(a) Material Production - Pay Adjustment_

Calculate the material pay adjustment by evaluating the production material based on the following parameters:

<table>
<thead>
<tr>
<th>Material Parameter</th>
<th>Single Test Tolerance (+/-)</th>
<th>Weight Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asphalt Content</td>
<td>0.4</td>
<td>0.30</td>
</tr>
<tr>
<td>#8 Sieve (>=19.0 mm)</td>
<td>7.0</td>
<td>0.30</td>
</tr>
<tr>
<td>#8 Sieve (<=12.5 mm)</td>
<td>5.0</td>
<td>0.30</td>
</tr>
<tr>
<td>#200 Sieve (0.075mm Sieve)</td>
<td>2.0</td>
<td>0.30</td>
</tr>
<tr>
<td>Air Voids (4.0% Target)</td>
<td>2.0</td>
<td>0.10</td>
</tr>
</tbody>
</table>
Using the JMF target value, the single test tolerance (from Table 2), and the test values, the Engineer will use the following steps to determine the material pay adjustment factor for each lot of material:

1. For each parameter, calculate the mean value and the standard deviation of the test values for the lot to the nearest 0.1 unit.
2. For each parameter, calculate the Upper Quality Index (QU):
 \[QU = \frac{(\text{JMF target}) + (\text{single test tolerance}) - (\text{mean value})}{(\text{standard deviation})}. \]
3. For each parameter, calculate the Lower Quality Index (QL):
 \[QL = \frac{(\text{mean value}) - (\text{JMF target}) + (\text{single test tolerance})}{(\text{standard deviation})}. \]
4. For each parameter, locate the values for the Upper Payment Limit (PU) and the Lower Payment Limit (PL) from Table 3 - Quality Level Analysis by the Standard Deviation Method. (Use the column for “n” representing the number of sublots in the lot. Use the closest value on the table when the exact value is not listed).
5. Calculate the PWL for each parameter from the values located in the previous step:
 \[PWL = PU + PL - 100. \]
6. Calculate each parameter’s contribution to the payment adjustment by multiplying its PWL by the weight factor shown in Table 2 for that parameter.
7. Add the calculated adjustments of all the parameters together to determine the Composite PWL for the lot.
8. From Table 4, locate the value of the Pay Adjustment Factor corresponding to the calculated PWL. When all properties of a single test are within the single test tolerance of Table 2, Pay Adjustment factors shall be determined by Column B. When any property of a single test is outside of the Single Test Tolerance parameters defined in Table 2, the Material Pay Adjustment factor shall be determined by Column C.
9. For each lot, determine the final material price adjustment:

\[
\text{Final Material Pay Adjustment} = \frac{\text{(Lot Quantity) x (Item Bid Price) x (Pay Adjustment Factor) x 70%}}{100}
\]

This final pay calculation will be paid to the cent.

In lieu of being assessed a pay adjustment penalty, the Contractor may choose to remove and replace the material at no additional cost to the Department. When the PWL of any material parameter in Table 2 is below 60, the Engineer may require the removal and replacement of the material at no additional cost to the Department. Test results on removed material shall not be used in calculation of future PWL calculations for Mixture ID. The test results from the Engineer on production that is less than 100 tons will be combined with the two most recently completed Engineer tests with the same Mixture ID to calculate payment for the lot encompassing the single test. If that cannot be accomplished, the approved JMF will be used to calculate payment for the lot encompassing the single test. Payment for previously closed lots will not be affected by the analysis. When a sample is outside of the allowable single test tolerance for any Materials criteria in Table 2, that sample will be isolated. For payment purposes, the test result of the out of acceptable tolerance sample will be combined with the two previous acceptable samples of the same JMF and analyzed per this specification. The material that is considered out of the acceptable tolerance will only include the material within the represented sub-lot (i.e., a maximum of 500 tons). If the previous acceptable test result is from the previous production day, only the material produced on the second production day will be considered out of tolerance. All future sub lots will not include the isolated test. The pay factors for the out of tolerance sample lot will be calculated using column C of table 4.

If, during production, a QA sample test result does not meet the acceptable tolerances and the Contractors QC sample duplicates the QA sample test result, the Contractor can make an appropriate change to the mixture (within the JMF boundaries), and request to have that sample further isolated. After the Contractor has made appropriate changes, the Contractor will visually inspect each produced load. The first visually acceptable load will be sampled and tested. If that sample test result shows compliance with the specifications, the material that is considered out of the acceptable tolerance will include the material from the previous acceptable test result to the third load after the initially sampled and tested sample. If the sample does not meet the specification requirements, the Engineer will no longer accept material. Production may resume when changes have been made and an acceptable sample and test result is obtained.
<table>
<thead>
<tr>
<th>PU or PL</th>
<th>QU and QL for “n” Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n = 3</td>
</tr>
<tr>
<td>100</td>
<td>1.16</td>
</tr>
<tr>
<td>99</td>
<td>-</td>
</tr>
<tr>
<td>98</td>
<td>1.15</td>
</tr>
<tr>
<td>97</td>
<td>-</td>
</tr>
<tr>
<td>96</td>
<td>1.14</td>
</tr>
<tr>
<td>95</td>
<td>-</td>
</tr>
<tr>
<td>94</td>
<td>1.13</td>
</tr>
<tr>
<td>93</td>
<td>-</td>
</tr>
<tr>
<td>92</td>
<td>1.12</td>
</tr>
<tr>
<td>91</td>
<td>1.11</td>
</tr>
<tr>
<td>90</td>
<td>1.10</td>
</tr>
<tr>
<td>89</td>
<td>1.09</td>
</tr>
<tr>
<td>88</td>
<td>1.07</td>
</tr>
<tr>
<td>87</td>
<td>1.06</td>
</tr>
<tr>
<td>86</td>
<td>1.04</td>
</tr>
<tr>
<td>85</td>
<td>1.03</td>
</tr>
<tr>
<td>84</td>
<td>1.01</td>
</tr>
<tr>
<td>83</td>
<td>1.00</td>
</tr>
<tr>
<td>82</td>
<td>0.97</td>
</tr>
<tr>
<td>81</td>
<td>0.96</td>
</tr>
<tr>
<td>80</td>
<td>0.93</td>
</tr>
<tr>
<td>79</td>
<td>0.91</td>
</tr>
<tr>
<td>78</td>
<td>0.89</td>
</tr>
<tr>
<td>77</td>
<td>0.87</td>
</tr>
<tr>
<td>76</td>
<td>0.84</td>
</tr>
<tr>
<td>75</td>
<td>0.82</td>
</tr>
<tr>
<td>74</td>
<td>0.79</td>
</tr>
<tr>
<td>73</td>
<td>0.75</td>
</tr>
<tr>
<td>72</td>
<td>0.74</td>
</tr>
<tr>
<td>71</td>
<td>0.71</td>
</tr>
<tr>
<td>70</td>
<td>0.68</td>
</tr>
<tr>
<td>69</td>
<td>0.65</td>
</tr>
<tr>
<td>68</td>
<td>0.62</td>
</tr>
<tr>
<td>67</td>
<td>0.59</td>
</tr>
<tr>
<td>66</td>
<td>0.56</td>
</tr>
<tr>
<td>65</td>
<td>0.52</td>
</tr>
</tbody>
</table>
Table 3 – Quality Level Analysis by the Standard Deviation Method

<table>
<thead>
<tr>
<th>PU or PL</th>
<th>QU and QL for “n” Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n = 3</td>
</tr>
<tr>
<td>61</td>
<td>0.39</td>
</tr>
<tr>
<td>60</td>
<td>0.36</td>
</tr>
<tr>
<td>59</td>
<td>0.32</td>
</tr>
</tbody>
</table>

Table 4 - PWL Pay Adjustment Factors

<table>
<thead>
<tr>
<th>PWL</th>
<th>Pay Adjustment Factor (%)</th>
<th>Pay Adjustment Factor (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Column B</td>
<td>Column C</td>
</tr>
<tr>
<td>100</td>
<td>+5</td>
<td>0</td>
</tr>
<tr>
<td>99</td>
<td>+4</td>
<td>-1</td>
</tr>
<tr>
<td>98</td>
<td>+3</td>
<td>-2</td>
</tr>
<tr>
<td>97</td>
<td>+2</td>
<td>-3</td>
</tr>
<tr>
<td>96</td>
<td>+1</td>
<td>-4</td>
</tr>
<tr>
<td>95</td>
<td>0</td>
<td>-5</td>
</tr>
<tr>
<td>94</td>
<td>-1</td>
<td>-6</td>
</tr>
<tr>
<td>93</td>
<td>-2</td>
<td>-7</td>
</tr>
<tr>
<td>92</td>
<td>-3</td>
<td>-8</td>
</tr>
<tr>
<td>91</td>
<td>-4</td>
<td>-9</td>
</tr>
</tbody>
</table>

PWL<91 | PWL - 100 | PWL - 100

(b) Pavement Construction - Pay Adjustments.

The Engineer will determine the pavement construction pay adjustment by evaluating the construction of the pavement, based on the following parameter:

- Degree of compaction of the in-place material

Using the test values for the cores, the Engineer will use the following steps to determine the pavement construction pay adjustment for each lot of work.

1. Calculate the core bulk specific gravity values from the sublot tests values, to the nearest 0.001 unit. Obtain the Theoretical maximum Specific Gravity values from the corresponding laboratory sublot tests.
2. Calculate the Degree of Compaction:

\[
\text{Degree of Compaction} = \left(\frac{\text{Core Bulk Specific Gravity}}{\text{Theoretical Maximum Specific Gravity}} \right) \times 100\% \text{ recorded to the nearest 0.1\%.}
\]

3. The average compaction for the sublots shall be averaged together for the compaction level of the lot. The lots compaction test level shall be averaged and recorded to the nearest whole percent.

4. Locate the value of the Payment Adjustment Factor corresponding to the calculated degree of compaction from Table 5 or Table 5a.

5. Determine the pavement construction price adjustment by using the following formula:

\[
\text{Construction Pay adjustment} = (\text{Lot Quantity}) \times (\text{Bid Price}) \times (\text{Pay Adjustment Factor}) \times 30\%.
\]

<table>
<thead>
<tr>
<th>Degree of Compaction (%)</th>
<th>Range</th>
<th>Pay Adjustment Factor (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥ 97.0</td>
<td>≥ 96.75</td>
<td>-100*</td>
</tr>
<tr>
<td>96.5</td>
<td>96.26 – 96.74</td>
<td>-5</td>
</tr>
<tr>
<td>96.0</td>
<td>95.75 – 96.25</td>
<td>-3</td>
</tr>
<tr>
<td>95.5</td>
<td>95.26 – 95.74</td>
<td>-2</td>
</tr>
<tr>
<td>95.0</td>
<td>94.75 – 95.25</td>
<td>0</td>
</tr>
<tr>
<td>94.5</td>
<td>94.26 – 94.74</td>
<td>0</td>
</tr>
<tr>
<td>94.0</td>
<td>93.75 – 94.25</td>
<td>1</td>
</tr>
<tr>
<td>93.5</td>
<td>93.26 – 93.74</td>
<td>3</td>
</tr>
<tr>
<td>93.0</td>
<td>92.75 – 93.25</td>
<td>5</td>
</tr>
<tr>
<td>92.5</td>
<td>92.26 – 92.74</td>
<td>3</td>
</tr>
<tr>
<td>92.0</td>
<td>91.75 – 92.25</td>
<td>0</td>
</tr>
<tr>
<td>91.5</td>
<td>91.26 – 91.74</td>
<td>0</td>
</tr>
<tr>
<td>91.0</td>
<td>90.75 – 91.25</td>
<td>-5</td>
</tr>
<tr>
<td>90.5</td>
<td>90.26 – 90.74</td>
<td>-15</td>
</tr>
<tr>
<td>90.0</td>
<td>89.75 – 90.25</td>
<td>-20</td>
</tr>
<tr>
<td>89.5</td>
<td>89.26 – 89.74</td>
<td>-25</td>
</tr>
<tr>
<td>89.0</td>
<td>88.75 – 89.25</td>
<td>-30</td>
</tr>
<tr>
<td>88.5</td>
<td>88.26 – 88.74</td>
<td>-50</td>
</tr>
<tr>
<td>≤ 88.0</td>
<td>≤ 88.25</td>
<td>-100*</td>
</tr>
</tbody>
</table>

* or remove and replace it at Engineer's discretion
<table>
<thead>
<tr>
<th>Degree of Compaction</th>
<th>Range</th>
<th>Pay Adjustment Factor (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>>= 97.0</td>
<td>>= 96.75</td>
<td>-100*</td>
</tr>
<tr>
<td>96.5</td>
<td>96.26 – 96.74</td>
<td>-5</td>
</tr>
<tr>
<td>96.0</td>
<td>95.75 – 96.25</td>
<td>-3</td>
</tr>
<tr>
<td>95.5</td>
<td>95.26 – 95.74</td>
<td>-2</td>
</tr>
<tr>
<td>95.0</td>
<td>94.75 – 95.25</td>
<td>0</td>
</tr>
<tr>
<td>94.5</td>
<td>94.26 – 94.74</td>
<td>0</td>
</tr>
<tr>
<td>94.0</td>
<td>93.75 – 94.25</td>
<td>0</td>
</tr>
<tr>
<td>93.5</td>
<td>93.26 – 93.74</td>
<td>1</td>
</tr>
<tr>
<td>93.0</td>
<td>92.75 – 93.25</td>
<td>3</td>
</tr>
<tr>
<td>92.5</td>
<td>92.26 – 92.74</td>
<td>1</td>
</tr>
<tr>
<td>92.0</td>
<td>91.75 – 92.25</td>
<td>0</td>
</tr>
<tr>
<td>91.5</td>
<td>91.26 – 91.74</td>
<td>0</td>
</tr>
<tr>
<td>91.0</td>
<td>90.75 – 91.25</td>
<td>0</td>
</tr>
<tr>
<td>90.5</td>
<td>90.26 – 90.74</td>
<td>0</td>
</tr>
<tr>
<td>90.0</td>
<td>89.75 – 90.25</td>
<td>0</td>
</tr>
<tr>
<td>89.5</td>
<td>89.26 – 89.74</td>
<td>0</td>
</tr>
<tr>
<td>89.0</td>
<td>88.75 – 89.25</td>
<td>-1</td>
</tr>
<tr>
<td>88.5</td>
<td>88.26 – 88.74</td>
<td>-3</td>
</tr>
<tr>
<td>88.0</td>
<td>87.75 – 88.25</td>
<td>-5</td>
</tr>
<tr>
<td>87.5</td>
<td>87.26 – 87.74</td>
<td>-10</td>
</tr>
<tr>
<td>87.0</td>
<td>86.75 – 87.25</td>
<td>-15</td>
</tr>
<tr>
<td>86.5</td>
<td>86.26 – 86.74</td>
<td>-20</td>
</tr>
<tr>
<td>86.0</td>
<td>85.75 – 86.25</td>
<td>-25</td>
</tr>
<tr>
<td>85.5</td>
<td>85.26 – 85.74</td>
<td>-30</td>
</tr>
<tr>
<td>85.0</td>
<td>84.75 – 85.25</td>
<td>-40</td>
</tr>
<tr>
<td>84.5</td>
<td>84.26 – 84.74</td>
<td>-50</td>
</tr>
<tr>
<td>=< 84.0</td>
<td>=< 84.25</td>
<td>-100*</td>
</tr>
</tbody>
</table>

* or remove and replace at Engineer's discretion

1 This chart is to be used for areas where the structural value of the area to be paved is less than 1.75 as determined by the Engineer. See Appendix B - Method for Obtaining Cores for Determination of Roadway Structure. This chart is applicable to rehabilitation work only; full depth construction will not be considered for Table 5a.
.04 Dispute Resolution.

Disputes or questions about any test result shall be brought to the attention of the Contractor and the Engineer within two operational days of reported test results. The following dispute resolution procedures will be used. The Engineer and the Contractor will review the sample quality, the test method, the laboratory equipment, and the laboratory technician. If these factors are not the cause of the dispute, a third party dispute resolution will be used.

Third party resolution testing can be performed at either another Contractor’s laboratory, the Engineer’s laboratory, or an independent accredited laboratory. Unless otherwise mutually agreed upon by DAPA and the Engineer, the Engineer’s qualified laboratory in Dover and qualified personnel shall conduct the necessary testing for third party Dispute Resolution after the Engineer has provided reasonable notice to allow the Contractor to witness this testing.

When disputes over production testing occur, the samples used for Dispute Resolution testing will be those samples the properly captured, labeled, and stored, as described in the second paragraph of the section of these specifications titled .02 Acceptance Plan, (a) Material Production - Tests and Evaluations. If no samples are available, the original testing results will be used for payment calculations.

Dispute Resolution samples for air void content will be heated by a microwave oven.

If there is a discrepancy between the Engineer’s acceptance test result and the Contractor’s test result, the Contractor may ask for the Dispute Resolution sample to be tested. The Contractor may request up to two dispute resolution samples be tested per calendar year without charge. Any additional Dispute Resolution samples run at the Contractors request where the results substantiate the acceptance test result will be assessed a fee of $125. Any additional Dispute Resolution samples that substantiate the Contractors test result will not be assessed the fee.

When disputes over compaction core test results occur, the Engineer’s acceptance core will be used for the dispute resolution sample. The Contractor will be advised on when the testing will occur as referenced above to witness the testing. The results of the dispute resolution testing shall replace all of the applicable disputed test results for payment purposes.
Appendix A - Repairing Core Holes in Bituminous Asphalt Pavement

Description.

This appendix describes the procedure required to repair core holes in a bituminous concrete pavement.

Materials and Equipment.

The following material shall be available to complete this work:

- Patch Material - DelDOT approved High Performance Cold Patch material shall be used.

The following equipment shall be available to complete this work:

- Sponge or other absorbent material - Used to extract water from the hole.
- Compaction Hammer - mechanical (electrical, pneumatic, or gasoline driven) tamping device with a flat, circular tamping face smaller than 6 inches in diameter.

Construction Method.

After core removal from the hole, remove all excess water from within the hole, and prevent water from re-entering the hole.

Place the patch material in lifts no greater than 3 inches and compact with mechanical tamping device. If the hole is deeper than 3 inches, use two lifts of approximately equal depths so that optimum compaction is achieved. Make sure that the patch surface matches the grade of the existing roadway. Make every effort to achieve the greatest possible compaction

Performance Requirements.

The Engineer will judge the patch on the following basis:

- The patch shall be well compacted
- The patch surface shall match the grade of the surrounding roadway surface.

Basis of Payment.

No measurement or payment will be made for the patching work. The Contractor must gain the Engineer’s acceptance of the patching work before the Engineer will accept the material represented by the core.
Appendix B - Method for Obtaining Cores for Determination of Roadway Structure

The Contractor is responsible for obtaining cores in areas that they propose are eligible for compaction price adjustments according to Table 5a in this specification. Table 5a is not applicable for new full-depth pavement box construction. Cores submitted for this process shall be obtained according to the following process.

1. Contact Materials & Research (M&R) personnel to determine if information about the area is already available. If M&R has already obtained cores in the location that is being investigated, the contractor may opt to use the laboratory information for the investigation and not core the area on their own.

2. If M&R does not have information concerning the section of the roadway, the contractor needs to contact M&R to arrange for verification of coring operations. Arrangements shall be made to allow for an individual from M&R to be on the site when the cores are obtained. Cores will be turned over to M&R for evaluation.

3. The Contractor is responsible for providing all traffic control and repairing core holes in accordance to 401699 Appendix A - Repairing Core Holes in Bituminous Asphalt Pavements.

4. Cores are to be taken throughout the entire project for the area in question. Cores will be spaced, from the start of the project in increments determined based on field and project specifics. Cores will be evenly distributed throughout the project location. The cores will be taken in the center of the lane in question.

5. Additional cores may be taken at other locations, if surface conditions indicate that there may be a substantial difference in the underlying section. The location of these cores should be documented and submitted to M&R.

6. Cores shall be full depth and include underlying materials. If there is a stone base included in the pavement section, at a minimum 1 core must have information concerning the thickness of the base. This is determined by augering to the subgrade surface.

7. The calculations used to determine the structural capacity of the roadway is as follows. If the contractor finds, upon starting the coring process, that the areas are of greater thickness than applicable to Table 5a, they may terminate the coring process on their own and retract the request.
Structural Number Calculations

Each pavement box material is assigned a structural coefficient based upon AASHTO design guides. The structural coefficient is used to determine the total strength of the pavement section.

Materials used in older pavement sections are assigned lower structural coefficients to compensate for aging of the materials. The coefficients used to determine the structural number of an existing pavement are:

<table>
<thead>
<tr>
<th>Existing Material</th>
<th>Structural Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>HMA</td>
<td>0.32</td>
</tr>
<tr>
<td>Asphalt Treated Base</td>
<td>0.26</td>
</tr>
<tr>
<td>Soil Cement</td>
<td>0.16</td>
</tr>
<tr>
<td>Surface Treatment (Tar & Chip)</td>
<td>0.10</td>
</tr>
<tr>
<td>GABC</td>
<td>0.14</td>
</tr>
<tr>
<td>Concrete</td>
<td>0 - 0.7*</td>
</tr>
</tbody>
</table>

* The Structural Coefficient of Concrete is dependent upon the condition of the concrete. Compressive strengths & ASR analysis are used to determine condition - contact the Engineer if this situation arises.
Newly placed materials use a different set of structural coefficients. They are as follows:

<table>
<thead>
<tr>
<th>New Material</th>
<th>Structural Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>HMA</td>
<td>0.40</td>
</tr>
<tr>
<td>Asphalt Treated Base (BCBC)</td>
<td>0.32</td>
</tr>
<tr>
<td>Soil Cement</td>
<td>0.20</td>
</tr>
<tr>
<td>GABC</td>
<td>0.14</td>
</tr>
</tbody>
</table>

Example:

Location includes placement of a 1.25" Type C overlay on 2.25" Type B. Existing roadway is cored and is shown to consist of 2" HMA on 7" GABC.

Calculation:

For the Type B lift the calculation would be:

\[
\text{Existing HMA} \quad 2 \times 0.32 = 0.64 \\
\text{GABC} \quad 7 \times 0.14 = 0.98 \\
\hline
\text{Total} \quad 1.62
\]

For the Type C lift the calculation would be:

\[
\text{Newly Placed B} \quad 2.25 \times 0.4 = 0.90 \\
\text{Existing HMA} \quad 2 \times 0.32 = 0.64 \\
\text{GABC} \quad 7 \times 0.14 = 0.98 \\
\hline
\text{Total} \quad 2.52
\]
763564 - SPECIAL BIDDING PROCEDURE

PLEASE COMPLETE THE FOLLOWING:

The dollar amount for all work to be performed under the proposal.

\[A = \$ \ \underline{\text{____________________}} \]
(FROM PAGE 10 11)

Total number of calendar days proposed by the bidder to reach substantial completion.
The contractor shall use April 1, 2019 for the first chargeable day for these calculations.

\[(\text{No. of calendar days} \times \$50,000) \quad B = \ \$ \ \underline{\text{____________________}} \]

Price for Comparison of bids -

\[\text{TOTAL=} \ \$ \ \underline{\text{____________________}} \]

TOTAL OF "A" ABOVE, PLUS "B" ABOVE

(Total number of calendar days proposed by the bidder for anticipated adverse weather included within the total number of calendar days specified in part B. The number of anticipated weather days shall be calculated based on Table 1. If it is assumed that the last month will not be used in its entirety, the contractor shall calculate the weather days for the month by dividing the number of weather days for that month located in table 1, by the total number of days in the month and then multiple the number of anticipated days to be used in that month, any positive remainders shall be rounded up to a whole day).
Mandatory Pre-Bid Meeting
Project No. T201606114.01
Main Street Newark Rehab & Pedestrian Improvements
November 2, 2018, 2:00 P.M.

<table>
<thead>
<tr>
<th>Name</th>
<th>Company</th>
<th>Address</th>
<th>E-Mail Address</th>
<th>Phone #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ken Monroe</td>
<td>M. & M. Miller</td>
<td>1005 Industrial Dr, Middletown, DE 19709</td>
<td>kmorris@em@miller.com</td>
<td>302-778-7776</td>
</tr>
<tr>
<td>Matt Benedict</td>
<td>Greggo & Ferrara</td>
<td>4048 New Castle Ave, New Castle DE 19720</td>
<td>gnf.matt.b@gmail.com</td>
<td>302-379-2701</td>
</tr>
<tr>
<td>Hector Hernandez</td>
<td>Grassbiers Landscaping</td>
<td>935 Railway Drive, Newark DE 19711</td>
<td>grassbiers@comcast.com</td>
<td>302-292-1166</td>
</tr>
<tr>
<td>Rob Kemske</td>
<td>A-Del Construction</td>
<td>10 ADEL Dr, Newark DE 19702</td>
<td>rkemske@a-del.com</td>
<td>302-453-8280</td>
</tr>
<tr>
<td>Matt Tarr</td>
<td>G.E.S.</td>
<td>70 ADEL Dr, Newark DE 19702</td>
<td>mtarr@giesoncalc.com</td>
<td>302-757-2862</td>
</tr>
<tr>
<td>Dave Poffenberg</td>
<td>Enterprise Egress</td>
<td>4100 Industrial Ct, Wilmington DE 19804</td>
<td>dave@enterpriseflash.com</td>
<td>(302) 999-0850</td>
</tr>
</tbody>
</table>
THE STATE OF DELAWARE

DEPARTMENT OF TRANSPORTATION

IN THE MATTER OF:

Bid Proposal for Contract T201606114.01, Federal Aid Project No. NH-N018(20), CFDA No. 20.205, Main Street Newark Rehabilitation and Pedestrian Improvements, New Castle County:

...

Delaware Department of Transportation
Bidder's Room, Transportation Administration Center
800 Bay Road
Dover, Delaware

Friday, November 2, 2018
2:00 p.m.

...

BEFORE: Robert A. Kovacs,
Competitively Bid Contracts Coordinator

...

-- Transcript of Proceedings --

WILCOX & FETZER
1330 King Street
Wilmington, DE 19801
(302) 655-0477
www.wilfet.com
MR. KOVACS: Good afternoon, everybody. My name is Bob Kovacs. I'm a Contracts Coordinator here with DelDOT.

Before we get started, I just want to remind everybody, anybody that has a question, just to please state your name and the company you represent before you ask your question. And I just ask that you do that each time and every time that you have a question so we can get a clear recording of it.

Today you are attending a mandatory pre-bid meeting, and this is for Contract Number T201606114.01.

This is the Main Street Newark Rehabilitation and Pedestrian Improvements project in New Castle County.

This is a mandatory pre-bid meeting, so in order for you to submit a bid, you need to make sure you sign in on the sign-in sheet. Just write as neat as you can. And we will need all that information. Anybody who doesn't sign in won't be able to submit a bid for this particular project.

If any questions come up when you guys leave after the meeting, I will ask that you
send them to our DOT-ASK email box. And I have that right here if you don't already have that address. Just take one on your way out.

And before I turn this meeting over to the project manager, there is just a few things that I want to go over from a contracting standpoint.

This particular project, just as a reminder, has a DBE goal of 15 percent, and the OJ requirement for this project is one.

And we also have a few bidders notes I just want to mention.

This project contains an A plus B bidding procedure. It also has a disincentive amount for this contract, which is Special Provision 763564, which I'm sure you guys already know this, because you have looked at it. I just want to point out a few highlights.

We also have a road user cost for this project, as well.

Also, as a reminder, the affidavit of employee drug testing program form, please make sure you have that filled out properly, notarized. And that must be submitted with your bid.
As far as the bid forms themselves, please don't leave a bid amount blank. Please don't put a zero in any bid amount column.

If a bidder specifies a unit price of zero or if you fail to provide a unit price for every pay item indicated, that bid will be considered irregular, and it will be rejected.

This project has an EBS file, which is a fancy term for your bid pages. Please use your EBS file. All amounts need to be typed. And if you use that EBS file and you hit print, everything will be typed out, and then you won't run into any problems there.

Also as a reminder, we have our certification page. And on that we have certification information, which includes the DBE goal and your addendum acknowledgment page.

We also have our final questions and answers, date page, as well as the bid bond.

Please make sure all those forms are filled out completely. If anything requires a notary, please make sure it's notarized. Anything that requires signatures or stamps, just please make sure those are all filled out correctly and
submitted with your bid, as well.

Let's see. I think that's all I have regarding the project. So right now I'm going to turn this over to Mr. Michael Beulah. He has a few things he needs to go over, as well.

MR. BEULAH: My name is Mike Beulah. I will be the project manager from DelDOT. AECOM is the designers on this contract, so they will be going over all the pre-bid material that needs to be addressed before any bidding -- or before the bid opening date.

This is Joe Hofstee, Adam Weiser, and Garrett --

MR. PERDICK: Perdick.

MR. BEULAH: Perdick. Joe?

MR. HOFSTEE: I just want to highlight some things that are in the bid document and make sure everyone is aware of them and bids accordingly.

Following up on the A plus B bidding procedure, this is A plus B.

Please note the weather days differ from the standard weather days. In developing the contract completion time, the adverse weather
anticipated for each month is shown in the table that was included, table one.

So January, 13 days; February, 11 days; March, five days; April, five days; May, four days; June, eight days; July, six days; August, four days; September, four days; October, four days; and November, three days; and December, nine days.

Completion and submittal of the special bidding procedure form with your bid is required. The form is in the bid page contained within the RFP.

The time extensions for weather days are non-compensable as part of the project.

There is a disincentive amount. The Department will assess the contractor disincentive for failure to complete the work within the established number of calendar days stated by the contract on the Proposal Guaranty, Part B, proposed calendar days.

The disincentive will be 50,000 for each calendar day the work remains incomplete after the expiration of the work days established by the contractor.

The disincentive payment will not
exceed 30 calendar days or $1.5 million.

The assessment will be deducted from any monies due or to become due to the contractor. This is in addition to the liquidate damages that will be assessed per the specifications Section 108. Liquidated damages will not end after 30 calendar days.

For the utilities, please note that we have performed utility designation, but we were unable to locate all laterals.

Quantity has been added to account for these unknown conflicts. Additional contract time will not be granted for the laterals that have not been located.

City of Newark shall supply DelDOT contractors with new manhole frames and covers as needed at the direction of the public works and water resource director or designee of the City of Newark.

City of Newark shall supply DelDOT's contractor with new valve boxes as needed at the discretion of the public works director or designee. The contractor will be responsible for the cost of manhole frames, covers, and valve
boxes that they damage while performing the work.

The contractor is responsible for notifying residents/owners/renters of any service outage 48 hours in advance.

All right.

MR. WEISER: All right. I'm Adam Weiser with AECOM. I'm going to go over some maintenance of traffic and construction staging information.

First, what is driveway impacts and road user costs? As Bob alluded to, there are some road user costs in the contract related to impacts to driveways, which they need to be coordinated with the property or business owner.

Work in driveways shall only occur during agreed-upon times with the property owner. Seventy-two hour advance coordination is required. Consultation with Department's business coordination representative is required. That would be me.

Okay?

So during construction you will be working with the inspection staff and myself and the property owner to coordinate 72 hours in advance impacts to driveways.
There is a road user cost associated with the driveway impact.

Construction impacts to driveways and entrances within the project limits shall be coordinated 72 hours in advance with the appropriate property owner and in consultation with the Department's business coordination representative.

Work within driveways and entrances shall only occur during agreed-upon times with the property owner.

Failure to complete daily construction operations by the agreed-upon time, based on Verizon time, will result in damages in the amount of $50 per hour, or a portion thereof, per parking space served by the impacted driveway or entrance.

For example, if the agreed-upon completion time is 8:00 a.m. for a driveway serving ten parking spaces, and the contractor does not complete the daily operation until 9:00 a.m., the contractor will be assessed damages of $500, or $50 per hour times ten parking spaces.

Damages will be deducted for the next due pay estimate.
On Sheet 84, or CS-01, there is a table showing mandatory non-work dates. Please pay very close attention to this as you are building your schedules.

Dates for 2020 on that table will be provided by the engineer as we get closer to those actual dates and we know those. We don't know those particular dates. We know the time frame of the month that they will occur, though.

Additional restrictions may be added as needed based on coordination with businesses and the City of Newark.

The lane closure that's required in the plans for the phases can remain. However, no additional lane closures, and that includes turn lanes, as well, are permitted during these days on the mandatory non-workday table.

No work can occur on these dates. If the project completion date is extended, the non-work event dates will extend into the following year.

So if we have, for some reason we have to extend the project completion date, those dates will extend into the following year.
So weekend closures required, Sheet 85 (CS-02): Note 10 outlines the sum of the weekend closures for related to the intersection work at Chapel Street and at South College Avenue.

Note that South College Avenue can only occur in the summertime of 2019, and there is a date range for when that weekend or weekends can occur.

There is additional locations, as outlined in the phasing plans. Tyre Avenue, Phase 3C, Sheet CS-303. And that is a weekend closure of the intersection, of Tyre Avenue at the intersection of Main Street.

Academy street, Phase 5A, Sheet CS-503.

Work at these locations shall occur during the weekends starting at 8:00 p.m. Friday until 6:00 a.m. Monday.

This project has been phased with the expectation that the contractor will work multiple phases at once.

On Sheet CS-02, Note 11 provides which phases can be worked concurrently, so please pay close attention to that as you are building your
bids.

Extensive coordination is going to be required on this project, mainly with the business owners.

Schedules are going to need to be up to date at all times on this project, so we are going to be disseminating the schedule information to the businesses as we get them and provide them updates as we go through the project.

The contractor will be required to attend a public workshop prior to the start of construction.

And the contractor is required to attend business coordination meetings, assumed biweekly meetings for purposes of scheduling and costs.

Myself, as I noted before, I will be the public outreach or business coordinator for the project, so I will be working with the contractor and the inspection staff on coordinating with all the various businesses along the corridor.

And note that they are not quite happy that we are going to be out there. So just keep that in mind.
Transit stops: We will need to coordinate with DART, the City of Newark for the uni-city buses, and the University of Delaware, as well. We have contact information for all of those entities.

Traffic signals: Each of the traffic signals within the project limits will get reconstructed, so we will definitely need to make sure we coordinate with DelDOT's traffic section for construction of the above-ground, for permanent and for temporary. There is temporary signal modifications required in the various phases.

Related to the businesses, specialty signs will be included as part of the project. We will provide those as a -- we provided a quantity for the signing, so the quantity that's provided in the signing item includes the additional specialty signs that are needed for the project.

Day versus night work operations:

The number of calendar days that we have put together for the project assumes an expectation of day and night work operations. Work requiring continuous entering and exiting of trucks shall occur at night due to lower traffic volumes. That
includes hauling away material and delivering materials to the site.

Saw cutting, jackhammering, and other loud operations should occur during the day.

The open travel lane in each of the phases is not permitted to be blocked at anytime.

Noise waivers: The contractor will need to obtain the noise waiver from the City of Newark. And the project team has been in coordination with the city about that, so they are aware of that.

Pedestrian maintenance of traffic:

Please pay attention to note six on Sheet CS-01. This note outlines the requirements for pedestrian maintenance of traffic.

Pay attention to the submittal requirements. The contractor will need to submit a plan of how they plan to maintain pedestrian traffic at each location, and that needs to be submitted two weeks before construction so that the Department can review that. So please pay special attention to that requirement.

Loading and unloading zones: Main Street gets a lot of deliveries on a daily basis for
the various businesses along the corridor. The
typical section for the maintenance of traffic
provides one travel lane and one loading or
unloading lane.

The lane will be signed as such, and
it's signed as a tow-away zone. It is solely for
delivery trucks serving the businesses adjacent to
Main Street. It is not permissible for contractor
parking or contractor deliveries.

Contractor staging and contractor
employee parking: Staging areas will need to be
considered due to space constraints along Main
Street.

Contractor employee parking is not
permitted in the loading and unloading zones
adjacent to the work zone, what I just spoke of
previously.

Unauthorized parking on Main Street
or in any of the parking lots along Main Street is
subject to towing, except for the pay lots where you
will obviously have to pay to park there.

Consider off-site parking and a means
of shuttling employees to work sites.

Again, it's a tight area, so you are
not going to have a lot of room.

Dust control: This is an issue that's come up with the coordination we have had with the businesses, mainly related to saw cutting.

Minimized dust impacts on pedestrians and adjacent properties. The contractor is required to use engineering controls such as vacuum dust collection systems and water delivery systems to limit exposure to respirable silica dust.

All right.

MR. PERDICK: All right. I'm Garrett Perdick with AECOM. I will be going over some of the design-type things.

So bricks should be reused as part of this project where possible. Be mindful there are several different types of bricks on the project that will need to be matched.

University of Delaware currently uses Delaware Brick for their bricks. Their contact is Mike Hinton. His number is (302) 944 --

MR. HOFSTEE: Sorry. That should be 994. We typed that one wrong.

MR. PERDICK: (302) 994-0948.

For new bricks, the color of the
bricks will need to be approved by the University of Delaware if they are within the university limits.

The City of Newark brick typically is Glen Gery Cherry Brick Paver, four by eight inches, and Hanover Limestone Gray, 4 inches by 8 inches.

Sidewalk materials are shown on the construction plan sheets with the shading. The typical sections were simplified and do not necessarily reflect the sidewalk materials throughout the project.

As part of this project, it is anticipated that dewatering will be required upon removal of the PCC pavement as a result of the spacing of the inlets.

Pumping/dewatering is incidental to Item 21101, removal of Portland cement concrete pavement, curb, and sidewalk.

All pumping operations should confirm to Section 902, Pumping Operations of DelDOT Standard Specifications.

The Super Pave BCBC Wedge Item is utilized to create roadway side slopes, as shown on typical sections and the grades and geometrics plans.
This is a variable depth and should only be used where the roadway needs to be raised. Existing GABC will only need to be excavated to the depth required to construct superpave to finished grades as shown on plans.

For curb reveal: The phase of curb grades are given on grades and geometric sheets. If no curb reveal is given, so it's type one modified, curb reveal will be calculated by using face of curb grade from the grades and geometric sheets and setting back of curb elevation to match existing sidewalk behind curb.

On the project note sheet under miscellaneous, note number 14, the usage of vibratory rollers is not permitted on this project. All inlets, valves, manholes, et cetera, will be adjusted once to the level of the super pave Type B and again to the level of the super pave Type C for a total of two adjustments.

MR. KOVACS: All right? Does anybody have any questions?

MR. BENEDICT: Matt from Greggo. Adam, you mentioned a maintenance of pedestrian traffic submittal that we could put in. Maybe this
falls under that.

But we're looking at the possibility of a 17-inch drop on the sidewalk side of the project. So is there some sort of a barricade for the pedestrians to go in there, or I guess now is that something that we should be submitting in our maintenance plan?

MR. WEISER: That should be submitted in your maintenance plan.

MR. BENEDICT: Gotcha. Thank you.

MR. KOVACS: Does anybody else have any other questions?

MR. WEISER: One other thing to note on the pedestrians is at all times access to all the businesses must be maintained.

MR. HOFSTEE: It's very critical with the businesses. I mean, we want to keep a good relationship with the businesses while we are out there, so we need to do what we can to support the businesses and keep them open and running.

MR. BEULAH: If nobody else has any questions, that concludes this mandatory pre-bid meeting.

MR. KOVACS: Make sure that if you
are not DelDOT or one of our consultants, please
make sure you sign in on our sign-in sheet.

Like I said earlier, in order to bid,
you need to be signed up on our sign-up sheet. So
that's it. Thanks for coming, everyone.

(Concluded at 2:21 p.m.)
CERTIFICATE

I, Lorena J. Hartnett, a Notary Public and Registered Professional Reporter, do hereby certify that the foregoing is an accurate and complete transcription of the proceeding held at the time and place stated herein, and that the said proceeding was recorded by me and then reduced to typewriting under my direction, and constitutes a true record of the testimony given by said witnesses.

I further certify that I am not a relative, employee, or attorney of any of the parties or a relative or employee of either counsel, and that I am in no way interested directly or indirectly in this action.

IN WITNESS WHEREOF, I have hereunto set my hand and affixed my seal of office on this 3rd day of November 2018.

Lorena J. Hartnett
Registered Professional Reporter