BEAR ADMINISTRATION BUILDING

APPENDIX A: TECHNICAL SPECIFICATIONS
CONTRACT NO. T201880102

Bear Administration Building

This specification is for the work associated with the Canal District Administration Building.

<table>
<thead>
<tr>
<th>SECTION</th>
<th>SECTION TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIVISION 01</td>
<td>GENERAL REQUIREMENTS</td>
</tr>
<tr>
<td>011000</td>
<td>Summary</td>
</tr>
<tr>
<td>012600</td>
<td>Contract Modification Procedures</td>
</tr>
<tr>
<td>012900</td>
<td>Payment Procedures</td>
</tr>
<tr>
<td>013100</td>
<td>Project Management and Coordination</td>
</tr>
<tr>
<td>013300</td>
<td>Submittal Procedures</td>
</tr>
<tr>
<td>014000</td>
<td>Quality Requirements</td>
</tr>
<tr>
<td>016000</td>
<td>Product Requirements</td>
</tr>
<tr>
<td>017300</td>
<td>Execution</td>
</tr>
<tr>
<td>017320</td>
<td>Cutting and Patching</td>
</tr>
<tr>
<td>017419</td>
<td>Construction Waste Management</td>
</tr>
<tr>
<td>017700</td>
<td>Closeout Procedures</td>
</tr>
<tr>
<td>017823</td>
<td>Operation and Maintenance Data</td>
</tr>
<tr>
<td>017839</td>
<td>Project Record Documents</td>
</tr>
<tr>
<td>018155</td>
<td>Air Barrier System Testing</td>
</tr>
<tr>
<td>018200</td>
<td>Demonstration and Training</td>
</tr>
<tr>
<td>019113</td>
<td>Commissioning General Requirements</td>
</tr>
</tbody>
</table>

| DIVISION 03 | CONCRETE |
| 033000 | Cast-In-Place Concrete |

| DIVISION 04 | MASONRY |
| 042200 | Unit Masonry |

DIVISION 05	METALS
051200	Structural Steel Framing
053100	Steel Decking
054000	Cold-Formed Metal Framing
055000	Metal Fabrications
055113	Metal Pan Stairs

<p>| DIVISION 06 | WOOD, PLASTICS, AND COMPOSITES |
| 061053 | Miscellaneous Rough Carpentry |
| 061600 | Sheathing |
| 064116 | Plastic-Laminate-Clad Architectural Cabinets |</p>
<table>
<thead>
<tr>
<th>DIVISION 07</th>
<th>THERMAL AND MOISTURE PROTECTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>071616</td>
<td>Crystalline Waterproofing</td>
</tr>
<tr>
<td>072100</td>
<td>Thermal Insulation</td>
</tr>
<tr>
<td>072726</td>
<td>Fluid-Applied Membrane Air Barriers</td>
</tr>
<tr>
<td>074293</td>
<td>Soffit Panels</td>
</tr>
<tr>
<td>074646</td>
<td>Fiber-Cement Siding</td>
</tr>
<tr>
<td>075419</td>
<td>Polyvinyl-Chloride (PVC) Roofing</td>
</tr>
<tr>
<td>076200</td>
<td>Sheet Metal Flashing and Trim</td>
</tr>
<tr>
<td>078413</td>
<td>Penetration Firestopping</td>
</tr>
<tr>
<td>078443</td>
<td>Joint Firestopping</td>
</tr>
<tr>
<td>079200</td>
<td>Joint Sealants</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DIVISION 08</th>
<th>OPENINGS</th>
</tr>
</thead>
<tbody>
<tr>
<td>081113</td>
<td>Hollow Metal Doors and Frames</td>
</tr>
<tr>
<td>081216</td>
<td>Aluminum Frames</td>
</tr>
<tr>
<td>081416</td>
<td>Flush Wood Doors</td>
</tr>
<tr>
<td>084113</td>
<td>Aluminum-Framed Entrances and Storefronts</td>
</tr>
<tr>
<td>084413</td>
<td>Glazed Aluminum Curtain Walls</td>
</tr>
<tr>
<td>086300</td>
<td>Metal-Framed Skylights</td>
</tr>
<tr>
<td>087100</td>
<td>Door Hardware</td>
</tr>
<tr>
<td>088000</td>
<td>Glazing</td>
</tr>
<tr>
<td>088813</td>
<td>Fire-Rated Glazing</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DIVISION 09</th>
<th>FINISHES</th>
</tr>
</thead>
<tbody>
<tr>
<td>092216</td>
<td>Non-Structural Metal Framing</td>
</tr>
<tr>
<td>092900</td>
<td>Gypsum Board</td>
</tr>
<tr>
<td>093013</td>
<td>Ceramic Tiling</td>
</tr>
<tr>
<td>095113</td>
<td>Acoustical Panel Ceilings</td>
</tr>
<tr>
<td>096513</td>
<td>Resilient Base and Accessories</td>
</tr>
<tr>
<td>096519</td>
<td>Resilient Tile Flooring</td>
</tr>
<tr>
<td>096813</td>
<td>Tile Carpeting</td>
</tr>
<tr>
<td>099113</td>
<td>Exterior Painting</td>
</tr>
<tr>
<td>099123</td>
<td>Interior Painting</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DIVISION 10</th>
<th>SPECIALTIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>101419</td>
<td>Dimensional Letter Signage</td>
</tr>
<tr>
<td>102113.14</td>
<td>Stainless-Steel Toilet Compartments</td>
</tr>
<tr>
<td>102239</td>
<td>Folding Panel Partitions</td>
</tr>
<tr>
<td>102800</td>
<td>Toilet, Bath, and Laundry Accessories</td>
</tr>
<tr>
<td>104413</td>
<td>Fire Protection Cabinets and Extinguishers</td>
</tr>
<tr>
<td>107516</td>
<td>Flagpoles</td>
</tr>
</tbody>
</table>
DIVISION 12 FURNISHINGS

122413 Roller Window Shades
123623.13 Plastic-Laminate-Clad Countertops
123661.16 Solid Surfacing Countertops
123661.19 Quartz Agglomerate Countertops

DIVISION 14 CONVEYING EQUIPMENT

142400 Hydraulic Elevators

DIVISION 21 FIRE PROTECTION

210517 Sleeves and Sleeve Seals for Fire-Suppression Piping
210518 Escutcheons for Fire-Suppression Piping
211313 Wet-Pipe Sprinkler Systems

DIVISION 22 PLUMBING

220500 Common Work Results for Plumbing
220513 Common Motor Requirements for Plumbing Equipment
220517 Sleeves and Sleeve Seals for Plumbing Piping
220518 Escutcheons for Plumbing Piping
220519 Meters and Gages for Plumbing Piping
220523 Ball Valves for Plumbing Piping
220524 Check Valves for Plumbing Piping
220529 Hangers and Supports for Plumbing Piping and Equipment
220553 Identification for Plumbing Piping and Equipment
220719 Plumbing Piping Insulation
221116 Domestic Water Piping
221119 Domestic Water Piping Specialties
221316 Sanitary Waste and Vent Piping
221319 Sanitary Waste Piping Specialties
221413 Facility Storm Drainage Piping
221429 Plumbing Pumps
222114 Facility Natural Gas Piping
223400 Domestic Water Heaters
224000 Plumbing Fixtures

DIVISION 23 HEATING VENTILATION AND AIR CONDITIONING

230000 Basic Mechanical Materials and Methods
230519 Meters and Gages for Mechanical Piping
230523 Valves
230529 Hangers and Supports for Mechanical Piping and Equipment
230553 Identification for Mechanical Piping and Equipment
230580 Common Motor Requirements for Mechanical Equipment
230593 Testing, Adjusting, and Balancing for Mechanical
230719 Mechanical Insulation
230950 Building Automation System (BAS) General
230951 BAS Basic Materials, Interface Devices and Sensors
230952 BAS Operator Interfaces
230953 BAS Field Panels
230954 BAS Communication Devices
230955 BAS Software and Programming
230958 Sequence of Operation
232113 Mechanical Piping
232116 Mechanical Piping Specialties
232123 Hydronic Pumps
232300 Refrigerant Piping
232500 HVAC Water Treatment
233113 Ducts
233300 Duct Accessories
233423 HVAC Power Ventilators
233600 Air Terminal Units
233713 Diffusers, Registers, and Grilles
235100 Breeching, Chimneys, and Stacks
235216 Condensing Boilers
237416 Rooftop Air-Handling Units
238129 Split System Air Conditions
238239.16 Propeller Unit Heaters

DIVISION 26 ELECTRICAL

260513 Medium-Voltage Cable
260519 Low-Voltage Electrical Power Conductors and Cables
260526 Grounding and Bonding for Electrical Systems
260529 Hangers and Supports for Electrical Systems
260533 Raceways and Boxes for Electrical Systems
260543 Underground Ducts and Raceways for Electrical Systems
260553 Identification for Electrical Systems
260573.13 Short-Circuit Studies
260573.16 Coordination Studies
260573.19 Arc-Flash Hazard Analysis
260923 Lighting Control Devices
261219 Pad-Mounted, Liquid-filled, Medium-Voltage Transformers
262213 Low-Voltage Distribution Transformers
262416 Panelboards
262726 Wiring Devices
262743 Electric-Vehicle Service Equipment-AC Level 1 and Level 2
262813 Fuses
262816 Enclosed Switches and Circuit Breakers
262913.03 Manual and Magnetic Motor Controllers
262923 Variable-Frequency Motor Controllers
263213.14 Diesel Engine Generators
263600 Transfer Switches
265119 LED Interior Lighting
265613 Lighting Poles and Standards
265619 LED Exterior Lighting

DIVISION 27 COMMUNICATION SYSTEMS

270536 Cable Trays for Communication Systems
270553 Identification for Communication Systems

DIVISION 28 ELECTRONIC SAFETY AND SECURITY

284621.11 Addressable Fire-Alarm Systems

DIVISION 32 EXTERIOR IMPROVEMENTS

323300 Site Furnishings
SECTION 011000

SUMMARY

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Project information.
2. Work covered by Contract Documents.
3. Access to site.
4. Coordination with occupants.
5. Work restrictions.
7. Miscellaneous provisions.

1.3 PROJECT INFORMATION

A. Project Identification: Bear Administration Building.

1. Project Location: Bear, Delaware.

B. Owner: Delaware Department of Transportation.

1. Owner’s Representative: Taylor King

C. Architect/Engineer: Johnson Mirmiran & Thompson.

1.4 WORK COVERED BY CONTRACT DOCUMENTS

A. Project Description: This project is comprised of providing construction of a new Administration Building and associated site development at the Owner’s Bear Yard located at 250 Bear-Christiana Rd, Bear DE, 19701. The work associated with this contract shall include, but not be limited to the following:

1. Project Management: Coordination of all aspects of the construction process including but not limited to subcontractor coordination, construction phasing, scheduling, submittal and quality management, substantial completion and project closeout.
2. New Administration Building including all architectural, structural, mechanical, plumbing, electrical, special systems, and fire protection systems indicated on drawings and in specifications.
3. Construction of expanded parking area.
4. Sediment and Erosion Control measures.
5. Grading and Earthwork.
6. Drainage and stormwater management facilities.
7. Landscaping.
8. Temporary and final stabilization.
9. Tie-in to existing utilities.
10. Demolition of existing administration building.

B. Type of Contract:
1. Project will be constructed under a single prime contract.

1.5 ACCESS TO SITE

A. General: Contractor shall have limited use of Project site for construction operations as indicated by the Contract limits and as indicated by requirements of this Section.

B. Use of Site: Limit use of Project site to areas within the Contract limits indicated. Do not disturb portions of Project site beyond areas in which the Work is indicated.

1. Limits: Confine construction operations to the indoor and outdoor areas as designated on the contract drawings.
2. Driveways, Walkways and Entrances: Keep driveways loading areas, and entrances serving premises clear and available to Owner, Owner's employees, and emergency vehicles at all times. Do not use these areas for parking or storage of materials.
 a. Schedule deliveries to minimize use of driveways and entrances by construction operations.
 b. Schedule deliveries to minimize space and time requirements for storage of materials and equipment on-site.

C. Condition of Existing Buildings: Maintain access to the existing buildings on site throughout construction.

1.6 WORK RESTRICTIONS

A. Work Restrictions, General: Comply with restrictions on construction operations.

1. Comply with limitations on use of public streets and with other requirements of authorities having jurisdiction.

B. On-Site Work Hours: Limit work to normal business working hours, Monday through Friday, unless otherwise indicated.
C. Existing Utility Interruptions: For the interruption of utility services to this facility, notify the owner not less than two days in advance of the proposed utility interruption.

D. Noise, Vibration, and Odors: Coordinate operations that may result in high levels of noise and vibration, odors, or other disruption to Owner occupancy with Owner.

E. No use of the Owner’s trash dumpsters shall be permitted.

F. Weatherproofing of the exterior building shell shall be maintained by the Contractor during all construction activities.

1.7 SPECIFICATION AND DRAWING CONVENTIONS

A. Specification Content: The Specifications use certain conventions for the style of language and the intended meaning of certain terms, words, and phrases when used in particular situations. These conventions are as follows:

1. Imperative mood and streamlined language are generally used in the Specifications. The words "shall," "shall be," or "shall comply with," depending on the context, are implied where a colon (:) is used within a sentence or phrase.

2. Specification requirements are to be performed by Contractor unless specifically stated otherwise.

B. Division 01 General Requirements: Requirements of Sections in Division 01 apply to the Work of all Sections in the Specifications.

C. Drawing Coordination: Requirements for materials and products identified on Drawings are described in detail in the Specifications. One or more of the following are used on Drawings to identify materials and products:

1. Terminology: Materials and products are identified by the typical generic terms used in the individual Specifications Sections.
2. Abbreviations: Materials and products are identified by abbreviations.
3. Keynoting: Materials and products are identified by reference keynotes referencing Specification Section numbers found in this Project Manual.

D. Coordination: Where discrepancies exist between information identified on the drawings and in the specifications, the specifications shall govern.

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION (Not Used)

END OF SECTION
SECTION 012600

CONTRACT MODIFICATION PROCEDURES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes administrative and procedural requirements for handling and processing Contract modifications.

B. Related Requirements:

1. Section 012500 "Substitution Procedures" for administrative procedures for handling requests for substitutions made after the Contract award.

1.3 MINOR CHANGES IN THE WORK

A. Engineer will issue supplemental instructions authorizing minor changes in the Work, not involving adjustment to the Contract Sum or the Contract Time.

1.4 PROPOSAL REQUESTS

A. Owner-Initiated Proposal Requests: Owner will issue a detailed description of proposed changes in the Work that may require adjustment to the Contract Sum or the Contract Time. If necessary, the description will include supplemental or revised Drawings and Specifications.

1. Work Change Proposal Requests issued by the Owner are not instructions either to stop work in progress or to execute the proposed change.

2. Within time specified in Proposal Request after receipt of Proposal Request, submit a quotation estimating cost adjustments to the Contract Sum and the Contract Time necessary to execute the change.

 a. Include a list of quantities of products required or eliminated and unit costs, with total amount of purchases and credits to be made. If requested, furnish survey data to substantiate quantities.

 b. Indicate applicable taxes, delivery charges, equipment rental, and amounts of trade discounts.

 c. Include costs of labor and supervision directly attributable to the change.

 d. Include an updated Contractor's construction schedule that indicates the effect of the change, including, but not limited to, changes in activity.
duration, start and finish times, and activity relationship. Use available
total float before requesting an extension of the Contract Time.
e. Quotation Form: Use forms provided by Owner.

B. Contractor-Initiated Proposals: If latent or changed conditions require modifications to
the Contract, Contractor may initiate a claim by submitting a request for a change to the
Owner.

1. Include a statement outlining reasons for the change and the effect of the change
on the Work. Provide a complete description of the proposed change. Indicate
the effect of the proposed change on the Contract Sum and the Contract Time.
2. Include a list of quantities of products required or eliminated and unit costs, with
total amount of purchases and credits to be made. If requested, furnish survey
data to substantiate quantities.
3. Indicate applicable taxes, delivery charges, equipment rental, and amounts of
trade discounts.
4. Include costs of labor and supervision directly attributable to the change.
5. Include an updated Contractor's construction schedule that indicates the effect of
the change, including, but not limited to, changes in activity duration, start and
finish times, and activity relationship. Use available total float before requesting
an extension of the Contract Time.
6. Comply with requirements in Section 012500 "Substitution Procedures" if the
proposed change requires substitution of one product or system for product or
system specified.
7. Proposal Request Form: Use form provided by Owner.

1.5 CHANGE ORDER PROCEDURES

A. On Owner's approval of a Work Changes Proposal Request, the Owner will issue a
Change Order for signatures of Owner and Contractor.

1.6 CONSTRUCTION CHANGE DIRECTIVE

Construction Change Directive instructs Contractor to proceed with a change in the
Work, for subsequent inclusion in a Change Order.

1. Construction Change Directive contains a complete description of change in the
Work. It also designates method to be followed to determine change in the
Contract Sum or the Contract Time.

B. Documentation: Maintain detailed records on a time and material basis of work required
by the Construction Change Directive.

1. After completion of change, submit an itemized account and supporting data
necessary to substantiate cost and time adjustments to the Contract.
PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION (Not Used)

END OF SECTION
SECTION 012900
PAYMENT PROCEDURES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary
 Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes administrative and procedural requirements necessary to prepare and
 process Applications for Payment.

B. Related Requirements:

 1. Section 012600 "Contract Modification Procedures" for administrative
 procedures for handling changes to the Contract.

1.3 DEFINITIONS

A. Schedule of Values: A statement furnished by Contractor allocating portions of the
 Contract Sum to various portions of the Work and used as the basis for reviewing
 Contractor's Applications for Payment.

1.4 SCHEDULE OF VALUES

A. Before the first Application for Payment, the Contractor shall submit to the Owner a
 Schedule of Values allocated to the various portions of the Work and supported by such
 data to substantiate its accuracy as the Owner maLy require. This schedule, when
 approved by the Administration shall be used as the basis for the Contractor’s
 Applications for Payment and only for this purpose.

B. The Owner reserves the right to delete work items as necessary. The Contractor shall
 have no claim on loss of overhead and profits on the deleted items. When work is
 deleted, the value will be based on the approved Schedule of Values, unless agreed to
 otherwise.

C. No progress payments will be made by the Owner until the Progress Schedule, including
 the Schedule of Values, has been submitted to and approved.

D. Coordination: Coordinate preparation of the Schedule of Values with preparation of
 Contractor's Construction Schedule.
1. Coordinate line items in the schedule of values with other required administrative forms and schedules, including the following:
 a. Application for Payment Forms with continuation sheets.
 b. Submittal schedule.
 c. Items required to be indicated as separate activities in Contractor's Construction Schedule.

2. Submit the Schedule of Values to Owner at earliest possible date, but no later than seven days before the date scheduled for submittal of initial Applications for Payment.

E. Format and Content: Establish line items for the Schedule of Values. Provide at least one line item for each Specification Section.

1. Identification: Include the following Project identification on the schedule of values:
 a. Project name and location.
 b. Name of Architect.
 c. Architect's project number.
 d. Contractor's name and address.
 e. Date of submittal.

2. Arrange the schedule of values in tabular form with separate columns to indicate the following for each item listed:
 a. Related Specification Section or Division.
 b. Description of the Work.
 c. Name of subcontractor.
 d. Name of manufacturer or fabricator.
 e. Name of supplier.
 f. Change Orders (numbers) that affect value.
 g. Dollar value of the following, as a percentage of the Contract Sum to nearest one-hundredth percent, adjusted to total 100 percent.
 1) Labor.
 2) Materials.
 3) Equipment.

3. Provide a breakdown of the Contract Sum in enough detail to facilitate continued evaluation of applications for payment and progress reports.

4. Provide a separate line item in the schedule of values for each part of the Work where applications for payment may include materials or equipment purchased or fabricated and stored, but not yet installed.
 a. Differentiate between items stored on-site and items stored off-site. If required, include evidence of insurance.
5. Provide separate line items in the schedule of values for initial cost of materials, for each subsequent stage of completion, and for total installed value of that part of the Work.

6. Each item in the schedule of values and applications for payment shall be complete. Include total cost and proportionate share of general overhead and profit for each item.

7. Schedule Updating: Update and resubmit the schedule of values before the next applications for payment when Change Orders or Construction Change Directives result in a change in the Contract Sum.

1.5 APPLICATIONS FOR PAYMENT

A. Each Application for Payment following the initial Application for Payment shall be consistent with previous applications and payments as certified by and paid for by Owner.

1. Initial Application for Payment, Application for Payment at time of Substantial Completion, and final Application for Payment involve additional requirements.

B. Payment Application Times: The date for each progress payment is indicated in the Agreement between Owner and Contractor. The period of construction work covered by each Application for Payment is the period indicated in the Agreement.

C. Application for Payment Forms: Use forms provided by Owner for applications for payment.

D. Application Preparation: Complete every entry on form. Notarize and execute by a person authorized to sign legal documents on behalf of Contractor.

1. Entries shall match data on the schedule of values and Contractor's construction schedule. Use updated schedules if revisions were made.

2. Include amounts for work completed following previous Application for Payment, whether or not payment has been received. Include only amounts for work completed at time of Application for Payment.

3. Include amounts of Change Orders and Construction Change Directives issued before last day of construction period covered by application.

4. Indicate separate amounts for work being carried out under Owner-requested Project acceleration.

E. Stored Materials: Include in Application for Payment amounts applied for materials or equipment purchased or fabricated and stored, but not yet installed. Differentiate between items stored on-site and items stored off-site.

1. Provide certificate of insurance, evidence of transfer of title to Owner, and consent of surety to payment, for stored materials.

2. Provide supporting documentation that verifies amount requested, such as paid invoices. Match amount requested with amounts indicated on documentation; do not include overhead and profit on stored materials.

3. Provide summary documentation for stored materials indicating the following:
a. Value of materials previously stored and remaining stored as of date of previous applications for payment.

b. Value of previously stored materials put in place after date of previous Application for Payment and on or before date of current Application for Payment.

c. Value of materials stored since date of previous Application for Payment and remaining stored as of date of current Application for Payment.

F. Transmittal: Submit three signed and notarized original copies of each Application for Payment to Owner by a method ensuring receipt. One copy shall include waivers of lien and similar attachments if required.

1. Transmit each copy with a transmittal form listing attachments and recording appropriate information about application.

G. Waivers of Mechanic's Lien: With each Application for Payment, submit waivers of mechanic's lien from entities lawfully entitled to file a mechanic's lien arising out of the Contract and related to the Work covered by the payment.

1. Submit partial waivers on each item for amount requested in previous application, after deduction for retainage, on each item.
2. When an application shows completion of an item, submit conditional final or full waivers.
3. Owner reserves the right to designate which entities involved in the Work must submit waivers.
4. Waiver Forms: Submit executed waivers of lien on forms acceptable to Owner.

H. Initial Application for Payment: Administrative actions and submittals that must precede or coincide with submittal of first Application for Payment include the following:

1. List of subcontractors.
2. Schedule of values.
3. Contractor's construction schedule (preliminary, if not final).
4. Products list (preliminary, if not final).
5. Submittal schedule (preliminary, if not final).
6. List of Contractor's staff assignments.
7. Copies of building permits.
11. Certificates of insurance and insurance policies.
13. Data needed to acquire Owner's insurance.

I. Application for Payment at Substantial Completion: After issuance of the Certificate of Substantial Completion, submit an Application for Payment showing 100 percent completion for portion of the Work claimed as substantially complete.
1. Include documentation supporting claim that the Work is substantially complete and a statement showing an accounting of changes to the Contract Sum.

J. Final Payment Application: After completing Project closeout requirements, submit final Application for Payment with releases and supporting documentation not previously submitted and accepted, including, but not limited, to the following:

1. Evidence of completion of Project closeout requirements.
2. Insurance certificates for products and completed operations where required and proof that taxes, fees, and similar obligations were paid.
3. Updated final statement, accounting for final changes to the Contract Sum.
4. AIA Document G706, "Contractor's Affidavit of Payment of Debts and Claims."
6. Evidence that claims have been settled.
7. Final liquidated damages settlement statement.

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION (Not Used)

END OF SECTION
SECTION 013100

PROJECT MANAGEMENT AND COORDINATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes administrative provisions for coordinating construction operations on Project including, but not limited to, the following:

1. General coordination procedures
2. Coordination drawings
3. Requests for Information (RFIs)
4. Project Web site
5. Project meetings

B. Each contractor shall participate in coordination requirements. Certain areas of responsibility are assigned to a specific contractor.

C. Related Requirements:

1. Section 017300 "Execution" for procedures for coordinating general installation and field-engineering services, including establishment of benchmarks and control points.
2. Section 017700 "Closeout Procedures" for coordinating closeout of the Contract.

1.3 DEFINITIONS

A. RFI: Request from Owner, Architect, or Contractor seeking information required by or clarifications of the Contract Documents.

1.4 INFORMATIONAL SUBMITTALS

A. Subcontract List: Prepare a written summary identifying individuals or firms proposed for each portion of the Work, including those who are to furnish products or equipment fabricated to a special design. Use CSI Form 1.5A or a form approved by the owner. Include the following information in tabular form:

1. Name, address, and telephone number of entity performing subcontract or supplying products.
2. Number and title of related Specification Section(s) covered by subcontract.
3. Drawing number and detail references, as appropriate, covered by subcontract.
B. Key Personnel Names: Within 15 days of starting construction operations, submit a list of key personnel assignments, including superintendent and other personnel in attendance at Project site. Identify individuals and their duties and responsibilities; list addresses and telephone numbers, including home, office, and cellular telephone numbers and e-mail addresses. Provide names, addresses, and telephone numbers of individuals assigned as alternates in the absence of individuals assigned to Project.

1. Post copies of list in project meeting room, in temporary field office, and by each temporary telephone. Keep list current at all times.

1.5 GENERAL COORDINATION PROCEDURES

A. Coordination: Coordinate construction operations included in different Sections of the Specifications to ensure efficient and orderly installation of each part of the Work. Coordinate construction operations included in different Sections that depend on each other for proper installation, connection, and operation.

1. Schedule construction operations in sequence required to obtain the best results where installation of one part of the Work depends on installation of other components, before or after its own installation.
2. Coordinate installation of different components to ensure maximum performance and accessibility for required maintenance, service, and repair.
3. Make adequate provisions to accommodate items scheduled for later installation.
4. Where availability of space is limited, coordinate installation of different components to ensure maximum performance and accessibility for required maintenance, service, and repair of all components, including mechanical and electrical.
5. If necessary, prepare memoranda for distribution to each party involved, outlining special procedures required for coordination. Include such items as required notices, reports, and list of attendees at meetings.
6. Prepare similar memoranda for Owner and subcontractors if coordination of their Work is required.

B. Administrative Procedures: Coordinate scheduling and timing of required administrative procedures with any other construction activities and activities of subcontractors to avoid conflicts and to ensure orderly progress of the Work. Such administrative activities include, but are not limited to, the following:

1. Preparation of contractor's construction schedule.
2. Preparation of the schedule of values.
3. Installation and removal of temporary facilities and controls.
4. Delivery and processing of submittals.
5. Progress meetings.
6. Pre-installation conferences.
7. Project closeout activities including substantial completion and final completion tasks.
8. Startup and adjustment of systems.
C. Conservation: Coordinate construction activities to ensure that operations are carried out with consideration given to conservation of energy, water, and materials. Coordinate use of temporary utilities to minimize waste.

1. Salvage materials and equipment involved in performance of, but not actually incorporated into, the Work. See other Sections for disposition of salvaged materials that are designated as Owner's property.

1.6 COORDINATION DRAWINGS

A. Coordination Drawings, General: Prepare coordination drawings according to requirements in individual Sections and where requested on drawings. Additionally, prepare coordination drawings where installation is not completely shown on Shop Drawings, where limited space availability necessitates coordination, or if coordination is required to facilitate integration of products and materials fabricated or installed by more than one entity. Coordination drawings shall be prepared after major elements have been submitted and approved by Architect/Engineer. Contractor shall use approved shop drawings for development of coordination drawings to reflect actual conditions.

1. Content: Project-specific information, drawn accurately to a scale large enough to indicate and resolve conflicts. Do not base coordination drawings on standard printed data. Include the following information, as applicable:

a. Use applicable Drawings as a basis for preparation of coordination drawings. Prepare sections, elevations, and details as needed to describe relationship of various systems and components.

b. Coordinate the addition of trade-specific information to the coordination drawings by multiple contractors in a sequence that best provides for coordination of the information and resolution of conflicts between installed components before submitting for review.

c. Indicate functional and spatial relationships of components of architectural, structural, civil, mechanical, plumbing, fire protection, and electrical systems.

d. Indicate space requirements for routine maintenance and for anticipated replacement of components during the life of the installation.

e. Show location and size of access doors required for access to concealed dampers, valves, and other controls.

f. Indicate required installation sequences.

g. Indicate dimensions shown on the Drawings. Specifically note dimensions that appear to be in conflict with submitted equipment and minimum clearance requirements. Provide alternate sketches to Architect indicating proposed resolution of such conflicts. Minor dimension changes and difficult installations will not be considered changes to the Contract.

B. Coordination Drawing Organization: Organize coordination drawings as follows:

1. Floor Plans and Reflected Ceiling Plans: Show architectural and structural elements, and mechanical, plumbing, fire-protection, fire-alarm, and electrical
Work. Show locations of visible ceiling-mounted devices relative to acoustical ceiling grid. Supplement plan drawings with section drawings where required to adequately represent the Work.

2. Plenum Space: Indicate subframing for support of ceiling and wall systems, mechanical and electrical equipment, and related Work. Locate components within ceiling plenum to accommodate layout of light fixtures indicated on Drawings. Indicate areas of conflict between light fixtures and other components.

3. Mechanical Rooms: Provide coordination drawings for mechanical rooms showing plans and elevations of mechanical, plumbing, fire-protection, fire-alarm, and electrical equipment.

4. Structural Penetrations: Indicate penetrations and openings required for all disciplines.

5. Slab Edge and Embedded Items: Indicate slab edge locations and sizes and locations of embedded items for metal fabrications, sleeves, anchor bolts, bearing plates, angles, door floor closers, slab depressions for floor finishes, curbs and housekeeping pads, and similar items.

6. Mechanical and Plumbing Work: Show the following:
 a. Sizes and bottom elevations of ductwork, piping, and conduit runs, including insulation, bracing, flanges, and support systems.
 b. Dimensions of major components, such as dampers, valves, diffusers, access doors, cleanouts and electrical distribution equipment.
 c. Fire-rated enclosures around ductwork.

7. Electrical Work: Show the following:
 a. Runs of vertical and horizontal conduit 1-1/4 inches in diameter and larger.
 b. Light fixture, exit light, emergency battery pack, smoke detector, and other fire-alarm locations.
 c. Panel board, switch board, switchgear, transformer, busway, generator, and motor control center locations.
 d. Location of pull boxes and junction boxes, dimensioned from column center lines.

8. Fire-Protection System: Show the following:
 a. Locations of standpipes, mains piping, branch lines, pipe drops, and sprinkler heads.

9. Review: Architect/Engineer (A/E) will review coordination drawings to confirm that the Work is being coordinated, but not for the details of the coordination, which are Contractor’s responsibility. If A/E determines that coordination drawings are not being prepared in sufficient scope or detail, or are otherwise deficient, A/E will so inform Contractor, who shall make changes as directed and resubmit.

10. Retain "Coordination Drawing Prints" Subparagraph below if submittal of prints is adequate for review of coordination drawings and electronic file submittal for review or record is not required.
11. Coordination Drawing Prints: Prepare coordination drawing prints according to requirements in Section 013300 "Submital Procedures."

C. Coordination Digital Data Files: Prepare coordination digital data files according to the following requirements:

1. File Preparation Format: Same digital data software program, version, and operating system as original Drawings.
2. File Preparation Format: DWG, Version Current, operating in Microsoft Windows operating system.
3. File Submittal Format: Submit or post coordination drawing files using Portable Data File (PDF) format.
 a. Architect makes no representations as to the accuracy or completeness of digital data files as they relate to Drawings.
 b. Contractor shall execute a data licensing agreement in the form of Agreement form acceptable to Owner.

1.7 REQUESTS FOR INFORMATION (RFIs)

A. General: Immediately on discovery of the need for additional information or interpretation of the Contract Documents, Contractor shall prepare and submit an RFI in the form specified.

1. Owner will return RFIs submitted by other entities controlled by Contractor with no response.
2. Coordinate and submit RFIs in a prompt manner so as to avoid delays in Contractor's work or work of subcontractors.

B. Content of the RFI: Include a detailed, legible description of item needing information or interpretation and the following:

1. Project name.
2. Project number.
3. Date.
4. Name of Contractor.
5. Name of Architect
6. RFI number, numbered sequentially.
7. RFI subject.
8. Specification Section number and title and related paragraphs, as appropriate.
9. Drawing number and detail references, as appropriate.
10. Field dimensions and conditions, as appropriate.
11. Contractor's suggested resolution. If Contractor's suggested resolution impacts the Contract Time or the Contract Sum, Contractor shall state impact in the RFI.
12. Contractor's signature.
13. **Attachments:** Include sketches, descriptions, measurements, photos, Product Data, Shop Drawings, coordination drawings, and other information necessary to fully describe items needing interpretation.
 a. Include dimensions, thicknesses, structural grid references, and details of affected materials, assemblies, and attachments on attached sketches.

C. **RFI Forms:** Software-generated form with substantially the same content as indicated above, acceptable to the Owner.

 1. Attachments shall be electronic files in Adobe Acrobat PDF format.

D. **Owner’s Action:** Owner, or his representatives (which may include the A/E) will review each RFI, determine action required, and respond. Allow seven working days for response for each RFI. RFIs received after 1:00 p.m. will be considered as received the following working day.

 1. The following Contractor-generated RFIs will be returned without action:
 a. Requests for approval of submittals.
 b. Requests for approval of substitutions.
 c. Requests for approval of Contractor's means and methods.
 d. Requests for coordination information already indicated in the Contract Documents.
 e. Requests for adjustments in the Contract Time or the Contract Sum.
 f. Requests for interpretation of Architect's actions on submittals.
 g. Incomplete RFIs or inaccurately prepared RFIs.

 2. Owner’s action may include a request for additional information, in which case Architect's time for response will date from time of receipt of additional information.

 3. Owner's action on RFIs that may result in a change to the Contract Time or the Contract Sum may be eligible for Contractor to submit Change Proposal according to Section 012600 "Contract Modification Procedures."
 a. If Contractor believes the RFI response warrants change in the Contract Time or the Contract Sum, notify Owner in writing within 10 days of receipt of the RFI response.

E. **RFI Log:** Prepare, maintain, and submit a tabular log of RFIs organized by the RFI number. Submit log weekly. Include the following:

 1. Project name.
 2. Name and address of Contractor.
 3. Name and address of Architect.
 4. RFI number including RFIs that were returned without action or withdrawn.
 5. RFI description.
 6. Date the RFI was submitted.
 7. Date response was received.
F. On receipt of Owner’s Action, update the RFI log and immediately distribute the RFI response to affected parties. Review response and notify Owner within seven days if Contractor disagrees with response.

1. Identification of related Minor Change in the Work, Construction Change Directive, and Proposal Request, as appropriate.
2. Identification of related Field Order, Work Change Directive, and Proposal Request, as appropriate.

1.8 PROJECT MEETINGS

A. General: Schedule and conduct meetings and conferences at Project site unless otherwise indicated.

1. Attendees: Inform participants and others involved, and individuals whose presence is required, of date and time of each meeting. Notify Owner and Architect of scheduled meeting dates and times.
2. Agenda: Prepare the meeting agenda. Distribute the agenda to all invited attendees.
3. Minutes: Entity responsible for conducting meeting will record significant discussions and agreements achieved. Distribute the meeting minutes to everyone concerned, including Owner, and his representative (which may include the Architect), within three days of the meeting.

B. Preconstruction Conference: Schedule and conduct a preconstruction conference before starting construction, at a time convenient to Owner, but no later than 15 days after execution of the Agreement.

1. Conduct the conference to review responsibilities and personnel assignments.
2. Attendees: Authorized representatives of Owner, and his representatives (which may include the Architect); Contractor and its superintendent; major subcontractors; suppliers; and other concerned parties shall attend the conference. Participants at the conference shall be familiar with Project and authorized to conclude matters relating to the Work.
3. Agenda: Discuss items of significance that could affect progress, including the following:

 a. Tentative construction schedule.
 b. Phasing.
 c. Critical work sequencing and long-lead items.
 d. Designation of key personnel and their duties.
 e. Lines of communications.
 f. Procedures for processing field decisions and Change Orders.
 g. Procedures for RFIs.
 h. Procedures for testing and inspecting.
 i. Procedures for processing Applications for Payment.
 j. Distribution of the Contract Documents.
 k. Submittal procedures.
 l. Preparation of record documents.
m. Use of the premises and existing building.
n. Work restrictions.
o. Working hours.
p. Owner's occupancy requirements.
q. Responsibility for temporary facilities and controls.
r. Procedures for moisture and mold control.
s. Procedures for disruptions and shutdowns.
t. Construction waste management and recycling.
u. Parking availability.
v. Office, work, and storage areas.
w. Equipment deliveries and priorities.
x. First aid.
y. Security.
z. Progress cleaning.

4. Minutes: Entity responsible for conducting meeting will record and distribute meeting minutes.

C. Pre-Installation/Pre-Demolition Conferences: Conduct a preinstallation conference at Project site before each construction activity that requires coordination with other Owner activities. A Pre-Demolition conference will be held at the project site before demolition of major site features and the existing Administration Building.

1. Attendees: Installer and representatives of manufacturers and fabricators involved in or affected by the installation and its coordination or integration with other materials and installations that have preceded or will follow, shall attend the meeting. Advise Owner of scheduled meeting dates.

2. Agenda: Review progress of other construction activities and preparations for the particular activity under consideration, including requirements for the following:

 b. Options.
 c. Related RFI's.
 d. Related Change Orders.
 e. Purchases.
 f. Deliveries.
 g. Submittals.
 h. Review of mockups.
 i. Possible conflicts.
 j. Compatibility requirements.
 k. Time schedules.
 l. Weather limitations.
 m. Manufacturer's written instructions.
 n. Warranty requirements.
 o. Compatibility of materials.
 p. Acceptability of substrates.
 q. Temporary facilities and controls.
 r. Space and access limitations.
s. Regulations of authorities having jurisdiction.
t. Testing and inspecting requirements.
u. Installation procedures.
v. Coordination with other work.
w. Required performance results.
x. Protection of adjacent work.
y. Protection of construction and personnel.

3. Record significant conference discussions, agreements, and disagreements, including required corrective measures and actions.

4. Reporting: Distribute minutes of the meeting to each party present and to other parties requiring information.

5. Do not proceed with installation if the conference cannot be successfully concluded. Initiate whatever actions are necessary to resolve impediments to performance of the Work and reconvene the conference at earliest feasible date.

D. Progress Meetings: Conduct progress meetings at biweekly intervals.

1. Coordinate dates of meetings with preparation of payment requests.
2. Attendees: In addition to representatives of Owner, each contractor, subcontractor, supplier, and other entity concerned with current progress or involved in planning, coordination, or performance of future activities shall be represented at these meetings. All participants at the meeting shall be familiar with Project and authorized to conclude matters relating to the Work.
3. Agenda: Review and correct or approve minutes of previous progress meeting. Review other items of significance that could affect progress. Include topics for discussion as appropriate to status of Project.

a. Contractor's Construction Schedule: Review progress since the last meeting. Determine whether each activity is on time, ahead of schedule, or behind schedule, in relation to Contractor's construction schedule. Determine how construction behind schedule will be expedited; secure commitments from parties involved to do so. Discuss whether schedule revisions are required to ensure that current and subsequent activities will be completed within the Contract Time.
 1) Review schedule for next period.

b. Review present and future needs of each entity present, including the following:
 1) Interface requirements.
 2) Sequence of operations.
 3) Status of submittals.
 4) Deliveries.
 5) Off-site fabrication.
 6) Access.
 7) Site utilization.
 8) Temporary facilities and controls.
 9) Progress cleaning.
10) Quality and work standards.
11) Status of correction of deficient items.
12) Field observations.
13) Status of RFIs.
14) Status of proposal requests.
15) Pending changes.
16) Status of Change Orders.
17) Pending claims and disputes.
18) Documentation of information for payment requests.

4. Minutes: Entity responsible for conducting the meeting will record and distribute the meeting minutes to each party present and to parties requiring information.

a. Schedule Updating: Revise Contractor's construction schedule after each progress meeting where revisions to the schedule have been made or recognized. Issue revised schedule concurrently with the report of each meeting.

E. Coordination Meetings: Conduct Project coordination meetings at monthly intervals. Project coordination meetings are in addition to specific meetings held for other purposes, such as progress meetings and preinstallation conferences.

1. Attendees: In addition to representatives of Owner, each contractor, subcontractor, supplier, and other entity concerned with current progress or involved in planning, coordination, or performance of future activities shall be represented at these meetings. All participants at the meetings shall be familiar with Project and authorized to conclude matters relating to the Work.

2. Agenda: Review and correct or approve minutes of the previous coordination meeting. Review other items of significance that could affect progress. Include topics for discussion as appropriate to status of Project.

a. Combined Contractor's Construction Schedule: Review progress since the last coordination meeting. Determine whether each contract is on time, ahead of schedule, or behind schedule, in relation to combined Contractor's construction schedule. Determine how construction behind schedule will be expedited; secure commitments from parties involved to do so. Discuss whether schedule revisions are required to ensure that current and subsequent activities will be completed within the Contract Time.

b. Schedule Updating: Revise combined Contractor's construction schedule after each coordination meeting where revisions to the schedule have been made or recognized. Issue revised schedule concurrently with report of each meeting.

c. Review present and future needs of each contractor present, including the following:

1) Interface requirements.
2) Sequence of operations.
3) Status of submittals.
4) Deliveries.
5) Off-site fabrication.
6) Access.
7) Site utilization.
8) Temporary facilities and controls.
9) Work hours.
10) Hazards and risks.
11) Progress cleaning.
12) Quality and work standards.
13) Change Orders.

3. Reporting: Record meeting results and distribute copies to everyone in attendance and to others affected by decisions or actions resulting from each meeting.

F. Project Closeout Conference: Schedule and conduct a project closeout conference, at a time convenient to Owner and his representatives, but no later than 90 days prior to the scheduled date of Substantial Completion.

1. Conduct the conference to review requirements and responsibilities related to Project closeout.
2. Attendees: Authorized representatives of Owner, Contractor and its superintendent; major subcontractors; suppliers; and other concerned parties shall attend the meeting. Participants at the meeting shall be familiar with Project and authorized to conclude matters relating to the Work.
3. Agenda: Discuss items of significance that could affect or delay Project closeout, including the following:
 a. Preparation of record documents.
 b. Procedures required prior to inspection for Substantial Completion and for final inspection for acceptance.
 c. Submittal of written warranties.
 d. Requirements for preparing operations and maintenance data.
 e. Requirements for delivery of material samples, attic stock, and spare parts.
 f. Requirements for demonstration and training.
 g. Preparation of Contractor's punch list.
 h. Procedures for processing Applications for Payment at Substantial Completion and for final payment.
 i. Submittal procedures.
 j. Retain first subparagraph below for projects with separate contracts that may impact Contractor's work and procedures at project closeout.
 k. Coordination of separate contracts.
 l. Owner's partial occupancy requirements.
 m. Installation of Owner's furniture, fixtures, and equipment.
 n. Responsibility for removing temporary facilities and controls.

4. Minutes: Entity conducting meeting will record and distribute meeting minutes.
PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION (Not Used)

END OF SECTION
SECTION 013300

SUBMITTAL PROCEDURES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes requirements for the submittal schedule and administrative and procedural requirements for submitting Shop Drawings, Product Data, Samples, and other submittals.

B. The submittal process requires that the General Contractor review and validate conformance of the submitted materials or systems to be used on the contract with the Contract Documents.

C. Any deviations from the Contract Documents shall be clearly stated by the General Contractor on the cover of the submittal. Acceptance of the submittal by the Engineer of Record, in which deviations are not clearly identified on the submittal cover, does not alleviate the General Contractor from providing the specific and detailed requirements of the Contract Documents.

D. This Section includes administrative and procedural requirements for submitting Shop Drawings, Product Data, Samples, and other miscellaneous submittals.

1. Submittal Register shall be submitted no later than 10 days after Notice to Proceed and shall be discussed at the pre-construction meeting. The Contractor shall submit a complete submittal register to the Engineer for review and approval.

2. This submittal register shall be developed in Microsoft Excel and an electronic copy shall be submitted to the Owner. The submittal register shall include related specification section and article number, submittal number, product description, anticipated date to be submitted, actual date submitted, action of the Engineer of Record and revision number of the submittal.

3. The Contractor shall be responsible to update the submittal register and submit a copy to the Owner at each progress meeting.

4. The submission date of each technical and administrative submittal shall be incorporated as an individual line item into the Project Critical Path Method (CPM) Schedule. Refer to Specification Section 013100 “Project Management and Coordination”. The CPM schedule shall be updated with the current status of each submittal on a monthly basis.
5. Submittals shall not be submitted to the Owner prior to the review and acceptance of the submittal registers by the Owner

E. Related Requirements:

1. Section 012900 "Payment Procedures" for submitting Applications for Payment and the schedule of values.

1.3 DEFINITIONS

A. Action Submittals: Written and graphic information and physical samples that require Owner’s Representative's responsive action. Action submittals are those submittals indicated in individual Specification Sections as "action submittals."

B. Informational Submittals: Written and graphic information and physical samples that do not require Owner’s Representative responsive action. Submittals may be rejected for not complying with requirements. Informational submittals are those submittals indicated in individual Specification Sections as "informational submittals."

1.4 ACTION SUBMITTALS

A. General: Prepare and submit Action Submittals required by individual Specification Sections.

1. Number of copies: Submit to Administration Project Engineer eight copies of each submittal, unless otherwise indicated. The Administration Project Engineer will return four copies. Mark up and retain one returned copy as a Project Record Document.

B. Product Data. Collect information into a single submittal for each element of construction and type of product or equipment.

1. If information must be specially prepared for submittal because standard printed data are not suitable for use, submit as Shop Drawings, not as Product Data
2. Mark each copy of each submittal to show which products and options are applicable.
3. Include the following information, as applicable:
 a. Manufacturer’s written recommendations.
 b. Manufacturer’s product specifications.
 c. Manufacturer’s installation instructions.
 d. Manufacturer’s catalog cuts.
 e. Wiring diagrams showing factory-installed wiring.
 f. Mill reports.
 g. Standard product operating and maintenance manuals.
 h. Compliance with recognized trade association standards.
 i. Compliance with recognized testing agency standards.
 j. Application of testing agency labels and seals.
 k. Notation of coordination requirements.
C. Shop Drawings: Prepare Project-specific information, drawn accurately to scale. Do not base Shop Drawings on reproductions of the Contract Documents or standard printed data.

1. Preparation: Include the following information, as applicable:
 a. Dimensions.
 b. Identification of products.
 c. Fabrication and installation drawings
 d. Roughing-in and setting diagrams.
 e. Wiring diagrams showing field-installed wiring, including power, signal, and control wiring.
 f. Shopwork manufacturing instructions.
 g. Templates and patterns.
 h. Schedules.
 i. Design calculations
 j. Compliance with specified standards
 k. Notation of coordination requirements
 l. Notation of dimensions established by field measurement.

2. Wiring Diagrams: Differentiate between manufacturer-installed and field-installed wiring.

3. Sheet Size: Except for templates, patterns, and similar full-size drawings, submit Shop Drawings on sheets at least 8-1/2 by 11 inches but no larger than 24 by 36 inches.

1.5 SUBMITTAL ADMINISTRATIVE REQUIREMENTS

A. Owner's Representative's Digital Data Files: Electronic digital data files of the Contract Drawings will be provided by the Owner for Contractor's use in preparing submittals.

 a. Owner’s Representative makes no representations as to the accuracy or completeness of digital data drawing files as they relate to the Contract Drawings.

B. Coordination: Coordinate preparation and processing of submittals with performance of construction activities.

1. Coordinate each submittal with fabrication, purchasing, testing, delivery, other submittals, and related activities that require sequential activity.
2. Submit all submittal items required for each Specification Section concurrently unless partial submittals for portions of the Work are indicated on approved submittal schedule.
3. Submit action submittals and informational submittals required by the same Specification Section as separate packages under separate transmittals.
4. Coordinate transmittal of different types of submittals for related parts of the Work so processing will not be delayed because of need to review submittals concurrently for coordination.

 a. Owner’s Representative reserves the right to withhold action on a submittal requiring coordination with other submittals until related submittals are received.

C. Processing Time: Allow time for submittal review, including time for resubmittals, as follows. Time for review shall commence on Owner's receipt of submittal. No extension of the Contract Time will be authorized because of failure to transmit submittals enough in advance of the Work to permit processing, including resubmittals.

 1. Initial Review: Allow 15 business days for initial review of each submittal. Allow additional time if coordination with subsequent submittals is required. Owner’s Representative will advise Contractor when a submittal being processed must be delayed for coordination.

 2. Intermediate Review: If intermediate submittal is necessary, process it in same manner as initial submittal.

 3. Resubmittal Review: Allow 15 business days for review of each resubmittal.

D. Electronic Submittals: Identify and incorporate information in each electronic submittal file as follows:

 1. Assemble complete submittal package into a single indexed file incorporating submittal requirements of a single Specification Section and transmittal form with links enabling navigation to each item.

 2. Name file with submittal number or other unique identifier, including revision identifier.

 a. File name shall use project identifier and Specification Section number followed by a decimal point and then a sequential number (e.g., CDMY-061000.01). Resubmittals shall include an alphabetic suffix after another decimal point (e.g., CDMY-061000.01.A).

 3. Provide means for insertion to permanently record Contractor's review and approval markings and action taken by Owner’s Representative.

 4. Transmittal Form for Electronic Submittals: Use electronic form acceptable to Owner, containing the following information:

 a. Project name.
 b. Date.
 c. Name and address of Architect.
 d. Name of Construction Manager.
 e. Name of Contractor.
 f. Name of firm or entity that prepared submittal.
 g. Names of subcontractor, manufacturer, and supplier.
 h. Category and type of submittal.
 i. Submittal purpose and description.
j. Specification Section number and title.
k. Specification paragraph number or drawing designation and generic name for each of multiple items.
l. Drawing number and detail references, as appropriate.
m. Location(s) where product is to be installed, as appropriate.
n. Related physical samples submitted directly.
o. Indication of full or partial submittal.
p. Transmittal number (numbered consecutively).
q. Submittal and transmittal distribution record.
r. Other necessary identification.
s. Remarks.

5. Metadata: Include the following information as keywords in the electronic submittal file metadata:
 a. Project name.
 b. Number and title of appropriate Specification Section.
 c. Manufacturer name.
 d. Product name.

E. Options: Identify options requiring selection by Owner’s Representative.

F. Deviations and Additional Information: On an attached separate sheet, prepared on Contractor's letterhead, record relevant information, requests for data, revisions other than those requested by Owner’s Representative on previous submittals, and deviations from requirements in the Contract Documents, including minor variations and limitations. Include same identification information as related submittal.

G. Resubmittals: Make resubmittals in same form and number of copies as initial submittal.
 1. Note date and content of previous submittal.
 2. Note date and content of revision in label or title block and clearly indicate extent of revision.
 3. Resubmit submittals until they are marked with approval notation from Owner’s Representative's action stamp.

H. Distribution: Furnish copies of final submittals to manufacturers, subcontractors, suppliers, fabricators, installers, authorities having jurisdiction, and others as necessary for performance of construction activities. Show distribution on transmittal forms.

I. Use for Construction: Retain complete copies of submittals on Project site. Use only final action submittals that are marked with approval notation from Owner’s Representative's action stamp.
PART 2 - PRODUCTS

2.1 SUBMITTAL PROCEDURES

A. General: Contractor may assume that one electronic copy of CAD Drawings of the Contract Drawings will be provided by the Administration for Contractor's use in preparing submittals.

B. Product Warranty Submittals: Product Warranties shall be submitted with the technical submittals. Failure to submit the product warranty with the technical submittal shall be cause for the entire technical submittal to be rejected.

C. Coordination: Coordinate preparation and processing of submittals with performance of construction activities.

1. Coordinate each submittal with fabrication, purchasing, testing, delivery, other submittals, and related activities that require sequential activity.
2. Coordinate transmittal of different types of submittals for related parts of the work so processing will not be delayed because of need to review submittals concurrently for coordination.
 a. Engineer reserves the right to withhold action on a submittal requiring coordination with other submittals until related submittals are received.

D. General Submittal Procedure Requirements: Prepare and submit submittals required by individual Specification Sections. Types of submittals are indicated in individual Specification Sections.

1. Post electronic submittals as PDF electronic files directly to the Owner directed web site specifically established for Project.
 a. Owner’s Representative will return annotated file. Annotate and retain one copy of file as an electronic Project record document file.

2. Certificates and Certifications Submittals: Provide a statement that includes signature of entity responsible for preparing certification. Certificates and certifications shall be signed by an officer or other individual authorized to sign documents on behalf of that entity.
 a. Provide a digital signature with digital certificate on electronically submitted certificates and certifications where indicated.
 b. Provide a notarized statement on original paper copy certificates and certifications where indicated.

E. Product Data: Collect information into a single submittal for each element of construction and type of product or equipment.

1. If information must be specially prepared for submittal because standard published data are not suitable for use, submit as Shop Drawings, not as Product Data.
2. Mark each copy of each submittal to show which products and options are applicable.
3. Include the following information, as applicable:
 a. Manufacturer's catalog cuts.
 b. Manufacturer's product specifications.
 c. Standard color charts.
 d. Statement of compliance with specified referenced standards.
 e. Testing by recognized testing agency.
 f. Application of testing agency labels and seals.
 g. Notation of coordination requirements.
 h. Availability and delivery time information.
4. For equipment, include the following in addition to the above, as applicable:
 a. Wiring diagrams showing factory-installed wiring.
 b. Printed performance curves.
 c. Operational range diagrams.
 d. Clearances required to other construction, if not indicated on accompanying Shop Drawings.
5. Submit Product Data before or concurrent with Samples.
6. Submit Product Data in the following format:
 a. PDF electronic file.
F. Product Schedule: As required in individual Specification Sections, prepare a written summary indicating types of products required for the Work and their intended location. Include the following information in tabular form:
 1. Type of product. Include unique identifier for each product indicated in the Contract Documents or assigned by Contractor if none is indicated.
 2. Manufacturer and product name, and model number if applicable.
 3. Number and name of room or space.
 4. Location within room or space.
 5. Submit product schedule in the following format:
 a. PDF electronic file.
G. Coordination Drawing Submittals: Comply with requirements specified in Section 013100 "Project Management and Coordination."
H. Application for Payment and Schedule of Values: Comply with requirements specified in Section 012900 "Payment Procedures."
I. Test and Inspection Reports and Schedule of Tests and Inspections Submittals: Comply with requirements specified in Section 014000 "Quality Requirements."
J. Closeout Submittals and Maintenance Material Submittals: Comply with requirements specified in Section 017700 "Closeout Procedures."

K. Qualification Data: Prepare written information that demonstrates capabilities and experience of firm or person. Include lists of completed projects with project names and addresses, contact information of Owner’s Representatives and owners, and other information specified.

L. Welding Certificates: Prepare written certification that welding procedures and personnel comply with requirements in the Contract Documents. Submit record of Welding Procedure Specification and Procedure Qualification Record on AWS forms. Include names of firms and personnel certified.

M. Installer Certificates: Submit written statements on manufacturer's letterhead certifying that Installer complies with requirements in the Contract Documents and, where required, is authorized by manufacturer for this specific Project.

N. Manufacturer Certificates: Submit written statements on manufacturer's letterhead certifying that manufacturer complies with requirements in the Contract Documents. Include evidence of manufacturing experience where required.

O. Product Certificates: Submit written statements on manufacturer's letterhead certifying that product complies with requirements in the Contract Documents.

P. Material Certificates: Submit written statements on manufacturer's letterhead certifying that material complies with requirements in the Contract Documents.

Q. Material Test Reports: Submit reports written by a qualified testing agency, on testing agency's standard form, indicating and interpreting test results of material for compliance with requirements in the Contract Documents.

R. Product Test Reports: Submit written reports indicating that current product produced by manufacturer complies with requirements in the Contract Documents. Base reports on evaluation of tests performed by manufacturer and witnessed by a qualified testing agency, or on comprehensive tests performed by a qualified testing agency.

S. Research Reports: Submit written evidence, from a model code organization acceptable to authorities having jurisdiction, that product complies with building code in effect for Project. Include the following information:

1. Name of evaluation organization.
2. Date of evaluation.
3. Time period when report is in effect.
4. Product and manufacturers' names.
5. Description of product.
6. Test procedures and results.
7. Limitations of use.
T. Preconstruction Test Reports: Submit reports written by a qualified testing agency, on testing agency's standard form, indicating and interpreting results of tests performed before installation of product, for compliance with performance requirements in the Contract Documents.

U. Compatibility Test Reports: Submit reports written by a qualified testing agency, on testing agency's standard form, indicating and interpreting results of compatibility tests performed before installation of product. Include written recommendations for primers and substrate preparation needed for adhesion.

V. Field Test Reports: Submit written reports indicating and interpreting results of field tests performed either during installation of product or after product is installed in its final location, for compliance with requirements in the Contract Documents.

W. Design Data: Prepare and submit written and graphic information, including, but not limited to, performance and design criteria, list of applicable codes and regulations, and calculations. Include list of assumptions and other performance and design criteria and a summary of loads. Include load diagrams if applicable. Provide name and version of software, if any, used for calculations. Include page numbers.

PART 3 - EXECUTION

3.1 CONTRACTOR’S REVIEW

A. Review each submittal and check for compliance with the Contract Documents. Note corrections and field dimensions. Mark with approval stamp before submitting to the Engineer.

B. Deviations: Clearly identify deviations from the Contract Documents. Failure to identify deviations from the Contract Documents shall not relieve the Contractor from providing the required elements of the Contract Documents.

C. Project Closeout and Maintenance Material Submittals: See requirements in Section 017700 "Closeout Procedures."

D. Approval Stamp: Stamp each submittal with a uniform, approval stamp. Include Project name and location, submittal number, Specification Section title and number, name of reviewer, date of Contractor's approval, and statement certifying that submittal has been reviewed, checked, and approved for compliance with the Contract Documents.

3.2 OWNER’S REPRESENTATIVE ACTION

A. Action Submittals: Owner’s Representative (maybe the Architect/Engineer) will review each submittal, make marks to indicate corrections or revisions required, and return it. Owner’s Representative will stamp each submittal with an action stamp and will mark stamp appropriately to indicate action.
B. Informational Submittals: Owner’s Representative will review each submittal and will not return it or will return it if it does not comply with requirements. Owner’s Representative will forward each submittal to appropriate party.

C. Partial submittals prepared for a portion of the Work will be reviewed when use of partial submittals has been received prior approval from Owner’s Representative.

D. Incomplete submittals are unacceptable, will be considered nonresponsive, and will be returned for resubmittal without review.

E. Submittals not required by the Contract Documents may be returned by the Owner’s Representative without action.

END OF SECTION
SECTION 014000
QUALITY REQUIREMENTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, General and Supplementary Conditions and other Division 01 Special Provisions, apply to this Special Provision.

1.2 SUMMARY

A. This Section includes administrative and procedural requirements for quality assurance and quality control.

B. Testing and inspecting services are required to verify compliance with requirements specified or indicated. These services do not relieve Contractor of responsibility for compliance with the Contract Document requirements.

1. Specified quality-assurance and -control requirements for individual construction activities are specified in the Sections that specify those activities. Requirements in those Sections may also cover production of standard products.

2. Specified tests, inspections, and related actions do not limit Contractor's other quality-assurance and -control procedures that facilitate compliance with the Contract Document requirements.

3. Requirements for Contractor to provide quality-assurance and -control services required by Engineer, the Owner, or authorities having jurisdiction are not limited by provisions of this Section.

1.3 DEFINITIONS

A. Commissioning Process: The commissioning process is a quality process which is intended to monitor the construction process, including but not limited to, submittal conformance with the contract documents, construction installation and associated testing and system startup, prove-out and seasonal performance monitoring.

B. Quality-Assurance Services: Activities, actions, and procedures performed before and during execution of the Work to guard against defects and deficiencies and substantiate that proposed construction will comply with requirements.

C. Quality-Control Services: Tests, inspections, procedures, and related actions during and after execution of the Work to evaluate that actual products incorporated into the Work and completed construction comply with requirements. Services do not include contract enforcement activities performed by Engineer.
D. Field Quality-Control Testing: Tests and inspections that are performed on-site for installation of the Work and for completed Work.

E. Testing Agency: An entity engaged to perform specific tests, inspections, or both. Testing laboratory shall mean the same as testing agency.

F. Installer/Applicator/Erector: Contractor or another entity engaged by Contractor as an employee, Subcontractor, or Sub-subcontractor, to perform a particular construction operation, including installation, erection, application, and similar operations.

1. Using a term such as "carpentry" does not imply that certain construction activities must be performed by accredited or unionized individuals of a corresponding generic name, such as "carpenter." It also does not imply that requirements specified apply exclusively to tradespeople of the corresponding generic name.

1.4 CONFLICTING REQUIREMENTS

A. General: If compliance with two or more standards is specified and the standards establish different or conflicting requirements for minimum quantities or quality levels, comply with the most stringent requirement. Refer uncertainties and requirements that are different, but apparently equal, to Engineer for a decision before proceeding.

B. Minimum Quantity or Quality Levels: The quantity or quality level shown or specified shall be the minimum provided or performed. The actual installation may comply exactly with the minimum quantity or quality specified, or it may exceed the minimum within reasonable limits. To comply with these requirements, indicated numeric values are minimum or maximum, as appropriate, for the context of requirements. Refer uncertainties to Engineer for a decision before proceeding.

1.5 DELEGATED DESIGN

A. Performance and Design Criteria: Where professional design services or certifications by a design professional are specifically required of Contractor by the Contract Documents, provide products and systems complying with specific performance design criteria indicated

1. If criteria indicated are not sufficient to perform services or certification required, submit a written request for additional information to Engineer.

1.6 SUBMITTALS

A. Qualification Data: For testing agencies specified in Section 014000-“Quality Requirements” Article to demonstrate their capabilities and experience. Include proof of qualifications in the form of a recent report on the inspection of the testing agency by a recognized authority.

B. Delegated-Design Submittal: In addition to Shop Drawings, Product Data, and other required submittals, submit a statement, signed and sealed by the responsible design
professional, for each product and system specifically assigned to Contractor to be designed or certified by a design professional, indicating that the products and systems are in compliance with performance and design criteria indicated. Include list of codes, loads, and other factors used in performing these services.

C. Schedule of Tests and Inspections: Prepare in tabular form and include the following within 30 calendar days after the Notice to Proceed. Failure of contractor to submit this information may result in the Owner withholding the monthly progress payment(s):

1. Specification Section number and title.
2. Description of test and inspection.
3. Identification of applicable standards.
4. Identification of test and inspection methods.
5. Number of tests and inspections required.
6. Time schedule or time span for tests and inspections.
7. Entity responsible for performing tests and inspections.
8. Requirements for obtaining samples.
9. Unique characteristics of each quality-control service.

D. Project Quality Control/Quality Assurance Plan: Prepare a written and/or graphical plan that includes the following within 30 calendar days after the Notice to Proceed. Failure for contractor to submit this information may result in the Administration withholding the monthly progress payment(s):

1. Project organization
2. Work approach for providing the required quality control/quality assurance.

E. Test Reports: Prepare and submit certified written reports that include the following:

1. Date of issue.
2. Project title and number.
3. Name, address, and telephone number of testing agency.
4. Dates and locations of samples and tests or inspections.
5. Names of individuals making tests and inspections.
6. Description of the Work and test and inspection method.
8. Complete test or inspection data.
9. Test and inspection results and an interpretation of test results.
10. Record of temperature and weather conditions at time of sample taking and testing and inspecting.
11. Comments or professional opinion on whether tested or inspected Work complies with the Contract Document requirements.
12. Name and signature of laboratory inspector.
13. Recommendations on retesting and reinspecting.

F. Permits, Licenses, and Certificates: For the Owner’s records, submit copies of permits, licenses, certifications, inspection reports, releases, jurisdictional settlements, notices, receipts for fee payments, judgments, correspondence, records, and similar documents,
established for compliance with standards and regulations bearing on performance of the Work.

1.7 QUALITY ASSURANCE

A. Fabricator Qualifications: A firm experienced in producing products similar to those indicated for this Project and with a record of successful in-service performance, as well as sufficient production capacity to produce required units.

B. Factory-Authorized Service Representative Qualifications: An authorized representative of manufacturer who is trained and approved by manufacturer to inspect installation of manufacturer’s products that are similar in material, design, and extent to those indicated for this Project.

C. Installer Qualifications: A firm or individual experienced in installing, erecting, or assembling work similar in material, design, and extent to that indicated for this Project, whose work has resulted in construction with a record of successful in-service performance.

D. Manufacturer Qualifications: A firm experienced in manufacturing products or systems similar to those indicated for this Project and with a record of successful in-service performance.

E. Specialists: Certain sections of the Specifications require that specific construction activities shall be performed by entities who are recognized experts in those operations. Specialists shall satisfy qualification requirements indicated and shall be engaged for the activities indicated.

1. Requirement for specialists shall not supersede building codes and regulations governing the Work, nor interfere with local trade-union jurisdictional settlements and similar conventions.

F. Testing Agency Qualifications: An independent agency with the experience and capability to conduct testing and inspecting indicated, as documented according to ASTM E 548; and with additional qualifications specified in individual Sections; and where required by authorities having jurisdiction, that is acceptable to authorities.

1. When testing is complete, remove test specimens, assemblies, mockups, and laboratory mockups; do not reuse products on Project.

2. Testing Agency Responsibilities: Submit a certified written report of each test, inspection, and similar quality-assurance service to Engineer, with copy to Contractor. Interpret tests and inspections and state in each report whether tested and inspected work complies with or deviates from the Contract Documents.

1.8 QUALITY CONTROL

A. Contractor Responsibilities: Unless otherwise indicated, provide quality-control services, specified and required by authorities having jurisdiction.
1. Engage a qualified testing agency to perform quality-control services, excluding concrete and soil compacting testing. Specifically, testing agency requirements existing for electrical installation and HVAC testing and balancing. Certain accreditation requirements exist for the testing agencies.

2. Notify the Administration PE and Commissioning Authority at least 5 business days in advance of time when Work that requires testing or inspecting will be performed.

3. Submit a certified written report, in duplicate, of each quality-control service.

4. Testing and inspecting requested by Contractor and not required by the Contract Documents are Contractor's responsibility.

5. Submit additional copies of each written report directly to authorities having jurisdiction, when they so direct.

B. Manufacturer's Field Services: Where indicated, engage a factory-authorized service representative to inspect field-assembled components and equipment installation, including service connections. Report results in writing as specified in Division 1 Section "Submittal Procedures."

C. Tests and Inspections: Contractor shall engage a testing agency to conduct special tests and inspections as required by the Engineer, Commissioning Authority or authorities having jurisdiction as the responsibility of Contractor.

1. Testing agency will notify the Administration, Engineer, Commissioning Authority and Contractor promptly of irregularities and deficiencies observed in the Work during performance of its services.

2. Testing agency will submit a certified written report of each test, inspection, and similar quality-control service to Engineer with copy to Contractor and to authorities having jurisdiction.

3. Testing agency will submit a final report of special tests and inspections at Substantial Completion, which includes a list of unresolved deficiencies.

4. Testing agency will interpret tests and inspections and state in each report whether tested and inspected work complies with or deviates from the Contract Documents.

5. Testing agency will retest and re-inspect corrected work.

D. Retesting/Reinspecting: Regardless of whether original tests or inspections were Contractor's responsibility, provide quality-control services, including retesting and reinspecting, for construction that replaced Work that failed to comply with the Contract Documents.

E. Testing Agency Responsibilities: Cooperate with Engineer and Commissioning Authority in performance of duties. Provide qualified personnel to perform required tests and inspections.

1. Testing agency shall Notify Engineer, Commissioning Authority, and Contractor promptly of irregularities or deficiencies observed in the Work during performance of its services.

2. Determine the location from which test samples will be taken and in which in-situ tests are conducted.
3. Conduct and interpret tests and inspections and state in each report whether tested and inspected work complies with or deviates from requirements.
4. Submit a certified written report, in duplicate, of each test, inspection, and similar quality-control service through Contractor.
5. Do not release, revoke, alter, or increase the Contract Document requirements or approve or accept any portion of the Work.
6. Do not perform any duties of Contractor.

F. Coordination: Coordinate sequence of activities to accommodate required quality-assurance and -control services with a minimum of delay and to avoid necessity of removing and replacing construction to accommodate testing and inspecting.

1. Schedule times for tests, inspections, obtaining samples, and similar activities.

G. Schedule of Tests and Inspections: Prepare a schedule of tests, inspections, and similar quality-control services required by the Contract Documents. Submit schedule within 30 days of date established for the Notice to Proceed.

1. Distribution: Distribute schedule to the Administration, Engineer Commissioning Authority, testing agencies, and each party involved in performance of portions of the Work where tests and inspections are required.

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION

3.1 TEST AND INSPECTION LOG

A. Prepare a record of tests and inspections. Include the following:

1. Date test or inspection was conducted.
2. Description of the Work tested or inspected.
3. Date test or inspection results were transmitted to Engineer.
4. Identification of testing agency or special inspector conducting test or inspection.

B. Maintain log at Project site. Post changes and modifications as they occur. Provide access to test and inspection log for Engineer's reference during normal working hours.

3.2 REPAIR AND PROTECTION

A. General: On completion of testing, inspecting, sample taking, and similar services, repair damaged construction and restore substrates and finishes.

1. Comply with the Contract Document requirements for Division 01 Section "Cutting and Patching."

B. Protect construction exposed by or for quality-control service activities.
C. Repair and protection are Contractor's responsibility, regardless of the assignment of responsibility for quality-control services.

END OF SECTION
THIS PAGE INTENTIONALLY LEFT BLANK
SECTION 016000

PRODUCT REQUIREMENTS

PART 1 - GENERAL

1.1 RELATED SECTIONS
 A. Drawings and general provisions of the Contract, General and Supplementary Conditions
 and other Division 01 Special Provisions, apply to this Special Provision.

1.2 SUBMITTALS
 A. Product warranties shall be submitted with the initial technical submittal for approval by
 the Owner and the Engineer. Failure to submit the product warranty with the technical
 submittal shall be cause for the entire technical submittal to be rejected.

1.3 PRODUCT WARRANTIES
 A. Manufacturer's disclaimers and limitations on product warranties do not relieve
 Contractor of obligations under requirements of the Contract Documents.
 B. Warranties shall be for a minimum of two years from the date of substantial completion.
 Longer warranties for building systems may be specified in the individual sections.

1.4 ACTION SUBMITTALS
 A. Substitution Requests: Submit three copies of each request for consideration. Identify
 product or fabrication or installation method to be replaced. Include Specification
 Section number and title and Drawing numbers and titles.
 1. Substitution Request Form: Use CSI Form 13.1A.
 2. Documentation: Show compliance with requirements for substitutions and the
 following, as applicable:
 a. Statement indicating why specified product or fabrication, or installation
 cannot be provided, if applicable.
 b. Coordination information, including a list of changes or revisions needed
 to other parts of the Work and to construction performed by Owner and
 separate contractors that will be necessary to accommodate proposed
 substitution.
 c. Detailed comparison of significant qualities of proposed substitution with
 those of the Work specified. Include annotated copy of applicable
 Specification Section. Significant qualities may include attributes such
 as performance, weight, size, durability, visual effect, sustainable design
 characteristics, warranties, and specific features and requirements
 indicated. Indicate deviations, if any, from the Work specified.
d. Product Data, including drawings and descriptions of products and fabrication and installation procedures.
e. Certificates and qualification data, where applicable or requested.
f. List of similar installations for completed projects with project names and addresses and names and addresses of architects and owners.
g. Material test reports from a qualified testing agency indicating and interpreting test results for compliance with requirements indicated.
h. Detailed comparison of Contractor's construction schedule using proposed substitution with products specified for the Work, including effect on the overall Contract Time. If specified, product or method of construction cannot be provided within the Contract Time, include letter from manufacturer, on manufacturer's letterhead, stating date of receipt of purchase order, lack of availability, or delays in delivery.
i. Cost information, including a proposal of change, if any, in the Contract Sum.
j. Contractor's certification that proposed substitution complies with requirements in the Contract Documents except as indicated in substitution request, is compatible with related materials, and is appropriate for applications indicated.
k. Contractor's waiver of rights to additional payment or time that may subsequently become necessary because of failure of proposed substitution to produce indicated results.

1.5 QUALITY ASSURANCE

A. Compatibility of Substitutions: Investigate and document compatibility of proposed substitution with related products and materials. Engage a qualified testing agency to perform compatibility tests recommended by manufacturers.

1.6 PROCEDURES

A. Coordination: Revise or adjust affected work as necessary to integrate work of the approved substitutions.

PART 2 - PRODUCTS

2.1 PRODUCT SUBSTITUTIONS

A. Where the Contractor proposes to use a substitute product or a product to be considered as an “or equal” for a named item of equipment or a basis of design item of equipment, he shall submit to the Engineer complete information on and working drawings for such substitute item, including all necessary redesign of the structure, partitions, foundations, piping, ductwork, wiring, or any other part of the project.

B. All such redesign and all new drawings and detailing required therefore shall be prepared by the Contractor at the Contractor’s expense. Where the substitution of any item or items requires a different quantity and arrangement of structure, partitions, foundations, piping, ductwork, wiring, conduit and equipment from that specified or indicated on the
Contract Drawings, the Contractor shall include the total cost of such changes as well as the necessary engineering design necessary to support and detail the changes, in the bid. It shall be expressly understood that all equipment and materials named shall be furnished in full accordance with the Contract Drawings and/or Specifications.

C. The complete and salient characteristics of materials specified by Manufacturers product number or trade name are applicable to the requirements for substitution consideration, even if the complete and salient characteristics of the specified material are not listed herein.

D. The attention of the Contractor is especially directed to the requirement that, if the Contractor proposes to substitute materials or equipment as “equals” to those specified,

1. It shall be the Contractor’s responsibility to furnish complete, specific, detailed information from the manufacturer or supplier of the material or equipment he proposes to furnish, in which the requirements of the contract specifications are shown to be met, within 30 days from notice to proceed.
2. Failure to submit substitute materials or equipment as “equals” within 30 days from notice to proceed will eliminate the substitute material from consideration as an “equal” to the specified product.
3. The information requested shall consist of a point by point comparison of the contract specification requirements with the material or equipment proposed to be furnished. In the event that the contract specifications mention a model number and manufacturer, a point by point comparison of the complete and salient equipment characteristics of the listed model number specified under the contract and the proposed substitutes shall be furnished by the Contractor.
4. In the event the contract specification indicates a requirement for substitute materials request to submit a specific number of operating systems and total duration of operation for each system, the Contractor shall submit the name of the owner, length of service, current contact person and title, current phone number and size of the system. The requirement for a specific number of operating systems and duration of operation for substitute materials is applicable, even if the specified product does not meet these requirements.
5. The burden of responsibility in furnishing this information is with the Contractor. If incomplete or irrelevant data is submitted as evidence of compliance with this section of the specifications, the data will be returned to the Contractor and the request for approval will be denied. Names of manufacturers for substitute items which are not approved by the Engineer will not be considered and the Contractor must supply the products as specified.

PART 3 - EXECUTION (Not Used)

END OF SECTION
THIS PAGE INTENTIONALLY LEFT BLANK
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes general administrative and procedural requirements governing execution of the Work including, but not limited to, the following:

2. Installation of the Work.
3. Cutting and patching.
4. Progress cleaning.
5. Starting and adjusting.
6. Protection of installed construction.

B. Related Requirements:

1. Section 011000 "Summary" for limits on use of Project site.
2. Section 013300 "Submittal Procedures" for submitting surveys.
3. Section 017700 "Closeout Procedures" for submitting final property survey with Project Record Documents, recording of Owner-accepted deviations from indicated lines and levels, and final cleaning.

1.3 DEFINITIONS

A. Cutting: Removal of in-place construction necessary to permit installation or performance of other work.

B. Patching: Fitting and repair work required to restore construction to original conditions after installation of other work.

1.4 INFORMATIONAL SUBMITTALS

A. Cutting and Patching Plan: Submit plan describing procedures at least 10 days prior to the time cutting and patching will be performed. Include the following information:

1. Extent: Describe reason for and extent of each occurrence of cutting and patching.
2. Changes to In-Place Construction: Describe anticipated results. Include changes to structural elements and operating components as well as changes in building appearance and other significant visual elements.
3. Products: List products to be used for patching and firms or entities that will perform patching work.
4. Dates: Indicate when cutting and patching will be performed.
5. Utilities and Mechanical and Electrical Systems: List services and systems that cutting and patching procedures will disturb or affect. List services and systems that will be relocated and those that will be temporarily out of service. Indicate length of time permanent services and systems will be disrupted.
 a. Include description of provisions for temporary services and systems during interruption of permanent services and systems.

1.5 QUALITY ASSURANCE

A. Cutting and Patching: Comply with requirements for and limitations on cutting and patching of construction elements.

 1. Structural Elements: When cutting and patching structural elements, notify Owner of locations and details of cutting and await directions from Owner before proceeding. Shore, brace, and support structural elements during cutting and patching. Do not cut and patch structural elements in a manner that could change their load-carrying capacity or increase deflection.

 2. Operational Elements: Do not cut and patch operating elements and related components in a manner that results in reducing their capacity to perform as intended or that results in increased maintenance or decreased operational life or safety.

 3. Other Construction Elements: Do not cut and patch other construction elements or components in a manner that could change their load-carrying capacity, that results in reducing their capacity to perform as intended, or that results in increased maintenance or decreased operational life or safety.

B. Manufacturer’s Installation Instructions: Obtain and maintain on-site manufacturer’s written recommendations and instructions for installation of products and equipment.

PART 2 - PRODUCTS

2.1 MATERIALS

A. General: Comply with requirements specified in other Sections.

B. In-Place Materials: Use materials for patching identical to in-place materials. For exposed surfaces, use materials that visually match in-place adjacent surfaces to the fullest extent possible.
1. If identical materials are unavailable or cannot be used, use materials that, when installed, will provide a match acceptable to Architect for the visual and functional performance of in-place materials.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Existing Conditions: The existence and location of utilities and construction indicated as existing are not guaranteed. Before beginning work, investigate and verify the existence and location of utilities, mechanical and electrical systems, and other construction affecting the Work.

B. Examination and Acceptance of Conditions: Before proceeding with each component of the Work, examine substrates, areas, and conditions, with Installer or Applicator present where indicated, for compliance with requirements for installation tolerances and other conditions affecting performance. Record observations.

C. Proceed with installation only after unsatisfactory conditions have been corrected. Proceeding with the Work indicates acceptance of surfaces and conditions.

3.2 PREPARATION

A. Existing Utility Information: Furnish information to Owner that is necessary to adjust, move, or relocate existing utility structures, lines, services, or other appurtenances located in or affected by construction.

B. Field Measurements: Take field measurements as required to fit the Work properly. Recheck measurements before installing each product. Where portions of the Work are indicated to fit to other construction, verify dimensions of other construction by field measurements before fabrication. Coordinate fabrication schedule with construction progress to avoid delaying the Work.

C. Space Requirements: Verify space requirements and dimensions of items shown diagrammatically on Drawings.

D. Review of Contract Documents and Field Conditions: Immediately on discovery of the need for clarification of the Contract Documents caused by differing field conditions outside the control of Contractor, submit a request for information to Owner.

3.3 CONSTRUCTION LAYOUT

A. Verification: Before proceeding to lay out the Work, verify layout information shown on Drawings, in relation to the existing benchmarks. If discrepancies are discovered, notify Owner promptly.

B. Building Lines and Levels: Locate and lay out control lines required for work. Transfer survey markings and elevations for use with control lines and levels.
3.4 INSTALLATION

A. General: Locate the Work and components of the Work accurately, in correct alignment and elevation, as indicated.
 1. Make vertical work plumb and make horizontal work level.
 2. Where space is limited, install components to maximize space available for maintenance and ease of removal for replacement.
 3. Conceal pipes, ducts, and wiring in finished areas unless otherwise indicated.

B. Comply with manufacturer's written instructions and recommendations for installing products in applications indicated.

C. Install products at the time and under conditions that will ensure the best possible results. Maintain conditions required for product performance until Substantial Completion.

D. Conduct construction operations so no part of the Work is subjected to damaging operations or loading in excess of that expected during normal conditions of occupancy.

E. Sequence the Work and allow adequate clearances to accommodate movement of construction items on site and placement in permanent locations.

F. Sequence the work to allow for all inspections required by the local Authority Having Jurisdiction and all governing Codes.

G. Tools and Equipment: Do not use tools or equipment that produce harmful noise levels.

H. Templates: Obtain and distribute to the parties involved templates for work specified to be factory prepared and field installed. Check Shop Drawings of other work to confirm that adequate provisions are made for locating and installing products to comply with indicated requirements.

I. Attachment: Provide blocking and attachment plates and anchors and fasteners of adequate size and number to securely anchor each component in place, accurately located and aligned with other portions of the Work. Where size and type of attachments are not indicated, verify size and type required for load conditions.
 1. Mounting Heights: Where mounting heights are not indicated, mount components at heights directed by Owner.
 2. Allow for building movement, including thermal expansion and contraction.
 3. Coordinate installation of anchorages. Furnish setting drawings, templates, and directions for installing anchorages, including sleeves, concrete inserts, anchor bolts, and items with integral anchors, that are to be embedded in concrete or masonry. Deliver such items to Project site in time for installation.

J. Joints: Make joints of uniform width. Where joint locations in exposed work are not indicated, arrange joints for the best visual effect. Fit exposed connections together to form hairline joints.
K. Hazardous Materials: Use products, cleaners, and installation materials that are not considered hazardous.

3.5 CUTTING AND PATCHING

A. Cutting and Patching, General: Employ skilled workers to perform cutting and patching. Proceed with cutting and patching at the earliest feasible time, and complete without delay.

1. Cut in-place construction to provide for installation of other components or performance of other construction, and subsequently patch as required to restore surfaces to their original condition.

B. Existing Warranties: Remove, replace, patch, and repair materials and surfaces cut or damaged during installation or cutting and patching operations, by methods and with materials so as not to void existing warranties.

C. Temporary Support: Provide temporary support of work to be cut.

D. Protection: Protect in-place construction during cutting and patching to prevent damage. Provide protection from adverse weather conditions for portions of Project that might be exposed during cutting and patching operations.

E. Adjacent Occupied Areas: Where interference with use of adjoining areas or interruption of free passage to adjoining areas is unavoidable, coordinate cutting and patching according to requirements in Section 011000 "Summary."

F. Existing Utility Services and Mechanical/Electrical Systems: Where existing services/systems are required to be removed, relocated, or abandoned, bypass such services/systems before cutting to minimize interruption to occupied areas.

G. Cutting: Cut in-place construction by sawing, drilling, breaking, chipping, grinding, and similar operations, including excavation, using methods least likely to damage elements retained or adjoining construction. If possible, review proposed procedures with original Installer; comply with original Installer's written recommendations.

1. In general, use hand or small power tools designed for sawing and grinding, not hammering and chopping. Cut holes and slots neatly to minimum size required, and with minimum disturbance of adjacent surfaces. Temporarily cover openings when not in use.

2. Finished Surfaces: Cut or drill from the exposed or finished side into concealed surfaces.

3. Concrete and Masonry: Cut using a cutting machine, such as an abrasive saw or a diamond-core drill.

4. Excavating and Backfilling: Comply with requirements in applicable Sections where required by cutting and patching operations.

5. Mechanical and Electrical Services: Cut off pipe or conduit in walls or partitions to be removed. Cap, valve, or plug and seal remaining portion of pipe or conduit to prevent entrance of moisture or other foreign matter after cutting.
6. Proceed with patching after construction operations requiring cutting are complete.

H. Patching: Patch construction by filling, repairing, refinishing, closing up, and similar operations following performance of other work. Patch with durable seams that are as invisible as practicable. Provide materials and comply with installation requirements specified in other Sections, where applicable.

1. Inspection: Where feasible, test and inspect patched areas after completion to demonstrate physical integrity of installation.
2. Exposed Finishes: Restore exposed finishes of patched areas and extend finish restoration into retained adjoining construction in a manner that will minimize evidence of patching and refinishing.
 a. Clean piping, conduit, and similar features before applying paint or other finishing materials.
 b. Restore damaged pipe covering to its original condition.
3. Ceilings: Patch, repair, or rehang in-place ceilings as necessary to provide an even-plane surface of uniform appearance.
4. Exterior Building Walls: Patch components in a manner that restores enclosure to a weathertight condition and ensures thermal and moisture integrity of building enclosure.

I. Cleaning: Clean areas and spaces where cutting and patching are performed. Remove paint, mortar, oils, putty, and similar materials from adjacent finished surfaces.

3.6 PROGRESS CLEANING

A. General: Clean Project site and work areas daily, including common areas. Enforce requirements strictly. Dispose of materials lawfully.

2. Do not hold waste materials more than seven days during normal weather or three days if the temperature is expected to rise above 80 deg F.
3. Containerize hazardous and unsanitary waste materials separately from other waste. Mark containers appropriately and dispose of legally, according to regulations.

 a. Use containers intended for holding waste materials of type to be stored.

B. Site: Maintain Project site free of waste materials and debris.

C. Work Areas: Clean areas where work is in progress to the level of cleanliness necessary for proper execution of the Work.

1. Remove liquid spills promptly.
2. Where dust would impair proper execution of the Work, broom-clean or vacuum the entire work area, as appropriate.

D. Installed Work: Keep installed work clean. Clean installed surfaces according to written instructions of manufacturer or fabricator of product installed, using only cleaning materials specifically recommended. If specific cleaning materials are not recommended, use cleaning materials that are not hazardous to health or property and that will not damage exposed surfaces.

E. Concealed Spaces: Remove debris from concealed spaces before enclosing the space.

F. Exposed Surfaces in Finished Areas: Clean exposed surfaces and protect as necessary to ensure freedom from damage and deterioration at time of Substantial Completion.

G. Waste Disposal: Do not bury or burn waste materials on-site. Do not wash waste materials down sewers or into waterways.

H. During handling and installation, clean and protect construction in progress and adjoining materials already in place. Apply protective covering where required to ensure protection from damage or deterioration at Substantial Completion.

I. Clean and provide maintenance on completed construction as frequently as necessary through the remainder of the construction period. Adjust and lubricate operable components to ensure operability without damaging effects.

J. Limiting Exposures: Supervise construction operations to assure that no part of the construction completed or in progress, is subject to harmful, dangerous, damaging, or otherwise deleterious exposure during the construction period.

3.7 STARTING AND ADJUSTING

A. Start equipment and operating components to confirm proper operation. Remove malfunctioning units, replace with new units, and retest.

B. Adjust equipment for proper operation. Adjust operating components for proper operation without binding.

C. Test each piece of equipment to verify proper operation. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

D. Manufacturer's Field Service: If a factory-authorized service representative is required to inspect field-assembled components and equipment installation, comply with qualification requirements in Division 1 Section 014000 "Quality Requirements."

3.8 PROTECTION OF INSTALLED CONSTRUCTION

A. Provide final protection and maintain conditions that ensure installed Work is without damage or deterioration at time of Substantial Completion.
B. Comply with manufacturer's written instructions for temperature and relative humidity.

3.9 CORRECTION OF THE WORK

A. Repair or remove and replace defective construction. Restore damaged substrates and finishes.

1. Repairing includes replacing defective parts, refinishing damaged surfaces, touching up with matching materials, and properly adjusting operating equipment.

B. Restore permanent facilities used during construction to their specified condition.

C. Remove and replace damaged surfaces that are exposed to view if surfaces cannot be repaired without visible evidence of repair.

D. Repair components that do not operate properly. Remove and replace operating components that cannot be repaired.

E. Remove and replace chipped, scratched, and broken glass or reflective surfaces.

END OF SECTION
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, General and Supplementary Conditions and other Division 01 Special Provisions, apply to this Special Provision.

1.2 SUMMARY

A. This Section includes procedural requirements for cutting and patching.

B. Related Sections include the following:

1. Section 017300 "Execution."
2. Divisions 08, 09, 13, 23, and 26 Sections for specific requirements and limitations applicable to cutting and patching individual parts of the Work.

1.3 DEFINITIONS

A. Cutting: Removal of in-place construction necessary to permit installation or performance of other Work.

B. Patching: Fitting and repair work required to restore surfaces to original conditions after installation of other Work.

1.4 SUBMITTALS

A. Cutting and Patching Plan: Submit a plan for review and approval describing procedures at least 14 days before the time cutting and patching will be performed, requesting approval to proceed. Include the following information:

1. Dates: Indicate when cutting and patching will be performed.
2. Mechanical/Electrical Systems: List services/systems that cutting and patching procedures will disturb or affect. List services/systems that will be temporarily out of service. Indicate how long services/systems will be disrupted.
3. Structural and Architectural Systems: List building components that will be cut and method of protecting building component and/or waterproofing.
4. Approval: Obtain approval from The Administration of cutting and patching proposal before cutting and patching. Approval does not waive right to later require removal and replacement of unsatisfactory work.
1.5 QUALITY ASSURANCE

A. Structural Elements: Do not cut and patch structural elements in a manner that could change their load-carrying capacity or load-deflection ratio.

B. Operational Elements: Do not cut and patch operating elements and related components in a manner that results in reducing their capacity to perform as intended or that result in increased maintenance or decreased operational life or safety. Operating elements include the following:

2. Mechanical systems piping and ducts.
3. Control systems.
4. Communication systems.
5. Electrical wiring systems.

C. Miscellaneous Elements: Do not cut and patch miscellaneous elements or related components in a manner that could change their load-carrying capacity that results in reducing their capacity to perform as intended, or that result in increased maintenance or decreased operational life or safety. Miscellaneous elements include the following:

1. Water, moisture, or vapor barriers.
2. Membranes and flashings.
3. Equipment supports.

D. Visual Requirements: Do not cut and patch construction in a manner that results in visual evidence of cutting and patching. Do not cut and patch construction exposed on the exterior or in occupied spaces in a manner that would, in Architect's opinion, reduce the building’s aesthetic qualities. Remove and replace construction that has been cut and patched in a visually unsatisfactory manner.

1.6 WARRANTY

A. Existing Warranties: Remove, replace, patch, and repair materials and surfaces cut or damaged during cutting and patching operations, by methods and with materials so as not to void existing warranties.

PART 2 - PRODUCTS

2.1 MATERIALS

A. General: Comply with requirements specified in other Sections.

B. In-Place Materials: Use materials identical to in-place materials. For exposed surfaces, use materials that visually match in-place adjacent surfaces to the fullest extent possible.

1. If identical materials are unavailable or cannot be used, use materials that, when installed, will match the visual and functional performance of in-place materials.
PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine surfaces to be cut and patched and conditions under which cutting and patching are to be performed.
 1. Compatibility: Before patching, verify compatibility with and suitability of substrates, including compatibility with in-place finishes or primers.
 2. Proceed with installation only after unsafe or unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Temporary Support: Provide temporary support of Work to be cut.
B. Protection: Protect in-place construction during cutting and patching to prevent damage. Provide protection from adverse weather conditions for portions of Project that might be exposed during cutting and patching operations.
C. Adjoining Areas: Avoid interference with use of adjoining areas or interruption of free passage to adjoining areas.
D. Mechanical/Electrical Systems: Where existing services/systems are required to be removed, relocated, or abandoned, bypass such services/systems before cutting to prevent interruption to occupied areas.

3.3 PERFORMANCE

A. General: Employ skilled workers to perform cutting and patching. Proceed with cutting and patching at the earliest feasible time, and complete without delay.
 1. Cut in-place construction to provide for installation of other components or performance of other construction, and subsequently patch as required to restore surfaces to their original condition.
B. Cutting: Cut in-place construction by sawing, drilling, breaking, chipping, grinding, and similar operations, including excavation, using methods least likely to damage elements retained or adjoining construction. If possible, review proposed procedures with original Installer; comply with original Installer's written recommendations.
 1. In general, use hand or small power tools designed for sawing and grinding, not hammering and chopping. Cut holes and slots as small as possible, neatly to size required, and with minimum disturbance of adjacent surfaces. Temporarily cover openings when not in use.
 2. Finished Surfaces: Cut or drill from the exposed or finished side into concealed surfaces.
 3. Concrete: Cut using a cutting machine, such as an abrasive saw or a diamond-core drill.
4. Mechanical and Electrical Services: Cut off duct, pipe, or conduit in walls or partitions to be removed. Cap, valve, or plug and seal remaining portion of duct, pipe, or conduit to prevent entrance of moisture or other foreign matter after cutting.

5. Proceed with patching after construction operations requiring cutting are complete.

C. Patching: Patch construction by filling, repairing, refinishing, closing up, and similar operations following performance of other Work. Patch with durable seams that are as invisible as possible. Provide materials and comply with installation requirements specified in other Sections.

1. Inspection: Where feasible, test and inspect patched areas after completion to demonstrate integrity of installation.

2. Exposed Finishes: Restore exposed finishes of patched areas and extend finish restoration into retained adjoining construction in a manner that will eliminate evidence of patching and refinishing.
 a. Clean duct, piping, conduit, and similar features before applying paint or other finishing materials.
 b. Restore damaged duct or pipe covering to its original condition.

3. Floors and Walls: Where patching occurs in a painted surface, apply primer and intermediate paint coats over the patch and apply final paint coat over entire unbroken surface containing the patch. Provide additional coats until patch blends with adjacent surfaces.

4. Ceilings: Patch, repair, or rehang in-place ceilings as necessary to provide an even-plane surface of uniform appearance.

5. Exterior Building Enclosure: Patch components in a manner that restores enclosure to a weathertight condition.

D. Cleaning: Clean areas and spaces where cutting and patching are performed. Completely remove paint, mortar, oils, putty, and similar materials.

END OF SECTION
SECTION 017419
CONSTRUCTION WASTE MANAGEMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, General and Supplementary Conditions and other Division 01 Special Provisions, apply to this Special Provision.

1.2 SUMMARY
 A. This Section includes administrative and procedural requirements for the following:
 1. Salvaging nonhazardous demolition and construction waste.
 2. Recycling nonhazardous demolition and construction waste.
 3. Disposing of nonhazardous demolition and construction waste.

1.3 DEFINITIONS
 A. Construction Waste: Building and site improvement materials and other solid waste resulting from construction, remodeling, renovation, or repair operations. Construction waste includes packaging.
 B. Demolition Waste: Building and site improvement materials resulting from demolition or selective demolition operations.
 C. Disposal: Removal off-site of demolition and construction waste and subsequent sale, recycling, reuse, or deposit in landfill or incinerator acceptable to authorities having jurisdiction.
 D. Recycle: Recovery of demolition or construction waste for subsequent processing in preparation for reuse.
 E. Salvage: Recovery of demolition or construction waste and subsequent sale or reuse in another facility.
 F. Salvage and Reuse: Recovery of demolition or construction waste and subsequent incorporation into the Work.

1.4 PERFORMANCE REQUIREMENTS
 A. General: Develop waste management plan that results in end-of-Project rates for salvage/recycling of 50 percent by weight of total waste generated by the Work.
B. Salvage/Recycle Requirements: Owner's goal is to salvage and recycle as much nonhazardous demolition and construction waste as possible.

1. Demolition Waste:
 a. Concrete.
 b. Concrete reinforcing steel.
 c. Concrete masonry units.
 d. Structural and miscellaneous steel.
 e. Metal Copings
 f. Rough hardware.
 g. Equipment.
 h. Piping.
 i. Supports and hangers.
 j. Valves.
 k. Mechanical equipment.
 l. Refrigerants.
 m. Electrical conduit.
 n. Copper wiring.
 o. Electrical devices.
 p. Panelboards.

2. Construction Waste:
 a. Masonry and CMU.
 b. Metals.
 c. Piping.
 d. Electrical conduit.
 e. Packaging: Regardless of salvage/recycle goal indicated above, salvage or recycle 100 percent of the following uncontaminated packaging materials:
 1) Paper.
 2) Cardboard.
 3) Boxes.
 4) Plastic sheet and film.
 5) Polystyrene packaging.
 7) Plastic pails.

1.5 SUBMITTALS

A. Waste Management Plan: Submit plan within 30 days of Notice to Proceed.

B. Waste Reduction Progress Reports: Concurrent with each Application for Payment, submit three copies of report. Include separate reports for demolition and construction waste. Include the following information:

1. Material category.
2. Total quantity of waste in tons.
3. Total quantity of waste recovered (salvaged plus recycled) in tons.

C. Waste Reduction Calculations: Before request for Substantial Completion, submit three copies of calculated end-of-Project rates for salvage, recycling, and disposal as a percentage of total waste generated by the Work.

D. Records of Donations: Indicate receipt and acceptance of salvageable waste donated to individuals and organizations. Indicate whether organization is tax exempt.

E. Records of Sales: Indicate receipt and acceptance of salvageable waste sold to individuals and organizations. Indicate whether organization is tax exempt.

F. Recycling and Processing Facility Records: Indicate receipt and acceptance of recyclable waste by recycling and processing facilities licensed to accept them. Include manifests, weight tickets, receipts, and invoices.

G. Landfill and Incinerator Disposal Records: Indicate receipt and acceptance of waste by landfills and incinerator facilities licensed to accept them. Include manifests, weight tickets, receipts, and invoices.

H. Qualification Data: For Waste Management Coordinator and refrigerant recovery technician.

I. Statement of Refrigerant Recovery: Signed by refrigerant recovery technician responsible for recovering refrigerant, stating that all refrigerant that was present was recovered and that recovery was performed according to EPA regulations. Include name and address of technician and date refrigerant was recovered.

1.6 QUALITY ASSURANCE

A. Regulatory Requirements: Comply with hauling and disposal regulations of authorities having jurisdiction.

B. Waste Management Conference: Conduct conference at Project site to comply with requirements in Division 1 Section "Project Management and Coordination." Review methods and procedures related to waste management including, but not limited to, the following:

1. Review and discuss waste management plan including responsibilities of Waste Management Coordinator.
2. Review requirements for documenting quantities of each type of waste and its disposition.
3. Review and finalize procedures for materials separation and verify availability of containers and bins needed to avoid delays.
4. Review procedures for periodic waste collection and transportation to recycling and disposal facilities.
5. Review waste management requirements for each trade.
1.7 WASTE MANAGEMENT PLAN

A. General: Develop plan consisting of waste identification, waste reduction work plan, and cost/revenue analysis. Include separate sections in plan for demolition and construction waste. Indicate quantities by weight or volume but use same units of measure throughout waste management plan.

B. Waste Identification: Indicate anticipated types and quantities of demolition and construction waste generated by the Work. Include estimated quantities and assumptions for estimates.

C. Waste Reduction Work Plan: List each type of waste and whether it will be salvaged, recycled, or disposed of in landfill or incinerator. Include points of waste generation, total quantity of each type of waste, quantity for each means of recovery, and handling and transportation procedures.

1. Salvaged Materials for Reuse: For materials that will be salvaged and reused in this Project, describe methods for preparing salvaged materials before incorporation into the Work.
2. Salvaged Materials for Sale: For materials that will be sold to individuals and organizations, include list of their names, addresses, and telephone numbers.
3. Salvaged Materials for Donation: For materials that will be donated to individuals and organizations, include list of their names, addresses, and telephone numbers.
4. Recycled Materials: Include list of local receivers and processors and type of recycled materials each will accept. Include names, addresses, and telephone numbers.
5. Disposed Materials: Indicate how and where materials will be disposed of. Include name, address, and telephone number of each landfill and incinerator facility.
6. Handling and Transportation Procedures: Include method that will be used for separating recyclable waste including sizes of containers, container labeling, and designated location on Project site where materials separation will be located.

D. Cost/Revenue Analysis: Indicate total cost of waste disposal as if there was no waste management plan and net additional cost or net savings resulting from implementing waste management plan. Include the following:

1. Total quantity of waste.
2. Estimated cost of disposal (cost per unit). Include hauling and tipping fees and cost of collection containers for each type of waste.
3. Total cost of disposal (with no waste management).
4. Revenue from salvaged materials.
5. Revenue from recycled materials.
7. Savings in hauling and tipping fees that are avoided.
8. Handling and transportation costs. Include cost of collection containers for each type of waste.
9. Net additional cost or net savings from waste management plan.
E. Forms: Prepare waste management plan on forms as required by the Administration. Contractor to acquire forms from the Administration Project Engineer.

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION

3.1 PLAN IMPLEMENTATION

A. General: Implement waste management plan as approved by Owner. Provide handling, containers, storage, signage, transportation, and other items as required to implement waste management plan during the entire duration of the Contract.

B. Waste Management Coordinator: Engage a waste management coordinator to be responsible for implementing, monitoring, and reporting status of waste management work plan. Coordinator shall be present at Project site full time for duration of Project.

C. Training: Train workers, subcontractors, and suppliers on proper waste management procedures, as appropriate for the Work occurring at Project site.

1. Distribute waste management plan to everyone concerned within seven days of submittal return.
2. Distribute waste management plan to entities when they first begin work on-site. Review plan procedures and locations established for salvage, recycling, and disposal.

D. Site Access and Temporary Controls: Conduct waste management operations to ensure minimum interference with roads, streets, walks, walkways, and other adjacent occupied and used facilities.

1. Designate and label specific areas on Project site necessary for separating materials that are to be salvaged, recycled, reused, donated, and sold.
2. Comply with Division 1 Section "Temporary Facilities and Controls" for controlling dust and dirt, environmental protection, and noise control.

3.2 SALVAGING DEMOLITION WASTE

A. Salvaged Items for Reuse in the Work:

1. Clean salvaged items.
2. Pack or crate items after cleaning. Identify contents of containers.
3. Store items in a secure area until installation.
4. Protect items from damage during transport and storage.
5. Install salvaged items to comply with installation requirements for new materials and equipment. Provide connections, supports, and miscellaneous materials necessary to make items functional for use indicated.
B. Salvaged Items for Sale and Donation: Not permitted on Project site.

C. Doors and Hardware: Brace open end of door frames. Except for removing door closers, leave door hardware attached to doors.

3.3 RECYCLING DEMOLITION AND CONSTRUCTION WASTE, GENERAL

A. General: Recycle paper and beverage containers used by on-site workers.

B. Recycling Incentives: Revenues, savings, rebates, tax credits, and other incentives received for recycling waste materials shall accrue to Contractor.

C. Procedures: Separate recyclable waste from other waste materials, trash, and debris. Separate recyclable waste by type at Project site to the maximum extent practical.

1. Provide appropriately marked containers or bins for controlling recyclable waste until they are removed from Project site. Include list of acceptable and unacceptable materials at each container and bin.
 a. Inspect containers and bins for contamination and remove contaminated materials if found.

2. Stockpile processed materials on-site without intermixing with other materials. Place, grade, and shape stockpiles to drain surface water. Cover to prevent windblown dust.

3. Stockpile materials away from construction area. Do not store within drip line of remaining trees.

4. Store components off the ground and protect from the weather.

5. Remove recyclable waste off Owner's property and transport to recycling receiver or processor.

3.4 RECYCLING CONSTRUCTION WASTE

A. Packaging:

1. Cardboard and Boxes: Break down packaging into flat sheets. Bundle and store in a dry location.

3. Pallets: As much as possible, require deliveries using pallets to remove pallets from Project site. For pallets that remain on-site, break down pallets into component wood pieces and comply with requirements for recycling wood.

4. Crates: Break down crates into component wood pieces and comply with requirements for recycling wood.

B. Wood Materials:

1. Clean Cut-Offs of Lumber: Grind or chip into small pieces.

2. Clean Sawdust: Bag sawdust that does not contain painted or treated wood.
C. Gypsum Board: Stack large clean pieces on wood pallets and store in a dry location.

1. Clean Gypsum Board: Grind scraps of clean gypsum board using small mobile chipper or hammer mill. Screen out paper after grinding.

3.5 DISPOSAL OF WASTE

A. General: Except for items or materials to be salvaged, recycled, or otherwise reused, remove waste materials from Project site and legally dispose of them in a landfill or incinerator acceptable to authorities having jurisdiction.

1. Except as otherwise specified, do not allow waste materials that are to be disposed of accumulate on-site.
2. Remove and transport debris in a manner that will prevent spillage on adjacent surfaces and areas.

B. Burning: Do not burn waste materials.

C. Disposal: Transport waste materials off Owner's property and legally dispose of them.

END OF SECTION
SECTION 017700
CLOSEOUT PROCEDURES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes administrative and procedural requirements for contract closeout, including, but not limited to, the following:

1. Substantial Completion procedures.
2. Final completion procedures.
3. Warranties.
4. Final cleaning.
5. Repair of the Work.

B. Related Requirements:

1. Section 017300 "Execution" for progress cleaning of Project site.
2. Section 017823 "Operation and Maintenance Data"
3. Section 017839 "Project Record Documents”
4. Section 018200 “Demonstration and Training”
5. Section 019113 “General Commissioning Requirements”

1.3 ACTION SUBMITTALS

A. Product Data: For cleaning agents.

B. Certified List of Incomplete Items: Final submittal at Final Completion.

1.4 CLOSEOUT SUBMITTALS

A. Certificates of Release: From authorities having jurisdiction.

B. Certificate of Insurance: For continuing coverage.

C. Field Report: For pest control inspection.
1.5 MAINTENANCE MATERIAL SUBMITTALS

A. Schedule of Maintenance Material Items: For maintenance material submittal items specified in other Sections.

1.6 SUBSTANTIAL COMPLETION PROCEDURES

A. Substantial Completion: On this project will occur as proposed by the Contractor and accepted by the Owner.

B. Contractor's List of Incomplete Items: Prepare and submit a list of items to be completed and corrected (Contractor's punch list), indicating the value of each item on the list and reasons why the Work is incomplete.

C. Submittals Prior to Substantial Completion: Complete the following a minimum of 10 days prior to requesting inspection for determining date of Substantial Completion. List items below that are incomplete at time of request.

1. Certificates of Release: Obtain and submit releases from authorities having jurisdiction permitting Owner unrestricted use of the Work and access to services and utilities. Include occupancy permits, operating certificates, and similar releases.

2. Submit closeout submittals specified in other Division 01 Sections, including project record documents, operation and maintenance manuals, final completion construction photographic documentation, damage or settlement surveys, property surveys, and similar final record information.

3. Submit closeout submittals specified in individual Sections, including specific warranties, workmanship bonds, maintenance service agreements, final certifications, and similar documents.

4. Submit maintenance material submittals specified in individual Sections, including tools, spare parts, extra materials, and similar items, and deliver to location designated by Owner. Label with manufacturer's name and model number where applicable.

5. Submit test/adjust/balance records.

6. Submit changeover information related to Owner's occupancy, use, operation, and maintenance.

D. Procedures Prior to Substantial Completion: Complete the following a minimum of 10 days prior to requesting inspection for determining date of Substantial Completion. List items below that are incomplete at time of request.

1. Advise Owner of pending insurance changeover requirements.

2. Complete startup and testing of systems and equipment (seasonal systems commissioning will occur in accordance with Specification Section 019113 – General Commissioning Requirements).

3. Perform preventive maintenance on equipment used prior to Substantial Completion.

4. Instruct Owner's personnel in operation, adjustment, and maintenance of products, equipment, and systems.
5. Advise Owner of changeover in heat and other utilities.
6. Terminate and remove temporary facilities from Project site, along with construction tools, and similar elements.
7. Complete final cleaning requirements, including touchup painting.
8. Touch up and otherwise repair and restore marred exposed finishes to eliminate visual defects.

E. Inspection: Submit a written request for inspection to determine Substantial Completion a minimum of 10 days prior to date the work will be completed and ready for final inspection and tests. On receipt of request, Owner will either proceed with inspection or notify Contractor of unfulfilled requirements. Architect will prepare the Certificate of Substantial Completion after inspection or will notify Contractor of items, either on Contractor's list or additional items identified by Architect, that must be completed or corrected before certificate will be issued.

1. Re-inspection: Request re-inspection when the Work identified in previous inspections as incomplete is completed or corrected.
2. Results of completed inspection will form the basis of requirements for final completion.

F. Upon issuance of a Certificate of Substantial Completion, the seasonal commissioning and warranty period shall begin. As a component of the warranty period, the contractor shall participate in the seasonal commissioning activities as required by Specification Section 019113 – General Commissioning Requirements. Seasonal commissioning shall occur regardless of the time of year in which Substantial Completion occurs.

1.7 FINAL COMPLETION PROCEDURES

A. Submittals Prior to Final Completion: Before requesting final inspection for determining final completion, complete the following:

1. Submit a final Application for Payment according to Section 012900 "Payment Procedures."
2. Certified List of Incomplete Items: Submit certified copy of Substantial Completion inspection list of items to be completed or corrected (punch list), endorsed and dated by Owner. Certified copy of the list shall state that each item has been completed or otherwise resolved for acceptance.
3. Certificate of Insurance: Submit evidence of final, continuing insurance coverage complying with insurance requirements.
4. Submit pest-control final inspection report.
5. Submit evidence of completed one-year seasonal commissioning support and acceptance by the Commissioning Authority that the systems are operating per the contract requirements.

B. Inspection: Submit a written request for final inspection to determine acceptance a minimum of 10 days prior to date the work will be completed and ready for final inspection and tests. On receipt of request, Owner will either proceed with inspection or notify Contractor of unfulfilled requirements. Final Certificate for Payment will be
prepared by Owner after inspection or will notify Contractor of construction that must be completed or corrected before certificate will be issued.

1. Re-inspection: Request re-inspection when the Work identified in previous inspections as incomplete is completed or corrected.

C. Removal of rejected material: Contractor shall remove material delivered to the Contract site, which has been determined by the Administration or Engineer to be unsuitable or not following Contract Documents and dispose of in an approved area.

1.8 LIST OF INCOMPLETE ITEMS (PUNCH LIST)

A. Organization of List: Include name and identification of each space and area affected by construction operations for incomplete items and items needing correction including, if necessary, areas disturbed by Contractor that are outside the limits of construction.

1. Organize items by major element.

1.9 SUBMITTAL OF PROJECT WARRANTIES

A. Time of Submittal: Submit written warranties on request of Owner for designated portions of the Work when delay in submittal of warranties might limit Owner's rights under warranty.

B. Provide additional copies of each warranty to include in operation and maintenance manuals.

PART 2 - PRODUCTS

2.1 MATERIALS

A. Cleaning Agents: Use cleaning materials and agents recommended by manufacturer or fabricator of the surface to be cleaned. Do not use cleaning agents that are potentially hazardous to health or property or that might damage finished surfaces.

PART 3 - EXECUTION

3.1 FINAL CLEANING

A. General: Perform final cleaning. Conduct cleaning and waste-removal operations to comply with local laws and ordinances and Federal and local environmental and antipollution regulations.

B. Cleaning shall not occur during occupancy or partial occupancy.
C. Cleaning: Employ experienced workers or professional cleaners for final cleaning. Clean each surface or unit to condition expected in an average commercial building cleaning and maintenance program. Comply with manufacturer's written instructions.

1. Complete the following cleaning operations before requesting inspection for certification of Substantial Completion for entire Project or for a designated portion of Project:

 a. Clean Project site, yard, and grounds, in areas disturbed by construction activities, including landscape development areas, of rubbish, waste material, litter, and other foreign substances.
 b. Sweep paved areas broom clean. Remove petrochemical spills, stains, and other foreign deposits.
 c. Rake grounds that are neither planted nor paved to a smooth, even-textured surface.
 d. Remove tools, construction equipment, machinery, and surplus material from Project site.
 e. Remove snow and ice to provide safe access to building.
 f. Clean exposed exterior and interior hard-surfaced finishes to a dirt-free condition, free of stains, films, and similar foreign substances. Avoid disturbing natural weathering of exterior surfaces. Restore reflective surfaces to their original condition.
 g. Remove debris and surface dust from limited access spaces, including roofs, plenums, shafts, trenches, equipment vaults, manholes, attics, and similar spaces.
 h. Sweep concrete floors broom clean in unoccupied spaces.
 i. Clean transparent materials, including mirrors and glass in doors and windows. Remove glazing compounds and other noticeable, vision-obscuring materials.
 j. Remove labels that are not permanent.
 k. Wipe surfaces of mechanical and electrical equipment, and similar equipment. Remove excess lubrication, paint and mortar droppings, and other foreign substances.
 l. Replace disposable air filters and clean permanent air filters. Clean exposed surfaces of diffusers, registers, and grills.
 m. Clean ducts, blowers, and coils if units were operated without filters during construction or that display contamination with particulate matter on inspection.
 n. Clean light fixtures, lamps, globes, and reflectors to function with full efficiency.
 o. Leave Project clean and ready for occupancy.

D. Construction Waste Disposal: Comply with Owner waste disposal.
3.2 REPAIR OF THE WORK

A. Complete repair and restoration operations before requesting inspection for determination of Substantial Completion.

B. Repair or remove and replace defective construction. Repairing includes replacing defective parts, refinishing damaged surfaces, touching up with matching materials, and properly adjusting operating equipment. Where damaged or worn items cannot be repaired or restored, provide replacements. Remove and replace operating components that cannot be repaired. Restore damaged construction and permanent facilities used during construction to specified condition.

1. Remove and replace chipped, scratched, and broken glass, and other damaged transparent materials.

2. Touch up and otherwise repair and restore marred or exposed finishes and surfaces. Replace finishes and surfaces that already show evidence of repair or restoration.

 a. Do not paint over "UL" and other required labels and identification, including mechanical and electrical nameplates. Remove paint applied to required labels and identification.

3. Replace parts subject to operating conditions during construction that may impede operation or reduce longevity.

END OF SECTION
SECTION 017823
OPERATION AND MAINTENANCE DATA

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes administrative and procedural requirements for preparing operation and maintenance manuals, including the following:

1. Operation and maintenance documentation directory.
2. Emergency manuals.
3. Operation manuals for systems, subsystems, and equipment.
4. Maintenance manuals for the care and maintenance of products, materials, finishes, systems and equipment.

B. Related Sections include the following:

1. Section 018200 "Demonstration and Training."
2. Section 011913 “General Commissioning”

1.3 DEFINITIONS

A. System: An organized collection of parts, equipment, or subsystems united by regular interaction.

B. Subsystem: A portion of a system with characteristics similar to a system.

1.4 SUBMITTALS

A. Initial Submittal: Submit draft copies of each manual within 30 days of the acceptance of the final equipment submittal or prior to 50% of project completion, whichever is sooner. On equipment for which the submittal has not been accepted, include in table of contents and include cover page and appropriate tab. Include a complete operation and maintenance directory. The Administration Project Manager will return copy of draft and mark whether general scope and content of manual are acceptable.

B. Final Submittal: Submit three (3) copies of each manual in final paper form and a single copy in electronic (Adobe Acrobat - .pdf) format.
1. Correct or modify each manual to comply with Engineer's comments. Submit three (3) copies of each corrected manual within 15 days of receipt of Engineer's comments.

1.5 COORDINATION

A. Where operation and maintenance documentation includes information on installations by more than one factory-authorized service representative, assemble and coordinate information furnished by representatives and prepare manuals.

PART 2 - PRODUCTS

2.1 GENERAL

A. Manuals shall include all warranties with starting and ending dates and contact names and numbers for warranty service calls. They should clearly indicate what the owner is required to do to continue the warranties in full force and effect.

B. Manual shall include lists of recommended spare parts.

C. Generic O&M material from manufacturers is not acceptable if it does not include the detailed requirements listed.

2.2 OPERATION AND MAINTENANCE DOCUMENTATION DIRECTORY

A. Organization: The O&M manuals shall be organized for easy access to maintenance data and emergency operations procedures. The manuals shall be clearly labeled and indexed and will include, but not be limited to, the building systems and sequences of operation.

B. Include a section in the directory for each of the following:

1. List of documents.
2. List of systems.
3. List of equipment.
4. Table of contents.

C. List of Documents: Include a listing of all documents contained within the manual that is not specifically associated with another directory.

D. List of Systems and Subsystems: List systems alphabetically. Include references to operation and maintenance manuals that contain information about each system.

E. List of Equipment: List equipment for each system, organized alphabetically by system. For pieces of equipment not part of system, list alphabetically in separate list.

F. Tables of Contents: Include a table of contents for each emergency, operation, and maintenance manual.
G. Identification: In the documentation directory and in each operation and maintenance manual, identify each system, subsystem, and piece of equipment with same designation used in the Contract Documents. If no designation exists, assign a designation according to ASHRAE Guideline 4, "Preparation of Operating and Maintenance Documentation for Building Systems."

H. Warranties: Attach equipment warranties in submitted Operation and Maintenance manual under each piece of equipment.

2.3 MANUALS, GENERAL

A. Organization: Unless otherwise indicated, organize each manual into a separate section for each system and subsystem, and a separate section for each piece of equipment not part of a system. Each manual shall contain the following materials, in the order listed:

1. Title page.
2. Table of contents.

B. Title Page: Enclose title page in transparent plastic sleeve. Include the following information:

1. Subject matter included in manual.
2. Name and address of Project.
3. Name and address of Owner.
4. Date of submittal.
5. Name, address, and telephone number of Contractor.
6. Name and address of Engineer.
7. Cross-reference to related systems in other operation and maintenance manuals.

C. Table of Contents: List each product included in manual, identified by product name, indexed to the content of the volume, and cross-referenced to Specification Section number in Project Manual.

1. If operation or maintenance documentation requires more than one volume to accommodate data, include comprehensive table of contents for all volumes in each volume of the set.

D. Manual Contents: Organize into sets of manageable sizes. Arrange contents alphabetically by system, subsystem, and equipment. If possible, assemble instructions for subsystems, equipment, and components of one system into a single binder.

1. Binders: Heavy-duty, 3-ring, vinyl-covered, loose-leaf binders, in thickness necessary to accommodate contents, sized to hold 8-1/2-by-11-inch (215-by-280-mm) paper; with clear plastic sleeve on spine to hold label describing contents and with pockets inside covers to hold folded oversize sheets.

 a. If two or more binders are necessary to accommodate data of a system, organize data in each binder into groupings by subsystem and related
components. Cross-reference other binders if necessary to provide essential information for proper operation or maintenance of equipment or system.

b. Identify each binder on front and spine, with printed title "OPERATION AND MAINTENANCE MANUAL," Project title or name, and subject matter of contents. Indicate volume number for multiple-volume sets.

2. Dividers: Heavy-paper dividers with plastic-covered tabs for each section. Mark each tab to indicate contents. Include typed list of products and major components of equipment included in the section on each divider, cross-referenced to Specification Section number and title of Project Manual.

3. Protective Plastic Sleeves: Transparent plastic sleeves designed to enclose diagnostic software diskettes for computerized electronic equipment.

5. Drawings: Attach reinforced, punched binder tabs on drawings and bind with text.

a. If oversize drawings are necessary, fold drawings to same size as text pages and use as foldouts.

b. If drawings are too large to be used as foldouts, fold and place drawings in labeled envelopes and bind envelopes in rear of manual. At appropriate locations in manual, insert typewritten pages indicating drawing titles, descriptions of contents, and drawing locations.

2.4 OPERATION MANUALS

A. Operation manuals shall include shop drawings and submittals, performance data, pump curves, fan curves, installation and start-up instructions, test data, testing and balancing data, operations instructions, wiring diagrams and as-built drawings. All standard manufacturers’ data shall be marked to indicate what options and accessories are included and what sequences and wiring diagrams apply. Anything that does not apply shall be crossed out or deleted.

B. Content: In addition to requirements in this Section, include operation data required in individual Specification Sections and the following information:

1. System, subsystem, and equipment descriptions.
2. Performance and design criteria if Contractor is delegated design responsibility.
3. Operating standards.
4. Operating procedures.
5. Operating logs.
6. Wiring diagrams.
7. Control diagrams.
8. Piped system diagrams.
9. Precautions against improper use.
10. License requirements including inspection and renewal dates.

C. Descriptions: Include the following:
1. Product name and model number.
2. Manufacturer's name.
3. Equipment identification with serial number of each component.
4. Equipment function.
5. Operating characteristics.
6. Limiting conditions.
7. Performance curves.
8. Engineering data and tests.
9. Complete nomenclature and number of replacement parts.

D. Operating Procedures: Include the following, as applicable:

1. Startup procedures.
2. Equipment or system break-in procedures.
3. Routine and normal operating instructions.
4. Regulation and control procedures.
5. Instructions on stopping.
7. Seasonal and weekend operating instructions.
8. Required sequences for electric or electronic systems.
9. Special operating instructions and procedures.

E. Systems and Equipment Controls: Describe the sequence of operation, and diagram controls as installed.

F. Piped Systems: Diagram piping as installed and identify color-coding where required for identification.

2.5 PRODUCT MAINTENANCE MANUAL

A. Content: Organize manual into a separate section for each product, material, and finish. Include source information, product information, maintenance procedures, repair materials and sources, and warranties and bonds, as described below.

B. Schedules: Maintenance schedules shall be developed in a calendar format, cross-referenced to specific manual sections.

C. Source Information: List each product included in manual, identified by product name and arranged to match manual's table of contents. For each product, list name, address, and telephone number of Installer or supplier and maintenance service agent, and cross-reference Specification Section number and title in Project Manual.

D. Product Information: Include the following, as applicable:

1. Product name and model number.
2. Manufacturer's name.
3. Material and chemical composition.
4. Reordering information for specially manufactured products.
E. Maintenance Procedures: Include manufacturer's written recommendations and the following:
 1. Inspection procedures.
 2. Types of cleaning agents to be used and methods of cleaning.
 3. List of cleaning agents and methods of cleaning detrimental to product.
 4. Schedule for routine cleaning and maintenance.
 5. Repair instructions.

F. Repair Materials and Sources: Include lists of materials and local sources of materials and related services.

G. Warranties and Bonds: Include copies of warranties and bonds and lists of circumstances and conditions that would affect validity of warranties or bonds.
 1. Include procedures to follow and required notifications for warranty claims.

2.6 SYSTEMS AND EQUIPMENT MAINTENANCE MANUAL

A. Content: For each system, subsystem, and piece of equipment not part of a system, include source information, manufacturers' maintenance documentation, maintenance procedures, maintenance and service schedules, spare parts list and source information, maintenance service contracts, and warranty and bond information, as described below.

B. Schedules: Maintenance schedules shall be developed in a calendar format, cross-referenced to specific manual sections.

C. Source Information: List each system, subsystem, and piece of equipment included in manual, identified by product name and arranged to match manual's table of contents. For each product, list name, address, and telephone number of Installer or supplier and maintenance service agent, and cross-reference Specification Section number and title in Project Manual.

D. Manufacturers' Maintenance Documentation: Manufacturers' maintenance documentation including the following information for each component part or piece of equipment:
 1. Standard printed maintenance instructions and bulletins.
 2. Drawings, diagrams, and instructions required for maintenance, including disassembly and component removal, replacement, and assembly.
 3. Identification and nomenclature of parts and components.
 4. List of items recommended to be stocked as spare parts.

E. Maintenance Procedures: Include the following information and items that detail essential maintenance procedures:
 1. Test and inspection instructions.
 2. Troubleshooting guide.
 3. Precautions against improper maintenance.
4. Disassembly; component removal, repair, and replacement; and reassembly instructions.
5. Aligning, adjusting, and checking instructions.
6. Demonstration and training videotape, if available.

F. Maintenance and Service Schedules: Include service and lubrication requirements, list of required lubricants for equipment, and separate schedules for preventive and routine maintenance and service with standard time allotment.

 1. Scheduled Maintenance and Service: Tabulate actions for daily, weekly, monthly, quarterly, semiannual, and annual frequencies.
 2. Maintenance and Service Record: Include manufacturers' forms for recording maintenance.

G. Spare Parts List and Source Information: Include lists of replacement and repair parts, with parts identified and cross-referenced to manufacturers' maintenance documentation and local sources of maintenance materials and related services.

H. Maintenance Service Contracts: Include copies of maintenance agreements with name and telephone number of service agent.

I. Warranties: Include copies of warranties and bonds and lists of circumstances and conditions that would affect validity of warranties.

 1. Include procedures to follow and required notifications for warranty claims.

PART 3 - EXECUTION

3.1 MANUAL PREPARATION

 A. Operation and Maintenance Documentation Directory: Prepare a separate manual that provides an organized reference to emergency, operation, and maintenance manuals.

 B. Emergency Manual: Assemble a complete set of emergency information indicating procedures for use by emergency personnel and by Owner's operating personnel for types of emergencies indicated.

 C. Product Maintenance Manual: Assemble a complete set of maintenance data indicating care and maintenance of each product, material, and finish incorporated into the Work.

 D. Operation and Maintenance Manuals: Assemble a complete set of operation and maintenance data indicating operation and maintenance of each system, subsystem, and piece of equipment not part of a system.

 1. Engage a factory-authorized service representative to assemble and prepare information for each system, subsystem, and piece of equipment not part of a system.
2. Prepare a separate manual for each system and subsystem, in the form of an instructional manual for use by Owner's operating personnel.

E. Manufacturers' Data: Where manuals contain manufacturers' standard printed data, include only sheets pertinent to product or component installed. Mark each sheet to identify each product or component incorporated into the Work. If data includes more than one item in a tabular format, identify each item using appropriate references from the Contract Documents. Identify data applicable to the Work and delete references to information not applicable.

1. Prepare supplementary text if manufacturers' standard printed data is not available and where the information is necessary for proper operation and maintenance of equipment or systems.

F. Drawings: Prepare drawings supplementing manufacturers' printed data to illustrate the relationship of component parts of equipment and systems and to illustrate control sequence and flow diagrams. Coordinate these drawings with information contained in Record Drawings to ensure correct illustration of completed installation.

1. Do not use original Project Record Documents as part of operation and maintenance manuals.
2. Comply with requirements of newly prepared Record Drawings in Division 1 Section "Project Record Documents."

G. Comply with Section 017700 "Closeout Procedures" for schedule for submitting operation and maintenance documentation.

END OF SECTION
SECTION 017839

PROJECT RECORD DOCUMENTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes administrative and procedural requirements for Project Record Documents, including the following:
 1. Record Drawings.
 2. Record Specifications.
 3. Record Product Data.

B. Related Sections include the following:
 1. Section 017700 "Closeout Procedures."
 2. Section 017823 "Operation and Maintenance Data."

1.3 SUBMITTALS

A. Record Drawings: Comply with the following:
 1. Number of Copies: Submit one set of marked-up Record Prints.
 2. Number of Copies: Submit copies of Record Drawings as follows:
 a. Initial Submittal: Submit one (1) set of corrected marked-up Record Prints.
 b. Final Submittal: Submit one (1) set of marked-up Record Prints, one (1) set of Record CAD Drawing files, and three (3) copies printed from record plots. Plot and print each Drawing, whether or not changes and additional information were recorded.
 1) Electronic Media: CD.

B. Record Specifications: Submit one (1) copy of Project's Specifications, including addenda and contract modifications.
C. **Record Product Data:** Submit one (1) copy of each Product Data submittal.

1. Where Record Product Data is required as part of operation and maintenance manuals, submit marked-up Product Data as an insert in manual instead of submittal as Record Product Data.

PART 2 - PRODUCTS

2.1 **RECORD DRAWINGS**

A. **Record Prints:** Maintain one (1) set of blue- or black-line white prints of the Contract Drawings and Shop Drawings.

1. **Preparation:** Mark Record Prints to show the actual installation or products used where installation or product varies from that shown originally. Require individual or entity who obtained record data, whether individual or entity is Installer, subcontractor, or similar entity, to prepare the marked-up Record Prints.

 a. Give particular attention to information on concealed elements that would be difficult to identify or measure and record later.
 b. Modify equipment schedules to represent the “Basis of Design” as the actual product and manufacturer installed.
 c. Accurately record information in an understandable drawing technique.
 d. Record data as soon as possible after obtaining it. Record and check the markup before enclosing concealed installations.

2. **Content:** Types of items requiring marking include, but are not limited to, the following:

 a. Dimensional changes to Drawings.
 b. Revisions to details shown on Drawings.
 c. Depths of foundations below first floor.
 d. Locations and depths of underground utilities.
 e. Revisions to routing of piping and conduits.
 f. Revisions to electrical circuitry.
 g. Actual equipment locations.
 h. Duct size and routing.
 i. Locations of concealed internal utilities.
 j. Changes made by Change Order.
 k. Changes made following Engineer’s written orders.
 l. Details not on the original Contract Drawings.
 m. Field records for variable and concealed conditions.
 n. Record information on the Work that is shown only schematically.
 o. Modifications to equipment schedules, with specific attention to deviations from named “Basis of Design” vendors and equipment capacities.
 p. Modifications to Building Automation Controls systems operating logic.
3. Mark the Contract Drawings or Shop Drawings, whichever is most capable of showing actual physical conditions, completely and accurately. If Shop Drawings are marked, show cross-reference on the Contract Drawings.

4. Mark record sets with erasable, red-colored pencil. Use other colors to distinguish between changes for different categories of the Work at same location.

5. Mark important additional information that was either shown schematically or omitted from original Drawings.

6. Note Construction Change Directive numbers, alternate numbers, Change Order numbers, and similar identification, where applicable.

B. Format: Identify and date each Record Drawing; include the designation "PROJECT RECORD DRAWING" in a prominent location.

1. Record Prints: Organize Record Prints and newly prepared Record Drawings into manageable sets. Bind each set with durable paper cover sheets. Include identification on cover sheets.

2. Record Transparencies: Organize into unbound sets matching Record Prints. Place transparencies in durable tube-type drawing containers with end caps. Mark end cap of each container with identification. If container does not include a complete set, identify Drawings included.

3. Identification: As follows:
 a. Project name.
 b. Date.
 c. Designation "PROJECT RECORD DRAWINGS."
 d. Name of Architect.
 e. Name of Contractor.

2.2 RECORD SPECIFICATIONS

A. Preparation: Mark Specifications to indicate the actual product installation where installation varies from that indicated in Specifications, addenda, and contract modifications.

1. Give particular attention to information on concealed products and installations that cannot be readily identified and recorded later.

2. Mark copy with the proprietary name and model number of products, materials, and equipment furnished, including substitutions and product options selected.

3. Record the name of manufacturer, supplier, Installer, and other information necessary to provide a record of selections made.

4. For each principal product, indicate whether Record Product Data has been submitted in operation and maintenance manuals instead of submitted as Record Product Data.

5. Note related Change Orders, Record Product Data, and Record Drawings where applicable.
PART 3 - EXECUTION

3.1 BI-WEEKLY RECORD DOCUMENT REVIEW MEETING

A. Conduct a bi-weekly record document update meeting between the on-site construction manager and the contractor to review the status of the record documents.

3.2 RECORDING AND MAINTENANCE

A. Recording: Maintain one (1) copy of each submittal during the construction period for Project Record Document purposes. Post changes and modifications to Project Record Documents as they occur; do not wait until the end of Project.

B. Maintenance of Record Documents and Samples: Store Record Documents and Samples in the field office apart from the Contract Documents used for construction. Do not use Project Record Documents for construction purposes. Maintain Record Documents in good order and in a clean, dry, legible condition, protected from deterioration and loss. Provide access to Project Record Documents for Engineer’s reference during normal working hours.

END OF SECTION
SECTION 018155
AIR BARRIER SYSTEM TESTING

PART 1 - GENERAL

1.1 SUMMARY

A. The air barrier shall be contiguous and connected across the six surfaces of the enclosed air barrier envelope indicated. Inspection and testing services are required to verify compliance with requirements specified or indicated. Perform building inspections, thermography and air barrier leakage tests to demonstrate that the air barrier materials are properly installed and joined; that windows, doors, dampers, and ducts are sufficiently air tight and that the overall air barrier envelope is sealed. The quality of the construction of the air barrier systems, including the joining and sealing of the air barrier materials and accessories must be sufficient to limit leakage under pressure to the maximum leakage functional requirements outlined in this specification.

B. Passing an air barrier leakage test and thermography test to demonstrate that the building envelope is properly sealed and insulated will result in system acceptance. Report the results of the thermograph and leakage tests. The testing and reporting shall be performed in accordance with the procedures outlined in this specification.

1.2 DEFINITIONS

A. The following terms as they apply to this section.

1. Air Barrier Accessory: Products designated to maintain air tightness between air barrier materials, air barrier assemblies and air barrier components, to fasten them to the structure of the building, or both (e.g., sealants, tapes, backer rods, transition membranes, fasteners, strapping, primers).

2. Air Barrier Assembly: The combination of air barrier materials and air barrier accessories that are designated and designed within the environmental separator to act as a continuous barrier to the movement of air through the environmental separator.

3. Air Barrier Component: Pre-manufactured elements such as windows, doors and service elements that are installed in the environmental separator.

4. Air Barrier Material: A building material that is designed and constructed to provide the primary resistance to airflow through an air barrier assembly.

5. Air Barrier System: The combination of air barrier assemblies and air barrier components, connected by air barrier accessories that are designed to provide a continuous barrier to the movement of air through an environmental separator. This includes the roof, wall, and floor assemblies, and the wall and roof components, and may include interior walls or partitions. There may be more than one air barrier system in a single building.

6. Air Leakage Rate: The rate of airflow (CFM) driven through a unit surface area (sq. ft.) of an assembly or system by a unit static pressure difference (in.w.g or
Pa) across the assembly. (examples: CFM/sq. ft. @ 0.30 in.w.g, or CFM/sq. ft. @ 75 Pa).

7. Air Permeance: The rate of airflow (CFM) through a unit area (sq. ft.) of a material driven by unit static pressure difference (in.w.g. or Pa) across the material.

8. Environmental Separator: The parts of a building that separate the controlled interior environment from the uncontrolled exterior environment, or that separate spaces within a building that have dissimilar environments.

9. Test Zone: The portion of or volume within a building enclosed by an air barrier system which is to be tested for air leakage. The test zones are indicated.

1.3 PRECONSTRUCTION CONFERENCE

A. Organize pre-construction conferences between the air barrier inspector and the subcontractors involved in the construction of or penetration of the air barrier system to discuss where each sub-contractor begins and ends the sequence of installation, and each sub-contractor's responsibility to ensure airtight joints, junctures, penetrations and transitions between materials, products, and assemblies of products specified in the different sections to be installed by the different sub-contractors.

1.4 SUBMITTALS

A. Samples:

1. Mock-up: build one as specified prior to building construction.

B. Certificates

1. Air Barrier Inspector: Two copies 30 days after Notice to Proceed.
2. Thermography Test Firm: Two copies 60 days prior to thermography testing.
3. Thermography Test Technician: Two copies 60 days prior to thermography testing.
4. Air Barrier Leakage Test firm: Two copies 60 days prior to Leakage testing.
5. Air Barrier Leakage Test Technician: Two copies 60 days prior to leakage testing.

C. Test Reports

1. Thermography Test Procedures: Two copies 30 days prior to thermographic testing/examination.
2. Building Air Barrier Leakage Test Procedures: Two copies of detailed test procedures indicating the test apparatus, the test methods and procedures, and the analysis methods to be employed for the Building Air Barrier Leakage Test 30 prior to leakage testing.
3. Thermographic Test Report: Two copies of interim reports 10 days after completion. Four copies of the final report 14 days after completion.
4. Air Barrier Leakage Test Report: Two copies of interim reports 10 days after completion. Four copies of the final report 14 days after completion.
1.5 AIR BARRIER SYSTEM FUNCTIONAL REQUIREMENTS

A. The air leakage of the entire building shall not exceed 0.4 cfm/ft² under a pressure differential of 0.3 in. water (1.57 psf) (2.0 L/s.m² @ 75 Pa) when tested according to ASTM E 779.

1.6 QUALITY CONTROL

A. Qualifications

1. Air Barrier Inspector: Two years’ experience in the installation of air barrier materials and assemblies including the experience in joining and sealing various components and sealing of penetrations of air barriers. Experience coordinating and instructing personnel involved in the installation, joining, and sealing of air barrier materials and components.

2. Thermography Test Firm: Minimum 2 years’ experience in thermographic testing and analysis, with a minimum of 3 successful projects of similar type and scope in the previous 3 years, using the specified testing standard, and employing qualified test technicians under the supervision of a Level III Certified Infrared Thermographer.

3. Thermography Test Technician: Possess Level II Training and Certification from a firm whose training and certification program complies with the recommended practice established by ASNT SNT-TC-1A and ASNT CP-105. Possess a certificate indicating successful completion of a course and examination specifically related to building envelope thermography. Document demonstration of 2 years’ experience in infrared thermography testing including interpreting and reporting findings in accordance with the requirements of ASTM C1060.

4. Air Barrier Leakage Test Firm: Minimum 2 years’ experience in air tightness testing and analysis of commercial buildings, with a minimum of 3 successful projects of similar type and scope in the previous 3 years, using the specified testing standard, and employing qualified test technicians.

5. Air Barrier Leakage Test Technician: Two years’ experience in air tightness testing of commercial buildings using the specified testing standard and equipment.

PART 2 - PRODUCTS (not used)

PART 3 - EXECUTION

3.1 QUALITY CONTROL

A. Documentation and Reporting: Document the entire installation process on daily job site reports. These reports include information on the Installer, substrates, substrate preparation, products used, ambient and substrate temperature, the location of the air barrier installation, the results of the quality control procedures, and testing results.

B. Construction Mock-Up:
1. Prepare a construction mock-up to demonstrate proper installation of the air barrier. The mock-up shall include air barrier connections between floor and wall, wall and window, wall and roof. The mock-up shall include the sealing method between membrane joints at transitions from one material or component to another, at pipe or conduit penetrations of the wall and roof, and at duct penetration of the wall and roof. Work will not begin until the mock-up is satisfactory to the Air Barrier Leakage Test Firm, Air Barrier Inspector and Architect.

2. The mock-up shall be approximately 8 feet long by 8 feet high. The mockup shall be representative of primary exterior wall assemblies and glazing components including backup wall and typical penetrations as acceptable to the Air Barrier Leakage Test Firm, Air Barrier Inspector and Architect.

3.2 REPAIR AND PROTECTION

A. Upon completion of inspection, testing, sample taking and similar services, repair damaged construction and restore substrates and finishes.

B. Protect construction exposed by or for quality-control service activities and protect repaired construction.

C. Repair and protection are Contractor's responsibility, regardless of the assignment of responsibility for inspection, testing, or similar services.

D. Quality Control Testing: Conduct the following qualitative and quantitative tests and inspections during installation of the air barrier system.

1. Qualitative Testing and Inspection:

 a. Provide daily report of observations for each site visit, with copies to the Owner, Contractor and Architect.
 b. Ensure continuity of the air barrier system throughout the building enclosure and that gaps are covered, the covering is structurally sound, and all penetrations are sealed allowing for no infiltration or exfiltration through the air barrier system.
 c. Ensure structural support of the air barrier system to withstand design air pressures.
 d. Ensure masonry and concrete surfaces receiving air barrier system are smooth, clean and free of cavities, protrusions and mortar droppings, with mortar joints struck flush or as required by the manufacturer of the air barrier material.
 e. Ensure site conditions for application temperature and dryness of substrates are within guidelines.
 f. Ensure maximum length of exposure time of materials to ultra-violet deterioration is not exceeded.
 g. Ensure surfaces are properly primed.
 h. Ensure laps in material are 2” minimum, shingled in the correct direction (or mastic applied on exposed edges), with no fish-mouths.
 i. Ensure that mastic is applied on cut edges.
j. Ensure that a roller has been used to enhance adhesion.

k. Measure application thickness of liquid-applied materials to manufacturer’s specifications for the specific substrate.

l. Ensure that correct materials used for compatibility.

m. Ensure proper transitions at changes in direction, and structural support at gaps.

n. Ensure proper connections between assemblies (membrane and sealants) for cleaning, preparation and priming of surfaces, structural support, integrity and continuity of seal.

o. Ensure all penetrations are sealed.

1) Infrared scanning with pressurization/depressurization.
2) Smoke pencil with pressurization/depressurization.
3) Pressurization/depressurization with use of anemometer
4) Generated sound with sound detection
5) Tracer gas measurement of decay rate
6) Chamber pressurization/depressurization in conjunction with smoke tracers
7) Chamber depressurization using detection liquids

2. Quantitative tests:

a. Provide written test reports of all tests performed, with copies to the Owner, Contractor and Architect.

b. Material compliance for maximum air permeance, ASTM E 2178.

c. ASTM E 283, Determining rate of Air Leakage Through Exterior Windows, Curtain Walls, and Doors under Specified Pressure Differences Across the Specimen.

d. Assemblies, ASTM E 2357, test pressure and allowable air leakage rate to be determined by design professional for interior design conditions and location of project.

e. CAN/CGSB 1986 Standard 149.10, Determination of the Airtightness of Building Envelopes by the Fan Depressurization Method.

f. CAN/CGSB 1996 Standard 149.15 Determination of the Overall Envelope Airtightness of Office Buildings by the Fan Depressurization Method Using the Building’s Air Handling System.

g. Whole building, floors, or suites, ASTM E779, Determining Airtightness of Buildings Air Leakage Rate by Single Zone Air Pressurization.

h. Windows and connections to adjacent opaque assemblies, ASTM E783 method B

i. Tracer gas testing, ASTM E741

j. Pressure test, ASTM E330

k. Determine the bond strength of coatings to substrate in accordance with ASTM D4541.
3.3 THERMOGRAPHY TEST

A. Upon completion of construction, and completion of quality control measures for the air barrier system and the thermal envelope, infrared thermography tests shall be conducted.

1. Field Conditions: Perform testing under conditions stipulated in test standards, in instrument manufacturer's instructions, and in this Section. Perform testing on dry building surfaces after sunset and prior to sunrise.

2. Thermography Test Procedures: The building envelope shall be tested using Infrared Thermography technology. The thermography testing shall be completed in accordance with the requirements of ASTM C1060 and ISO 6781. Perform a complete thermographic inspection consisting of full exterior and interior inspection of the complete thermal envelope and air barrier system. Note areas of the envelope that the inspection cannot cover due to limited or no access. The Owner and Architect shall be given the opportunity to witness the testing. Conduct testing just before the Building Air Barrier Leakage Test. Also, conduct testing during the Building Air Barrier Leakage Test so that air leaks are detected. If the building air barrier leakage test is failed, Thermographic testing shall be repeated just before and during subsequent air barrier leakage tests until the leakage test is successful. Address the cause and required corrective action for all anomalous thermal images resulting from the examination. Submit detailed test procedures indicating the test apparatus, the test methods and procedures, and the analysis methods to be employed for the Thermography Test.

3. Thermographic Test Report: Include thermographs in color and a color temperature scale to define the temperature indicated by the various colors. Identify the high temperature reading, the outdoor air temperature, the building indoor air temperature, and the wind speed and direction. Note any areas of compromise in the building envelope, and note all actions required and taken to correct those areas. Final thermography test report shall demonstrate that the problem areas have been corrected. Submit the complete test and analysis.

3.4 AIR BARRIER LEAKAGE TEST

A. Upon completion of construction, and quality control measures for the air barrier system, building air barrier leakage tests shall be conducted.

1. Building Air Barrier Leakage Test Procedures: Perform the air leakage test in accordance with ASTM E779.

2. Fan Pressurization Test: Conduct the fan pressurization test to determine final compliance with the air barrier system functional requirement when all components of the air barrier system have been installed and inspected, and have passed any intermediate testing procedures. The test may be conducted before finishes that are not part of the air barrier system have been installed. For example, if suspended ceiling tile, interior gypsum board, or cladding systems are not part of the air barrier system, the test may be conducted before they are installed.

3. Air Barrier Leakage Test Report: Submit a certified written report of each inspection, test, or similar service. Written reports of each inspection and test or
similar service shall include all the Report items described in ASTM E1827. Additionally, the report shall also include the following information:

- Date of Issue
- Project title and number
- Name, address, and telephone number of testing agency
- Dates and locations of samples and tests or inspections
- Names of individuals making the inspection or test
- Designation of the Work and test method
- Identification of product and Specification Section
- Complete inspection or test data
- Test results and an interpretation of test results for each test zone
- Name and signature of laboratory inspector
- Recommendations on retesting
- Comments or professional opinion on whether inspected or tested work complies with Contract Document requirements

3.5 AIR BARRIER FUNCTIONAL REQUIREMENTS FAILURE

A. If the final air barrier test indicates that the leakage of the constructed air barrier system exceeds the maximum leakage specified, coordinate with the Designer of Record, the subcontractors, and the Owner to immediately determine the cause of the failure, develop a method to change or repair the air barrier system. Then, develop and schedule a re-test of the air barrier system. Repeat until the air barrier system test is passed.

3.6 REPAIR AND PROTECTION

A. Upon completion of inspection, testing, or sample taking and similar services, repair damaged construction and restore substrates and finishes, protect construction exposed by or for quality control service activities, and protect repaired construction.

END OF SECTION
SECTION 018200
DEMONSTRATION AND TRAINING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

A. The training requirements of this section are critical to the overall long-term success of the installed systems and is intended to educate the client operations and maintenance personnel in the following:

 1. Basic operations of the system.
 2. Troubleshooting problems which are typical of the installed systems.
 3. Basic maintenance requirements which are critical to operations.
 5. Complex maintenance requirements which may require specialists.

B. This Section includes administrative and procedural requirements for instructing Owner's personnel, including the following:

 1. Demonstration of operation of systems, subsystems, and equipment.
 2. Training in operation and maintenance of systems, subsystems, and equipment.

C. Related Sections include the following:

 1. Section 017823 – Operations and Maintenance Data

1.3 SUBMITTALS

A. Instruction Program: Submit outline of instructional program for demonstration and training, including a schedule of proposed dates, times, length of instruction time, and instructors' names for each training module. Include learning objective and outline for each training module.

 1. At completion of training, submit three (3) complete training manuals for Owner's use.

B. Qualification Data: For firms and persons specified in "Quality Assurance" Article to demonstrate their capabilities and experience. Include lists of completed projects with
project names and addresses, names and addresses of architects and owners, and other information specified.

C. Attendance Record: For each training module, submit list of participants and length of instruction time.

D. Evaluations: For each participant and for each training module, submit results and documentation of performance-based test.

E. Demonstration and Training Recording: Submit two (2) copies of DVD at end of each training module.

1.4 QUALITY ASSURANCE

A. Facilitator Qualifications: A firm or individual experienced in training or educating maintenance personnel in a training program similar in content and extent to that indicated for this Project, and whose work has resulted in training or education with a record of successful learning performance.

B. Instructor Qualifications: A factory-authorized service representative experienced in operation and maintenance procedures and training.

1.5 COORDINATION

A. The contractor and training facilitator shall attend a coordination meeting with the owner, the CxA, and DelDOT’s Project Manager to review the training objectives and initiate training schedules.

B. Coordinate instruction schedule with Owner's operations. Adjust schedule as required to minimize disrupting Owner's operations.

C. Coordinate instructors, including providing notification of dates, times, length of instruction time, and course content.

D. Coordinate content of training modules with content of approved emergency, operation, and maintenance manuals. Do not submit instruction program until operation and maintenance data has been reviewed and approved by Engineer.

E. O&M Manuals shall be approved as Final prior to Demonstration and Training.

PART 2 - PRODUCTS

2.1 INSTRUCTION PROGRAM

A. General: The training shall be sufficiently comprehensive so that employees responsible for building operations will fully understand all building systems. This includes emergency operations in case of fire, spills, leaks etc. The training shall include “hands on” exercises which are deemed appropriate by the owner. They should also understand
how to inspect the building for proper functioning and operation, as well as of safety system function and operation.

B. Program Structure: Develop an instruction program that includes individual training modules for each system and equipment not part of a system, as required by individual specification sections, and as follows:

1. Rooftop Air Handling Units
2. VAV Boxes
3. Split system Heat Pumps
4. Boilers
5. Unit Heaters
7. Pumps
8. Water Heaters
9. System interlocks (damper control, etc.).
10. Generators
11. Fire Alarm Systems
12. Building Automation System

C. Training Modules: Develop a learning objective and teaching outline for each module. Include a description of specific skills and knowledge that participant is expected to master. For each module, include instruction for the following:

1. Basis of System Design, Operational Requirements, and Criteria: Include the following:
 a. System, subsystem, and equipment descriptions.
 b. Performance and design criteria if the Contractor is delegated design responsibility.
 c. Operating standards.
 d. Regulatory requirements.
 e. Equipment function.
 f. Operating characteristics.
 g. Limiting conditions.

2. Documentation: Review the following items in detail:
 a. Emergency manuals.
 b. Operations manuals.
 c. Maintenance manuals.
 d. Project Record Documents.
 e. Identification systems.
 f. Warranties and bonds.
 g. Maintenance service agreements and similar continuing commitments.

3. Emergencies: Include the following, as applicable:
a. Instructions on meaning of warnings, trouble indications, and error messages.
b. Shutdown instructions for each type of emergency.
c. Operating instructions for conditions outside of normal operating limits.
d. Sequences for electric or electronic systems.
e. Special operating instructions and procedures.

4. Operations: Include the following, as applicable:
 a. Startup procedures.
 b. Routine and normal operating instructions.
 c. Regulation and control procedures.
 d. Control sequences.
 e. Safety procedures.
 f. Normal shutdown instructions.
 g. Operating procedures for emergencies.
 h. Operating procedures for system, subsystem, or equipment failure.
 i. Required sequences for electric or electronic systems.
 j. Special operating instructions and procedures.

5. Adjustments: Include the following:
 a. Checking adjustments.
 b. Noise and vibration adjustments.
 c. Economy and efficiency adjustments.

6. Troubleshooting: Include the following:
 a. Diagnostic instructions.
 b. Test and inspection procedures.

7. Maintenance: Include the following:
 a. Inspection procedures.
 b. Types of cleaning agents to be used and methods of cleaning.
 c. List of cleaning agents and methods of cleaning detrimental to product.
 d. Procedures for routine cleaning.
 e. Procedures for preventive maintenance.
 f. Procedures for routine maintenance.
 g. Instruction on use of special tools.

8. Repairs: Include the following:
 a. Diagnosis instructions.
 b. Repair instructions.
 c. Disassembly; component removal, repair, and replacement; and reassembly instructions.
 d. Instructions for identifying parts and components.
9. Review of spare parts needed for operation and maintenance.

PART 3 - EXECUTION

3.1 PREPARATION

A. Assemble educational materials necessary for instruction, including documentation and training module. Assemble training modules into a combined training manual.

B. Set up instructional equipment at instruction location.

3.2 INSTRUCTION

A. Facilitator: Engage a qualified facilitator to prepare instruction program and training modules, to coordinate instructors, and to coordinate between Contractor and Owner for number of participants, instruction times, and location.

B. Engage qualified instructors to instruct Owner's personnel to adjust, operate, and maintain systems, subsystems, and equipment not part of a system.

1. Owner will furnish Contractor with names and positions of participants.

C. Scheduling: Provide instruction at mutually agreed on times. For equipment that requires seasonal operation, provide similar instruction at start of each season.

1. Schedule training with the Owner with at least seven (7) days' advance notice or as required by individual specification sections.

D. Cleanup: Collect used and leftover educational materials and remove from Project site. Remove instructional equipment. Restore systems and equipment to condition existing before initial training use.

END OF SECTION
PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Cast-in-place concrete, including concrete materials, mixture design, placement procedures, and finishes.

1.3 DEFINITIONS
 A. Cementitious Materials: Portland cement alone or in combination with one or more of the following: blended hydraulic cement, fly ash, slag cement, other pozzolans, and silica fume; materials subject to compliance with requirements.
 B. Water/Cement Ratio (w/cm): The ratio by weight of water to cementitious materials.

1.4 PREINSTALLATION MEETINGS
 A. Preinstallation Conference: Conduct conference at Project site.
 1. Require representatives of each entity directly concerned with cast-in-place concrete to attend, including the following:
 a. Contractor's superintendent.
 b. Independent testing agency responsible for concrete design mixtures.
 c. Ready-mix concrete manufacturer.
 d. Concrete Subcontractor.
 e. Special concrete finish Subcontractor.
 2. Review the following:
 a. Special inspection and testing and inspecting agency procedures for field quality control.
 b. Construction joints, control joints, isolation joints, and joint-filler strips.
 c. Semirigid joint fillers.
 d. Vapor-retarder installation.
 e. Anchor rod and anchorage device installation tolerances.
f. Cold and hot weather concreting procedures.
g. Concrete finishes and finishing.
h. Curing procedures.
i. Forms and form-removal limitations.
j. Methods for achieving specified floor and slab flatness and levelness.
k. Floor and slab flatness and levelness measurements.
l. Concrete repair procedures.
m. Concrete protection.
n. Initial curing and field curing of field test cylinders (ASTM C31/C31M.)
o. Protection of field cured field test cylinders.

1.5 ACTION SUBMITTALS

A. Product Data: For each of the following.

1. Portland cement.
2. Fly ash.
3. Slag cement.
5. Silica fume.
6. Performance-based hydraulic cement
7. Aggregates.
8. Admixtures:
 a. Include limitations of use, including restrictions on cementitious materials, supplementary cementitious materials, air entrainment, aggregates, temperature at time of concrete placement, relative humidity at time of concrete placement, curing conditions, and use of other admixtures.
10. Fiber reinforcement.
11. Vapor retarders.
12. Floor and slab treatments.
13. Liquid floor treatments.
 a. Include documentation from color pigment manufacturer, indicating that proposed methods of curing are recommended by color pigment manufacturer.
15. Joint fillers.
16. Waterstops
17. Repair materials.

B. Design Mixtures: For each concrete mixture, include the following:

1. Mixture identification.
2. Minimum 28-day compressive strength.
3. Maximum w/cm.
4. Calculated equilibrium unit weight, for lightweight concrete.
5. Slump limit.
6. Air content.
7. Nominal maximum aggregate size.
8. Synthetic micro-fiber content.
9. Indicate amounts of mixing water to be withheld for later addition at Project site if permitted.
10. Include manufacturer's certification that permeability-reducing admixture is compatible with mix design.
11. Include certification that dosage rate for permeability-reducing admixture matches dosage rate used in performance compliance test.
12. Intended placement method.
13. Submit alternate design mixtures when characteristics of materials, Project conditions, weather, test results, or other circumstances warrant adjustments.

C. Shop Drawings:

1. Construction Joint Layout: Indicate proposed construction joints required to construct the structure.

 a. Location of construction joints is subject to approval of the Architect.

D. Concrete Schedule: For each location of each Class of concrete indicated in "Concrete Mixtures" Article, including the following:

1. Concrete Class designation.
2. Location within Project.
3. Exposure Class designation.
4. Formed Surface Finish designation and final finish.
5. Final finish for floors.
6. Curing process.
7. Floor treatment if any.

1.6 INFORMATIONAL SUBMITTALS

A. Qualification Data: For the following:

1. Installer: Include copies of applicable ACI certificates.
2. Ready-mixed concrete manufacturer.
3. Testing agency: Include copies of applicable ACI certificates.

B. Material Certificates: For each of the following, signed by manufacturers:

1. Cementitious materials.
2. Admixtures.
3. Fiber reinforcement.
4. Curing compounds.
5. Floor and slab treatments.
6. Waterstops
8. Adhesives.
9. Vapor retarders.
10. Semirigid joint filler.
12. Repair materials.

C. Material Test Reports: For the following, from a qualified testing agency:

1. Portland cement.
2. Fly ash.
3. Slag cement.
5. Silica fume.
6. Aggregates.
7. Admixtures:
 a. Permeability-Reducing Admixture: Include independent test reports, indicating compliance with specified requirements, including dosage rate used in test.

D. Floor surface flatness and levelness measurements report, indicating compliance with specified tolerances.

E. Research Reports:

1. For concrete admixtures in accordance with ICC's Acceptance Criteria AC198.
2. For sheet vapor retarder/termite barrier, showing compliance with ICC AC380.

F. Preconstruction Test Reports: For each mix design.

G. Field quality-control reports.

H. Minutes of preinstallation conference.

1.7 QUALITY ASSURANCE

A. Installer Qualifications: A qualified installer who employs Project personnel qualified as an ACI-certified Flatwork Technician and Finisher and a supervisor who is a certified ACI Flatwork Concrete Finisher/Technician or an ACI Concrete Flatwork Technician with experience installing and finishing concrete, incorporating permeability-reducing admixtures.

1. Post-Installed Concrete Anchors Installers: ACI-certified Adhesive Anchor Installer.
B. Ready-Mixed Concrete Manufacturer Qualifications: A firm experienced in manufacturing ready-mixed concrete products and that complies with ASTM C94/C94M requirements for production facilities and equipment.

1. Manufacturer certified in accordance with NRMCA's "Certification of Ready Mixed Concrete Production Facilities."

C. Laboratory Testing Agency Qualifications: A testing agency qualified in accordance with ASTM C1077 and ASTM E329 for testing indicated and employing an ACI-certified Concrete Quality Control Technical Manager.

1. Personnel performing laboratory tests shall be an ACI-certified Concrete Strength Testing Technician and Concrete Laboratory Testing Technician, Grade I. Testing agency laboratory supervisor shall be an ACI-certified Concrete Laboratory Testing Technician, Grade II.

D. Field Quality Control Testing Agency Qualifications: An independent agency, acceptable to authorities having jurisdiction, qualified in accordance with ASTM C1077 and ASTM E329 for testing indicated.

1. Personnel conducting field tests shall be qualified as an ACI Concrete Field Testing Technician, Grade 1, in accordance with ACI CPP 610.1 or an equivalent certification program.

1.8 PRECONSTRUCTION TESTING

A. Preconstruction Testing Service: Owner will engage a qualified testing agency to perform preconstruction testing on each concrete mixture.

1. Include the following information in each test report:

 a. Admixture dosage rates.
 b. Slump.
 c. Air content.
 d. Seven-day compressive strength.
 e. 28-day compressive strength.
 f. Permeability.

1.9 DELIVERY, STORAGE, AND HANDLING

A. Comply with ASTM C94/C94M and ACI 301.

B. Waterstops: Store waterstops under cover to protect from moisture, sunlight, dirt, oil, and other contaminants.

1.10 FIELD CONDITIONS

A. Cold-Weather Placement: Comply with ACI 301 and ACI 306.1 and as follows.
1. Protect concrete work from physical damage or reduced strength that could be caused by frost, freezing actions, or low temperatures.

2. When average high and low temperature is expected to fall below 40 deg F for three successive days, maintain delivered concrete mixture temperature within the temperature range required by ACI 301.

3. Do not use frozen materials or materials containing ice or snow.

4. Do not place concrete in contact with surfaces less than 35 deg F, other than reinforcing steel.

5. Do not use calcium chloride, salt, or other materials containing antifreeze agents or chemical accelerators unless otherwise specified and approved in mixture designs.

B. Hot-Weather Placement: Comply with ACI 301 and ACI 305.1, and as follows:

1. Maintain concrete temperature at time of discharge to not exceed 95 deg F.

2. Fog-spray forms, steel reinforcement, and subgrade just before placing concrete. Keep subgrade uniformly moist without standing water, soft spots, or dry areas.

1.11 WARRANTY

A. Manufacturer's Warranty: Manufacturer agrees to furnish replacement sheet vapor retarder/termite barrier material and accessories for sheet vapor retarder/ termite barrier and accessories that do not comply with requirements or that fail to resist penetration by termites within specified warranty period.

1. Warranty Period: 10 years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 CONCRETE, GENERAL

A. ACI Publications: Comply with ACI 301 unless modified by requirements in the Contract Documents.

2.2 FORM-FACING MATERIALS

A. Smooth-Formed Finished Concrete: Form-facing panels that will provide continuous, true, and smooth concrete surfaces. Furnish in largest practicable sizes to minimize number of joints.

1. Plywood, metal, or other approved panel materials.

B. Form-Release Agent: Commercially formulated form-release agent that will not bond with, stain, or adversely affect concrete surfaces and will not impair subsequent treatments of concrete surfaces.

C. Form Ties: Factory-fabricated, removable or snap-off metal or glass-fiber-reinforced plastic form ties designed to resist lateral pressure of fresh concrete on forms and to prevent spalling of concrete on removal.

2.3 STEEL REINFORCEMENT

A. Reinforcing Bars: ASTM A 615/A 615M, Grade 60, deformed.

B. Plain-Steel Welded Wire Reinforcement: ASTM A 185/A 185M, plain, fabricated from as-drawn steel wire into flat sheets.

2.4 REINFORCEMENT ACCESSORIES

A. Joint Dowel Bars: ASTM A 615/A 615M, Grade 60, plain-steel bars, cut true to length with ends square and free of burrs.

B. Bar Supports: Bolsters, chairs, spacers, and other devices for spacing, supporting, and fastening reinforcing bars and welded wire reinforcement in place. Manufacture bar supports from steel wire, plastic, or precast concrete according to CRSI’s “Manual of Standard Practice,” of greater compressive strength than concrete.

2.5 CONCRETE MATERIALS

A. Source Limitations:
 1. Obtain all concrete mixtures from a single ready-mixed concrete manufacturer for entire Project.
 2. Obtain each type or class of cementitious material of the same brand from the same manufacturer's plant.
 3. Obtain aggregate from single source.
 4. Obtain each type of admixture from single source from single manufacturer.

B. Cementitious Materials:
 1. Portland Cement: ASTM C150/C150M, Type I/II.
 2. Fly Ash: ASTM C618, Class C or F.
 3. Slag Cement: ASTM C989/C989M, Grade 100 or 120.

C. Normal-Weight Aggregates: ASTM C33/C33M, coarse aggregate or better, graded. Provide aggregates from a single source.

 1. Alkali-Silica Reaction: Comply with one of the following:
 a. Expansion Result of Aggregate: Not more than 0.04 percent at one-year when tested in accordance with ASTM C1293.
b. Expansion Results of Aggregate and Cementitious Materials in Combination: Not more than 0.10 percent at an age of 16 days when tested in accordance with ASTM C1567.

c. Alkali Content in Concrete: Not more than 4 lb./cu. yd. for moderately reactive aggregate or 3 lb./cu. yd. for highly reactive aggregate, when tested in accordance with ASTM C1293 and categorized in accordance with ASTM C1778, based on alkali content being calculated in accordance with ACI 301.

E. Air-Entraining Admixture: ASTM C260/C260M.

F. Chemical Admixtures: Certified by manufacturer to be compatible with other admixtures that do not contribute water-soluble chloride ions exceeding those permitted in hardened concrete. Do not use calcium chloride or admixtures containing calcium chloride.

1. Water-Reducing Admixture: ASTM C494/C494M, Type A.
2. Retarding Admixture: ASTM C494/C494M, Type B.
3. Water-Reducing and -Retarding Admixture: ASTM C494/C494M, Type D.
4. High-Range, Water-Reducing Admixture: ASTM C494/C494M, Type F.
5. High-Range, Water-Reducing and -Retarding Admixture: ASTM C494/C494M, Type G.
6. Plasticizing and Retarding Admixture: ASTM C1017/C1017M, Type II.
7. Set-Accelerating Corrosion-Inhibiting Admixture: Commercially formulated, anodic inhibitor or mixed cathodic and anodic inhibitor; capable of forming a protective barrier and minimizing chloride reactions with steel reinforcement in concrete and complying with ASTM C494/C494M, Type C.

2.6 WATERSTOPS

A. Flexible Rubber Waterstops: CE CRD-C 513, for embedding in concrete to prevent passage of fluids through joints. Factory fabricate corners, intersections, and directional changes.

1. Profile: Flat dumbbell with center bulb

B. Flexible PVC Waterstops: CE CRD-C 572 for embedding in concrete to prevent passage of fluids through joints. Factory fabricate corners, intersections, and directional changes.

1. Profile: Flat dumbbell with center bulb.

2.7 VAPOR RETARDERS

A. Sheet Vapor Retarder, Class A: ASTM E1745, Class A; not less than 10 mils thick. Include manufacturer's recommended adhesive or pressure-sensitive tape.

2.8 LIQUID FLOOR TREATMENTS

A. Penetrating Liquid Floor Treatment: Clear, chemically reactive, waterborne solution of inorganic silicate or silicate materials and proprietary components; odorless; that penetrates, hardens, and densifies concrete surfaces.

2.9 CURING MATERIALS

A. Evaporation Retarder: Waterborne, monomolecular film forming, manufactured for application to fresh concrete certified by curing compound manufacturer to not interfere with bonding of floor covering.

B. Water: Potable or complying with ASTM C1602/C1602M.

2.10 RELATED MATERIALS

A. Bonding Agent: ASTM C1059/C1059M, Type II, non-redispersible, acrylic emulsion or styrene butadiene.

2.11 REPAIR MATERIALS

A. Repair Underlayment: Cement-based, polymer-modified, self-leveling product that can be applied in thicknesses from 1/8 inch and that can be feathered at edges to match adjacent floor elevations.

1. Cement Binder: ASTM C150/C150M portland cement or hydraulic or blended hydraulic cement, as defined in ASTM C219.

2. Primer: Product of underlayment manufacturer recommended for substrate, conditions, and application.

3. Aggregate: Well-graded, washed gravel, 1/8 to 1/4 inch or coarse sand, as recommended by underlayment manufacturer.

4. Compressive Strength: Not less than 4100 psi at 28 days when tested in accordance with ASTM C109/C109M.

B. Repair Overlayment: Cement-based, polymer-modified, self-leveling product that can be applied in thicknesses from 1/4 inch and that can be filled in over a scarified surface to match adjacent floor elevations.

1. Cement Binder: ASTM C150/C150M portland cement or hydraulic or blended hydraulic cement, as defined in ASTM C219.

2. Primer: Product of topping manufacturer recommended for substrate, conditions, and application.
3. Aggregate: Well-graded, washed gravel, 1/8 to 1/4 inch or coarse sand as recommended by topping manufacturer.
4. Compressive Strength: Not less than 5000 psi at 28 days when tested in accordance with ASTM C109/C109M.

2.12 CONCRETE MIXTURES, GENERAL

A. Prepare design mixtures for each type and strength of concrete, proportioned on the basis of laboratory trial mixture or field test data, or both, in accordance with ACI 301.

B. Use a qualified testing agency for preparing and reporting proposed mixture designs, based on laboratory trial mixtures.

C. Cementitious Materials: Limit percentage, by weight, of cementitious materials other than portland cement in concrete as follows:

1. Fly Ash or Other Pozzolans: 25 percent by mass.
2. Slag Cement: 50 percent by mass.
3. Silica Fume: 10 percent by mass.
4. Total of Fly Ash or Other Pozzolans, Slag Cement, and Silica Fume: 50 percent by mass, with fly ash or pozzolans not exceeding 25 percent by mass and silica fume not exceeding 10 percent by mass.
5. Total of Fly Ash or Other Pozzolans and Silica Fume: 35 percent by mass with fly ash or pozzolans not exceeding 25 percent by mass and silica fume not exceeding 10 percent by mass.

D. Admixtures: Use admixtures in accordance with manufacturer's written instructions.

1. Use water-reducing, high-range water-reducing, or plasticizing admixture in concrete, as required, for placement and workability.
2. Use water-reducing and retarding admixture when required by high temperatures, low humidity, or other adverse placement conditions.
3. Use water-reducing admixture in pumped concrete.
4. Use corrosion-inhibiting admixture in concrete mixtures where indicated.
5. Use permeability-reducing admixture in concrete mixtures where indicated.

E. Color Pigment: Add color pigment to concrete mixture in accordance with manufacturer's written instructions and to result in hardened concrete color consistent with approved mockup.

2.13 CONCRETE MIXTURES

A. Class A: Normal-weight concrete used for footings and piers.

1. Minimum Compressive Strength: 3000 psi at 28 days.

B. Class B: Normal-weight concrete used for foundation walls.

1. Minimum Compressive Strength: 4000 psi at 28 days.
C. Class C: Normal-weight concrete used for interior slabs-on-ground.
 1. Minimum Compressive Strength: 4000 psi at 28 days.

D. Class D: Normal-weight concrete used for interior suspended slabs.
 1. Minimum Compressive Strength: 3500 psi at 28 days.

2.14 CONCRETE MIXING
A. Ready-Mixed Concrete: Measure, batch, mix, and deliver concrete in accordance with ASTM C94/C94M and furnish batch ticket information.

PART 3 - EXECUTION

3.1 EXAMINATION
A. Verification of Conditions:
 1. Before placing concrete, verify that installation of concrete forms, accessories, and reinforcement, and embedded items is complete and that required inspections have been performed.
 2. Do not proceed until unsatisfactory conditions have been corrected.

3.2 PREPARATION
A. Provide reasonable auxiliary services to accommodate field testing and inspections, acceptable to testing agency, including the following:
 1. Daily access to the Work.
 2. Incidental labor and facilities necessary to facilitate tests and inspections.
 3. Secure space for storage, initial curing, and field curing of test samples, including source of water and continuous electrical power at Project site during site curing period for test samples.
 4. Security and protection for test samples and for testing and inspection equipment at Project site.

3.3 FORMWORK
A. Design, erect, shore, brace, and maintain formwork, according to ACI 301, to support vertical, lateral, static, and dynamic loads, and construction loads that might be applied, until structure can support such loads.

B. Construct formwork so concrete members and structures are of size, shape, alignment, elevation, and position indicated, within tolerance limits of ACI 117.

C. Limit concrete surface irregularities, designated by ACI 347 as abrupt or gradual, as follows:
2. Class B, 1/4 inch for rough-formed finished surfaces.

D. Construct forms tight enough to prevent loss of concrete mortar.

E. Fabricate forms for easy removal without hammering or prying against concrete surfaces. Provide crush or wrecking plates where stripping may damage cast concrete surfaces. Provide top forms for inclined surfaces steeper than 1.5 horizontal to 1 vertical.

 1. Install keyways, reglets, recesses, and the like, for easy removal.
 2. Do not use rust-stained steel form-facing material.

F. Set edge forms, bulkheads, and intermediate screed strips for slabs to achieve required elevations and slopes in finished concrete surfaces. Provide and secure units to support screed strips; use strike-off templates or compacting-type screeds.

G. Provide temporary openings for cleanouts and inspection ports where interior area of formwork is inaccessible. Close openings with panels tightly fitted to forms and securely braced to prevent loss of concrete mortar. Locate temporary openings in forms at inconspicuous locations.

H. Do not chamfer exterior corners and edges of permanently exposed concrete.

I. Form openings, chases, offsets, sinkages, keyways, reglets, blocking, screeds, and bulkheads required in the Work. Determine sizes and locations from trades providing such items.

J. Clean forms and adjacent surfaces to receive concrete. Remove chips, wood, sawdust, dirt, and other debris just before placing concrete.

K. Retighten forms and bracing before placing concrete, as required, to prevent mortar leaks and maintain proper alignment.

L. Coat contact surfaces of forms with form-release agent, according to manufacturer's written instructions, before placing reinforcement.

3.4 REMOVING AND REUSING FORMS

A. General: Formwork for sides of walls, and similar parts of the Work that does not support weight of concrete may be removed after cumulatively curing at not less than 50 deg F for 24 hours after placing concrete. Concrete has to be hard enough to not be damaged by form-removal operations and curing and protection operations need to be maintained.

B. Clean and repair surfaces of forms to be reused in the Work. Split, frayed, delaminated, or otherwise damaged form-facing material will not be acceptable for exposed surfaces. Apply new form-release agent.
C. When forms are reused, clean surfaces, remove fins and laitance, and tighten to close joints. Align and secure joints to avoid offsets. Do not use patched forms for exposed concrete surfaces unless approved by Architect.

3.5 INSTALLATION OF EMBEDDED ITEMS

A. Place and secure anchorage devices and other embedded items required for adjoining Work that is attached to or supported by cast-in-place concrete.

1. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
2. Install anchor rods, accurately located, to elevations required and complying with tolerances in Section 7.5 of ANSI/AISC 303.
3. Install reglets to receive waterproofing and to receive through-wall flashings in outer face of concrete frame at exterior walls, where flashing is shown at lintels, shelf angles, and other conditions.

3.6 INSTALLATION OF VAPOR RETARDER

A. Sheet Vapor Retarders: Place, protect, and repair sheet vapor retarder in accordance with ASTM E1643 and manufacturer's written instructions.

1. Install vapor retarder with longest dimension parallel with direction of concrete pour.
2. Face laps away from exposed direction of concrete pour.
3. Lap vapor retarder over footings and grade beams not less than 6 inches, sealing vapor retarder to concrete.
4. Lap joints 6 inches and seal with manufacturer's recommended tape.
5. Terminate vapor retarder at the top of floor slabs, grade beams, and pile caps, sealing entire perimeter to floor slabs, grade beams, foundation walls, or pile caps.
6. Seal penetrations in accordance with vapor retarder manufacturer's instructions.
7. Protect vapor retarder during placement of reinforcement and concrete.
 a. Repair damaged areas by patching with vapor retarder material, overlapping damages area by 6 inches on all sides, and sealing to vapor retarder.

3.7 STEEL REINFORCEMENT

A. General: Comply with CRSI's "Manual of Standard Practice" for placing reinforcement.

1. Do not cut or puncture vapor retarder. Repair damage and reseal vapor retarder before placing concrete.

B. Clean reinforcement of loose rust and mill scale, earth, ice, and other foreign materials that would reduce bond to concrete.
C. Accurately position, support, and secure reinforcement against displacement. Locate and support reinforcement with bar supports to maintain minimum concrete cover. Do not tack weld crossing reinforcing bars.

3.8 JOINTS

A. Construct joints true to line, with faces perpendicular to surface plane of concrete.

B. Construction Joints: Coordinate with floor slab pattern and concrete placement sequence.
 1. Install so strength and appearance of concrete are not impaired, at locations indicated on Drawings or as approved by Architect.
 2. Place joints perpendicular to main reinforcement.
 a. Continue reinforcement across construction joints unless otherwise indicated.
 b. Do not continue reinforcement through sides of strip placements of floors and slabs.

C. Control Joints in Slabs-on-Ground: Form weakened-plane control joints, sectioning concrete into areas as indicated. Construct control joints for a depth equal to at least one third of concrete thickness as follows:
 1. Grooved Joints: Form control joints after initial floating by grooving and finishing each edge of joint to a radius of 1/8 inch. Repeat grooving of control joints after applying surface finishes. Eliminate groover tool marks on concrete surfaces.
 2. Sawed Joints: Form control joints with power saws equipped with shatterproof abrasive or diamond-rimmed blades. Cut 1/8-inch- wide joints into concrete when cutting action does not tear, abrade, or otherwise damage surface and before concrete develops random cracks.

D. Isolation Joints in Slabs-on-Ground: After removing formwork, install joint-filler strips at slab junctions with vertical surfaces, such as column pedestals, foundation walls, grade beams, and other locations, as indicated.
 1. Extend joint-filler strips full width and depth of joint, terminating flush with finished concrete surface unless otherwise indicated on Drawings.
2. Terminate full-width joint-filler strips not less than 1/2 inch or more than 1 inch below finished concrete surface, where joint sealants, specified in Section 079200 "Joint Sealants," are indicated.
3. Install joint-filler strips in lengths as long as practicable. Where more than one length is required, lace or clip sections together.

E. Doweled Joints:
 1. Install dowel bars and support assemblies at joints where indicated on Drawings.
 2. Lubricate or asphalt coat one-half of dowel bar length to prevent concrete bonding to one side of joint.

F. Dowel Plates: Install dowel plates at joints where indicated on Drawings.

3.9 WATERSTOP INSTALLATION

A. Flexible Waterstops: Install in construction joints and at other joints indicated to form a continuous diaphragm. Install in longest lengths practicable. Support and protect exposed waterstops during progress of the Work. Field fabricate joints in waterstops according to manufacturer's written instructions.

3.10 CONCRETE PLACEMENT

A. Before placing concrete, verify that installation of formwork, reinforcement, embedded items, and vapor retarder is complete and that required inspections are completed.
 1. Immediately prior to concrete placement, inspect vapor retarder for damage and deficient installation, and repair defective areas.
 2. Provide continuous inspection of vapor retarder during concrete placement and make necessary repairs to damaged areas as Work progresses.

B. Notify Architect and testing and inspection agencies 24 hours prior to commencement of concrete placement.

C. Do not add water to concrete during delivery, at Project site, or during placement unless approved by Architect in writing, but not to exceed the amount indicated on the concrete delivery ticket.
 1. Do not add water to concrete after adding high-range water-reducing admixtures to mixture.

D. Before test sampling and placing concrete, water may be added at Project site, subject to limitations of ACI 301, but not to exceed the amount indicated on the concrete delivery ticket.
 1. Do not add water to concrete after adding high-range water-reducing admixtures to mixture.
E. Deposit concrete continuously in one layer or in horizontal layers of such thickness that
no new concrete is placed on concrete that has hardened enough to cause seams or planes
of weakness.

1. If a section cannot be placed continuously, provide construction joints as
indicated.
2. Deposit concrete to avoid segregation.
3. Deposit concrete in horizontal layers of depth not to exceed formwork design
pressures and in a manner to avoid inclined construction joints.
4. Consolidate placed concrete with mechanical vibrating equipment in accordance
with ACI 301.

 a. Do not use vibrators to transport concrete inside forms.
 b. Insert and withdraw vibrators vertically at uniformly spaced locations to
 rapidly penetrate placed layer and at least 6 inches into preceding layer.
 c. Do not insert vibrators into lower layers of concrete that have begun to
 lose plasticity.
 d. At each insertion, limit duration of vibration to time necessary to
 consolidate concrete, and complete embedment of reinforcement and
 other embedded items without causing mixture constituents to segregate.

F. Deposit and consolidate concrete for floors and slabs in a continuous operation, within
limits of construction joints, until placement of a panel or section is complete.

1. Do not place concrete floors and slabs in a checkerboard sequence.
2. Consolidate concrete during placement operations, so concrete is thoroughly
 worked around reinforcement and other embedded items and into corners.
4. Screed slab surfaces with a straightedge and strike off to correct elevations.
5. Level concrete, cut high areas, and fill low areas.
6. Slope surfaces uniformly to drains where required.
7. Begin initial floating using bull floats or darbies to form a uniform and open-
 textured surface plane, before excess bleedwater appears on the surface.
8. Do not further disturb slab surfaces before starting finishing operations.

3.11 FINISHING FORMED SURFACES

A. As-Cast Surface Finishes:

1. ACI 301 Surface Finish SF-2.0: As-cast concrete texture imparted by form-
 facing material, arranged in an orderly and symmetrical manner with a minimum
 of seams.

 a. Patch voids larger than 3/4-inch-wide or 1/2-inch deep.
 b. Remove projections larger than 1/4 inch.
 c. Patch tie holes.
 d. Surface Tolerance: ACI 117 Class B.
e. Locations: Apply to concrete surfaces exposed to public view, to receive a rubbed finish, or to be covered with a coating or covering material applied directly to concrete.

2. ACI 301 Surface Finish SF-3.0:
 a. Patch voids larger than 3/4-inch-wide or 1/2-inch deep.
 b. Remove projections larger than 1/8 inch.
 c. Patch tie holes.
 d. Surface Tolerance: ACI 117 Class A.
 e. Locations: Apply to concrete surfaces exposed to public view, to receive a rubbed finish, or to be covered with a coating or covering material applied directly to concrete.

3.12 FINISHING FLOORS AND SLABS

A. Comply with ACI 302.1R recommendations for screeding, restraightening, and finishing operations for concrete surfaces. Do not wet concrete surfaces.

B. Scratch Finish:
 1. While still plastic, texture concrete surface that has been screeded and bull-floating or darbied.
 2. Use stiff brushes, brooms, or rakes to produce a profile depth of 1/4 inch in one direction.
 3. Apply scratch finish to surfaces to receive concrete floor toppings to receive mortar setting beds for bonded cementitious floor finishes.

C. Float Finish:
 1. When bleedwater sheen has disappeared and concrete surface has stiffened sufficiently to permit operation of specific float apparatus, consolidate concrete surface with power-driven floats or by hand floating if area is small or inaccessible to power-driven floats.
 2. Repeat float passes and restraightening until surface is left with a uniform, smooth, granular texture and complies with ACI 117 tolerances for conventional concrete.
 3. Apply float finish to surfaces to receive trowel finish and to be covered with fluid-applied or sheet waterproofing, built-up or membrane roofing, or sand-bed terrazzo.

D. Trowel Finish:
 1. After applying float finish, apply first troweling and consolidate concrete by hand or power-driven trowel.
 2. Continue troweling passes and restraighten until surface is free of trowel marks and uniform in texture and appearance.
 3. Grind smooth any surface defects that would telegraph through applied coatings or floor coverings.
4. Do not add water to concrete surface.
5. Do not apply hard-troweled finish to concrete, which has a total air content greater than 3 percent.
6. Apply a trowel finish to surfaces exposed to view or to be covered with resilient flooring, carpet, ceramic or quarry tile set over a cleavage membrane, paint, or another thin-film-finish coating system.
7. Finish surfaces to the following tolerances, in accordance with ASTM E1155, for a randomly trafficked floor surface:
 a. Slabs on Ground:
 1) Finish and measure surface so gap at any point between concrete surface and an unleveled, freestanding, 10-ft.-long straightedge resting on two high spots and placed anywhere on the surface does not exceed 1/8 inch.
 2) Specified overall values of flatness, \(F_F \); and of levelness, \(F_L \); with minimum local values of flatness, \(F_{F_{local}} \); and of levelness, \(F_{L_{local}} \).
 b. Suspended Slabs:
 1) Finish and measure surface so gap at any point between concrete surface and an unleveled, freestanding, 10-ft.-long straightedge resting on two high spots and placed anywhere on the surface does not exceed 1/8 inch.
 2) Specified overall values of flatness, \(F_F \); and of levelness, \(F_L \); with minimum local values of flatness, \(F_{F_{local}} \); and of levelness, \(F_{L_{local}} \).

E. Trowel and Fine-Broom Finish: Apply a first trowel finish to surfaces where ceramic or quarry tile is to be installed by either thickset or thinset method. While concrete is still plastic, slightly scarify surface with a fine broom perpendicular to main traffic route.
 1. Coordinate required final finish with Architect before application.
 2. Comply with flatness and levelness tolerances for trowel-finished floor surfaces.

F. Broom Finish: Apply a broom finish to exterior concrete platforms, steps, ramps, and locations indicated on Drawings.
 1. Immediately after float finishing, slightly roughen trafficked surface by brooming with fiber-bristle broom perpendicular to main traffic route.
 2. Coordinate required final finish with Architect before application.

3.13 INSTALLATION OF MISCELLANEOUS CONCRETE ITEMS

A. Filling In:
 1. Fill in holes and openings left in concrete structures after Work of other trades is in place unless otherwise indicated.
2. Mix, place, and cure concrete, as specified, to blend with in-place construction.
3. Provide other miscellaneous concrete filling indicated or required to complete the Work.

B. Curbs: Provide monolithic finish to interior curbs by stripping forms while concrete is still green and by steel-troweling surfaces to a hard, dense finish with corners, intersections, and terminations slightly rounded.

C. Steel Pan Stairs: Provide concrete fill for steel pan stair treads, landings, and associated items.
 1. Cast-in inserts and accessories, as shown on Drawings.
 2. Screed, tamp, and trowel finish concrete surfaces.

3.14 CONCRETE PROTECTING AND CURING

A. General: Protect freshly placed concrete from premature drying and excessive cold or hot temperatures. Comply with ACI 306.1 for cold-weather protection and ACI 301 for hot-weather protection during curing.

B. Evaporation Retarder: Apply evaporation retarder to unformed concrete surfaces if hot, dry, or windy conditions cause moisture loss approaching 0.2 lb/sq. ft. x h before and during finishing operations. Apply according to manufacturer's written instructions after placing, screeding, and bull floating or darbying concrete, but before float finishing.

C. Formed Surfaces: Cure formed concrete surfaces, including underside of beams, supported slabs, and other similar surfaces. If forms remain during curing period, moist cure after loosening forms. If removing forms before end of curing period, continue curing for the remainder of the curing period.

D. Unformed Surfaces: Begin curing immediately after finishing concrete. Cure unformed surfaces, including floors and slabs, concrete floor toppings, and other surfaces.

E. Cure concrete according to ACI 308.1, by one or a combination of the following methods:

 1. Moisture Curing: Keep surfaces continuously moist for not less than seven days with the following materials:
 a. Water.
 b. Continuous water-fog spray.
 c. Absorptive cover, water saturated, and kept continuously wet. Cover concrete surfaces and edges with 12-inch lap over adjacent absorptive covers.

 2. Moisture-Retaining-Cover Curing: Cover concrete surfaces with moisture-retaining cover for curing concrete, placed in widest practicable width, with sides and ends lapped at least 12 inches, and sealed by waterproof tape or adhesive.
Cure for not less than seven days. Immediately repair any holes or tears during curing period using cover material and waterproof tape.

a. Moisture cure or use moisture-retaining covers to cure concrete surfaces to receive floor coverings.
b. Moisture cure or use moisture-retaining covers to cure concrete surfaces to receive penetrating liquid floor treatments.
c. Cure concrete surfaces to receive floor coverings with either a moisture-retaining cover or a curing compound that the manufacturer certifies will not interfere with bonding of floor covering used on Project.

3. Curing Compound: Apply uniformly in continuous operation by power spray or roller according to manufacturer's written instructions. Reccoat areas subjected to heavy rainfall within three hours after initial application. Maintain continuity of coating and repair damage during curing period.

a. Removal: After curing period has elapsed, remove curing compound without damaging concrete surfaces by method recommended by curing compound manufacturer.

4. Curing and Sealing Compound: Apply uniformly to floors and slabs indicated in a continuous operation by power spray or roller according to manufacturer's written instructions. Reccoat areas subjected to heavy rainfall within three hours after initial application. Repeat process 24 hours later and apply a second coat. Maintain continuity of coating and repair damage during curing period.

3.15 LIQUID FLOOR TREATMENTS

A. Penetrating Liquid Floor Treatment: Prepare, apply, and finish penetrating liquid floor treatment according to manufacturer's written instructions.

1. Remove curing compounds, sealers, oil, dirt, laitance, and other contaminants and complete surface repairs.
2. Do not apply to concrete that is less than three days' old.
3. Apply liquid until surface is saturated, scrubbing into surface until a gel forms; rewet; and repeat brooming or scrubbing. Rinse with water; remove excess material until surface is dry. Apply a second coat in a similar manner if surface is rough or porous.

B. Sealing Coat: Uniformly apply a continuous sealing coat of curing and sealing compound to hardened concrete by power spray or roller according to manufacturer's written instructions.

3.16 JOINT FILLING

A. Prepare, clean, and install joint filler according to manufacturer's written instructions.

1. Defer joint filling until concrete has aged at least one month(s). Do not fill joints until construction traffic has permanently ceased.
B. Remove dirt, debris, saw cuttings, curing compounds, and sealers from joints; leave contact faces of joint clean and dry.

C. Install semirigid joint filler full depth in saw-cut joints and at least 2 inches deep in formed joints. Overfill joint and trim joint filler flush with top of joint after hardening.

3.17 CONCRETE SURFACE REPAIRS

A. Defective Concrete: Repair and patch defective areas when approved by Architect. Remove and replace concrete that cannot be repaired and patched to Architect's approval.

B. Patching Mortar: Mix dry-pack patching mortar, consisting of one-part Portland cement to two and one-half parts fine aggregate passing a No. 16 sieve, using only enough water for handling and placing.

C. Repairing Formed Surfaces: Surface defects include color and texture irregularities, cracks, spalls, air bubbles, honeycombs, rock pockets, fins and other projections on the surface, and stains and other discolorations that cannot be removed by cleaning.

1. Immediately after form removal, cut out honeycombs, rock pockets, and voids more than 1/2 inch in any dimension to solid concrete. Limit cut depth to 3/4 inch. Make edges of cuts perpendicular to concrete surface. Clean, dampen with water, and brush-coat holes and voids with bonding agent. Fill and compact with patching mortar before bonding agent has dried. Fill form-tie voids with patching mortar or cone plugs secured in place with bonding agent.

2. Repair defects on surfaces exposed to view by blending white Portland cement and standard Portland cement so that, when dry, patching mortar will match surrounding color. Patch a test area at inconspicuous locations to verify mixture and color match before proceeding with patching. Compact mortar in place and strike off slightly higher than surrounding surface.

3. Repair defects on concealed formed surfaces that affect concrete's durability and structural performance as determined by Architect.

D. Repairing Unformed Surfaces: Test unformed surfaces, such as floors and slabs, for finish and verify surface tolerances specified for each surface. Correct low and high areas. Test surfaces sloped to drain for trueness of slope and smoothness; use a sloped template.

1. Repair finished surfaces containing defects. Surface defects include spalls, popouts, honeycombs, rock pockets, crazing and cracks in excess of 0.01 inch-wide or that penetrate to reinforcement or completely through unreinforced sections regardless of width, and other objectionable conditions.

2. After concrete has cured at least 14 days, correct high areas by grinding.

3. Correct localized low areas during or immediately after completing surface finishing operations by cutting out low areas and replacing with patching mortar. Finish repaired areas to blend into adjacent concrete.

4. Correct other low areas scheduled to receive floor coverings with a repair underlayment. Prepare, mix, and apply repair underlayment and primer.
according to manufacturer's written instructions to produce a smooth, uniform, plane, and level surface. Feather edges to match adjacent floor elevations.

5. Correct other low areas scheduled to remain exposed with a repair topping. Cut out low areas to ensure a minimum repair topping depth of 1/4 inch to match adjacent floor elevations. Prepare, mix, and apply repair topping and primer according to manufacturer's written instructions to produce a smooth, uniform, plane, and level surface.

6. Repair defective areas, except random cracks and single holes 1 inch or less in diameter, by cutting out and replacing with fresh concrete. Remove defective areas with clean, square cuts and expose steel reinforcement with at least a 3/4-inch clearance all around. Dampen concrete surfaces in contact with patching concrete and apply bonding agent. Mix patching concrete of same materials and mixture as original concrete except without coarse aggregate. Place, compact, and finish to blend with adjacent finished concrete. Cure in same manner as adjacent concrete.

7. Repair random cracks and single holes 1 inch or less in diameter with patching mortar. Groove top of cracks and cut out holes to sound concrete and clean off dust, dirt, and loose particles. Dampen cleaned concrete surfaces and apply bonding agent. Place patching mortar before bonding agent has dried. Compact patching mortar and finish to match adjacent concrete. Keep patched area continuously moist for at least 72 hours.

E. Perform structural repairs of concrete, subject to Architect's approval, using epoxy adhesive and patching mortar.

F. Repair materials and installation not specified above may be used, subject to Architect's approval.

3.18 FIELD QUALITY CONTROL

A. Testing and Inspecting: Owner will engage a qualified independent testing agency to perform field tests, shop tests and inspections and prepare test reports.

B. Inspections:

1. Steel reinforcement placement.
2. Verification of use of required design mixture.
3. Concrete placement, including conveying and depositing.
4. Curing procedures and maintenance of curing temperature.
5. Verification of concrete strength before removal of shores and forms from slabs.

C. Concrete Tests: Testing of composite samples of fresh concrete obtained according to ASTM C 172 shall be performed according to the following requirements:

1. Testing Frequency: Obtain one composite sample for each day's pour of each concrete mixture exceeding 5 cu. Yd., but less than 25 cu. yd., plus one set for each additional 50 cu. yd. or fraction thereof.
2. Testing Frequency: Obtain at least one composite sample for each 100 cu. yd. or fraction thereof of each concrete mixture placed each day.
a. When frequency of testing will provide fewer than five compressive-strength tests for each concrete mixture, testing shall be conducted from at least five randomly selected batches or from each batch if fewer than five are used.

3. Slump: ASTM C 143/C 143M; one test at point of placement for each composite sample, but not less than one test for each day's pour of each concrete mixture. Perform additional tests when concrete consistency appears to change.

4. Air Content: ASTM C 231, pressure method, for normal-weight concrete; one test for each composite sample, but not less than one test for each day's pour of each concrete mixture.

5. Concrete Temperature: ASTM C 1064/C 1064M; one test hourly when air temperature is 40 deg F and below and when 80 deg F and above, and one test for each composite sample.

6. Unit Weight: ASTM C 567, fresh unit weight of structural lightweight concrete; one test for each composite sample, but not less than one test for each day's pour of each concrete mixture.

7. Compression Test Specimens: ASTM C 31/C 31M.

a. Cast and laboratory cure two sets of two standard cylinder specimens for each composite sample.

b. Cast and field cure two (2) sets of two standard cylinder specimens for each composite sample.

8. Compressive-Strength Tests: ASTM C 39/C 39M; test one set of two laboratory-cured specimens at 7 days and one set of two specimens at 28 days.

a. Test one set of two field-cured specimens at 7 days and one set of two specimens at 28 days.

b. A compressive-strength test shall be the average compressive strength from a set of two specimens obtained from same composite sample and tested at age indicated.

9. When strength of field-cured cylinders is less than 85 percent of companion laboratory-cured cylinders, Contractor shall evaluate operations and provide corrective procedures for protecting and curing in-place concrete.

10. Strength of each concrete mixture will be satisfactory if every average of any three consecutive compressive-strength tests equals or exceeds specified compressive strength and no compressive-strength test value falls below specified compressive strength by more than 500 psi.

11. Test results shall be reported in writing to Architect, concrete manufacturer, and Contractor within 48 hours of testing. Reports of compressive-strength tests shall contain Project identification name and number, date of concrete placement, name of concrete testing and inspecting agency, location of concrete batch in Work, design compressive strength at 28 days, concrete mixture proportions and materials, compressive breaking strength, and type of break for both 7- and 28-day tests.
12. Nondestructive Testing: Impact hammer, sonoscope, or other nondestructive device may be permitted by Architect but will not be used as sole basis for approval or rejection of concrete.

13. Additional Tests: Testing and inspecting agency shall make additional tests of concrete when test results indicate that slump, air entrainment, compressive strengths, or other requirements have not been met, as directed by Architect. Testing and inspecting agency may conduct tests to determine adequacy of concrete by cored cylinders complying with ASTM C 42/C 42M or by other methods as directed by Architect.

14. Additional testing and inspecting, at Contractor's expense, will be performed to determine compliance of replaced or additional work with specified requirements.

15. Correct deficiencies in the Work that test reports and inspections indicate do not comply with the Contract Documents.

D. Measure floor and slab flatness and levelness according to ASTM E 1155 within 24 hours of finishing.

3.19 PROTECTION OF LIQUID FLOOR TREATMENTS

A. Protect liquid floor treatment from damage and wear during the remainder of construction period. Use protective methods and materials, including temporary covering, recommended in writing by liquid floor treatments installer.

END OF SECTION
SECTION 042000
UNIT MASONRY

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Concrete masonry units.
2. Decorative concrete masonry units.
3. Clay face brick.
4. Mortar and grout.
5. Steel reinforcing bars.
7. Ties and anchors.
8. Embedded flashing.
9. Miscellaneous masonry accessories.
10. Masonry-cell fill.

B. Products Installed but not Furnished under This Section:

1. Steel lintels in unit masonry.
2. Steel shelf angles for supporting unit masonry.
3. Cavity wall insulation.

C. Related Requirements:

1. Section 051200 "Structural Steel Framing" for installing anchor sections of adjustable masonry anchors for connecting to structural steel frame.
2. Section 072100 "Thermal Insulation" for cavity wall insulation.
3. Section 076200 "Sheet Metal Flashing and Trim" for exposed sheet metal flashing installed in masonry joints.

1.3 DEFINITIONS

A. CMU(s): Concrete masonry unit(s).

B. Reinforced Masonry: Masonry containing reinforcing steel in grouted cells.
1.4 PREINSTALLATION MEETINGS

A. Preinstallation Conference: Conduct conference at Project site.

1.5 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. Shop Drawings: For the following:
 1. Reinforcing Steel: Detail bending, lap lengths, and placement of unit masonry reinforcing bars. Comply with ACI 315. Show elevations of reinforced walls.
 2. Fabricated Flashing: Detail corner units, end-dam units, and other special applications.

C. Samples for Verification: For each type and color of the following:
 1. Decorative CMUs.
 2. Clay face brick, in the form of straps of five or more bricks.
 3. Pigmented and colored-aggregate mortar. Make Samples using same sand and mortar ingredients to be used on Project.

1.6 INFORMATIONAL SUBMITTALS

A. List of Materials Used in Constructing Mockups: List generic product names together with manufacturers, manufacturers' product names, model numbers, lot numbers, batch numbers, source of supply, and other information as required to identify materials used. Include mix proportions for mortar and grout and source of aggregates.
 1. Submittal is for information only. Receipt of list does not constitute approval of deviations from the Contract Documents unless such deviations are specifically brought to the attention of Engineer and approved in writing.

B. Qualification Data: For testing agency.

C. Mix Designs: For each type of mortar and grout. Include description of type and proportions of ingredients.
 1. Include test reports for mortar mixes required to comply with property specification. Test according to ASTM C109/C109M for compressive strength, ASTM C1506 for water retention, and ASTM C91/C91M for air content.
 2. Include test reports, according to ASTM C1019, for grout mixes required to comply with compressive strength requirement.

1.7 QUALITY ASSURANCE

A. Testing Agency Qualifications: Qualified according to ASTM C1093 for testing indicated.
B. Mockups: Build mockups to verify selections made under Sample submittals, to demonstrate aesthetic effects, and to set quality standards for materials and execution.

1. Build mockups for typical exterior wall in sizes approximately 48 inches long by 48 inches high by full thickness, including face and backup wythes and accessories.
 a. Include a sealant-filled joint at least 16 inches long in exterior wall mockup.
 b. Include lower corner of window opening at upper corner of exterior wall mockup. Make opening approximately 12 inches wide by 16 inches high.
 c. Include through-wall flashing installed for a 24-inch length in corner of exterior wall mockup approximately 16 inches down from top of mockup, with a 12-inch length of flashing left exposed to view (omit masonry above half of flashing).
 d. Include metal studs, sheathing, water-resistant barrier, sheathing joint-and-penetration treatment, air barrier, veneer anchors, flashing, cavity drainage material, and weep holes in exterior masonry-veneer wall mockup.

2. Clean one-half of exposed faces of mockups with masonry cleaner as indicated.

3. Approval of mockups is for color, texture, and blending of masonry units; relationship of mortar and sealant colors to masonry unit colors; tooling of joints; and aesthetic qualities of workmanship.
 a. Approval of mockups is also for other material and construction qualities specifically approved by Engineer in writing.
 b. Approval of mockups does not constitute approval of deviations from the Contract Documents contained in mockups unless Engineer specifically approves such deviations in writing.

4. Subject to compliance with requirements, approved mockups may become part of the completed Work if undisturbed at time of Substantial Completion.

1.8 DELIVERY, STORAGE, AND HANDLING

A. Store masonry units on elevated platforms in a dry location. If units are not stored in an enclosed location, cover tops and sides of stacks with waterproof sheeting, securely tied. If units become wet, do not install until they are dry.

B. Store cementitious materials on elevated platforms, under cover, and in a dry location. Do not use cementitious materials that have become damp.

C. Store aggregates where grading and other required characteristics can be maintained, and contamination avoided.

D. Deliver preblended, dry mortar mix in moisture-resistant containers. Store preblended, dry mortar mix in delivery containers on elevated platforms in a dry location or in covered weatherproof dispensing silos.
E. Store masonry accessories, including metal items, to prevent corrosion and accumulation of dirt and oil.

1.9 FIELD CONDITIONS

A. Protection of Masonry: During construction, cover tops of walls, projections, and sills with waterproof sheeting at end of each day's work. Cover partially completed masonry when construction is not in progress.

1. Extend cover a minimum of 24 inches down both sides of walls, and hold cover securely in place.
2. Where one wythe of multiwythe masonry walls is completed in advance of other wythes, secure cover a minimum of 24 inches down face next to unconstructed wythe and hold cover in place.

B. Do not apply uniform floor or roof loads for at least 12 hours and concentrated loads for at least three days after building masonry walls or columns.

C. Stain Prevention: Prevent grout, mortar, and soil from staining the face of masonry to be left exposed or painted. Immediately remove grout, mortar, and soil that come in contact with such masonry.

1. Protect base of walls from rain-splashed mud and from mortar splatter by spreading coverings on ground and over wall surface.
2. Protect sills, ledges, and projections from mortar droppings.
3. Protect surfaces of window and door frames, as well as similar products with painted and integral finishes, from mortar droppings.
4. Turn scaffold boards near the wall on edge at the end of each day to prevent rain from splashing mortar and dirt onto completed masonry.

D. Cold-Weather Requirements: Do not use frozen materials or materials mixed or coated with ice or frost. Do not build on frozen substrates. Remove and replace unit masonry damaged by frost or by freezing conditions. Comply with cold-weather construction requirements contained in TMS 602/ACI 530.1/ASCE 6.

1. Cold-Weather Cleaning: Use liquid cleaning methods only when air temperature is 40 deg F and higher and will remain so until masonry has dried, but not less than seven days after completing cleaning.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Source Limitations for Masonry Units: Obtain exposed masonry units of a uniform texture and color, or a uniform blend within the ranges accepted for these characteristics,
from single source from single manufacturer for each product required.

B. Source Limitations for Mortar Materials: Obtain mortar ingredients of a uniform quality, including color for exposed masonry, from single manufacturer for each cementitious component and from single source or producer for each aggregate.

2.2 PERFORMANCE REQUIREMENTS

A. Provide structural unit masonry that develops indicated net-area compressive strengths at 28 days.
 1. Determine net-area compressive strength of masonry from average net-area compressive strengths of masonry units and mortar types (unit-strength method) according to TMS 602/ACI 530.1/ASCE 6.
 2. Determine net-area compressive strength of masonry by testing masonry prisms according to ASTM C1314.

2.3 UNIT MASONRY, GENERAL

A. Masonry Standard: Comply with TMS 602/ACI 530.1/ASCE 6, except as modified by requirements in the Contract Documents.

B. Defective Units: Referenced masonry unit standards may allow a certain percentage of units to contain chips, cracks, or other defects exceeding limits stated. Do not use units where such defects are exposed in the completed Work and will be within 20 feet vertically and horizontally of a walking surface.

C. Fire-Resistance Ratings: Comply with requirements for fire-resistance-rated assembly designs indicated.
 1. Where fire-resistance-rated construction is indicated, units shall be listed and labeled by a qualified testing agency acceptable to authorities having jurisdiction.

2.4 CONCRETE MASONRY UNITS

A. Shapes: Provide shapes indicated and as follows, with exposed surfaces matching exposed faces of adjacent units unless otherwise indicated.
 1. Provide special shapes for lintels, corners, jambs, sashes, movement joints, headers, bonding, and other special conditions.
 2. Provide square-edged units for outside corners unless otherwise indicated.

B. Integral Water Repellent: Provide units made with integral water repellent where indicated.
 1. Integral Water Repellent: Liquid polymeric, integral water-repellent admixture that does not reduce flexural bond strength. Units made with integral water repellent, when tested according to ASTM E514/E514M as a wall assembly made with mortar containing integral water-repellent manufacturer's mortar
additive, with test period extended to 24 hours, shall show no visible water or leaks on the back of test specimen.

a. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

1) BASF Corporation.
2) Euclid Chemical Company (The); an RPM company.
3) GCP Applied Technologies Inc.

C. CMUs: ASTM C90.

1. Unit Compressive Strength: Provide units with minimum average net-area compressive strength of 1900 psi.
2. Density Classification: Normal weight.
3. Size (Width): Manufactured to dimensions 3/8 inch less than nominal dimensions.
4. Exposed Faces: Provide color and texture matching the range represented by Architect's sample.
5. Faces to Receive Plaster: Where units are indicated to receive a direct application of plaster, provide textured-face units made with gap-graded aggregates.

D. Decorative CMUs: ASTM C90.

1. Basis-of-Design Product: Subject to compliance with requirements, provide Echelon; Trendstone Plus product or comparable product by one of the following:
 a. Endicott Clay Products.
 b. Taylor Clay Products.
 c. Interstate Brick.
2. Unit Compressive Strength: Provide units with minimum average net-area compressive strength of 1900 psi.
3. Density Classification: Normal weight.
4. Size (Width): Manufactured to dimensions specified in "CMUs" Paragraph.
5. Pattern and Texture:
 a. Standard pattern, ground-face finish.

2.5 CONCRETE AND MASONRY LINTELS

A. General: Provide one of the following:

B. Concrete Lintels: ASTM C1623, matching CMUs in color, texture, and density classification; and with reinforcing bars indicated. Provide lintels with net-area compressive strength not less than that of CMUs.
C. Masonry Lintels: Prefabricated or built-in-place masonry lintels made from bond beam CMUs matching adjacent CMUs in color, texture, and density classification, with reinforcing bars placed as indicated and filled with coarse grout. Cure precast lintels before handling and installing. Temporarily support built-in-place lintels until cured.

2.6 BRICK

A. General: Provide shapes indicated and as follows, with exposed surfaces matching finish and color of exposed faces of adjacent units:

1. For ends of sills and caps and for similar applications that would otherwise expose unfinished brick surfaces, provide units without cores or frogs and with exposed surfaces finished.
2. Provide special shapes for applications where stretcher units cannot accommodate special conditions, including those at corners, movement joints, bond beams, sashes, and lintels.
3. Provide special shapes for applications requiring brick of size, form, color, and texture on exposed surfaces that cannot be produced by sawing.
4. Provide special shapes for applications where shapes produced by sawing would result in sawed surfaces being exposed to view.

B. Clay Face Brick <Field, Color #1>: Facing brick complying with ASTM C216.

1. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 a. Endicott Clay Products.
 b. Taylor Clay Products.
 c. Interstate Brick.

2. Grade: SW.
3. Type: FBX or FBS.
4. Unit Compressive Strength: Provide units with minimum average net-area compressive strength of 3000 psi.
5. Initial Rate of Absorption: Less than 30 g/30 sq. in. per minute when tested according to ASTM C67.
6. Efflorescence: Provide brick that has been tested according to ASTM C67 and is rated "not effloresced."
8. Application: Use where brick is exposed unless otherwise indicated.

C. Clay Face Brick <Accent, Color #2>: Facing brick complying with ASTM C216.

1. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 a. Endicott Clay Products.
b. Taylor Clay Products.
c. Interstate Brick.

2. Grade: SW.
3. Type: FBX or FBS.
4. Unit Compressive Strength: Provide units with minimum average net-area compressive strength of 3000 psi.
5. Initial Rate of Absorption: Less than 30 g/30 sq. in. per minute when tested according to ASTM C67.
6. Efflorescence: Provide brick that has been tested according to ASTM C67 and is rated "not effloresced."
8. Application: Use where brick is exposed unless otherwise indicated.

2.7 MORTAR AND GROUT MATERIALS

A. Portland Cement: ASTM C150/C150M, Type I or II, except Type III may be used for cold-weather construction. Provide natural color or white cement as required to produce mortar color indicated.
 1. Alkali content shall not be more than 0.1 percent when tested according to ASTM C114.

B. Hydrated Lime: ASTM C207, Type S.

C. Portland Cement-Lime Mix: Packaged blend of portland cement and hydrated lime containing no other ingredients.

D. Mortar Pigments: Natural and synthetic iron oxides and chromium oxides, compounded for use in mortar mixes and complying with ASTM C979/C979M. Use only pigments with a record of satisfactory performance in masonry mortar.

E. Aggregate for Mortar: ASTM C144.
 1. For mortar that is exposed to view, use washed aggregate consisting of natural sand or crushed stone.
 2. For joints less than 1/4-inch-thick, use aggregate graded with 100 percent passing the No. 16 sieve.
 3. White-Mortar Aggregates: Natural white sand or crushed white stone.
 4. Colored-Mortar Aggregates: Natural sand or crushed stone of color necessary to produce required mortar color.

F. Aggregate for Grout: ASTM C404.

G. Cold-Weather Admixture: Nonchloride, noncorrosive, accelerating admixture complying with ASTM C494/C494M, Type C, and recommended by manufacturer for use in masonry mortar of composition indicated.
H. Water-Repellent Admixture: Liquid water-repellent mortar admixture intended for use with CMUs containing integral water repellent from same manufacturer.

I. Water: Potable.

2.8 REINFORCEMENT

A. Uncoated-Steel Reinforcing Bars: ASTM A615/A615M or ASTM A996/A996M, Grade 60.

B. Reinforcing Bar Positioners: Wire units designed to fit into mortar bed joints spanning masonry unit cells and to hold reinforcing bars in center of cells. Units are formed from 0.148-inch steel wire, hot-dip galvanized after fabrication. Provide units designed for number of bars indicated.

C. Masonry-Joint Reinforcement, General: ASTM A951/A951M.
 1. Interior Walls: Hot-dip galvanized carbon steel.
 2. Exterior Walls: Hot-dip galvanized carbon steel.
 5. Wire Size for Veneer Ties: 0.148-inch diameter.
 6. Spacing of Cross Rods, Tabs, and Cross Ties: Not more than 16 inches o.c.
 7. Provide in lengths of not less than 10 feet, with prefabricated corner and tee units.

D. Masonry-Joint Reinforcement for Single-Wythe Masonry: Ladder or truss type with single pair of side rods.

2.9 TIES AND ANCHORS

A. General:
 1. Ties and anchors shall extend at least 1-1/2 inches into veneer but with at least a 5/8-inch cover on outside face.
 2. Corrugated Metal Ties: Not Allowed.

B. Materials: Provide ties and anchors specified in this article that are made from materials that comply with the following unless otherwise indicated:

C. Individual Wire Ties: Rectangular units with closed ends and not less than 4 inches wide.
 1. Z-shaped ties with ends bent 90 degrees to provide hooks not less than 2 inches long may be used for masonry constructed from solid units.
 2. Where wythes do not align, use adjustable ties with pintle-and-eye connections having a maximum adjustment of 1-1/4 inches.

D. Adjustable Masonry-Veneer Anchors:
1. **General:** Provide anchors that allow vertical adjustment but resist a 100-lbf load in both tension and compression perpendicular to plane of wall without deforming or developing play in excess of 1/16 inch.

2. Fabricate sheet metal anchor sections and other sheet metal parts from 0.078-inch-thick, stainless steel sheet.

3. Fabricate wire ties from 0.187-inch diameter, stainless steel wire unless otherwise indicated.

4. **Contractor's Option:** Unless otherwise indicated, provide any of the adjustable masonry-veneer anchors specified.

5. **Screw-Attached, Masonry-Veneer Anchors:** Wire tie and a rib-stiffened, sheet metal anchor section with screw holes top and bottom, with projecting tabs having holes for inserting vertical legs of wire tie formed to fit anchor section.

 a. **Manufacturers:** Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

 1) Heckmann Building Products, Inc.
 2) Hohmann & Barnard, Inc.

6. **Stainless Steel Drill Screws for Steel Studs:** ASTM C954 except manufactured with hex washer head and neoprene or EPDM washer, No. 10 diameter by length required to penetrate steel stud flange with not less than three exposed threads; either made from Type 410 stainless steel or made with a carbon-steel drill point and 300 Series stainless steel shank.

E. Wire Mesh Ties: 16-gage by 1/2-inch mesh wire, size 1 inch less than actual width of masonry unit or wall in which placed and length to cover one full masonry unit on each side of joint, but never less than 12 inches.

 1. **Finish:** ASTM A153, Class B-2 minimum 1.5 OZ/SQ FT zinc coating.
 2. **Acceptable Product:** MWT - Mesh Wall Tie, Hohmann & Barnard, Inc.

F. Joint Stabilization Anchors: Two 8 gage steel wires enclosed in 1/32-inch sheet metal sleeve that allows movement at expansion or control joints.

 1. **Finish:** Mill galvanized for interior application.
 2. **Acceptable Product:** Slip-Set Stabilizer, Hohmann & Barnard, Inc.

G. Clip-on Column Flange Anchors: Clip-on for use between steel column and adjoining masonry.

 1. **Size:** 1/8-inch-thick by 1-1/4-inch-wide by length required to extend to center core of masonry unit.
 2. **Finish:** ASTM A153/A153M, Class B-2, minimum 1.5 OZ/SQ FT zinc coating.
 3. **Acceptable product:** 353, 355, 357 Column Anchors, Hohmann & Barnard.

H. Zee Strap Anchors: Zee shaped bent hot rolled steel.
1. Size: 1 inch wide by 1/4-inch by 2 inches long with ends turned 3 inches minimum.

2.10 EMBEDDED FLASHING MATERIALS

A. Metal Flashing: Provide metal flashing complying with SMACNA's "Architectural Sheet Metal Manual" and as follows:
 1. Stainless Steel: ASTM A240/A240M or ASTM A666, Type 304, 0.016 inch thick.
 2. Fabricate continuous flashings in sections 96 inches long minimum, but not exceeding 12 feet. Provide splice plates at joints of formed, smooth metal flashing.
 3. Fabricate through-wall metal flashing embedded in masonry from stainless steel, with ribs at 3-inch intervals along length of flashing to provide an integral mortar bond.
 4. Fabricate through-wall flashing with drip edge unless otherwise indicated. Fabricate by extending flashing 1/2 inch out from wall, with outer edge bent down 30 degrees and hemmed.
 5. Solder metal items at corners.

B. Application: Unless otherwise indicated, use the following:
 1. Where flashing is indicated to receive counterflashing, use metal flashing.
 2. Where flashing is indicated to be turned down at or beyond the wall face, use metal flashing.
 3. Where flashing is partly exposed and is indicated to terminate at the wall face, use metal flashing with a drip edge.
 4. Where flashing is fully concealed, use metal flashing.

C. Solder and Sealants for Sheet Metal Flashings: As specified in Section 076200 "Sheet Metal Flashing and Trim."

2.11 MISCELLANEOUS MASONRY ACCESSORIES

A. Compressible Filler: Premolded filler strips complying with ASTM D1056, Grade 2A1; compressible up to 35 percent; of width and thickness indicated; formulated from neoprene, urethane, or PVC.

B. Bond-Breaker Strips: Asphalt-saturated felt complying with ASTM D226/D226M, Type I (No. 15 asphalt felt).

C. Weep/Cavity Vent Products: Use one of the following unless otherwise indicated:
 1. Cellular Plastic Weep/Vent: One-piece, flexible extrusion made from UV-resistant polypropylene copolymer, full height and width of head joint and depth 1/8 inch less than depth of outer wythe, in color selected from manufacturer's
standard.

a. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

1) Advanced Building Products Inc.
2) Heckmann Building Products, Inc.
3) Hohmann & Barnard, Inc.

D. Cavity Drainage Material: Free-draining mesh, made from polymer strands that will not degrade within the wall cavity.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

a. Heckmann Building Products, Inc.
b. Hohmann & Barnard, Inc.
c. Mortar Net Solutions.

2. Configuration: Provide one of the following:

a. Strips, full depth of cavity and 10 inches high, with dovetail-shaped notches 7 inches deep that prevent clogging with mortar droppings.

2.12 MASONRY-CELL FILL

A. Foamed-In-Place masonry insulation for thermal, sound and fire resistance values.

1. Surface Burning Characteristics: Maximum flame spread, smoke developed and fuel contributed of 0, 5 and 0 respectively.
2. Combustion Characteristics: Must be noncombustible, Class A building material.
3. Thermal Values: "R" Value of 4.91/inch @ 32 degrees F mean; ASTM C-177.
5. Manufacturers: Tailored Chemical Products; Core Fill 500, or approved equal.

2.13 MASONRY CLEANERS

A. Proprietary Acidic Cleaner: Manufacturer's standard-strength cleaner designed for removing mortar/grout stains, efflorescence, and other new construction stains from new masonry without discoloring or damaging masonry surfaces. Use product expressly approved for intended use by cleaner manufacturer and manufacturer of masonry units being cleaned.

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include,
but are not limited to the following:

b. EaCo Chem, Inc.
c. Prosoco.

2.14 MORTAR AND GROUT MIXES

A. General: Do not use admixtures, including pigments, air-entraining agents, accelerators, retarders, water-repellent agents, antifreeze compounds, or other admixtures unless otherwise indicated.

1. Do not use calcium chloride in mortar or grout.
2. For exterior masonry, use portland cement-lime.
3. For reinforced masonry, use portland cement-lime.
4. Add cold-weather admixture (if used) at same rate for all mortar that will be exposed to view, regardless of weather conditions, to ensure that mortar color is consistent.

B. Mortar for Unit Masonry: Comply with ASTM C270, Proportion Specification. Provide the following types of mortar for applications stated unless another type is indicated or needed to provide required compressive strength of masonry.

1. For masonry below grade or in contact with earth, use Type M.
2. For reinforced masonry, use Type M or Type S.
3. For mortar parge coats, use Type S or Type N.
4. For interior nonload-bearing partitions, Type O may be used instead of Type N.

C. Pigmented Mortar: Use colored cement product or select and proportion pigments with other ingredients to produce color required. Do not add pigments to colored cement products.

1. Pigments shall not exceed 10 percent of portland cement by weight.
2. Mix to match Architect's sample.
3. Application: Use pigmented mortar for exposed mortar joints with the following units:

 a. Clay face brick.

D. Grout for Unit Masonry: Comply with ASTM C476.

1. Use grout of type indicated or, if not otherwise indicated, of type (fine or coarse) that will comply with TMS 602/ACI 530.1/ASCE 6 for dimensions of grout spaces and pour height.
2. Proportion grout in accordance with ASTM C476, Table 1 or paragraph 4.2.2 for specified 28-day compressive strength indicated, but not less than 3000 psi.
3. Provide grout with a slump of 8 to 11 inches as measured according to ASTM C143/C143M.
PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.

1. For the record, prepare written report, endorsed by Installer, listing conditions detrimental to performance of the Work.
2. Verify that foundations are within tolerances specified.
3. Verify that reinforcing dowels are properly placed.
4. Verify that substrates are free of substances that impair mortar bond.

B. Before installation, examine rough-in and built-in construction for piping systems to verify actual locations of piping connections.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION, GENERAL

A. Thickness: Build cavity and composite walls and other masonry construction to full thickness shown. Build single-wythe walls to actual widths of masonry units, using units of widths indicated.

B. Build chases and recesses to accommodate items specified in this and other Sections.

C. Leave openings for equipment to be installed before completing masonry. After installing equipment, complete masonry to match construction immediately adjacent to opening.

D. Use full-size units without cutting if possible. If cutting is required to provide a continuous pattern or to fit adjoining construction, cut units with motor-driven saws; provide clean, sharp, unchipped edges. Allow units to dry before laying unless wetting of units is specified. Install cut units with cut surfaces and, where possible, cut edges concealed.

E. Select and arrange units for exposed unit masonry to produce a uniform blend of colors and textures. Mix units from several pallets or cubes as they are placed.

F. Wetting of Brick: Wet brick before laying if initial rate of absorption exceeds 30 g/30 sq. in. per minute when tested according to ASTM C67. Allow units to absorb water so they are damp but not wet at time of laying.

3.3 TOLERANCES

A. Dimensions and Locations of Elements:

1. For dimensions in cross section or elevation, do not vary by more than plus 1/2 inch or minus 1/4 inch.
2. For location of elements in plan, do not vary from that indicated by more than
plus or minus 1/2 inch.

3. For location of elements in elevation, do not vary from that indicated by more than plus or minus 1/4 inch in a story height or 1/2 inch total.

B. Lines and Levels:

1. For bed joints and top surfaces of bearing walls, do not vary from level by more than 1/4 inch in 10 feet, or 1/2-inch maximum.
2. For conspicuous horizontal lines, such as lintels, sills, parapets, and reveals, do not vary from level by more than 1/8 inch in 10 feet, 1/4 inch in 20 feet, or 1/2-inch maximum.
3. For vertical lines and surfaces, do not vary from plumb by more than 1/4 inch in 10 feet, 3/8 inch in 20 feet, or 1/2-inch maximum.
4. For conspicuous vertical lines, such as external corners, door jambs, reveals, and expansion and control joints, do not vary from plumb by more than 1/8 inch in 10 feet, 1/4 inch in 20 feet, or 1/2-inch maximum.
5. For lines and surfaces, do not vary from straight by more than 1/4 inch in 10 feet, 3/8 inch in 20 feet, or 1/2-inch maximum.
6. For vertical alignment of exposed head joints, do not vary from plumb by more than 1/4 inch in 10 feet or 1/2-inch maximum.
7. For faces of adjacent exposed masonry units, do not vary from flush alignment by more than 1/16 inch except due to warpage of masonry units within tolerances specified for warpage of units.

C. Joints:

1. For bed joints, do not vary from thickness indicated by more than plus or minus 1/8 inch, with a maximum thickness limited to 1/2 inch.
2. For exposed bed joints, do not vary from bed-joint thickness of adjacent courses by more than 1/8 inch.
3. For head and collar joints, do not vary from thickness indicated by more than plus 3/8 inch or minus 1/4 inch.
4. For exposed head joints, do not vary from thickness indicated by more than plus or minus 1/8 inch. Do not vary from adjacent bed-joint and head-joint thicknesses by more than 1/8 inch.

3.4 LAYING MASONRY WALLS

A. Lay out walls in advance for accurate spacing of surface bond patterns with uniform joint thicknesses and for accurate location of openings, movement-type joints, returns, and offsets. Avoid using less-than-half-size units, particularly at corners, jambs, and, where possible, at other locations.

B. Bond Pattern for Exposed Masonry: Unless otherwise indicated, lay exposed masonry in bond pattern indicated on Drawings; do not use units with less-than-nominal 4-inch horizontal face dimensions at corners or jambs.

C. Lay concealed masonry with all units in a wythe in running bond or bonded by lapping not less than 4 inches. Bond and interlock each course of each wythe at corners. Do not
use units with less-than-nominal 4-inch horizontal face dimensions at corners or jambs.

D. Stopping and Resuming Work: Stop work by stepping back units in each course from those in course below; do not tooth. When resuming work, clean masonry surfaces that are to receive mortar, remove loose masonry units and mortar, and wet brick if required before laying fresh masonry.

E. Built-in Work: As construction progresses, build in items specified in this and other Sections. Fill in solidly with masonry around built-in items.

F. Fill space between steel frames and masonry solidly with mortar unless otherwise indicated.

G. Where built-in items are to be embedded in cores of hollow masonry units, place a layer of metal lath, wire mesh, or plastic mesh in the joint below, and rod mortar or grout into core.

H. Fill cores in hollow CMUs with grout 24 inches under bearing plates, beams, lintels, posts, and similar items unless otherwise indicated.

I. Build non-load-bearing interior partitions full height of story to underside of solid floor or roof structure above unless otherwise indicated.

 1. Install compressible filler in joint between top of partition and underside of structure above.
 2. Fasten partition top anchors to structure above and build into top of partition. Grout cells of CMUs solidly around plastic tubes of anchors and push tubes down into grout to provide 1/2-inch clearance between end of anchor rod and end of tube. Space anchors 48 inches o.c. unless otherwise indicated.
 3. At fire-rated partitions, treat joint between top of partition and underside of structure above to comply with Section 078443 "Joint Firestopping."

3.5 MORTAR BEDDING AND JOINTING

A. Lay hollow brick and CMUs as follows:

 1. Bed face shells in mortar and make head joints of depth equal to bed joints.
 2. Bed webs in mortar in all courses of piers, columns, and pilasters.
 3. Bed webs in mortar in grouted masonry, including starting course on footings.
 4. Fully bed entire units, including areas under cells, at starting course on footings where cells are not grouted.
 5. Fully bed units and fill cells with mortar at anchors and ties as needed to fully embed anchors and ties in mortar.

B. Lay solid masonry units and hollow brick with completely filled bed and head joints; butter ends with sufficient mortar to fill head joints and shove into place. Do not deeply furrow bed joints or slush head joints.

C. Tool exposed joints slightly concave when thumbprint hard, using a jointer larger than
joint thickness unless otherwise indicated.

1. For glazed masonry units, use a nonmetallic jointer 3/4 inch or more in width.

D. Cut joints flush where indicated to receive waterproofing unless otherwise indicated.

3.6 ANCHORED MASONRY VENEERS

A. Anchor masonry veneers to wall framing with masonry-veneer anchors to comply with the following requirements:

1. Fasten screw-attached anchors through sheathing to wall framing with metal fasteners of type indicated. Use two fasteners unless anchor design only uses one fastener.
2. Embed connector sections and continuous wire in masonry joints.
3. Locate anchor sections to allow maximum vertical differential movement of ties up and down.
4. Space anchors as indicated, but not more than 16 inches o.c. vertically and 24 inches o.c. horizontally, with not less than one anchor for each 2 sq. ft. of wall area. Install additional anchors within 12 inches of openings and at intervals, not exceeding 8 inches, around perimeter.

B. Provide not less than 2 inches of airspace between back of masonry veneer and face of insulation.

1. Keep airspace clean of mortar droppings and other materials during construction. Bevel beds away from airspace, to minimize mortar protrusions into airspace. Do not attempt to trowel or remove mortar fins protruding into airspace.

3.7 MASONRY-CELL FILL

A. Foamed-In-Place Masonry Insulation: Fill all open cells and voids in hollow concrete masonry walls where shown on drawings. The foam insulation shall be pressure injected through a series of 5/8” to 7/8” holes drilled into every vertical column of block cells (every 8” on center) beginning at an approximate height of four (4) feet from finished floor level. Repeat this procedure at an approximate height of ten (10) feet above the first horizontal row of holes (or as needed) until the void is completely filled. Patch holes with mortar and score to resemble existing surface.

3.8 MASONRY-JOINT REINFORCEMENT

A. General: Install entire length of longitudinal side rods in mortar with a minimum cover of 5/8 inch on exterior side of walls, 1/2 inch elsewhere. Lap reinforcement a minimum of 6 inches.

1. Space reinforcement not more than 16 inches o.c.
2. Space reinforcement not more than 8 inches o.c. in foundation walls.

B. Interrupt joint reinforcement at control and expansion joints unless otherwise indicated.
C. Provide continuity at wall intersections by using prefabricated T-shaped units.

D. Provide continuity at corners by using prefabricated L-shaped units.

E. Cut and bend reinforcing units as directed by manufacturer for continuity at corners, returns, offsets, column fireproofing, pipe enclosures, and other special conditions.

3.9 ANCHORING MASONRY TO STRUCTURAL STEEL AND CONCRETE

A. Anchor masonry to structural steel and concrete, where masonry abuts or faces structural steel or concrete, to comply with the following:
 1. Provide an open space not less than 2 inches wide between masonry and structural steel or concrete unless otherwise indicated. Keep open space free of mortar and other rigid materials.
 2. Anchor masonry with anchors embedded in masonry joints and attached to structure.
 3. Space anchors as indicated, but not more than 24 inches o.c. vertically and 36 inches o.c. horizontally.

3.10 CONTROL AND EXPANSION JOINTS

A. General:
 1. Install control- and expansion-joint materials in unit masonry as masonry progresses. Do not allow materials to span control and expansion joints without provision to allow for in-plane wall or partition movement.
 2. Comply with NCMA TEK 10-2C or 10-3 standard for the placement of control joint in CMU masonry walls unless otherwise noted below or on Drawings.

B. Form control joints in concrete masonry using one of the following methods:
 1. Fit bond-breaker strips into hollow contour in ends of CMUs on one side of control joint. Fill resultant core with grout and rake out joints in exposed faces for application of sealant.
 2. Install interlocking units designed for control joints. Install bond-breaker strips at joint. Keep head joints free and clear of mortar or rake out joint for application of sealant.
 3. Install temporary foam-plastic filler in head joints and remove filler when unit masonry is complete for application of sealant.

C. Vertical Control Joints
 1. Ensure joints are free from mortar and horizontal reinforcing.
 2. Utilize control joint filler to maintain width and depth of clear joint. Locate to permit proper placement of primary joint sealant and joint backer material.
 3. Locations: Install where indicated in Contract Documents and in accordance with following:
a. At control or expansion joints in structure.
b. At 30 feet on center maximum horizontal run of uninterrupted wall and around corners.
c. At 15 feet on center maximum horizontal run for parapets, balconies, and free-standing walls and at their junctions with walls of other building areas. Extend joints through masonry parapets and from top of parapet down to horizontal expansion joint.
d. Within 10 feet of inside and outside corners on one wall. Provide next vertical control joint around corner on other wall with distance between joints within maximum spacing requirements above.
e. At offsets and setbacks in wall.
f. At changes in thickness, height, or direction of wall.
g. At openings greater than 24 inches wide. Provide for independent movement of loose lintels at vertical control joints by means of slip plane formed of masonry flashing and joint sealant in accordance with recommendations in BIA Technical Note 18A.
h. Where more than one of above conditions occur in area, combine above requirements to minimize number of joints while creating continuous expansion control and visual appearance.
i. Joint Width: 5/8 inch unless otherwise shown on Drawings or required by referenced design standards.

D. Horizontal Expansion Joints: Provide horizontal, pressure-relieving joints by either leaving an airspace or inserting a compressible filler of width required for installing sealant and backer rod specified in Section 079200 "Joint Sealants," but not less than 3/8 inch.

1. Install joint filler in joint underneath shelf angles, beams, slabs, and decks and sealant tape as secondary seal behind primary joint sealant to establish weather barrier at face of assembly
2. Locate horizontal, pressure-relieving joints beneath shelf angles supporting masonry
3. Do not continue horizontal joint reinforcement through control and expansion joints.
4. Install preformed control joint device in continuous lengths. Seal butt and corner joints in accordance with manufacturer's instructions.

3.11 LINTELS

A. Install steel lintels where indicated.

B. Provide concrete or masonry lintels where shown and where openings of more than 12 inches for brick-size units and 24 inches for block-size units are shown without structural steel or other supporting lintels.

C. Provide minimum bearing of 8 inches at each jamb unless otherwise indicated.

3.12 FLASHING, WEEP HOLES, AND CAVITY VENTS

A. General: Install embedded flashing and weep holes in masonry at shelf angles, lintels,
ledges, other obstructions to downward flow of water in wall, and where indicated.

B. Install flashing as follows unless otherwise indicated:

1. Prepare masonry surfaces so they are smooth and free from projections that could puncture flashing. Where flashing is within mortar joint, place through-wall flashing on sloping bed of mortar and cover with mortar. Before covering with mortar, seal penetrations in flashing with adhesive, sealant, or tape.
2. At masonry-veneer walls, extend flashing through veneer, across airspace behind veneer, and up face of sheathing at least 8 inches; with upper edge tucked under air barrier, lapping at least 4 inches.
3. At lintels and shelf angles, extend flashing a minimum of 6 inches into masonry at each end. At heads and sills, extend flashing 6 inches at ends and turn up not less than 2 inches to form end dams.
4. Interlock end joints of ribbed sheet metal flashing by overlapping ribs not less than 1-1/2 inches or as recommended by flashing manufacturer, and seal lap with elastomeric sealant complying with requirements in Section 079200 "Joint Sealants" for application indicated.
5. Install metal drip edges and sealant stops with ribbed sheet metal flashing by interlocking hemmed edges to form hooked seam. Seal seam with elastomeric sealant complying with requirements in Section 079200 "Joint Sealants" for application indicated.

C. Install weep holes in exterior wythes and veneers in head joints of first course of masonry immediately above embedded flashing.

1. Use specified weep/cavity vent products to form weep holes.
2. Use wicking material to form weep holes above flashing under brick sills. Turn wicking down at lip of sill to be as inconspicuous as possible.
3. Space weep holes formed from plastic tubing or wicking material 16 inches o.c.
4. Cover cavity side of weep holes with plastic insect screening at cavities insulated with loose-fill insulation.
5. Trim wicking material flush with outside face of wall after mortar has set.

D. Place cavity drainage material in cavities to comply with configuration requirements for cavity drainage material in "Miscellaneous Masonry Accessories" Article.

3.13 REINFORCED UNIT MASONRY

A. Temporary Formwork and Shores: Construct formwork and shores as needed to support reinforced masonry elements during construction.

1. Construct formwork to provide shape, line, and dimensions of completed masonry as indicated. Make forms sufficiently tight to prevent leakage of mortar and grout. Brace, tie, and support forms to maintain position and shape during construction and curing of reinforced masonry.
2. Do not remove forms and shores until reinforced masonry members have hardened sufficiently to carry their own weight and that of other loads that may be placed on them during construction.
B. Placing Reinforcement: Comply with requirements in TMS 602/ACI 530.1/ASCE 6.

C. Grouting: Do not place grout until entire height of masonry to be grouted has attained enough strength to resist grout pressure.
 1. Comply with requirements in TMS 602/ACI 530.1/ASCE 6 for cleanouts and for grout placement, including minimum grout space and maximum pour height.
 2. Limit height of vertical grout pours to not more than 60 inches.

3.14 GROUTING

A. Grouting: Do not place grout until entire height of masonry to be grouted has attained enough strength to resist grout pressure.
 1. Comply with requirements in TMS 602/ACI 530.1/ASCE 6 for cleanouts and for grout placement, including minimum grout space and maximum pour height.
 2. Limit height of vertical grout pours to not more than 60 inches.

B. Placing and Grouting Vertical Reinforcing at Engineered Masonry: Comply with ACI 530.1 and NCMA TEK 3.2 – Grouting Concrete Masonry Walls.
 1. Steel Reinforcing Bars (vertical): Space and size reinforcing steel to support loads imposed.
 2. Secure each successive length of reinforcing steel to previous length with bar positioners. Overlap length of successive reinforcing steel sufficiently to support loads without deflection. Comply with installation tolerances established by ACI Specifications.

3.15 FIELD QUALITY CONTROL

A. Testing and Inspecting: Engage special inspectors to perform tests and inspections and prepare reports. Allow inspectors access to scaffolding and work areas as needed to perform tests and inspections. Retesting of materials that fail to comply with specified requirements shall be done at Contractor's expense.

B. Mortar Aggregate Ratio Test (Proportion Specification): For each mix provided, according to ASTM C780.

C. Mortar Test (Property Specification): For each mix provided, according to ASTM C780. Test mortar for mortar air content and compressive strength.

D. Grout Test (Compressive Strength): For each mix provided, according to ASTM C1019.

3.16 REPAIRING, POINTING, AND CLEANING

A. Remove and replace masonry units that are loose, chipped, broken, stained, or otherwise damaged or that do not match adjoining units. Install new units to match adjoining units; install in fresh mortar, pointed to eliminate evidence of replacement.
B. Pointing: During the tooling of joints, enlarge voids and holes, except weep holes, and completely fill with mortar. Point up joints, including corners, openings, and adjacent construction, to provide a neat, uniform appearance. Prepare joints for sealant application, where indicated.

C. In-Progress Cleaning: Clean unit masonry as work progresses by dry brushing to remove mortar fins and smears before tooling joints.

D. Final Cleaning: After mortar is thoroughly set and cured, clean exposed masonry as follows:

1. Remove large mortar particles by hand with wooden paddles and nonmetallic scrape hoes or chisels.
2. Test cleaning methods on sample wall panel; leave one-half of panel uncleaned for comparison purposes. Obtain Architect's approval of sample cleaning before proceeding with cleaning of masonry.
3. Protect adjacent stone and non-masonry surfaces from contact with cleaner by covering them with liquid strippable masking agent or polyethylene film and waterproof masking tape.
4. Wet wall surfaces with water before applying cleaners; remove cleaners promptly by rinsing surfaces thoroughly with clear water.
6. Clean concrete masonry by applicable cleaning methods indicated in NCMA TEK 8-4A.
7. Clean masonry with a proprietary acidic cleaner applied according to manufacturer's written instructions.

END OF SECTION
SECTION 051200
STRUCTURAL STEEL FRAMING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary
 Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Structural steel.
 2. Shear stud connectors.
 3. Shrinkage-resistant grout.

B. Related Requirements:
 1. Section 053100 – "Steel Decking" for field installation of shear stud connectors
 through deck.
 2. Section 052100 – “Steel Joist Framing”.
 3. Section 055113 – "Metal Pan Stairs".

C. Structural Steel: Elements of the structural frame indicated on Drawings and as described
 in ANSI/AISC 303.

1.3 COORDINATION

A. Coordinate selection of shop primers with topcoats to be applied over them. Comply with
 paint and coating manufacturers' written recommendations to ensure that shop primers
 and topcoats are compatible with one another.

B. Coordinate installation of anchorage items to be embedded in or attached to other
 construction without delaying the Work. Provide setting diagrams, sheet metal templates,
 instructions, and directions for installation.

1.4 PREINSTALLATION MEETINGS

A. Preinstallation Conference: Conduct conference at Project site.

1.5 ACTION SUBMITTALS

A. Product Data:
2. High-strength, bolt-nut-washer assemblies.
3. Shear stud connectors.
4. Anchor rods.
5. Threaded rods.
8. Shrinkage-resistant grout.

B. Shop Drawings: Show fabrication of structural-steel components.
 1. Include details of cuts, connections, splices, camber, holes, and other pertinent data.
 2. Include embedment Drawings.
 3. Indicate welds by standard AWS symbols, distinguishing between shop and field welds, and show size, length, and type of each weld. Show backing bars that are to be removed and supplemental fillet welds where backing bars are to remain.
 4. Indicate type, size, and length of bolts, distinguishing between shop and field bolts. Identify pretensioned and slip-critical, high-strength bolted connections.
 5. Identify members not to be shop primed.

C. Delegated-Design Submittal: For structural-steel connections indicated on Drawings to comply with design loads, include analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

1.6 INFORMATIONAL SUBMITTALS
A. Qualification Data: For: Installer, fabricator, professional engineer, testing agency.
B. Welding certificates.
C. Mill test reports for structural-steel materials, including chemical and physical properties.
D. Product Test Reports: For the following:
 1. Bolts, nuts, and washers, including mechanical properties and chemical analysis.
 2. Direct-tension indicators.
 3. Tension-control, high-strength, bolt-nut-washer assemblies.
 4. Shear stud connectors.
E. Source quality-control reports.
F. Field quality-control reports.

1.7 QUALITY ASSURANCE
A. Fabricator Qualifications: A qualified fabricator that participates in the AISC Quality Certification Program and is designated an AISC-Certified Plant, Category BU or is
accredited by the IAS Fabricator Inspection Program for Structural Steel (Acceptance Criteria 172).

B. Installer Qualifications: A qualified Installer who participates in the AISC Quality Certification Program and is designated an AISC-Certified Erector, Category ACSE Category CSE.

C. Welding Qualifications: Qualify procedures and personnel in accordance with AWS D1.1/D1.1M.

1. Welders and welding operators performing work on bottom-flange, demand-critical welds shall pass the supplemental welder qualification testing, as required by AWS D1.8/D1.8M. FCAW-S and FCAW-G shall be considered separate processes for welding personnel qualification.

1.8 DELIVERY, STORAGE, AND HANDLING

A. Store materials to permit easy access for inspection and identification. Keep steel members off ground and spaced by using pallets, dunnage, or other supports and spacers. Protect steel members and packaged materials from corrosion and deterioration.

1. Do not store materials on structure in a manner that might cause distortion, damage, or overload to members or supporting structures. Repair or replace damaged materials or structures as directed.

B. Store fasteners in a protected place in sealed containers with manufacturer's labels intact.

1. Fasteners may be repackaged provided Owner's testing and inspecting agency observes repackaging and seals containers.
2. Clean and relubricate bolts and nuts that become dry or rusty before use.
3. Comply with manufacturers' written recommendations for cleaning and lubricating ASTM F3125/F3125M, Grade F1852 bolt assemblies and for retesting bolt assemblies after lubrication.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Comply with applicable provisions of the following specifications and documents:

1. ANSI/AISC 303.
2. ANSI/AISC 341.
3. ANSI/AISC 360.

B. Connection Design Information:
1. Option 3 and 3B: Design connections and final determination/configuration of member reinforcement at connections in accordance with ANSI/AISC 303 by fabricator's qualified professional engineer.
 a. Use Allowable Stress Design; data are given at service-load level.

C. Moment Connections: Type PR, partially and Type FR, fully restrained.

D. Construction: Combined system of moment frame and shear walls.

2.2 STRUCTURAL-STEEL MATERIALS

A. W-Shapes: ASTM A992/A992M, Grade 50.

B. Channels, Angles: ASTM A36/A36M.

C. Plate and Bar: ASTM A36/A36M.

D. Cold-Formed Hollow Structural Sections: ASTM A500/A500M, Grade B structural tubing.

E. Steel Pipe: ASTM A53/A53M, Type E or Type S, Grade B.
 1. Weight Class: Standard.
 2. Finish: Black except where indicated to be galvanized.

F. Welding Electrodes: Comply with AWS requirements.

2.3 BOLTS AND CONNECTORS

A. High-Strength A325 Bolts, Nuts, and Washers: ASTM F3125/F3125M, Grade A325, Type 1, heavy-hex steel structural bolts; ASTM A563, Grade DH, heavy-hex carbon-steel nuts; and ASTM F436/F436M, Type 1, hardened carbon-steel washers; all with plain finish.
 1. Direct-Tension Indicators: ASTM F959/F959M, Type 325-1, compressible-washer type with plain finish.

B. Tension-Control, High-Strength Bolt-Nut-Washer Assemblies: ASTM F3125/F3125M, Grade F1852, Type 1, round head assemblies, consisting of steel structural bolts with splined ends; ASTM A563, Grade DH, heavy-hex carbon-steel nuts; and ASTM F436/F436M, Type 1, hardened carbon-steel washers.
 1. Finish: Plain.

C. Shear Stud Connectors: ASTM A108, AISI C-1015 through C-1020, headed-stud type, cold-finished carbon steel; AWS D1.1/D1.1M, Type B.
2.4 RODS

A. Headed Anchor Rods: ASTM F1554, Grade 36, straight.
 3. Washers: ASTM F436, Type 1, hardened carbon steel.

 2. Washers: ASTM F436, Type 1, hardened carbon steel.
 3. Finish: Plain.

2.5 PRIMER

A. Steel Primer:
 1. Fabricator's standard lead- and chromate-free, nonasphaltic, rust-inhibiting primer complying with MPI#79 and compatible with topcoat.

2.6 SHRINKAGE-RESISTANT GROUT

A. Nonmetallic, Shrinkage-Resistant Grout: ASTM C1107/C1107M, factory-packaged, nonmetallic aggregate grout, noncorrosive and nonstaining, mixed with water to consistency suitable for application and a 30-minute working time.

2.7 FABRICATION

A. Structural Steel: Fabricate and assemble in shop to greatest extent possible. Fabricate in accordance with ANSI/AISC 303 and to ANSI/AISC 360.
 1. Camber structural-steel members where indicated.
 2. Fabricate beams with rolling camber up.
 3. Identify high-strength structural steel in accordance with ASTM A6/A6M and maintain markings until structural-steel framing has been erected.
 4. Mark and match-mark materials for field assembly.
 5. Complete structural-steel assemblies, including welding of units, before starting shop-priming operations.

B. Thermal Cutting: Perform thermal cutting by machine to greatest extent possible.
 1. Plane thermally cut edges to be welded to comply with requirements in AWS D1.1/D1.1M.

C. Bolt Holes: Cut, drill, or punch standard bolt holes perpendicular to metal surfaces.
D. Finishing: Accurately finish ends of columns and other members transmitting bearing loads.

E. Cleaning: Clean and prepare steel surfaces that are to remain unpainted in accordance with SSPC-SP 1.

F. Shear Stud Connectors: Prepare steel surfaces as recommended by manufacturer of shear connectors. Weld using automatic end welding of headed-stud shear connectors in accordance with AWS D1.1/D1.1M and manufacturer's written instructions.

G. Holes: Provide holes required for securing other work to structural steel and for other work to pass through steel members.
 1. Cut, drill, or punch holes perpendicular to steel surfaces. Do not thermally cut bolt holes or enlarge holes by burning.
 2. Baseplate Holes: Cut, drill, mechanically thermal cut, or punch holes perpendicular to steel surfaces.
 3. Weld threaded nuts to framing and other specialty items indicated to receive other work.

2.8 SHOP CONNECTIONS

A. High-Strength Bolts: Shop install high-strength bolts in accordance with RCSC's "Specification for Structural Joints Using High-Strength Bolts" for type of bolt and type of joint specified.
 1. Joint Type: Snug tightened and Slip critical as indicated.

B. Weld Connections: Comply with AWS D1.1/D1.1M for tolerances, appearances, welding procedure specifications, weld quality, and methods used in correcting welding work.
 1. Assemble and weld built-up sections by methods that maintain true alignment of axes without exceeding tolerances in ANSI/AISC 303 for mill material.

2.9 GALVANIZING

A. Hot-Dip Galvanized Finish: Apply zinc coating by the hot-dip process to structural steel in accordance with ASTM A123/A123M.
 1. Fill vent and drain holes that are exposed in the finished Work unless they function as weep holes, by plugging with zinc solder and filing off smooth.
 2. Galvanize lintels and shelf angles attached to structural-steel frame and located in exterior walls.

2.10 SHOP PRIMING

A. Shop prime steel surfaces, except the following:
1. Surfaces embedded in concrete or mortar. Extend priming of partially embedded members to a depth of 2 inches.
2. Surfaces to be field welded.
4. Surfaces to receive sprayed fire-resistive materials (applied fireproofing).
5. Galvanized surfaces.

B. Surface Preparation of Steel: Clean surfaces to be painted. Remove loose rust and mill scale and spatter, slag, or flux deposits. Prepare surfaces in accordance with the following specifications and standards:

1. SSPC-SP 2.
2. SSPC-SP 3.

C. Priming: Immediately after surface preparation, apply primer in accordance with manufacturer's written instructions and at rate recommended by SSPC to provide a minimum dry film thickness of 1.5 mils. Use priming methods that result in full coverage of joints, corners, edges, and exposed surfaces.

1. Stripe paint corners, crevices, bolts, welds, and sharp edges.
2. Apply two coats of shop paint to surfaces that are inaccessible after assembly or erection. Change color of second coat to distinguish it from first.

2.11 SOURCE QUALITY CONTROL

A. Testing Agency: Owner will engage a qualified testing agency to perform shop tests and inspections.

1. Allow testing agency access to places where structural-steel work is being fabricated or produced to perform tests and inspections.
3. Welded Connections: Visually inspect shop-welded connections in accordance with AWS D1.1/D1.1M and the following inspection procedures, at testing agency's option:
 a. Liquid Penetrant Inspection: ASTM E165/E165M.
 b. Magnetic Particle Inspection: ASTM E709; performed on root pass and on finished weld. Cracks or zones of incomplete fusion or penetration are not accepted.
 c. Ultrasonic Inspection: ASTM E164.
 d. Radiographic Inspection: ASTM E94/E94M.

4. In addition to visual inspection, test and inspect shop-welded shear stud connectors in accordance with requirements in AWS D1.1/D1.1M for stud welding and as follows:
a. Perform bend tests if visual inspections reveal either a less-than-continuous 360-degree flash or welding repairs to any shear stud connector.
b. Conduct tests in accordance with requirements in AWS D1.1/D1.1M on additional shear stud connectors if weld fracture occurs on shear stud connectors already tested.

5. Prepare test and inspection reports.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Verify, with certified steel erector present, elevations of concrete- and masonry-bearing surfaces and locations of anchor rods, bearing plates, and other embedments for compliance with requirements.

1. Prepare a certified survey of existing conditions. Include bearing surfaces, anchor rods, bearing plates, and other embedments showing dimensions, locations, angles, and elevations.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Provide temporary shores, guys, braces, and other supports during erection to keep structural steel secure, plumb, and in alignment against temporary construction loads and loads equal in intensity to design loads. Remove temporary supports when permanent structural steel, connections, and bracing are in place unless otherwise indicated on Drawings.

1. Do not remove temporary shoring supporting composite deck construction and structural-steel framing until cast-in-place concrete has attained its design compressive strength.

3.3 ERECTION

A. Set structural steel accurately in locations and to elevations indicated and in accordance with ANSI/AISC 303 and ANSI/AISC 360.

1. Set plates for structural members on wedges, shims, or setting nuts as required.
2. Weld plate washers to top of baseplate.
3. Snug-tighten Pretension anchor rods after supported members have been positioned and plumbed. Do not remove wedges or shims but, if protruding, cut off flush with edge of plate before packing with grout.

4. Promptly pack shrinkage-resistant grout solidly between bearing surfaces and plates, so no voids remain. Neatly finish exposed surfaces; protect grout and allow to cure. Comply with manufacturer's written installation instructions for grouting.

C. Maintain erection tolerances of structural steel within ANSI/AISC 303.

D. Align and adjust various members that form part of complete frame or structure before permanently fastening. Before assembly, clean bearing surfaces and other surfaces that are in permanent contact with members. Perform necessary adjustments to compensate for discrepancies in elevations and alignment.

1. Level and plumb individual members of structure. Slope roof framing members to slopes indicated on Drawings.

2. Make allowances for difference between temperature at time of erection and mean temperature when structure is completed and in service.

E. Splice members only where indicated.

F. Do not use thermal cutting during erection unless approved by Architect.

G. Do not enlarge unfair holes in members by burning or using drift pins. Ream holes that must be enlarged to admit bolts.

3.4 FIELD CONNECTIONS

A. High-Strength Bolts: Install high-strength bolts in accordance with RCSC's "Specification for Structural Joints Using High-Strength Bolts" for bolt and joint type specified.

1. Joint Type: Snug tightened and Slip critical.

B. Weld Connections: Comply with AWS D1.1/D1.1M for tolerances, appearances, welding procedure specifications, weld quality, and methods used in correcting welding work.

2. Remove backing bars or runoff tabs where indicated, back gouge, and grind steel smooth.

3. Assemble and weld built-up sections by methods that maintain true alignment of axes without exceeding tolerances in ANSI/AISC 303 for mill material.
3.5 REPAIR

A. Galvanized Surfaces: Clean areas where galvanizing is damaged or missing, and repair galvanizing to comply with ASTM A780/A780M.

B. Touchup Painting:

1. Immediately after erection, clean exposed areas where primer is damaged or missing, and paint with the same material as used for shop painting to comply with SSPC-PA 1 for touching up shop-painted surfaces.
 a. Clean and prepare surfaces by SSPC-SP 2 hand-tool cleaning or SSPC-SP 3 power-tool cleaning.

C. Touchup Priming: Cleaning and touchup priming are specified in Section 099600 "High-Performance Coatings."

3.6 FIELD QUALITY CONTROL

A. Special Inspections: Owner will engage a special inspector to perform the following special inspections:

1. Verify structural-steel materials and inspect steel frame joint details.
2. Verify weld materials and inspect welds.
3. Verify connection materials and inspect high-strength bolted connections.

B. Testing Agency: Owner will engage a qualified testing agency to perform tests and inspections.

2. Welded Connections: Visually inspect field welds in accordance with AWS D1.1/D1.1M.

 a. In addition to visual inspection, test and inspect field welds in accordance with AWS D1.1/D1.1M and the following inspection procedures, at testing agency's option:

 1) Liquid Penetrant Inspection: ASTM E165/E165M.
 2) Magnetic Particle Inspection: ASTM E709; performed on root pass and on finished weld. Cracks or zones of incomplete fusion or penetration are not accepted.
 3) Ultrasonic Inspection: ASTM E164.
 4) Radiographic Inspection: ASTM E94/E94M.

END OF SECTION
SECTION 053100
STEEL DECKING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Roof deck.
 2. Composite floor deck.
B. Related Requirements:
 1. Section 033000 "Cast-in-Place Concrete" for normal-weight and lightweight structural concrete fill over steel deck.
 2. Section 051200 "Structural Steel Framing" for shop- and field-welded shear connectors.
 3. Section 055000 "Metal Fabrications" for framing deck openings with miscellaneous steel shapes.
 5. Section 099123 "Interior Painting" for repair painting of primed deck and finish painting of deck.

1.3 ACTION SUBMITTALS
A. Product Data: For the following:
 1. Roof deck.
 2. Composite floor deck.
B. Shop Drawings:
 1. Include layout and types of deck panels, anchorage details, reinforcing channels, pans, cut deck openings, special jointing, accessories, and attachments to other construction.

1.4 INFORMATIONAL SUBMITTALS
A. Welding certificates.
B. Product Certificates: For each type of steel deck.

C. Product Test Reports: For tests performed by a qualified testing agency, indicating that each of the following complies with requirements:
 1. Power-actuated mechanical fasteners.
 2. Acoustical roof deck.

D. Research Reports: For steel deck, from ICC-ES.

E. Field quality-control reports.

1.5 QUALITY ASSURANCE

A. Testing Agency Qualifications: Qualified according to ASTM E329 for testing indicated.

C. FM Approvals' RoofNav Listing: Provide steel roof deck evaluated by FM Approvals and listed in its RoofNav for Class 1 fire rating and Class 1-90 windstorm ratings. Identify materials with FM Approvals Certification markings.

1.6 DELIVERY, STORAGE, AND HANDLING

A. Protect steel deck from corrosion, deformation, and other damage during delivery, storage, and handling.

B. Stack steel deck on platforms or pallets and slope to provide drainage. Protect with a waterproof covering and ventilate to avoid condensation.
 1. Protect and ventilate acoustical cellular roof deck with factory-installed insulation to maintain insulation free of moisture.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. AISI Specifications: Comply with calculated structural characteristics of steel deck according to AISI's "North American Specification for the Design of Cold-Formed Steel Structural Members."

B. Fire-Resistance Ratings: Comply with ASTM E119; testing by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.
 1. Indicate design designations from UL's "Fire Resistance Directory" or from the listings of another qualified testing agency.
2.2 ROOF DECK

A. Roof Deck: Fabricate panels, without top-flange stiffening grooves, to comply with "SDI Specifications and Commentary for Steel Roof Deck," in SDI Publication No. 31, and with the following:

1. Galvanized-Steel Sheet: ASTM A653/A653M, Structural Steel (SS), Grade 33G60 zinc coating.
2. Deck Profile: Type WR, wide rib.
3. Profile Depth: As indicated.
4. Design Uncoated-Steel Thickness: As indicated.
5. Span Condition: Triple span or more.

2.3 COMPOSITE FLOOR DECK

A. Composite Floor Deck: Fabricate panels, with integrally embossed or raised pattern ribs and interlocking side laps, to comply with "SDI Specifications and Commentary for Composite Steel Floor Deck," in SDI Publication No. 31, with the minimum section properties indicated, and with the following:

1. Prime-Painted Steel Sheet: ASTM A1008/A1008M, Structural Steel (SS), Grade 33 Grade 40 Grade 80 minimum, with top surface phosphatized and unpainted and underside surface shop primed with manufacturers' standard gray or white baked-on, rust-inhibitive primer.
2. Galvanized-Steel Sheet: ASTM A653/A653M, Structural Steel (SS), Grade 33, G30 G60 G90 zinc coating.
3. Galvanized and Shop-Primed Steel Sheet: ASTM A653/A653M, Structural Steel (SS), Grade 33, G30 G60 zinc coating; with unpainted top surface and cleaned and pretreated bottom surface primed with manufacturer's standard gray white baked-on, rust-inhibitive primer.
4. Profile Depth: 1-1/2 inches 2 inches 3 inches as indicated.
5. Design Uncoated-Steel Thickness: 0.0295-inch 0.0358-inch 0.0474 inch 0.0598 inch.
6. Span Condition: As indicated Simple span Double span Triple span or more.

2.4 ACCESSORIES

A. Provide manufacturer's standard accessory materials for deck that comply with requirements indicated.

B. Mechanical Fasteners: Corrosion-resistant, low-velocity, power-actuated or pneumatically driven carbon-steel fasteners; or self-drilling, self-threading screws.

C. Side-Lap Fasteners: Corrosion-resistant, hexagonal washer head; self-drilling, carbon-steel screws, No. 10 minimum diameter.

D. Flexible Closure Strips: Vulcanized, closed-cell, synthetic rubber.
E. Miscellaneous Sheet Metal Deck Accessories: Steel sheet, minimum yield strength of 33,000 psi, not less than 0.0359-inch design uncoated thickness, of same material and finish as deck; of profile indicated or required for application.

F. Pour Stops and Girder Fillers: Steel sheet, minimum yield strength of 33,000 psi, of same material and finish as deck, and of thickness and profile recommended by SDI Publication No. 31 for overhang and slab depth.

G. Column Closures, End Closures, Z-Closures, and Cover Plates: Steel sheet, of same material, finish, and thickness as deck unless otherwise indicated.

H. Piercing Hanger Tabs: Piercing steel sheet hanger attachment devices for use with floor deck.

I. Weld Washers: Uncoated steel sheet, shaped to fit deck rib, 0.0598 inch 0.0747-inch-thick, with factory-punched hole of 3/8-inch minimum diameter.

J. Flat Sump Plates: Single-piece steel sheet, 0.0747-inch-thick, of same material and finish as deck. For drains, cut holes in the field.

K. Recessed Sump Pans: Single-piece steel sheet, 0.0747-inch-thick, of same material and finish as deck, with 3-inch-wide flanges and level sloped recessed pans of 1-1/2-inch minimum depth. For drains, cut holes in the field.

L. Galvanizing Repair Paint: ASTM A780/A780M SSPC-Paint 20 or MIL-P-21035B, with dry film containing a minimum of 94 percent zinc dust by weight.

M. Repair Paint: Manufacturer's standard rust-inhibitive primer of same color as primer.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine supporting frame and field conditions for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION, GENERAL

A. Install deck panels and accessories according to applicable specifications and commentary in SDI Publication No. 31, manufacturer's written instructions, and requirements in this Section.

B. Install temporary shoring before placing deck panels if required to meet deflection limitations.

C. Locate deck bundles to prevent overloading of supporting members.
D. Place deck panels on supporting frame and adjust to final position with ends accurately aligned and bearing on supporting frame before being permanently fastened. Do not stretch or contract side-lap interlocks.

E. Place deck panels flat and square and fasten to supporting frame without warp or deflection.

F. Cut and neatly fit deck panels and accessories around openings and other work projecting through or adjacent to deck.

G. Provide additional reinforcement and closure pieces at openings as required for strength, continuity of deck, and support of other work.

H. Comply with AWS requirements and procedures for manual shielded metal arc welding, appearance and quality of welds, and methods used for correcting welding work.

I. Mechanical fasteners may be used in lieu of welding to fasten deck. Locate mechanical fasteners and install according to deck manufacturer's written instructions.

3.3 INSTALLATION OF ROOF DECK

A. Fasten roof-deck panels to steel supporting members by arc spot (puddle) welds of the surface diameter indicated or arc seam welds with an equal perimeter that is not less than 1-1/2 inches long, and as follows:

2. Weld Spacing: Weld edge and interior ribs of deck units with a minimum of two welds per deck unit at each support. Space welds as indicated.

B. Side-Lap and Perimeter Edge Fastening: Fasten side laps and perimeter edges of panels between supports, at intervals not exceeding the lesser of one-half of the span or 18 inches, and as follows:

1. Mechanically fasten with self-drilling, No. 10 diameter or larger, carbon-steel screws.

C. End Bearing: Install deck ends over supporting frame with a minimum end bearing of 1-1/2 inches, with end joints as follows:

1. End Joints: Lapped 2 inches minimum or butted at Contractor's option.

D. Roof Sump Pans and Sump Plates: Install over openings provided in roof deck and mechanically fasten flanges to top of deck. Space mechanical fasteners not more than 12 inches apart with at least one fastener at each corner.

1. Install reinforcing channels or zees in ribs to span between supports and weld or mechanically fasten.
E. Miscellaneous Roof-Deck Accessories: Install ridge and valley plates, finish strips, end closures, and reinforcing channels according to deck manufacturer's written instructions. Weld or mechanically fasten to substrate to provide a complete deck installation.

1. Weld cover plates at changes in direction of roof-deck panels unless otherwise indicated.

F. Flexible Closure Strips: Install flexible closure strips over partitions, walls, and where indicated. Install with adhesive according to manufacturer's written instructions to ensure complete closure.

3.4 INSTALLATION OF FLOOR DECK

A. Fasten floor-deck panels to steel supporting members by arc spot (puddle) welds of the surface diameter indicated and as follows:

2. Weld Spacing: Space and locate welds as indicated.

B. Side-Lap and Perimeter Edge Fastening: Fasten side laps and perimeter edges of panels between supports, at intervals not exceeding the lesser of one-half of the span or 36 inches, and as follows:

1. Mechanically fasten with self-drilling, No. 10 diameter or larger, carbon-steel screws.
2. Mechanically clinch or button punch.

C. End Bearing: Install deck ends over supporting frame with a minimum end bearing of 1-1/2 inches, with end joints as follows:

1. End Joints: Lapped or butted at Contractor's option.

D. Pour Stops and Girder Fillers: Weld steel sheet pour stops and girder fillers to supporting structure according to SDI recommendations unless otherwise indicated.

E. Floor-Deck Closures: Weld steel sheet column closures, cell closures, and Z-closures to deck, according to SDI recommendations, to provide tight-fitting closures at open ends of ribs and sides of deck.

F. Install piercing hanger tabs at 14 inches apart in both directions, within 9 inches of walls at ends, and not more than 12 inches from walls at sides unless otherwise indicated.

3.5 REPAIR

A. Galvanizing Repairs: Prepare and repair damaged galvanized coatings on both surfaces of deck with galvanized repair paint according to ASTM A780/A780M and manufacturer's written instructions.
3.6 FIELD QUALITY CONTROL

A. Testing Agency: Owner will engage a qualified testing agency to perform tests and inspections.

B. Field welds will be subject to inspection.

C. Prepare test and inspection reports.

END OF SECTION
SECTION 054000
COLD-FORMED METAL FRAMING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Exterior non-load-bearing wall framing.
 2. Interior non-load-bearing wall framing.
 3. Roof rafter framing.
 4. Ceiling joist framing.
 5. Soffit framing.

B. Related Requirements:
 1. Section 055000 "Metal Fabrications" for miscellaneous steel shapes, masonry shelf angles, and connections used with cold-formed metal framing.
 2. Section 092216 "Non-Structural Metal Framing" for standard, interior non-loadbearing, metal-stud framing, with height limitations and ceiling-suspension assemblies.

1.3 PREINSTALLATION MEETINGS

A. Preinstallation Conference: Conduct conference at Project site.

1.4 ACTION SUBMITTALS

A. Product Data: For the following:
 1. Cold-formed steel framing materials.
 2. Load-bearing wall framing.
 4. Interior non-load-bearing wall framing.
 5. Vertical deflection clips.
 7. Double deflection track.
 8. Drift clips.
 9. Roof-rafter framing.
 10. Ceiling joist framing.
11. Soffit framing.
15. Sill sealer gasket/termite barrier.

B. Shop Drawings:
 1. Include layout, spacings, sizes, thicknesses, and types of cold-formed steel framing; fabrication; and fastening and anchorage details, including mechanical fasteners.
 2. Indicate reinforcing channels, opening framing, supplemental framing, strapping, bracing, bridging, splices, accessories, connection details, and attachment to adjoining work.

C. Delegated-Design Submittal: For cold-formed steel framing.

1.5 INFORMATIONAL SUBMITTALS

A. Qualification Data: For testing agency.

B. Welding certificates.

C. Product Certificates: For each type of code-compliance certification for studs and tracks.

D. Product Test Reports: For each listed product, for tests performed by manufacturer and witnessed by a qualified testing agency.

 1. Steel sheet.
 2. Expansion anchors.
 4. Mechanical fasteners.
 5. Vertical deflection clips.
 6. Horizontal drift deflection clips
 7. Miscellaneous structural clips and accessories.

E. Research Reports:

 1. For nonstandard cold-formed steel framing post-installed anchors and power-actuated fasteners, from ICC-ES or other qualified testing agency acceptable to authorities having jurisdiction.
 2. For sill sealer gasket/termite barrier, showing compliance with ICC-ES AC380.

1.6 QUALITY ASSURANCE

A. Testing Agency Qualifications: Qualified according to ASTM E329 for testing indicated.

B. Product Tests: Mill certificates or data from a qualified independent testing agency, or in-house testing with calibrated test equipment, indicating steel sheet complies with
requirements, including base-metal thickness, yield strength, tensile strength, total elongation, chemical requirements, and metallic-coating thickness.

C. Code-Compliance Certification of Studs and Tracks: Provide documentation that framing members are certified according to the product-certification program of the Certified Steel Stud Association the Steel Framing Industry Association or the Steel Stud Manufacturers Association.

D. Welding Qualifications: Qualify procedures and personnel according to the following:

1. AWS D1.1/D1.1M, "Structural Welding Code - Steel."

E. Comply with AISI S230 "Standard for Cold-Formed Steel Framing - Prescriptive Method for One- and Two-Family Dwellings."

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. ClarkDietrich.
2. MarinoWARE.
4. SCAFCO Steel Stud Company.

2.2 PERFORMANCE REQUIREMENTS

A. Delegated Design: Engage a qualified professional engineer, as defined in Section 014000 "Quality Requirements," to design cold-formed steel framing.

B. Structural Performance: Provide cold-formed steel framing capable of withstanding design loads within limits and under conditions indicated.

1. Design Loads: As indicated on Drawings.
2. Deflection Limits: Design framing systems to withstand design loads without deflections greater than the following:

 a. Exterior Non-Load-Bearing Wall Framing: Horizontal deflection of 1/600 for masonry backup and 1/360 of the wall height otherwise.
 b. Interior Non-Load-Bearing Wall Framing: Horizontal deflection of 1/360 of the wall height under a horizontal load of 5 lbf/sq. ft.
 c. Roof Rafter Framing: Vertical deflection of 1/240 of the horizontally projected span for live loads.
 d. Ceiling Joist Framing: Vertical deflection of 1/360 of the span for live loads and 1/240 for total loads of the span.
3. Design framing systems to provide for movement of framing members located outside the insulated building envelope without damage or overstressing, sheathing failure, connection failure, undue strain on fasteners and anchors, or other detrimental effects when subject to a maximum ambient temperature change of 120 deg F.

4. Design framing system to maintain clearances at openings, to allow for construction tolerances, and to accommodate live load deflection of primary building structure as follows:

5. Design exterior non-load-bearing wall framing to accommodate horizontal deflection without regard for contribution of sheathing materials.

C. Cold-Formed Steel Framing Standards: Unless more stringent requirements are indicated, framing shall comply with AISI S100, AISI S200, and the following:

2. Wall Studs: AISI S211.
3. Headers: AISI S212.

D. Fire-Resistance Ratings: Comply with ASTM E119; testing by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.

1. Indicate design designations from UL's "Fire Resistance Directory" or from the listings of another qualified testing agency acceptable to authorities having jurisdiction.

2.3 COLD-FORMED STEEL FRAMING MATERIALS

A. Steel Sheet: ASTM A1003/A1003M, Structural Grade, Type H, metallic coated, of grade and coating designation as follows:

1. Grade: As required by structural performance.
2. Coating: G60.

B. Steel Sheet for Vertical Deflection, Drift Clips: ASTM A653/A653M, structural steel, zinc coated, of grade and coating as follows:

1. Grade: As required by structural performance.
2. Coating: G60 G90 <Insert coating designation>.

2.4 EXTERIOR NON-LOAD-BEARING WALL FRAMING

A. Steel Studs: Manufacturer's standard C-shaped steel studs, of web depths indicated, punched, with stiffened flanges, and as follows:
1. **Minimum Base-Metal Thickness:** 0.0538 inch.
2. **Minimum flange Width:** 1-5/8 inches.

B. Steel Track: Manufacturer's standard U-shaped steel track, of web depths indicated, unpunched, with unstiffened flanges, and as follows:

1. **Minimum Base-Metal Thickness:** 0.0428 inch.
2. **Minimum flange Width:** 1-1/4 inches.

C. Vertical Deflection Clips: Manufacturer's standard bypass, head clips, capable of accommodating upward and downward vertical displacement of primary structure through positive mechanical attachment to stud web.

D. Single Deflection Track: Manufacturer's single, deep-leg, U-shaped steel track; unpunched, with unstiffened flanges, of web depth to contain studs while allowing free vertical movement, with flanges designed to support horizontal loads and transfer them to the primary structure, and as follows:

1. **Minimum Base-Metal Thickness:** 0.0428 inch.
2. **Flange Width:** 1 inch plus the design gap for one-story structures and 1 inch plus twice the design gap for other applications.

E. Double Deflection Tracks: Manufacturer's double, deep-leg, U-shaped steel tracks, consisting of nested inner and outer tracks; unpunched, with unstiffened flanges.

1. **Outer Track:** Of web depth to allow free vertical movement of inner track, with flanges designed to support horizontal loads and transfer them to the primary structure, and as follows:
 a. **Minimum Base-Metal Thickness:** 0.0428 inch.
 b. **Flange Width:** 1 inch plus the design gap for one-story structures and 1 inch plus twice the design gap for other applications.

2. **Inner Track:** Of web depth indicated, and as follows:
 a. **Minimum Base-Metal Thickness:** 0.0428 inch.
 b. **Flange Width:** equal to sum of outer deflection track flange width plus 1 inch.

F. Drift Clips: Manufacturer's standard bypass or head clips, capable of isolating wall stud from upward and downward vertical displacement and lateral drift of primary structure through positive mechanical attachment to stud web and structure.

2.5 **INTERIOR NON-LOAD-BEARING WALL FRAMING**

A. Steel Studs: Manufacturer's standard C-shaped steel studs, of web depths indicated, punched, with stiffened flanges, and as follows:

1. **Minimum Base-Metal Thickness:** 0.0329 inch.

B. Steel Track: Manufacturer's standard U-shaped steel track, of web depths indicated, unpunched, with unstiffened flanges, and as follows:
 1. Minimum Base-Metal Thickness: 0.0329 inch.

C. Vertical Deflection Clips: Manufacturer's standard bypass, head clips, capable of accommodating upward and downward vertical displacement of primary structure through positive mechanical attachment to stud web.

D. Drift Clips: Manufacturer's standard bypass or head clips, capable of isolating wall stud from upward and downward vertical displacement and lateral drift of primary structure through positive mechanical attachment to stud web and structure.

2.6 ROOF-RAFTER FRAMING

A. Steel Rafters: Manufacturer's standard C-shaped steel sections, of web depths indicated, with stiffened flanges, and as follows:
 1. Minimum Base-Metal Thickness: 0.0428 inch.

2.7 CEILING JOIST FRAMING

A. Steel Ceiling Joists: Manufacturer's standard C-shaped steel sections, of web depths indicated, unpunched, punched with standard holes, punched with enlarged service holes, with stiffened flanges, and as follows:
 1. Minimum Base-Metal Thickness: 0.0329 inch.

2.8 SOFFIT FRAMING

A. Exterior Soffit Frame: Manufacturer's standard C-shaped steel sections, of web depths indicated, with stiffened flanges, and as follows:
 1. Minimum Base-Metal Thickness: 0.0329 inch.

2.9 FRAMING ACCESSORIES

A. Fabricate steel-framing accessories from ASTM A1003/A1003M, Structural Grade, Type H, metallic coated steel sheet, of same grade and coating designation used for framing members.

B. Provide accessories of manufacturer's standard thickness and configuration, unless otherwise indicated, as follows:
1. Supplementary framing.
2. Bracing, bridging, and solid blocking.
3. Web stiffeners.
4. Anchor clips.
5. End clips.
6. Foundation clips.
7. Gusset plates.
9. Joist hangers and end closures.

2.10 ANCHORS, CLIPS, AND FASTENERS

A. Steel Shapes and Clips: ASTM A36/A36M, zinc coated by hot-dip process according to ASTM A123/A123M.

B. Anchor Bolts: ASTM F1554, Grade 36, threaded carbon-steel headless, carbon-steel nuts, and flat, hardened-steel washers; zinc coated by mechanically deposition according to ASTM B695, Class 50.

C. Post-Installed Anchors: Fastener systems with bolts of same basic metal as fastened metal, if visible, unless otherwise indicated; with working capacity greater than or equal to the design load, according to an evaluation report acceptable to authorities having jurisdiction, based on ICC-ES AC01 ICC-ES AC193 ICC-ES AC58 or ICC-ES AC308 as appropriate for the substrate.

1. Uses: Securing cold-formed steel framing to structure.
2. Type: Torque-controlled expansion anchor Torque-controlled adhesive anchor or adhesive anchor.
3. Material for Interior Locations: Carbon-steel components zinc plated to comply with ASTM B633 or ASTM F1941, Class Fe/Zn 5, unless otherwise indicated.

D. Power-Actuated Anchors: Fastener systems with working capacity greater than or equal to the design load, according to an evaluation report acceptable to authorities having jurisdiction, based on ICC-ES AC70.

E. Mechanical Fasteners: ASTM C1513, corrosion-resistant-coated, self-drilling, self-tapping, steel drill screws.

1. Head Type: Low-profile head beneath sheathing; manufacturer's standard elsewhere.

F. Welding Electrodes: Comply with AWS standards.
2.11 MISCELLANEOUS MATERIALS

A. Galvanizing Repair Paint: ASTM A780/A780M MIL-P-21035B or SSPC-Paint 20.

B. Cement Grout: Portland cement, ASTM C150/C150M, Type I; and clean, natural sand, ASTM C404. Mix at ratio of 1-part cement to 2-1/2 parts sand, by volume, with minimum water required for placement and hydration.

C. Nonmetallic, Non-shrink Grout: Factory-packaged, nonmetallic, noncorrosive, non-staining grout, complying with ASTM C1107/C1107M, and with a fluid consistency and 30-minute working time.

D. Shims: Load-bearing, high-density, multi-monomer, non-leaching plastic; or cold-formed steel of same grade and metallic coating as framing members supported by shims.

E. Sill Sealer Gasket: Closed-cell neoprene foam, 1/4-inch-thick, selected from manufacturer's standard widths to match width of bottom track or rim track members as required.

2.12 FABRICATION

A. Fabricate cold-formed steel framing and accessories plumb, square, and true to line, and with connections securely fastened, according to referenced AISI's specifications and standards, manufacturer's written instructions, and requirements in this Section.

1. Fabricate framing assemblies using jigs or templates.
2. Cut framing members by sawing or shearing; do not torch cut.
3. Fasten cold-formed steel framing members by welding, screw fastening, clinch fastening, pneumatic pin fastening, or riveting as standard with fabricator. Wire tying of framing members is not permitted.
 a. Comply with AWS D1.3/D1.3M requirements and procedures for welding, appearance and quality of welds, and methods used in correcting welding work.
 b. Locate mechanical fasteners and install according to Shop Drawings, with screws penetrating joined members by no fewer than three exposed screw threads.

4. Fasten other materials to cold-formed steel framing by welding, bolting, pneumatic pin fastening, or screw fastening, according to Shop Drawings.

B. Reinforce, stiffen, and brace framing assemblies to withstand handling, delivery, and erection stresses. Lift fabricated assemblies by means that prevent damage or permanent distortion.

C. Tolerances: Fabricate assemblies level, plumb, and true to line to a maximum allowable variation of 1/8 inch in 10 feet and as follows:
1. Spacing: Space individual framing members no more than plus or minus 1/8 inch from plan location. Cumulative error shall not exceed minimum fastening requirements of sheathing or other finishing materials.

2. Squareness: Fabricate each cold-formed steel framing assembly to a maximum out-of-square tolerance of 1/8 inch.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates, areas, conditions, and abutting structural framing for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Before sprayed fire-resistive materials are applied, attach continuous angles, supplementary framing, or tracks to structural members indicated to receive sprayed fire-resistant materials.

B. After applying sprayed fire-resistive materials, remove only as much of these materials as needed to complete installation of cold-formed framing without reducing thickness of fire-resistant materials below that required to obtain fire-resistance ratings indicated. Protect remaining fire-resistant materials from damage.

C. Install sill sealer gasket at the underside of wall bottom track or rim track and at the top of foundation wall or slab at stud or joist locations.

D. Install sill sealer gasket/termite barrier in accordance with manufacturer's written instructions at the underside of wall bottom track or rim track and at the top of foundation wall or slab at stud or joist locations.

3.3 INSTALLATION, GENERAL

A. Cold-formed steel framing may be shop or field fabricated for installation, or it may be field assembled.

B. Install cold-formed steel framing according to AISI S200, AISI S202, and manufacturer's written instructions unless more stringent requirements are indicated.

C. Install shop- or field-fabricated, cold-formed framing and securely anchor to supporting structure.

1. Screw, bolt, or weld wall panels at horizontal and vertical junctures to produce flush, even, true-to-line joints with maximum variation in plane and true position between fabricated panels not exceeding 1/16 inch.
D. Install cold-formed steel framing and accessories plumb, square, and true to line, and with connections securely fastened.

1. Cut framing members by sawing or shearing; do not torch cut.
2. Fasten cold-formed steel framing members by welding, screw fastening, clinch fastening, or riveting. Wire tying of framing members is not permitted.
 a. Comply with AWS D1.3/D1.3M requirements and procedures for welding, appearance and quality of welds, and methods used in correcting welding work.
 b. Locate mechanical fasteners, install according to Shop Drawings, and comply with requirements for spacing, edge distances, and screw penetration.

E. Install framing members in one-piece lengths unless splice connections are indicated for track or tension members.

F. Install temporary bracing and supports to secure framing and support loads equal to those for which structure was designed. Maintain braces and supports in place, undisturbed, until entire integrated supporting structure has been completed and permanent connections to framing are secured.

G. Do not bridge building expansion joints with cold-formed steel framing. Independently frame both sides of joints.

H. Install insulation, specified in Section 072100 "Thermal Insulation," in framing-assembly members, such as headers, sills, boxed joists, and multiple studs at openings, that are inaccessible on completion of framing work.

I. Fasten hole-reinforcing plate over web penetrations that exceed size of manufacturer's approved or standard punched openings.

3.4 INSTALLATION OF EXTERIOR NON-LOADBEARING WALL FRAMING

A. Install continuous tracks sized to match studs. Align tracks accurately and securely anchor to supporting structure.

B. Fasten both flanges of studs to top and bottom track unless otherwise indicated. Space studs as follows:

C. Set studs plumb, except as needed for diagonal bracing or required for nonplumb walls or warped surfaces and similar requirements.

D. Isolate non-load-bearing steel framing from building structure to prevent transfer of vertical loads while providing lateral support.
 1. Install single deep-leg deflection tracks and anchor to building structure.
2. Install double deep-leg deflection tracks and anchor outer track to building structure.
3. Connect vertical deflection clips to bypassing or infill studs and anchor to building structure.
4. Connect drift clips to cold-formed steel framing and anchor to building structure.

E. Install horizontal bridging in wall studs, spaced vertically in rows indicated on Shop Drawings but not more than 48 inches apart. Fasten at each stud intersection.
 1. Channel Bridging: Cold-rolled steel channel, welded or mechanically fastened to webs of punched studs.
 2. Strap Bridging: Combination of flat, taut, steel sheet straps of width and thickness indicated and stud-track solid blocking of width and thickness to match studs. Fasten flat straps to stud flanges and secure solid blocking to stud webs or flanges.
 3. Bar Bridging: Proprietary bridging bars installed according to manufacturer's written instructions.

F. Top Bridging for Single Deflection Track: Install row of horizontal bridging within 12 inches of single deflection track. Install a combination of bridging and stud or stud-track solid blocking of width and thickness matching studs, secured to stud webs or flanges.
 1. Install solid blocking at centers indicated on Shop Drawings.

G. Install miscellaneous framing and connections, including stud kickers, web stiffeners, clip angles, continuous angles, anchors, and fasteners, to provide a complete and stable wall-framing system.

3.5 INSTALLATION OF INTERIOR NONLOADBEARING WALL FRAMING

A. Install continuous tracks sized to match studs. Align tracks accurately and securely anchor to supporting structure.

B. Fasten both flanges of studs to top and bottom track unless otherwise indicated. Space studs as follows:

C. Set studs plumb, except as needed for diagonal bracing or required for nonplumb walls or warped surfaces and similar requirements.

D. Isolate non-load-bearing steel framing from building structure to prevent transfer of vertical loads while providing lateral support.
 1. Install single deep-leg deflection tracks and anchor to building structure.
 2. Install double deep-leg deflection tracks and anchor outer track to building structure.
 3. Connect vertical deflection clips to studs and anchor to building structure.
4. Connect drift clips to cold-formed steel metal framing and anchor to building structure.

E. Install horizontal bridging in wall studs, spaced vertically in rows indicated on Shop Drawings but not more than 48 inches apart. Fasten at each stud intersection.

1. Channel Bridging: Cold-rolled steel channel, welded or mechanically fastened to webs of punched studs.
2. Strap Bridging: Combination of flat, taut, steel sheet straps of width and thickness indicated and stud-track solid blocking of width and thickness to match studs. Fasten flat straps to stud flanges and secure solid blocking to stud webs or flanges.
3. Bar Bridging: Proprietary bridging bars installed according to manufacturer's written instructions.

F. Top Bridging for Single Deflection Track: Install row of horizontal bridging within 12 inches of single deflection track. Install a combination of bridging and stud or stud-track solid blocking of width and thickness matching studs, secured to stud webs or flanges.

1. Install solid blocking at centers indicated on Shop Drawings.

G. Install miscellaneous framing and connections, including stud kickers, web stiffeners, clip angles, continuous angles, anchors, and fasteners, to provide a complete and stable wall-framing system.

3.6 INSTALLATION TOLERANCES

A. Install cold-formed steel framing level, plumb, and true to line to a maximum allowable tolerance variation of 1/8 inch in 10 feet and as follows:

1. Space individual framing members no more than plus or minus 1/8 inch from plan location. Cumulative error shall not exceed minimum fastening requirements of sheathing or other finishing materials.

3.7 REPAIR

A. Galvanizing Repairs: Prepare and repair damaged galvanized coatings on fabricated and installed cold-formed steel framing with galvanized repair paint according to ASTM A780/A780M and manufacturer's written instructions.

3.8 FIELD QUALITY CONTROL

A. Testing: Owner will engage a qualified independent testing and inspecting agency to perform field tests and inspections and prepare test reports.

B. Field and shop welds will be subject to testing and inspecting.

C. Testing agency will report test results promptly and in writing to Contractor and Architect.
D. Cold-formed steel framing will be considered defective if it does not pass tests and inspections.

E. Additional testing and inspecting, at Contractor's expense, will be performed to determine compliance of replaced or additional work with specified requirements.

3.9 PROTECTION

A. Provide final protection and maintain conditions, in a manner acceptable to manufacturer and Installer, that ensure that cold-formed steel framing is without damage or deterioration at time of Substantial Completion.

END OF SECTION
SECTION 055000
METAL FABRICATIONS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Steel framing and supports for operable partitions.
2. Steel framing and supports for countertops.
3. Steel framing and supports for mechanical and electrical equipment.
4. Steel framing and supports for applications where framing and supports are not specified in other Sections.
5. Elevator machine beams, hoist beams.
6. Steel shapes for supporting elevator door sills.
7. Shelf angles.
8. Metal ladders.

B. Products furnished, but not installed, under this Section include the following:

1. Loose steel lintels.
2. Anchor bolts, steel pipe sleeves, slotted-channel inserts, and wedge-type inserts indicated to be cast into concrete or built into unit masonry.

C. Related Requirements:

1. Section 042000 "Unit Masonry" for installing loose lintels, anchor bolts, and other items built into unit masonry.

1.3 COORDINATION

A. Coordinate selection of shop primers with topcoats to be applied over them. Comply with paint and coating manufacturers' written instructions to ensure that shop primers and topcoats are compatible with one another.

B. Coordinate installation of metal fabrications that are anchored to or that receive other work. Furnish setting drawings, templates, and directions for installing anchorages, including sleeves, concrete inserts, anchor bolts, and items with integral anchors, that are
to be embedded in concrete or masonry. Deliver such items to Project site in time for installation.

1.4 ACTION SUBMITTALS

A. Product Data: For the following:

1. Fasteners.
2. Shop primers.
3. Shrinkage-resisting grout.
4. Manufactured metal ladders.

B. Shop Drawings: Show fabrication and installation details. Include plans, elevations, sections, and details of metal fabrications and their connections. Show anchorage and accessory items. Provide Shop Drawings for the following:

1. Steel framing and supports for operable partitions.
2. Steel framing and supports for countertops.
3. Steel framing and supports for mechanical and electrical equipment.
4. Steel framing and supports for applications where framing and supports are not specified in other Sections.
5. Elevator machine beams, hoist beams.
6. Steel shapes for supporting elevator door sills.
7. Shelf angles.
8. Metal ladders.

C. Delegated-Design Submittal: For ladders, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

1.5 INFORMATIONAL SUBMITTALS

A. Qualification Data: For professional engineer's experience with providing delegated-design engineering services of the kind indicated, including documentation that engineer is licensed in the jurisdiction in which Project is located.

B. Mill Certificates: Signed by stainless steel manufacturers, certifying that products furnished comply with requirements.

C. Welding certificates.

D. Paint Compatibility Certificates: From manufacturers of topcoats applied over shop primers, certifying that shop primers are compatible with topcoats.

E. Research Reports: For post-installed anchors.
1.6 QUALITY ASSURANCE

A. Welding Qualifications: Qualify procedures and personnel in accordance with the following:

1. AWS D1.1/D1.1M, "Structural Welding Code - Steel."
2. AWS D1.2/D1.2M, "Structural Welding Code - Aluminum."
3. AWS D1.6/D1.6M, "Structural Welding Code - Stainless Steel."

1.7 FIELD CONDITIONS

A. Field Measurements: Verify actual locations of walls, floor slabs, decks, and other construction contiguous with metal fabrications by field measurements before fabrication.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Delegated Design: Engage a qualified professional engineer, as defined in Section 014000 "Quality Requirements," to design ladders.

B. Thermal Movements: Allow for thermal movements from ambient and surface temperature changes acting on exterior metal fabrications by preventing buckling, opening of joints, overstressing of components, failure of connections, and other detrimental effects.

1. Temperature Change: 120 deg F, ambient.

2.2 METALS

A. Metal Surfaces, General: Provide materials with smooth, flat surfaces unless otherwise indicated. For metal fabrications exposed to view in the completed Work, provide materials without seam marks, roller marks, rolled trade names, or blemishes.

B. Steel Plates, Shapes, and Bars: ASTM A36/A36M.

C. Stainless Steel Sheet, Strip, and Plate: ASTM A240/A240M or ASTM A666, Type 304.

D. Stainless Steel Bars and Shapes: ASTM A276/A276M, Type 304.

E. Steel Tubing: ASTM A500/A500M, cold-formed steel tubing.

F. Steel Pipe: ASTM A53/A53M, Standard Weight (Schedule 40) unless otherwise indicated.

G. Cast Iron: Either gray iron, ASTM A48/A48M, or malleable iron, ASTM A47/A47M, unless otherwise indicated.

2.3 FASTENERS

A. General: Unless otherwise indicated, provide Type 304 stainless steel fasteners for exterior use and zinc-plated fasteners with coating complying with ASTM B633 or ASTM F1941/F1941M, Class Fe/Zn 5, at exterior walls. Select fasteners for type, grade, and class required.

1. Provide stainless steel fasteners for fastening stainless steel or nickel silver.

B. Steel Bolts and Nuts: Regular hexagon-head bolts, ASTM A307, Grade A; with hex nuts, ASTM A563; and, where indicated, flat washers.

C. High-Strength Bolts, Nuts, and Washers: ASTM F3125/F3125M, Grade A325, Type 3, heavy-hex steel structural bolts; ASTM A563, Grade DH3, heavy-hex carbon-steel nuts; and where indicated, flat washers.

D. Stainless Steel Bolts and Nuts: Regular hexagon-head annealed stainless steel bolts, ASTM F593; with hex nuts, ASTM F594; and, where indicated, flat washers; Alloy Group 1.

E. Anchor Bolts: ASTM F1554, Grade 36, of dimensions indicated; with nuts, ASTM A563; and, where indicated, flat washers.

1. Hot dip, galvanize or provide mechanically deposited, zinc coating where item being fastened is indicated to be galvanized.

F. Anchors, General: Capable of sustaining, without failure, a load equal to six times the load imposed when installed in unit masonry and four times the load imposed when installed in concrete, as determined by testing in accordance with ASTM E488/E488M, conducted by a qualified independent testing agency.

G. Cast-in-Place Anchors in Concrete: Either threaded or wedge type unless otherwise indicated; galvanized ferrous castings, either ASTM A47/A47M malleable iron or ASTM A27/A27M cast steel. Provide bolts, washers, and shims as needed, all hot-dip galvanized per ASTM F2329/F2329M.
H. Post-Installed Anchors: Torque-controlled expansion anchors or chemical anchors.

1. Material for Interior Locations: Carbon-steel components zinc plated to comply with ASTM B633 or ASTM F1941/F1941M, Class Fe/Zn 5, unless otherwise indicated.

2.4 MISCELLANEOUS MATERIALS

A. Universal Shop Primer: Fast-curing, lead- and chromate-free, universal modified-alkyd primer complying with MPI#79 and compatible with topcoat.

1. Use primer containing pigments that make it easily distinguishable from zinc-rich primer.

B. Shop Primer for Galvanized Steel: Primer formulated for exterior use over zinc-coated metal and compatible with finish paint systems indicated.

C. Galvanizing Repair Paint: High-zinc-dust-content paint complying with SSPC-Paint 20 and compatible with paints specified to be used over it.

D. Bituminous Paint: Cold-applied asphalt emulsion complying with ASTM D1187/D1187M.

E. Shrinkage-Resistant Grout: Factory-packaged, nonmetallic, nontaining, noncorrosive, nongaseous grout complying with ASTM C1107/C1107M. Provide grout specifically recommended by manufacturer for interior and exterior applications.

F. Concrete: Comply with requirements in Section 033000 "Cast-in-Place Concrete" for normal-weight, air-entrained concrete with a minimum 28-day compressive strength of 3000 psi

2.5 FABRICATION, GENERAL

A. Shop Assembly: Preassemble items in the shop to greatest extent possible. Disassemble units only as necessary for shipping and handling limitations. Use connections that maintain structural value of joined pieces. Clearly mark units for reassembly and coordinated installation.

B. Cut, drill, and punch metals cleanly and accurately. Remove burrs and ease edges to a radius of approximately 1/32 inch unless otherwise indicated. Remove sharp or rough areas on exposed surfaces.

C. Form bent-metal corners to smallest radius possible without causing grain separation or otherwise impairing work.

D. Form exposed work with accurate angles and surfaces and straight edges.
E. Weld corners and seams continuously to comply with the following:

1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
2. Obtain fusion without undercut or overlap.
3. Remove welding flux immediately.
4. At exposed connections, finish exposed welds and surfaces smooth and blended so no roughness shows after finishing and contour of welded surface matches that of adjacent surface.

F. Form exposed connections with hairline joints, flush and smooth, using concealed fasteners or welds where possible. Where exposed fasteners are required, use Phillips flat-head (countersunk) fasteners unless otherwise indicated. Locate joints where least conspicuous.

G. Fabricate seams and other connections that are exposed to weather in a manner to exclude water. Provide weep holes where water may accumulate.

H. Cut, reinforce, drill, and tap metal fabrications as indicated to receive finish hardware, screws, and similar items.

I. Provide for anchorage of type indicated; coordinate with supporting structure. Space anchoring devices to secure metal fabrications rigidly in place and to support indicated loads.

J. Where units are indicated to be cast into concrete or built into masonry, equip with integrally welded steel strap anchors, 1/8 by 1-1/2 inches, with a minimum 6-inch embedment and 2-inch hook, not less than 8 inches from ends and corners of units and 24 inches o.c., unless otherwise indicated.

2.6 MISCELLANEOUS FRAMING AND SUPPORTS

A. General: Provide steel framing and supports not specified in other Sections as needed to complete the Work.

B. Fabricate units from steel shapes, plates, and bars of welded construction unless otherwise indicated. Fabricate to sizes, shapes, and profiles indicated and as necessary to receive adjacent construction.

1. Fabricate units from slotted channel framing where indicated.
2. Furnish inserts for units installed after concrete is placed.

C. Fabricate supports for operable partitions from continuous steel beams of sizes recommended by partition manufacturer with attached bearing plates, anchors, and braces as recommended by partition manufacturer. Drill or punch bottom flanges of beams to receive partition track hanger rods; locate holes where indicated on operable partition Shop Drawings.

D. Galvanize miscellaneous framing and supports where indicated.
2.7 METAL LADDERS

A. General:
 2. For elevator pit ladders, comply with ASME A17.1/CSA B44.

B. Steel Ladders:
 1. Space siderails 18 inches apart unless otherwise indicated.
 4. Fit rungs in centerline of siderails; plug-weld and grind smooth on outer rail faces.
 5. Provide non-slip surfaces on top of each rung, either by coating rung with aluminum-oxide granules set in epoxy-resin adhesive or by using a type of manufactured rung filled with aluminum-oxide grout.
 7. Support each ladder at top and bottom and not more than 60 inches o.c. with welded or bolted steel brackets.
 8. Prime ladders, including brackets and fasteners, with zinc-rich primer.

2.8 ELEVATOR PIT SUMP COVERS

A. Fabricate from 3/16-inch rolled-steel, abrasive-surface floor plate with four 1-inch-diameter holes for water drainage and for lifting.

B. Provide steel angle supports unless otherwise indicated.

2.9 LOOSE STEEL LINTELS

A. Fabricate loose steel lintels from steel angles and shapes of size indicated for openings and recesses in masonry walls and partitions at locations indicated. Fabricate in single lengths for each opening unless otherwise indicated. Weld adjoining members together to form a single unit where indicated.

B. Size loose lintels to provide bearing length at each side of openings equal to 1/12 of clear span, but not less than 8 inches unless otherwise indicated.

C. Galvanize loose steel lintels located in exterior walls.

2.10 GENERAL FINISH REQUIREMENTS

A. Finish metal fabrications after assembly.

B. Finish exposed surfaces to remove tool and die marks and stretch lines, and to blend into surrounding surface.
2.11 STEEL AND IRON FINISHES

A. Galvanizing: Hot dip galvanize items as indicated to comply with ASTM A153/A153M for steel and iron hardware and with ASTM A123/A123M for other steel and iron products.

 1. Do not quench or apply post galvanizing treatments that might interfere with paint adhesion.

B. Preparation for Shop Priming Galvanized Items: After galvanizing, thoroughly clean galvanized surfaces of grease, dirt, oil, flux, and other foreign matter, and treat with metallic phosphate process.

C. Shop prime iron and steel items not indicated to be galvanized unless they are to be embedded in concrete, sprayed-on fireproofing, or masonry, or unless otherwise indicated.

 1. Shop prime with universal shop primer indicated.

D. Shop Priming: Apply shop primer to comply with SSPC-PA 1, "Paint Application Specification No. 1: Shop, Field, and Maintenance Painting of Steel," for shop painting.

 1. Stripe paint corners, crevices, bolts, welds, and sharp edges.

PART 3 - EXECUTION

3.1 INSTALLATION, GENERAL

A. Cutting, Fitting, and Placement: Perform cutting, drilling, and fitting required for installing metal fabrications. Set metal fabrications accurately in location, alignment, and elevation; with edges and surfaces level, plumb, true, and free of rack; and measured from established lines and levels.

B. Fit exposed connections accurately together to form hairline joints. Weld connections that are not to be left as exposed joints but cannot be shop welded because of shipping size limitations. Do not weld, cut, or abrade surfaces of exterior units that have been hot-dip galvanized after fabrication and are for bolted or screwed field connections.

C. Field Welding: Comply with the following requirements:

 1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
 2. Obtain fusion without undercut or overlap.
 3. Remove welding flux immediately.
 4. At exposed connections, finish exposed welds and surfaces smooth and blended so no roughness shows after finishing and contour of welded surface matches that of adjacent surface.
D. Fastening to In-Place Construction: Provide anchorage devices and fasteners where metal fabrications are required to be fastened to in-place construction. Provide threaded fasteners for use with concrete and masonry inserts, toggle bolts, through bolts, lag screws, wood screws, and other connectors.

E. Provide temporary bracing or anchors in formwork for items that are to be built into concrete, masonry, or similar construction.

3.2 INSTALLATION OF MISCELLANEOUS FRAMING AND SUPPORTS

A. General: Install framing and supports to comply with requirements of items being supported, including manufacturers' written instructions and requirements indicated on Shop Drawings.

B. Anchor supports for operable partitions securely to, and rigidly brace from, building structure.

3.3 REPAIRS

A. Touchup Painting:

1. Immediately after erection, clean field welds, bolted connections, and abraded areas. Paint uncoated and abraded areas with same material as used for shop painting to comply with SSPC-PA 1 for touching up shop-painted surfaces.

 a. Apply by brush or spray to provide a minimum 2.0-mil dry film thickness.

B. Galvanized Surfaces: Clean field welds, bolted connections, and abraded areas and repair galvanizing to comply with ASTM A780/A780M.

END OF SECTION
THIS PAGE INTENTIONALLY LEFT BLANK
SECTION 055113
METAL PAN STAIRS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
1. Preassembled steel stairs with concrete-filled and abrasive-coating-finished, formed-metal treads.
2. Steel tube railings and guards attached to metal stairs.
3. Steel tube handrails attached to walls adjacent to metal stairs.

1.3 COORDINATION
A. Coordinate selection of shop primers with topcoats to be applied over them. Comply with paint and coating manufacturers' written instructions to ensure that shop primers and topcoats are compatible with one another.

B. Coordinate installation of anchorages for metal stairs, railings, and guards.
1. Furnish setting drawings, templates, and directions for installing anchorages, including sleeves, concrete inserts, anchor bolts and items with integral anchors, that are to be embedded in concrete or masonry.
2. Deliver such items to Project site in time for installation.

C. Coordinate locations of hanger rods and struts with other work so they do not encroach on required stair width and are within fire-resistance-rated stair enclosure.

D. Schedule installation of railings and guards so wall attachments are made only to completed walls.
1. Do not support railings and guards temporarily by any means that do not satisfy structural performance requirements.

1.4 ACTION SUBMITTALS
A. Product Data: For metal pan stairs and the following:
1. Shop primer products.
2. Handrail wall brackets.

B. Shop Drawings:
 1. Include plans, elevations, sections, details, and attachments to other work.
 2. Indicate sizes of metal sections, thickness of metals, profiles, holes, and field joints.
 3. Include plan at each level.
 4. Indicate locations of anchors, weld plates, and blocking for attachment of wall-mounted handrails.
 5. Provide templates for anchors and bolts specified for installation under other Sections.
 6. For installed products indicated to comply with design loads, include structural analysis data signed and sealed by the qualified professional engineer, licensed in the State of Delaware, responsible for their preparation.

C. Samples for Verification: For each type and finish of nosing.

1.5 QUALITY ASSURANCE
A. Installer Qualifications: Fabricator of products.
B. Welding Qualifications: Qualify procedures and personnel according to the following:
 1. AWS D1.1/D1.1M, "Structural Welding Code - Steel."

1.6 DELIVERY, STORAGE, AND HANDLING
A. Store materials to permit easy access for inspection and identification.
 1. Keep steel members off ground and spaced by using pallets, dunnage, or other supports and spacers.
 2. Protect steel members and packaged materials from corrosion and deterioration.
 3. Do not store materials on structure in a manner that might cause distortion, damage, or overload to members or supporting structures.
 a. Repair or replace damaged materials or structures as directed.

PART 2 - PRODUCTS
2.1 PERFORMANCE REQUIREMENTS
A. Structural Performance of Stairs: Metal stairs shall withstand the effects of gravity loads and the following loads and stresses within limits and under conditions indicated:
 1. Uniform Load: 100 lbf/sq. ft.
2. Concentrated Load: 300 lbf applied on an area of 4 sq. in.
3. Uniform and concentrated loads need not be assumed to act concurrently.
4. Stair Framing: Capable of withstanding stresses resulting from railing and guard loads in addition to loads specified above.
5. Limit deflection of treads, platforms, and framing members to L/360 or 1/4 inch, whichever is less.

B. Structural Performance of Railings and Guards: Railings and guards, including attachment to building construction, shall withstand the effects of gravity loads and the following loads and stresses within limits and under conditions indicated:

1. Handrails and Top Rails of Guards:
 a. Uniform load of 50 lbf/ft. applied in any direction.
 b. Concentrated load of 200 lbf applied in any direction.
 c. Uniform and concentrated loads need not be assumed to act concurrently.

2. Infill of Guards:
 a. Concentrated load of 50 lbf applied horizontally on an area of 1 sq. ft.
 b. Infill load and other loads need not be assumed to act concurrently.

3. Thermal Movements: Allow for thermal movements from ambient and surface temperature changes.
 a. Temperature Change: 120 deg F, ambient; 180 deg F, material surfaces.

C. Seismic Performance of Stairs: Metal stairs shall withstand the effects of earthquake motions determined according to ASCE/SEI 7-16.

1. Component Importance Factor: 1.0

2.2 METALS

A. Metal Surfaces: Provide materials with smooth, flat surfaces unless otherwise indicated. For components exposed to view in the completed Work, provide materials without seam marks, roller marks, rolled trade names, or blemishes.

B. Steel Plates, Shapes, and Bars: ASTM A36/A36M.

C. Steel Tubing for Railings and Guards: ASTM A500/A500M (cold formed) or ASTM A513/A513M.

D. Steel Pipe for Railings and Guards: ASTM A53/A53M, Type F or Type S, Grade A, Standard Weight (Schedule 40), unless another grade and weight are required by structural loads.

E. Uncoated, Cold-Rolled Steel Sheet: ASTM A1008/A1008M, structural steel, Grade 25, unless another grade is required by design loads; exposed.
F. Uncoated, Hot-Rolled Steel Sheet: ASTM A1011/A1011M, structural steel, Grade 30, unless another grade is required by design loads.

H. Bronze Castings: ASTM B584, Alloy UNS No. C83600 (leded red brass) or No. C84400 (leded semired brass).

2.3 FASTENERS

A. Fasteners for Anchoring Railings and Guards to Other Construction: Select fasteners of type, grade, and class required to produce connections suitable for anchoring railings and guards to other types of construction indicated and capable of withstanding design loads.

B. Bolts and Nuts: Regular hexagon-head bolts, ASTM A307, Grade A; with hex nuts, ASTM A563; and, where indicated, flat washers.

C. Post-Installed Anchors: Torque-controlled expansion anchors or chemical anchors capable of sustaining, without failure, a load equal to six times the load imposed when installed in unit masonry and four times the load imposed when installed in concrete, as determined by testing according to ASTM E488/E488M, conducted by a qualified independent testing agency.

1. Material for Interior Locations: Carbon-steel components zinc plated to comply with ASTM B633 or ASTM F1941/F1941M, Class Fe/Zn 5, unless otherwise indicated.

2.4 MISCELLANEOUS MATERIALS

A. Handrail Wall Brackets: Cast stainless steel, center of rail 2-1/2 inches from face of wall.

B. Welding Electrodes: Comply with AWS requirements.

C. Universal Shop Primer: Fast-curing, lead- and chromate-free, universal modified-alkyd primer complying with MPI#79 and compatible with topcoat.

1. Use primer containing pigments that make it easily distinguishable from zinc-rich primer.

D. Nonmetallic, Shrinkage-Resistant Grout: ASTM C1107/C1107M, factory-packaged, nonmetallic aggregate grout; recommended by manufacturer for interior use; noncorrosive and non-staining; mixed with water to consistency suitable for application and a 30-minute working time.

E. Concrete Treads:
1. Concrete Materials and Properties: Comply with requirements in Section 033000 "Cast-in-Place Concrete" for normal-weight, air-entrained, ready-mix concrete with minimum 28-day compressive strength of 3000 psi and maximum aggregate size of 1/2 inch unless otherwise indicated.

2. Plain Steel Welded-Wire Reinforcement: ASTM A1064/A10645M, galvanized steel, 6 by 6 inches, W1.4 by W1.4, unless otherwise indicated on Drawings.

3. Reinforcement Supports: Bolsters, chairs, spacers, and other devices for spacing, supporting, and fastening welded-wire reinforcement in place.

2.5 FABRICATION, GENERAL

A. Provide complete stair assemblies, including metal framing, hangers, struts, railings and guards, clips, brackets, bearing plates, and other components necessary to support and anchor stairs and platforms on supporting structure.
 1. Join components by welding unless otherwise indicated.
 2. Use connections that maintain structural value of joined pieces.

B. Assemble stairs, railings, and guards in shop to greatest extent possible.
 1. Disassemble units only as necessary for shipping and handling limitations.
 2. Clearly mark units for reassembly and coordinated installation.

C. Cut, drill, and punch metals cleanly and accurately.
 1. Remove burrs and ease edges to a radius of approximately 1/32 inch unless otherwise indicated.
 2. Remove sharp or rough areas on exposed surfaces.

D. Form bent-metal corners to smallest radius possible without causing grain separation or otherwise impairing work.

E. Form exposed work with accurate angles and surfaces and straight edges.

F. Weld connections to comply with the following:
 1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
 2. Obtain fusion without undercut or overlap.
 3. Remove welding flux immediately.
 4. Weld exposed corners and seams continuously unless otherwise indicated.
 5. At exposed connections, finish exposed welds to comply with NOMMA's "Voluntary Joint Finish Standards" for Finish #2 - Completely sanded joint with some undercutting and pinholes okay.
G. Form exposed connections with hairline joints, flush and smooth, using concealed fasteners where possible.

1. Where exposed fasteners are required, use Phillips flat-head (countersunk) screws or bolts unless otherwise indicated.
2. Locate joints where least conspicuous.
3. Fabricate joints that will be exposed to weather in a manner to exclude water.
4. Provide weep holes where water may accumulate internally.

2.6 FABRICATION OF STEEL-FRAMED STAIRS

A. NAAMM Stair Standard: Comply with NAAMM AMP 510, "Metal Stairs Manual," for Commercial Class, unless more stringent requirements are indicated.

B. Stair Framing:

1. Fabricate stringers of steel channels or rectangular tubes as indicated on Drawings.
 a. Stringer Size: As required to comply with "Performance Requirements" Article.
 b. Provide closures for exposed ends of channel and rectangular tube stringers.
 c. Finish: Shop primed.

2. Construct platforms of steel rectangular channel or tube headers and miscellaneous framing members as indicated on Drawings.
 a. Provide closures for exposed ends of channel and rectangular tube framing.
 b. Finish: Shop primed.

3. Weld or bolt stringers to headers; weld or bolt framing members to stringers and headers. If using bolts, fabricate and join so bolts are not exposed on finished surfaces.
4. Where masonry walls support metal stairs, provide temporary supporting struts designed for erecting steel stair components before installing masonry.

C. Metal Pan Stairs: Form risers, subtread pans, and subplatforms to configurations shown from steel sheet of thickness needed to comply with performance requirements, but not less than 0.067 inch.

1. Steel Sheet: Uncoated, cold or hot-rolled steel sheet.
2. Attach risers and subtreads to stringers with brackets made of steel angles or bars. Weld brackets to stringers and attach metal pans to brackets by welding, riveting, or bolting.
3. Shape metal pans to include nosing integral with riser.
4. Provide subplatforms of configuration indicated or, if not indicated, the same as subtreads. Weld subplatforms to platform framing.
a. Smooth Soffit Construction: Construct subplatforms with flat metal under surfaces to produce smooth soffits.

2.7 FABRICATION OF STAIR RAILINGS AND GUARDS

A. Fabricate railings and guards to comply with requirements indicated for design, dimensions, details, finish, and member sizes, including wall thickness of member, post spacings, wall bracket spacing, and anchorage, but not less than that needed to withstand indicated loads.

2. Cap Rail: 2” square wood rail, ploughed to mount to steel top rail. Refer to drawings.
4. Intermediate Rails Infill: 1/2-inch square intermediate rails spaced to prohibit the passage of a 4-inch diameter sphere

B. Welded Connections: Fabricate railings and guards with welded connections.

1. Cope components at connections to provide close fit, or use fittings designed for this purpose.
2. Weld all around at connections, including at fittings.
3. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
4. Obtain fusion without undercut or overlap.
5. Remove flux immediately.
6. Finish welds to comply with NOMMA's "Voluntary Joint Finish Standards" for Finish #2 - Completely sanded joint, some undercutting and pinholes are okay as shown in NAAMM AMP 521.

C. Form changes in direction of railings and guards as follows:

1. By radius bends of radius indicated or by inserting prefabricated elbow fittings of radius indicated.

D. For changes in direction made by bending, use jigs to produce uniform curvature for each repetitive configuration required. Maintain cross section of member throughout entire bend without buckling, twisting, cracking, or otherwise deforming exposed surfaces of components.

E. Close exposed ends of railing and guard members with prefabricated end fittings.

F. Provide wall returns at ends of wall-mounted handrails unless otherwise indicated.

1. Close ends of returns unless clearance between end of rail and wall is 1/4 inch or less.

G. Connect posts to stair framing by direct welding unless otherwise indicated.
H. Brackets, Flanges, Fittings, and Anchors: Provide wall brackets, end closures, flanges, miscellaneous fittings, and anchors for interconnecting components and for attaching to other work.

1. Furnish inserts and other anchorage devices for connecting to concrete or masonry work.
2. For nongalvanized railings and guards, provide nongalvanized ferrous-metal fittings, brackets, fasteners, and sleeves, except galvanize anchors embedded in exterior masonry and concrete construction.
3. Provide type of bracket with flange tapped for concealed anchorage to threaded hanger bolt and that provides 1-1/2-inch clearance from inside face of handrail to finished wall surface.

I. Fillers: Provide fillers made from steel plate, or other suitably crush-resistant material, where needed to transfer wall bracket loads through wall finishes to structural supports.

1. Size fillers to suit wall finish thicknesses and to produce adequate bearing area to prevent bracket rotation and overstressing of substrate.

2.8 FINISHES

A. Finish metal stairs after assembly.

B. Preparation for Shop Priming: Prepare uncoated, ferrous-metal surfaces to comply with SSPC-SP 3, "Power Tool Cleaning."

C. Apply shop primer to uncoated surfaces of metal stair components, except those with galvanized finishes and those to be embedded in concrete or masonry unless otherwise indicated. Comply with SSPC-PA 1, "Paint Application Specification No. 1: Shop, Field, and Maintenance Painting of Steel," for shop painting.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Verify elevations of floors, bearing surfaces and locations of bearing plates, and other embedments for compliance with requirements.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION OF METAL PAN STAIRS

A. Fastening to In-Place Construction: Provide anchorage devices and fasteners where necessary for securing metal stairs to in-place construction.

1. Include threaded fasteners for concrete and masonry inserts, through-bolts, lag bolts, and other connectors.
B. Cutting, Fitting, and Placement: Perform cutting, drilling, and fitting required for installing metal stairs. Set units accurately in location, alignment, and elevation, measured from established lines and levels and free of rack.

C. Install metal stairs by welding stair framing to steel structure or to weld plates cast into concrete unless otherwise indicated.

 a. Clean bottom surface of plates.
 b. Set plates for structural members on wedges, shims, or setting nuts.
 c. Tighten anchor bolts after supported members have been positioned and plumbed.
 d. Do not remove wedges or shims but, if protruding, cut off flush with edge of plate before packing with grout.
 e. Promptly pack grout solidly between bearing surfaces and plates so no voids remain.

 1) Neatly finish exposed surfaces; protect grout and allow to cure.
 2) Comply with manufacturer's written installation instructions for shrinkage-resistant grouts.

D. Provide temporary bracing or anchors in formwork for items that are to be built into concrete, masonry, or similar construction.

E. Fit exposed connections accurately together to form hairline joints.

1. Weld connections that are not to be left as exposed joints but cannot be shop welded because of shipping size limitations.
2. Do not weld, cut, or abrade surfaces of exterior units that have been hot-dip galvanized after fabrication and are for bolted or screwed field connections.
3. Comply with requirements for welding in "Fabrication, General" Article.

F. Place and finish concrete fill for treads and platforms to comply with Section 033000 "Cast-in-Place Concrete."

3.3 INSTALLATION OF RAILINGS AND GUARDS

A. Adjust railing and guard systems before anchoring to ensure matching alignment at abutting joints with tight, hairline joints.

1. Space posts at spacing indicated or, if not indicated, as required by design loads.
2. Plumb posts in each direction, within a tolerance of 1/16 inch in 3 feet.
3. Align rails and guards so variations from level for horizontal members and variations from parallel with rake of stairs for sloping members do not exceed 1/4 inch in 12 feet.
4. Secure posts, rail ends, and guard ends to building construction as follows:
a. Anchor posts to steel by welding to steel supporting members.
b. Anchor handrail and guard ends to concrete and masonry with steel round flanges welded to rail and guard ends and anchored with post-installed anchors and bolts.

B. Attach handrails to wall with wall brackets.

1. Locate brackets as indicated or, if not indicated, at spacing required to support structural loads.
2. Secure wall brackets to building construction as follows:
 a. For concrete and solid masonry anchorage, use drilled-in expansion shields and hanger or lag bolts.
 b. For hollow masonry anchorage, use toggle bolts.

3.4 REPAIR

A. Touchup Painting: Immediately after erection, clean field welds, bolted connections, and abraded areas of shop paint, and paint exposed areas with same material as used for shop painting to comply with SSPC-PA 1 for touching up shop-painted surfaces.

1. Apply by brush or spray to provide a minimum 2.0-mil dry film thickness.

END OF SECTION
SECTION 061053
MISCELLANEOUS ROUGH CARPENTRY

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Wood blocking and nailers.
2. Wood furring.
3. Wood sleepers.
5. Plywood backing panels.

B. Related Requirements:

1. Section 061600 "Sheathing" for sheathing, subflooring, and underlayment.

1.3 DEFINITIONS

A. Boards or Strips: Lumber of less than 2 inches nominal size in least dimension.

B. Dimension Lumber: Lumber of 2 inches nominal or greater size but less than 5 inches nominal size in least dimension.

1.4 INFORMATIONAL SUBMITTALS

A. Evaluation Reports: For the following, from ICC-ES:

1. Preservative-treated wood.
2. Fire-retardant-treated wood.
4. Post-installed anchors.
5. Metal framing anchors.

1.5 DELIVERY, STORAGE, AND HANDLING

A. Stack lumber flat with spacers beneath and between each bundle to provide air circulation. Protect lumber from weather by covering with waterproof sheeting, securely anchored. Provide for air circulation around stacks and under coverings.
PART 2 - PRODUCTS

2.1 WOOD PRODUCTS, GENERAL

A. Lumber: DOC PS 20 and applicable rules of grading agencies indicated. If no grading agency is indicated, provide lumber that complies with the applicable rules of any rules-writing agency certified by the ALSC Board of Review. Provide lumber graded by an agency certified by the ALSC Board of Review to inspect and grade lumber under the rules indicated.

1. Factory mark each piece of lumber with grade stamp of grading agency.
2. For exposed lumber indicated to receive a stained or natural finish, mark grade stamp on end or back of each piece.
3. Dress lumber, S4S, unless otherwise indicated.

B. Maximum Moisture Content of Lumber: 19 percent unless otherwise indicated.

2.2 WOOD-PRESERVATIVE-TREATED MATERIALS

A. Preservative Treatment by Pressure Process: AWPA U1; Use Category UC2 for interior construction not in contact with ground, Use Category UC3b for exterior construction not in contact with ground, and Use Category UC4a for items in contact with ground.

1. Preservative Chemicals: Acceptable to authorities having jurisdiction and containing no arsenic or chromium.
2. For exposed items indicated to receive a stained or natural finish, chemical formulations shall not require incising, contain colorants, bleed through, or otherwise adversely affect finishes.

B. Kiln-dry lumber after treatment to a maximum moisture content of 19 percent. Do not use material that is warped or does not comply with requirements for untreated material.

C. Mark lumber with treatment quality mark of an inspection agency approved by the ALSC Board of Review.

1. For exposed lumber indicated to receive a stained or natural finish, omit marking and provide certificates of treatment compliance issued by inspection agency.

D. Application: Treat items indicated on Drawings, and the following:

1. Wood cants, nailers, curbs, equipment support bases, blocking, stripping, and similar members in connection with roofing, flashing, vapor barriers, and waterproofing.
2. Wood sills, sleepers, blocking, furring, stripping, and similar concealed members in contact with masonry or concrete.
3. Wood framing and furring attached directly to the interior of below-grade exterior masonry or concrete walls.
4. Wood framing members that are less than 18 inches above the ground in crawlspaces or unexcavated areas.
5. Wood floor plates that are installed over concrete slabs-on-grade.

2.3 FIRE-RETARDANT-TREATED MATERIALS

A. General: Where fire-retardant-treated materials are indicated, materials shall comply with requirements in this article, that are acceptable to authorities having jurisdiction, and with fire-test-response characteristics specified as determined by testing identical products per test method indicated by a qualified testing agency.

B. Fire-Retardant-Treated Lumber and Plywood by Pressure Process: Products with a flame-spread index of 25 or less when tested according to ASTM E84, and with no evidence of significant progressive combustion when the test is extended an additional 20 minutes, and with the flame front not extending more than 10.5 feet beyond the centerline of the burners at any time during the test.

1. Treatment shall not promote corrosion of metal fasteners.
2. Exterior Type: Treated materials shall comply with requirements specified above for fire-retardant-treated lumber and plywood by pressure process after being subjected to accelerated weathering according to ASTM D2898. Use for exterior locations and where indicated.
3. Interior Type A: Treated materials shall have a moisture content of 28 percent or less when tested according to ASTM D3201 at 92 percent relative humidity. Use where exterior type is not indicated.
4. Design Value Adjustment Factors: Treated lumber shall be tested according to ASTM D5664, and design value adjustment factors shall be calculated according to ASTM D6841. For enclosed roof framing, framing in attic spaces, and where high-temperature fire-retardant treatment is indicated, provide material with adjustment factors of not less than 0.85 modulus of elasticity and 0.75 for extreme fiber in bending for Project’s climatological zone.

C. Kiln-dry lumber after treatment to a maximum moisture content of 19 percent.

D. Identify fire-retardant-treated wood with appropriate classification marking of qualified testing agency.

1. For exposed lumber indicated to receive a stained or natural finish, omit marking and provide certificates of treatment compliance issued by inspection agency.

E. For exposed items indicated to receive a stained or natural finish, chemical formulations shall not bleed through, contain colorants, or otherwise adversely affect finishes.

F. Application: Treat items indicated on Drawings, and the following:

1. Concealed blocking.

2.4 MISCELLANEOUS LUMBER

A. General: Provide miscellaneous lumber indicated and lumber for support or attachment of other construction, including the following:
1. Blocking.
2. Nailers.
3. Cants.
4. Furring.
5. Utility shelving.

B. Dimension Lumber Items: Construction or No. 2 grade lumber of any of the following species:

1. Hem-fir (north); NLGA.
2. Mixed southern pine or southern pine; SPIB.
3. Spruce-pine-fir; NLGA.
4. Hem-fir; WCLIB or WWPA.
5. Spruce-pine-fir (south); NeLMA, WCLIB, or WWPA.
6. Western woods; WCLIB or WWPA.
7. Northern species; NLGA.
8. Eastern softwoods; NeLMA.

C. Utility Shelving: Lumber with 19 percent maximum moisture content of any of the following species and grades:

1. Mixed southern pine or southern pine No. 1 grade; SPIB.
2. Spruce-pine-fir (south) or spruce-pine-fir, Select Merchantable or No. 1 Common grade; NeLMA, NLGA, WCLIB, or WWPA.

D. Concealed Boards: 19 percent maximum moisture content of any of the following species and grades:

1. Mixed southern pine or southern pine, No. 2 grade; SPIB.
2. Spruce-pine-fir (south) or spruce-pine-fir, Construction or No. 2 Common grade; NeLMA, NLGA, WCLIB, or WWPA.

E. For blocking not used for attachment of other construction, Utility, Stud, or No. 3 grade lumber of any species may be used provided that it is cut and selected to eliminate defects that will interfere with its attachment and purpose.

F. For blocking and nailers used for attachment of other construction, select and cut lumber to eliminate knots and other defects that will interfere with attachment of other work.

G. For furring strips for installing plywood or hardboard paneling, select boards with no knots capable of producing bent-over nails and damage to paneling.

2.5 PLYWOOD BACKING PANELS

A. Equipment Backing Panels: Plywood, DOC PS 1, Exterior, A-C, in thickness indicated or, if not indicated, not less than 1/2-inch nominal thickness.
2.6 FASTENERS

A. General: Provide fasteners of size and type indicated that comply with requirements specified in this article for material and manufacture.

1. Where carpentry is exposed to weather, in ground contact, pressure-preservative treated, or in area of high relative humidity, provide fasteners of Type 304 stainless steel.

B. Nails, Brads, and Staples: ASTM F1667.

C. Screws for Fastening to Metal Framing: ASTM C1002 and ASTM C954, length as recommended by screw manufacturer for material being fastened.

D. Power-Driven Fasteners: Fastener systems with an evaluation report acceptable to authorities having jurisdiction, based on ICC-ES AC70.

2.7 METAL FRAMING ANCHORS

1. Use for interior locations unless otherwise indicated.

B. Hot-Dip, Heavy-Galvanized Steel Sheet: ASTM A653/A653M; Structural Steel (SS), high-strength low-alloy steel Type A (HSLAS Type A), or high-strength low-alloy steel Type B (HSLAS Type B); G185 coating designation; and not less than 0.036 inch thick.

1. Use for wood-preservative-treated lumber and where indicated.

C. Stainless-Steel Sheet: ASTM A666, Type 304.

1. Use for exterior locations and where indicated.

2.8 MISCELLANEOUS MATERIALS

A. Flexible Flashing: Composite, self-adhesive, flashing product consisting of a pliable, butyl rubber or rubberized-asphalt compound, bonded to a high-density polyethylene film, aluminum foil, or spunbonded polyolefin to produce an overall thickness of not less than 0.025 inch.

B. Adhesives for gluing furring and sleepers to Concrete or Masonry: Formulation complying with ASTM D 3498 that is approved for use indicated by adhesive manufacturer.

1. Adhesives shall have a Volatile Organic Compounds (VOC) content of 70 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
PART 3 - EXECUTION

3.1 INSTALLATION, GENERAL

A. Framing Standard: Comply with AF&PA’s WCD 1, "Details for Conventional Wood Frame Construction," unless otherwise indicated.

B. Set carpentry to required levels and lines, with members plumb, true to line, cut, and fitted. Fit carpentry accurately to other construction. Locate furring, nailers, blocking, and similar supports to comply with requirements for attaching other construction.

C. Install plywood backing panels by fastening to studs; coordinate locations with utilities requiring backing panels.

D. Install metal framing anchors to comply with manufacturer's written instructions. Install fasteners through each fastener hole.

E. Do not splice structural members between supports unless otherwise indicated.

F. Provide blocking and framing as indicated and as required to support facing materials, fixtures, specialty items, and trim.

G. Provide fire blocking in furred spaces, stud spaces, and other concealed cavities as indicated and as follows:

1. Fire block furred spaces of walls, at each floor level, at ceiling, and at not more than 96 inches o.c. with solid wood blocking or noncombustible materials accurately fitted to close furred spaces.

2. Fire block concealed spaces of wood-framed walls and partitions at each floor level, at ceiling line of top story, and at not more than 96 inches o.c. Where fire blocking is not inherent in framing system used, provide closely fitted solid wood blocks of same width as framing members and 2-inch nominal thickness.

3. Fire block concealed spaces between floor sleepers with same material as sleepers to limit concealed spaces to not more than 100 sq. ft. and to solidly fill space below partitions.

4. Fire block concealed spaces behind combustible cornices and exterior trim at not more than 20 feet o.c.

H. Sort and select lumber so that natural characteristics do not interfere with installation or with fastening other materials to lumber. Do not use materials with defects that interfere with function of member or pieces that are too small to use with minimum number of joints or optimum joint arrangement.

I. Comply with AWPA M4 for applying field treatment to cut surfaces of preservative-treated lumber.

1. Use inorganic boron for items that are continuously protected from liquid water.

2. Use copper naphthenate for items not continuously protected from liquid water.
J. Where wood-preservative-treated lumber is installed adjacent to metal decking, install continuous flexible flashing separator between wood and metal decking.

K. Securely attach carpentry work to substrate by anchoring and fastening as indicated, complying with the following:
 2. Table R602.3(1), "Fastener Schedule for Structural Members," and Table R602.3(2), "Alternate Attachments," in ICC's International Residential Code for One- and Two-Family Dwellings.
 3. ICC-ES evaluation report for fastener.

L. Use steel common nails unless otherwise indicated. Select fasteners of size that will not fully penetrate members where opposite side will be exposed to view or will receive finish materials. Make tight connections between members. Install fasteners without splitting wood. Drive nails snug but do not countersink nail heads unless otherwise indicated.

3.2 WOOD BLOCKING AND NAILER INSTALLATION
 A. Install where indicated and where required for attaching other work. Form to shapes indicated and cut as required for true line and level of attached work. Coordinate locations with other work involved.
 B. Attach items to substrates to support applied loading. Recess bolts and nuts flush with surfaces unless otherwise indicated.

3.3 WOOD FURRING INSTALLATION
 A. Install level and plumb with closure strips at edges and openings. Shim with wood as required for tolerance of finish work.
 B. Furring to Receive Gypsum Board: Install 1-by-2-inch nominal-size furring at 16 inches o.c.

3.4 PROTECTION
 A. Protect products from moisture absorption and subsequent warping or deterioration until subsequent construction can proceed.
 B. Protect wood that has been treated with inorganic boron (SBX) from weather. If, despite protection, inorganic boron-treated wood becomes wet, apply EPA-registered borate treatment. Apply borate solution by spraying to comply with EPA-registered label.
 C. Protect miscellaneous rough carpentry from weather. If, despite protection, miscellaneous rough carpentry becomes wet, apply EPA-registered borate treatment. Apply borate solution by spraying to comply with EPA-registered label.
END OF SECTION
SECTION 061600
SHEATHING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Wall sheathing.
 2. Parapet sheathing
B. Related Requirements:
 1. Section 061053 "Miscellaneous Rough Carpentry" for plywood backing panels.
 2. Section 072726 “Fluid Applied Membrane Air Barriers” water-resistive barrier applied over wall sheathing.

1.3 ACTION SUBMITTALS
A. Product Data: For each type of process and factory-fabricated product. Indicate component materials and dimensions and include construction and application details.
 1. Include data for wood-preservative treatment from chemical treatment manufacturer and certification by treating plant that treated plywood complies with requirements. Indicate type of preservative used and net amount of preservative retained.
 2. Include data for fire-retardant treatment from chemical treatment manufacturer and certification by treating plant that treated plywood complies with requirements. Include physical properties of treated materials.
 3. For fire-retardant treatments, include physical properties of treated plywood both before and after exposure to elevated temperatures, based on testing by a qualified independent testing agency according to ASTM D5516.
 4. For air-barrier and water-resistant glass-mat gypsum sheathing, include manufacturer's technical data and tested physical and performance properties of products.

1.4 QUALITY ASSURANCE
A. Installer Qualifications: An entity that employs installers and supervisors who are trained and approved by manufacturer of air-barrier and water-resistant glass-mat gypsum sheathing.

B. Evaluation Reports: For the following, from ICC-ES:
 1. Wood-preservative-treated plywood.
 2. Fire-retardant-treated plywood.
 3. Foam-plastic sheathing.

1.5 DELIVERY, STORAGE, AND HANDLING

A. Stack panels flat with spacers beneath and between each bundle to provide air circulation. Protect sheathing from weather by covering with waterproof sheeting, securely anchored. Provide for air circulation around stacks and under coverings.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Fire-Resistance Ratings: As tested according to ASTM E119; testing by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.

 1. Fire-Resistance Ratings: Indicated by design designations from UL's "Fire Resistance Directory" or from the listings of another qualified testing agency.

B. Air-Barrier and Water-Resistant Glass-Mat Gypsum Sheathing Performance: Air-barrier and water-resistant glass-mat gypsum sheathing assembly, and seals with adjacent construction, shall be capable of performing as a continuous air barrier and as a liquid-water drainage plane flashed to discharge to the exterior incidental condensation or water penetration. Air-barrier assemblies shall be capable of accommodating substrate movement and of sealing substrate expansion and control joints, construction material changes, penetrations, and transitions at perimeter conditions without deterioration and air leakage exceeding specified limits.

2.2 FIRE-RETARDANT-TREATED PLYWOOD

A. General: Where fire-retardant-treated materials are indicated, use materials complying with requirements in this article that are acceptable to authorities having jurisdiction and with fire-test-response characteristics specified as determined by testing identical products per test method indicated by a qualified testing agency.

B. Fire-Retardant-Treated Plywood by Pressure Process: Products with a flame-spread index of 25 or less when tested according to ASTM E84, and with no evidence of significant progressive combustion when the test is extended an additional 20 minutes, and with the flame front not extending more than 10.5 feet beyond the centerline of the burners at any time during the test.
1. Use treatment that does not promote corrosion of metal fasteners.

2. Exterior Type: Treated materials shall comply with requirements specified above for fire-retardant-treated plywood by pressure process after being subjected to accelerated weathering according to ASTM D2898. Use for exterior locations and where indicated.

3. Design Value Adjustment Factors: Treated lumber plywood shall be tested according to ASTM D5516 and design value adjustment factors shall be calculated according to ASTM D6305. Span ratings after treatment shall be not less than span ratings specified.

C. Kiln-dry material after treatment to a maximum moisture content of 15 percent. Do not use material that is warped or does not comply with requirements for untreated material.

D. Identify fire-retardant-treated plywood with appropriate classification marking of qualified testing agency.

E. Application: Treat plywood indicated on Drawings.

2.3 WALL SHEATHING

A. Glass-Mat Gypsum Sheathing: ASTM C1177/C1177M.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. CertainTeed Corporation.
 b. Georgia-Pacific Gypsum LLC.
 c. National Gypsum Company.

2. Type and Thickness: Regular, 1/2 inch thick.

2.4 PARAPET SHEATHING

A. Glass-Mat Gypsum Sheathing: ASTM C1177/C1177M.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. CertainTeed Corporation.
 b. Georgia-Pacific Gypsum LLC.
 c. National Gypsum Company.

2. Type and Thickness: Regular, 1/2 inch thick.

2.5 FASTENERS
A. General: Provide fasteners of size and type indicated that comply with requirements specified in this article for material and manufacture.

1. For wall sheathing, provide fasteners with hot-dip zinc coating complying with ASTM A153/A153M.

B. Nails, Brads, and Staples: ASTM F1667.

C. Power-Driven Fasteners: Fastener systems with an evaluation report acceptable to authorities having jurisdiction, based on ICC-ES AC70.

D. Screws for Fastening Sheathing to Wood Framing: ASTM C1002.

E. Screws for Fastening Gypsum Sheathing to Cold-Formed Metal Framing: Steel drill screws, in length recommended by sheathing manufacturer for thickness of sheathing to be attached.

1. For steel framing less than 0.0329-inch-thick, use screws that comply with ASTM C1002.
2. For steel framing from 0.033 to 0.112-inch-thick, use screws that comply with ASTM C954.

2.6 SHEATHING JOINT-AND-PENETRATION TREATMENT MATERIALS

A. Sealant for Glass-Mat Gypsum Sheathing: Silicone emulsion sealant complying with ASTM C834, compatible with sheathing tape and sheathing and recommended by tape and sheathing manufacturers for use with glass-fiber sheathing tape and for covering exposed fasteners.

1. Sheathing Tape: Self-adhering glass-fiber tape, minimum 2 inches wide, 10 by 10 or 10 by 20 threads/inch, of type recommended by sheathing and tape manufacturers for use with silicone emulsion sealant in sealing joints in glass-mat gypsum sheathing and with a history of successful in-service use.

PART 3 - EXECUTION

3.1 INSTALLATION, GENERAL

A. Do not use materials with defects that impair quality of sheathing or pieces that are too small to use with minimum number of joints or optimum joint arrangement. Arrange joints so that pieces do not span between fewer than three support members.

B. Cut panels at penetrations, edges, and other obstructions of work; fit tightly against abutting construction unless otherwise indicated.

C. Securely attach to substrate by fastening as indicated, complying with the following:

1. Table 2304.9.1, "Fastening Schedule," in the ICC's International Building Code.
2. ICC-ES evaluation report for fastener.

D. Coordinate wall and roof sheathing installation with flashing and joint-sealant installation so these materials are installed in sequence and manner that prevent exterior moisture from passing through completed assembly.

E. Do not bridge building expansion joints; cut and space edges of panels to match spacing of structural support elements.

F. Coordinate sheathing installation with installation of materials installed over sheathing so sheathing is not exposed to precipitation or left exposed at end of the workday when rain is forecast.

3.2 GYPSUM SHEATHING INSTALLATION

A. Comply with GA-253 and with manufacturer's written instructions.

1. Fasten gypsum sheathing to cold-formed metal framing with screws.
2. Install panels with a 3/8-inch gap where non-load-bearing construction abuts structural elements.
3. Install panels with a 1/4-inch gap where they abut masonry or similar materials that might retain moisture, to prevent wicking.

B. Apply fasteners so heads bear tightly against face of sheathing, but do not cut into facing.

C. Vertical Installation: Install vertical edges centered over studs. Abut ends and edges with those of adjacent panels. Attach at perimeter and within field of panel to each stud.

1. Space fasteners approximately 8 inches o.c. and set back a minimum of 3/8 inch from edges and ends of panels.

D. Seal sheathing joints according to sheathing manufacturer's written instructions.

1. Apply glass-fiber sheathing tape to glass-mat gypsum sheathing joints and apply and trowel sealant to embed entire face of tape in sealant. Apply sealant to exposed fasteners with a trowel so fasteners are completely covered. Seal other penetrations and openings.

3.3 FIELD QUALITY CONTROL

A. Testing and Inspecting Agency: Engage a qualified testing agency to perform tests and inspections.

B. Inspections: Air-barrier and water-resistant glass-mat gypsum sheathing, accessories, and installation are subject to inspection for compliance with requirements. Inspections may include the following:

1. Continuity of air-barrier system has been achieved throughout the building envelope with no gaps or holes.
2. Laps in strips and transition strips have complied with minimum requirements and have been shingled in the correct direction (or mastic has been applied on exposed edges), with no fishmouths.
3. Termination mastic has been applied on cut edges.
4. Strips and transition strips have been firmly adhered to substrate.
5. Compatible materials have been used.
6. Transitions at changes in direction and structural support at gaps have been provided.
7. Connections between assemblies (sheathing and sealants) have complied with requirements for cleanliness, surface preparation and priming, structural support, integrity, and continuity of seal.
8. All penetrations have been sealed.

C. Air barriers will be considered defective if they do not pass tests and inspections.

D. Repair damage to air barriers caused by testing; follow manufacturer's written instructions.

E. Prepare test and inspection reports.

END OF SECTION
SECTION 064116
PLASTIC-LAMINATE-CLAD ARCHITECTURAL CABINETS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Plastic-laminate-clad architectural cabinets.
 2. Wood furring, blocking, shims, and hanging strips for installing plastic-laminate-clad architectural cabinets that are not concealed within other construction.

 B. Related Requirements:
 1. Section 061053 "Miscellaneous Rough Carpentry" for wood furring, blocking, shims, and hanging strips required for installing cabinets that are concealed within other construction before cabinet installation.
 2. Section 123623.13 "Plastic-Laminate-Clad Countertops."

1.3 COORDINATION
A. Coordinate sizes and locations of framing, blocking, furring, reinforcements, and other related units of Work specified in other Sections to support loads imposed by installed and fully loaded cabinets.

1.4 ACTION SUBMITTALS
A. Product Data: For each type of product.
 1. Include data for fire-retardant treatment from chemical-treatment manufacturer and certification by treating plant that treated materials comply with requirements.

 B. Shop Drawings:
 1. Include plans, elevations, sections, and attachment details.
 2. Show large-scale details.
 3. Show locations and sizes of furring, blocking, and hanging strips, including concealed blocking and reinforcement specified in other Sections.
4. Show locations and sizes of cutouts and holes for items installed in plastic-laminate architectural cabinets.
5. Apply AWI Quality Certification Program label to Shop Drawings.

C. Samples: For each exposed product and for each color and texture specified, in manufacturer's or manufacturer's standard size.

1.5 QUALITY ASSURANCE

A. Manufacturer's Qualifications: Employs skilled workers who custom fabricate products similar to those required for this Project and whose products have a record of successful in-service performance.

B. Installer Qualifications: Licensed participant in AWI's Quality Certification Program.

1.6 DELIVERY, STORAGE, AND HANDLING

A. Do not deliver cabinets until painting and similar finish operations that might damage architectural cabinets have been completed in installation areas. Store cabinets in installation areas or in areas where environmental conditions comply with requirements specified in "Field Conditions" Article.

1.7 FIELD CONDITIONS

A. Environmental Limitations: Do not deliver or install cabinets until building is enclosed, wet-work is complete, and HVAC system is operating and maintaining temperature and relative humidity at levels planned for building occupants during the remainder of the construction period.

B. Field Measurements: Where cabinets are indicated to fit to other construction, verify dimensions of other construction by field measurements before fabrication, and indicate measurements on Shop Drawings. Coordinate fabrication schedule with construction progress to avoid delaying the Work.

1. Locate concealed framing, blocking, and reinforcements that support cabinets by field measurements before being enclosed/concealed by construction, and indicate measurements on Shop Drawings.

PART 2 - PRODUCTS

2.1 PLASTIC-LAMINATE-CLAD ARCHITECTURAL CABINETS

A. Quality Standard: Unless otherwise indicated, comply with the Architectural Woodwork Standards for grades of cabinets indicated for construction, finishes, installation, and other requirements.

1. Provide certificates from AWI certification program indicating that woodwork and installation complies with requirements of grades specified.
B. Architectural Woodwork Standards Grade: Custom.
C. Type of Construction: Frameless.
D. Door and Drawer-Front Style: Flush overlay.
E. High-Pressure Decorative Laminate: NEMA LD 3, grades as indicated or if not indicated, as required by quality standard.

1. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 a. Nevamar.
 b. Pionite; a Panolam Industries International, Inc. brand.
 c. Wilsonart.

F. Laminate Cladding for Exposed Surfaces:

1. Horizontal Surfaces: Grade HGS.
2. Postformed Surfaces: Grade HGP.
3. Vertical Surfaces: Grade HGS.
4. Edges: Grade HGS.
5. Pattern Direction: Vertically for drawer fronts, doors, and fixed panels.

G. Materials for Semi-exposed Surfaces:

1. Surfaces Other Than Drawer Bodies: High-pressure decorative laminate, NEMA LD 3, Grade VGS.
 a. Edges of Plastic-Laminate Shelves: PVC tape, 0.018-inch minimum thickness, matching laminate in color, pattern, and finish.
 b. Edges of Thermoset Decorative Panel Shelves: PVC edge banding.
 c. For semi-exposed backs of panels with exposed plastic-laminate surfaces, provide surface of high-pressure decorative laminate, NEMA LD 3, Grade VGS.

2. Drawer Sides and Backs: Thermoset decorative panels with PVC or polyester edge banding.
3. Drawer Bottoms: Thermoset decorative panels.

H. Dust Panels: 1/4-inch plywood or tempered hardboard above compartments and drawers unless located directly under tops.

I. Concealed Backs of Panels with Exposed Plastic-Laminate Surfaces: High-pressure decorative laminate, NEMA LD 3, Grade BKL.

J. Drawer Construction: Fabricate with exposed fronts fastened to subfront with mounting screws from interior of body.
K. Colors, Patterns, and Finishes: Provide materials and products that result in colors and textures of exposed laminate surfaces complying with the following requirements:

1. As indicated by laminate manufacturer's designations.
2. As selected by Architect from laminate manufacturer's full range in the following categories:
 a. Solid colors, matte finish.
 b. Wood grains, matte finish.
 c. Patterns, matte finish.

2.2 WOOD MATERIALS

A. Wood Products: Provide materials that comply with requirements of referenced quality standard for each type of architectural cabinet and quality grade specified unless otherwise indicated.

1. Wood Moisture Content: 5 to 10 percent.

B. Composite Wood and Agrifiber Products: Provide materials that comply with requirements of referenced quality standard for each type of architectural cabinet and quality grade specified unless otherwise indicated.

2.3 CABINET HARDWARE AND ACCESSORIES

A. General: Provide cabinet hardware and accessory materials associated with architectural cabinets except for items specified in Section 087100 "Door Hardware."

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. Accuride International.
 b. Blum, Julius & Co., Inc.
 c. CompX International, Inc.
 d. Hettich America L.P.

B. Frameless Concealed Hinges (European Type): BHMA A156.9, B01602, 100 degrees of opening.

C. Wire Pulls: Back mounted, solid metal, 5 inches long, 2-1/2 inches deep, and 5/16 inch in diameter.

D. Adjustable Shelf Standards and Supports: BHMA A156.9, B04071; with shelf rests, B04081.

E. Drawer Slides: BHMA A156.9.

1. Grade 1 and Grade 2: Side mounted.
a. Type: Full extension.
b. Material: Zinc-plated steel with polymer rollers.

2. For drawers not more than 3 inches high and not more than 24 inches wide, provide Grade 1.
3. For drawers more than 3 inches high, but not more than 6 inches high and not more than 24 inches wide, provide Grade 1.
4. For drawers more than 6 inches high or more than 24 inches wide, provide Grade 1 HD-100.

F. Door Locks: BHMA A156.11, E07121.

G. Drawer Locks: BHMA A156.11, E07041.

H. Door and Drawer Silencers: BHMA A156.16, L03011.

I. Grommets for Cable Passage: 2-inch OD, molded-plastic grommets and matching plastic caps with slot for wire passage.

J. Exposed Hardware Finishes: For exposed hardware, provide finish that complies with BHMA A156.18 for BHMA finish number indicated.
 1. Satin Stainless Steel: BHMA 630.

K. For concealed hardware, provide manufacturer's standard finish that complies with product class requirements in BHMA A156.9.

2.4 MISCELLANEOUS MATERIALS

A. Furring, Blocking, Shims, and Hanging Strips: Softwood or hardwood lumber, kiln-dried to less than 15 percent moisture content.

B. Anchors: Select material, type, size, and finish required for each substrate for secure anchorage. Provide metal expansion sleeves or expansion bolts for post-installed anchors. Use nonferrous-metal or hot-dip galvanized anchors and inserts at inside face of exterior walls and at floors.

C. Adhesive for Bonding Plastic Laminate: Unpigmented contact cement.
 1. Adhesive for Bonding Edges: Hot-melt adhesive or adhesive specified above for faces.

2.5 FABRICATION

A. Fabricate architectural cabinets to dimensions, profiles, and details indicated.
B. Complete fabrication, including assembly and hardware application, to maximum extent possible before shipment to Project site. Disassemble components only as necessary for shipment and installation. Where necessary for fitting at site, provide ample allowance for scribing, trimming, and fitting.

1. Notify Architect seven days in advance of the dates and times architectural cabinet fabrication will be complete.
2. Trial fit assemblies at manufacturer's shop that cannot be shipped completely assembled. Install dowels, screws, bolted connectors, and other fastening devices that can be removed after trial fitting. Verify that various parts fit as intended and check measurements of assemblies against field measurements before disassembling for shipment.

C. Shop-cut openings to maximum extent possible to receive hardware, appliances, electrical work, and similar items. Locate openings accurately and use templates or roughing-in diagrams to produce accurately sized and shaped openings. Sand edges of cutouts to remove splinters and burrs.

PART 3 - EXECUTION

3.1 PREPARATION

A. Before installation, condition cabinets to humidity conditions in installation areas for not less than 72 hours.

3.2 INSTALLATION

A. Architectural Woodwork Standards Grade: Install cabinets to comply with quality standard grade of item to be installed.

B. Assemble cabinets and complete fabrication at Project site to extent that it was not completed in the shop.

C. Anchor cabinets to anchors or blocking built in or directly attached to substrates. Secure with wafer-head cabinet installation screws.

D. Install cabinets level, plumb, and true in line to a tolerance of 1/8 inch in 96 inches using concealed shims.

1. Scribe and cut cabinets to fit adjoining work, refinish cut surfaces, and repair damaged finish at cuts.
2. Install cabinets without distortion so doors and drawers fit openings and are accurately aligned. Adjust hardware to center doors and drawers in openings and to provide unencumbered operation. Complete installation of hardware and accessory items as indicated.
3. Fasten wall cabinets through back, near top and bottom, and at ends not more than 16 inches o.c. with No. 10 wafer-head screws sized for not less than 1-1/2-inch penetration into wood framing, blocking, or hanging strips or No. 10 wafer-
head sheet metal screws through metal backing or metal framing behind wall finish.

3.3 ADJUSTING AND CLEANING

A. Repair damaged and defective cabinets, where possible, to eliminate functional and visual defects. Where not possible to repair, replace architectural cabinets. Adjust joinery for uniform appearance.

B. Clean, lubricate, and adjust hardware.

C. Clean cabinets on exposed and semi-exposed surfaces.

END OF SECTION
SECTION 071616
CRYSTALLINE WATERPROOFING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section includes crystalline waterproofing.

1.3 ACTION SUBMITTALS
 A. Product Data: For each type of product.

1.4 QUALITY ASSURANCE
 A. Applicator Qualifications: A firm experienced in applying crystalline waterproofing similar in material, design, and extent to that indicated for this Project, whose work has resulted in applications with a record of successful in-service performance.

1.5 FIELD CONDITIONS
 A. Proceed with waterproofing work only after pipe sleeves, vents, curbs, inserts, drains, and other projections through the substrate to be waterproofed have been completed. Proceed only after substrate defects, including honeycombs, voids, and cracks, have been repaired to provide a sound substrate free of forming materials, including reveal inserts.
 B. Ambient Conditions: Proceed with waterproofing work only if temperature is maintained at 40 degrees F or above during work and cure period, and space is well ventilated and kept free of water.

PART 2 - PRODUCTS

2.1 WATERPROOFING MATERIALS
 A. Crystalline Waterproofing: Prepackaged, gray-colored proprietary blend of portland cement, specially treated sand, and active chemicals that, when mixed with water and applied, penetrates into concrete and concrete unit masonry and reacts chemically with the byproducts of cement hydration in the presence of water to develop crystalline growth within substrate capillaries to produce an impervious, dense, waterproof substrate; with properties complying with or exceeding the criteria specified below.
1. Manufactures and products:
 a. Aquafin Building Product Systems; Aquafin IC.
 b. Tremco, Beachwood; Permaquik Super 200.
 c. Approved Equal.

2. Performance:
 a. Water Permeability: Maximum zero for water at 30 feet when tested according to COE CRD-C 48.
 b. Compressive Strength: Minimum 4000 psi at 28 days when tested according to ASTM C 109 or ASTM C39.

2.2 ACCESSORY MATERIALS

 A. Patching Compound: Factory-premixed cementitious repair mortar, crack filler, or sealant recommended by waterproofing manufacturer for filling and patching tie holes, honeycombs, reveals, and other imperfections; and compatible with substrate and other materials indicated.

 B. Plugging Compound: Factory-premixed cementitious compound with hydrophobic properties and recommended by waterproofing manufacturer; resistant to water and moisture but vapor permeable for all standard applications (vertical, overhead, and horizontal surfaces not exposed to vehicular traffic); and compatible with substrate and other materials indicated.

 C. Water: Potable.

2.3 MIXES

 A. Crystalline Waterproofing: Add prepackaged dry ingredients to water according to manufacturer's written instructions. Mix together with mechanical mixer or by hand to required consistency.

PART 3 - EXECUTION

3.1 PREPARATION

 A. Comply with manufacturer's written instructions.

 B. Protect other work from damage caused by cleaning, preparation, and application of waterproofing. Provide temporary enclosure to ensure adequate ambient temperatures and ventilation conditions for application.

 C. Do not allow waterproofing, patching, and plugging materials to enter reveals or annular spaces intended for resilient sealants or gaskets, such as joint spaces between pipes and pipe sleeves.
D. Stop active water leaks with plugging compound.

E. Repair damaged or unsatisfactory substrate with patching compound.

1. At holes and cracks 1/16 inch wide or larger in substrate, remove loosened chips and cut reveal with sides perpendicular to surface, not tapered, and minimum 1 inch deep. Fill reveal with patching compound flush with surface.

F. Surface Preparation: Remove efflorescence, chalk, dust, dirt, mortar spatter, grease, oils, paint, curing compounds, and form-release agents to ensure that waterproofing bonds to surfaces.

3.2 APPLICATION

A. General: Comply with waterproofing manufacturer's written instructions for application and curing.

1. Saturate surface with water for several hours and maintain damp condition until applying waterproofing. Remove standing water.

2. Apply waterproofing to surfaces, and extend waterproofing onto adjacent surfaces as follows:

a. Onto every substrate in areas indicated for treatment, including pits and sumps.

b. Onto columns integral with treated walls.

3. Number of Coats: Number required for specified water permeability but no less than two.

4. Application Method: Apply to ensure that each coat fills voids and is in full contact with substrate or previous coat.

5. Dampen surface between coats.

B. Final Coat Finish: Smooth or brushed.

C. Curing: Moist-cure waterproofing for three days immediately after final coat has set, followed by air drying, unless otherwise recommended in writing by manufacturer.

END OF SECTION
SECTION 072100
THERMAL INSULATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Extruded polystyrene foam-plastic board.
2. Glass-fiber blanket.
3. Mineral-wool blanket insulation

B. Related Requirements:

1. Section 042000 "Unit Masonry" for insulation installed in masonry cells.
2. Section 075419 "Polyvinyl-Chloride (PVC) Roofing" for insulation specified as part of roofing construction.
3. Section 092900 "Gypsum Board" for sound attenuation blanket used as acoustic insulation.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. Sustainable Design Submittals:

1.4 INFORMATIONAL SUBMITTALS

A. Product Test Reports: For each product, for tests performed by a qualified testing agency.

B. Evaluation Reports: For foam-plastic insulation, from ICC-ES.

1.5 DELIVERY, STORAGE, AND HANDLING

A. Protect insulation materials from physical damage and from deterioration due to moisture, soiling, and other sources. Store inside and in a dry location. Comply with manufacturer's written instructions for handling, storing, and protecting during installation.

B. Protect foam-plastic board insulation as follows:
1. Do not expose to sunlight except to necessary extent for period of installation and concealment.
2. Protect against ignition at all times. Do not deliver foam-plastic board materials to Project site until just before installation time.
3. Quickly complete installation and concealment of foam-plastic board insulation in each area of construction.

PART 2 - PRODUCTS

2.1 EXTRUDED POLYSTYRENE FOAM-PLASTIC BOARD

A. Extruded Polystyrene Board, Type IV: ASTM C578, Type IV, 25-psi minimum compressive strength; unfaced; maximum flame-spread and smoke-developed indexes of 25 and 450, respectively, per ASTM E84.

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. DiversiFoam Products.
 b. Dow Chemical Company (The).
 c. Kingspan Insulation Limited.

B. Extruded Polystyrene Board, Type VI, Drainage Panels: ASTM C578, Type VI, 40-psi minimum compressive strength; unfaced; maximum flame-spread and smoke-developed indexes of 25 and 450, respectively, per ASTM E84; fabricated with shiplap or channel edges and with one side having grooved drainage channels.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. DiversiFoam Products.
 b. Dow Chemical Company (The).
 c. Kingspan Insulation Limited.

2.2 GLASS-FIBER BLANKET INSULATION

A. Glass-Fiber Blanket, Unfaced: ASTM C665, Type I; with maximum flame-spread and smoke-developed indexes of 25 and 50, respectively, per ASTM E84; passing ASTM E136 for combustion characteristics.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. CertainTeed Corporation.
b. Johns Manville; a Berkshire Hathaway company.

c. Knauf Insulation.

2.3 MINERAL-WOOL BLANKET INSULATION

A. Mineral-Wool Blanket Insulation, Unfaced: ASTM C665, Type IA (blankets without membrane facing); consisting of fibers; passing ASTM E136 for combustion characteristics.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Rockwool Group.
 b. Johns Manville; a Berkshire Hathaway company.
 c. Owens Corning.

2. Flame-Spread Index: Not more than 25 when tested in accordance with ASTM E84.

3. Smoke-Developed Index: Not more than 50 when tested in accordance with ASTM E84.

4. Labeling: Provide identification of mark indicating R-value of each piece of insulation 12 inches and wider in width.

2.4 ACCESSORIES

A. Insulation for Miscellaneous Voids:

 1. Spray Polyurethane Foam Insulation: ASTM C1029, Type II, closed cell, with maximum flame-spread and smoke-developed indexes of 75 and 450, respectively, per ASTM E84.

B. Adhesive for Bonding Insulation: Product compatible with insulation and air and water barrier materials, and with demonstrated capability to bond insulation securely to substrates without damaging insulation and substrates.

PART 3 - EXECUTION

3.1 PREPARATION

A. Clean substrates of substances that are harmful to insulation, including removing projections capable of puncturing insulation or vapor retarders, or that interfere with insulation attachment.

3.2 INSTALLATION, GENERAL

A. Comply with insulation manufacturer's written instructions applicable to products and applications.
B. Install insulation that is undamaged, dry, and unsoiled and that has not been left exposed to ice, rain, or snow at any time.

C. Extend insulation to envelop entire area to be insulated. Fit tightly around obstructions and fill voids with insulation. Remove projections that interfere with placement.

D. Provide sizes to fit applications and selected from manufacturer's standard thicknesses, widths, and lengths. Apply single layer of insulation units unless multiple layers are otherwise shown or required to make up total thickness or to achieve R-value.

3.3 INSTALLATION OF SLAB INSULATION

A. On vertical slab edge and foundation surfaces, set insulation units using manufacturer's recommended adhesive according to manufacturer's written instructions.

1. If not otherwise indicated, extend insulation a minimum of 24 inches below exterior grade line.

B. On horizontal surfaces, loosely lay insulation units according to manufacturer's written instructions. Stagger end joints and tightly abut insulation units.

1. If not otherwise indicated, extend insulation a minimum of 24 inches in from exterior walls.

3.4 INSTALLATION OF FOUNDATION WALL INSULATION

A. Butt panels together for tight fit.

B. Adhesive Installation: Install with adhesive or press into tacky waterproofing or dampproofing according to manufacturer's written instructions.

3.5 INSTALLATION OF CAVITY-WALL INSULATION

A. Foam-Plastic Board Insulation: Install pads of adhesive spaced approximately 24 inches o.c. both ways on inside face and as recommended by manufacturer.

1. Fit courses of insulation between wall ties and other obstructions, with edges butted tightly in both directions. Press units firmly against inside substrates.

2. Press units firmly against inside substrates.

3.6 INSTALLATION OF INSULATION IN FRAMED CONSTRUCTION

A. Blanket Insulation: Install in cavities formed by framing members according to the following requirements:

1. Use insulation widths and lengths that fill the cavities formed by framing members. If more than one length is required to fill the cavities, provide lengths that will produce a snug fit between ends.
2. Place insulation in cavities formed by framing members to produce a friction fit between edges of insulation and adjoining framing members.

3. Maintain 3-inch clearance of insulation around recessed lighting fixtures not rated for or protected from contact with insulation.

4. For metal-framed wall cavities where cavity heights exceed 96 inches, support unfaced blankets mechanically and support faced blankets by taping flanges of insulation to flanges of metal studs.

B. Miscellaneous Voids: Install insulation in miscellaneous voids and cavity spaces where required to prevent gaps in insulation using the following materials:

1. Spray Polyurethane Insulation: Apply according to manufacturer's written instructions.

3.7 INSTALLATION OF CURTAIN-WALL INSULATION

A. Install board insulation in curtain-wall construction according to curtain-wall manufacturer's written instructions.

1. Hold insulation in place by securing metal clips and straps or integral pockets within window frames, spaced at intervals recommended in writing by insulation manufacturer to hold insulation securely in place without touching spandrel glass.

2. Maintain cavity width of dimension indicated on Drawings between insulation and glass.

3. Install insulation to fit snugly without bowing.

3.8 PROTECTION

A. Protect installed insulation from damage due to harmful weather exposures, physical abuse, and other causes. Provide temporary coverings or enclosures where insulation is subject to abuse and cannot be concealed and protected by permanent construction immediately after installation.

END OF SECTION
SECTION 072726

FLUID-APPLIED MEMBRANE AIR BARRIERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Vapor-permeable, fluid-applied air barriers.

B. Related Requirements:

1. Section 061600 "Sheathing" for wall sheathings and wall sheathing joint-and-penetration treatments.

1.3 DEFINITIONS

A. Air-Barrier Material: A primary element that provides a continuous barrier to the movement of air.

B. Air-Barrier Accessory: A transitional component of the air barrier that provides continuity.

C. Air-Barrier Assembly: The collection of air-barrier materials and accessories applied to an opaque wall, including joints and junctions to abutting construction, to control air movement through the wall.

1.4 PREINSTALLATION MEETINGS

A. Preinstallation Conference: Conduct conference at Project site.

1. Review air-barrier requirements and installation, special details, mockups, air-leakage and bond testing, air-barrier protection, and work scheduling that covers air barriers.

1.5 ACTION SUBMITTALS

A. Product Data: For each type of product.
1. Include manufacturer's written instructions for evaluating, preparing, and treating each substrate; technical data; dry film thickness; and tested physical and performance properties of products.

1.6 INFORMATIONAL SUBMITTALS

A. Qualification Data: For Installer.

1.7 QUALITY ASSURANCE

A. Installer Qualifications: An entity that employs installers and supervisors who are trained and approved by manufacturer.

1. Installer shall be licensed by ABAA according to ABAA's Quality Assurance Program and shall employ ABAA-certified installers and supervisors on Project.

B. Mockups: Build mockups to set quality standards for materials and execution and for preconstruction testing.

1. Build integrated mockups of exterior wall assembly, 150 sq. ft., incorporating backup wall construction, external cladding, window, storefront, door frame and sill, insulation, ties and other penetrations, and flashing to demonstrate surface preparation, crack and joint treatment, application of air barriers, and sealing of gaps, terminations, and penetrations of air-barrier assembly.

 a. Coordinate construction of mockups to permit inspection and testing of air barrier before external insulation and cladding are installed.
 b. Include junction with roofing membrane, building corner condition, and foundation wall intersection.
 c. If Architect determines mockups do not comply with requirements, reconstruct mockups and apply air barrier until mockups are approved.

2. Approval of mockups does not constitute approval of deviations from the Contract Documents contained in mockups unless Architect specifically approves such deviations in writing.

3. Subject to compliance with requirements, approved mockups may become part of the completed Work if undisturbed at time of Substantial Completion.

1.8 DELIVERY, STORAGE, AND HANDLING

A. Remove and replace liquid materials that cannot be applied within their stated shelf life.

B. Protect stored materials from direct sunlight.

1.9 FIELD CONDITIONS

A. Environmental Limitations: Apply air barrier within the range of ambient and substrate temperatures recommended in writing by air-barrier manufacturer.
1. Protect substrates from environmental conditions that affect air-barrier performance.
2. Do not apply air barrier to a damp or wet substrate or during snow, rain, fog, or mist.

PART 2 - PRODUCTS

2.1 MATERIALS

A. Source Limitations: Obtain primary air-barrier materials and air-barrier accessories from single source from single manufacturer.

2.2 PERFORMANCE REQUIREMENTS

A. Air-Barrier Performance: Air-barrier assembly and seals with adjacent construction shall be capable of performing as a continuous air barrier and as a liquid-water drainage plane flashed to discharge to the exterior incidental condensation or water penetration. Air-barrier assemblies shall be capable of accommodating substrate movement and of sealing substrate expansion and control joints, construction material changes, penetrations, and transitions at perimeter conditions without deterioration and air leakage exceeding specified limits.

B. Air-Barrier Assembly Air Leakage: Maximum 0.04 cfm/sq. ft. of surface area at 1.57 lbf/sq. ft., when tested according to ASTM E2357.

2.3 LOW-BUILD AIR BARRIERS, VAPOR PERMEABLE

A. Low-Build, Vapor-Permeable Air Barrier: Synthetic polymer material with an installed dry film thickness, according to manufacturer's written instructions, of 6 to 15 mils over smooth, void-free substrates.

1. Manufacturers: Subject to compliance with requirements, provide Prosoco, Cat 5 (Basis of Design), or equal product by one of the following:

 a. BASF Corporation.
 b. Dow Corning Corporation.

2. Physical and Performance Properties:

 a. Air Permeance: Maximum 0.004 cfm/sq. ft. of surface area at 1.57-lbf/sq. ft. pressure difference; ASTM E2178.
 b. Vapor Permeance: Minimum 18 perms; ASTM E96/E96M, Desiccant Method, Procedure A.
 c. Ultimate Elongation: Minimum 250 percent; ASTM D412, Die C.
 d. Adhesion to Substrate: Minimum 16 lbf/sq. in when tested according to ASTM D4541.
 e. Fire Propagation Characteristics: Passes NFPA 285 testing as part of an approved assembly.
f. UV Resistance: Can be exposed to sunlight for 360 days according to manufacturer's written instructions.

2.4 ACCESSORY MATERIALS

A. Requirement: Provide primers, transition strips, termination strips, joint reinforcing fabric and strips, joint sealants, counter flashing strips, flashing sheets and metal termination bars, termination mastic, substrate patching materials, adhesives, tapes, foam sealants, lap sealants, and other accessory materials that are recommended in writing by air-barrier manufacturer to produce a complete air-barrier assembly and that are compatible with primary air-barrier material and adjacent construction to which they may seal.

B. Rough Opening Flashing Material: Liquid Silyl-Terminated-Poly-Ether (STPe) as recommended for treatment of rough openings.

1. PROSOCO, Inc.; R-GUARD FastFlash
2. Approved Equal

C. Substrate-Patching Material: Manufacturer's standard substrate filler as recommended for preparation of cracks and overdriven fasteners, as recommended by air barrier manufacturer.

1. PROSOCO, Inc.; R-GUARD FastFlash
2. Approved Equal

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements and other conditions affecting performance of the Work.

1. Verify that substrates are sound and free of oil, grease, dirt, excess mortar, or other contaminants.
2. Verify that substrates have cured and aged for minimum time recommended in writing by air-barrier manufacturer.
3. Verify that substrates are visibly dry and free of moisture.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 SURFACE PREPARATION

A. Clean, prepare, treat, fill, and seal substrate and joints and cracks in substrate according to manufacturer's written instructions and details. Provide clean, dust-free, and dry substrate for air-barrier application.

B. Mask off adjoining surfaces not covered by air barrier to prevent spillage and overspray affecting other construction.
C. Remove grease, oil, bitumen, form-release agents, paints, curing compounds, and other penetrating contaminants or film-forming coatings from concrete.

D. Remove fins, ridges, mortar, and other projections and fill honeycomb, aggregate pockets, holes, and other voids in concrete with substrate-patching material.

E. At changes in substrate plane, apply sealant or termination mastic beads at sharp corners and edges to form a smooth transition from one plane to another.

F. Cover gaps in substrate plane and form a smooth transition from one substrate plane to another with stainless-steel sheet mechanically fastened to structural framing to provide continuous support for air barrier.

G. Bridge expansion joints and discontinuous wall-to-wall, deck-to-wall, and deck-to-deck joints with air-barrier accessory material that accommodates joint movement according to manufacturer's written instructions and details.

3.3 ACCESSORIES INSTALLATION

A. Install accessory materials according to air-barrier manufacturer's written instructions and details to form a seal with adjacent construction and ensure continuity of air and water barrier.

B. Connect and seal exterior wall air-barrier material continuously to roofing-membrane air barrier, concrete below-grade structures, floor-to-floor construction, exterior glazing and window systems, glazed curtain-wall systems, storefront systems, exterior louvers, exterior door framing, and other construction used in exterior wall openings, using accessory materials.

C. At end of each working day, seal top edge of strips and transition strips to substrate with termination mastic.

D. Apply joint sealants forming part of air-barrier assembly within manufacturer's recommended application temperature ranges. Consult manufacturer when sealant cannot be applied within these temperature ranges.

E. Wall Openings: Prime concealed, perimeter frame surfaces of windows, curtain walls, storefronts, and doors. Apply transition strip so that a minimum of 3 inches of coverage is achieved over each substrate. Maintain 3 inches of full contact over firm bearing to perimeter frames, with not less than 1 inch of full contact.

1. Transition Strip: Roll firmly to enhance adhesion.

F. Fill gaps in perimeter frame surfaces of windows, curtain walls, storefronts, and doors, and miscellaneous penetrations of air-barrier material with foam sealant.

G. Seal strips and transition strips around masonry reinforcing or ties and penetrations with termination mastic.
H. Seal top of through-wall flashings to air barrier with an additional 6-inch-wide, transition strip.

I. Seal exposed edges of strips at seams, cuts, penetrations, and terminations not concealed by metal counterflashings or ending in reglets with termination mastic.

J. Repair punctures, voids, and deficient lapped seams in strips and transition strips. Slit and flatten fishmouths and blisters. Patch with transition strips extending 6 inches beyond repaired areas in strip direction.

3.4 PRIMARY AIR-BARRIER MATERIAL INSTALLATION

A. Apply air-barrier material to form a seal with strips and transition strips and to achieve a continuous air barrier according to air-barrier manufacturer's written instructions and details. Apply air-barrier material within manufacturer's recommended application temperature ranges.

B. Low-Build Air Barriers: Apply continuous unbroken air-barrier material to substrates according to the following thickness. Apply an increased thickness of air-barrier material in full contact around protrusions such as masonry ties.

1. Vapor-Permeable, Low-Build Air Barrier: Total dry film thickness as recommended in writing by manufacturer to comply with performance requirements, applied in one or more equal coats. Apply additional material as needed to achieve void- and pinhole-free surface, but do not exceed thickness on which required vapor permeability is based.

C. Do not cover air barrier until it has been tested and inspected by testing agency.

D. Correct deficiencies in or remove air barrier that does not comply with requirements; repair substrates and reapply air-barrier components.

3.5 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

B. Inspections: Air-barrier materials, accessories, and installation are subject to inspection for compliance with requirements. Inspections may include the following:

1. Continuity of air-barrier system has been achieved throughout the building envelope with no gaps or holes.
2. Air-barrier dry film thickness.
3. Continuous structural support of air-barrier system has been provided.
4. Site conditions for application temperature and dryness of substrates have been maintained.
5. Maximum exposure time of materials to UV deterioration has not been exceeded.
6. Surfaces have been primed, if applicable.
Laps in strips and transition strips have complied with minimum requirements and have been shingled in the correct direction (or mastic has been applied on exposed edges), with no fishmouths.

Termination mastic has been applied on cut edges.

Strips and transition strips have been firmly adhered to substrate.

Compatible materials have been used.

Transitions at changes in direction and structural support at gaps have been provided.

Connections between assemblies (air-barrier and sealants) have complied with requirements for cleanliness, surface preparation and priming, structural support, integrity, and continuity of seal.

All penetrations have been sealed.

C. Tests: As determined by testing agency from among the following tests:

1. Air-Leakage-Location Testing: Air-barrier assemblies will be tested for evidence of air leakage according to ASTM E1186, chamber pressurization or depressurization with smoke.
2. Air-Leakage-Volume Testing: Air-barrier assemblies will be tested for air-leakage rate according to ASTM E783 or ASTM E2357.
3. Adhesion Testing: Air-barrier assemblies will be tested for required adhesion to substrate according to ASTM D4541 for each 600 sq. ft. of installed air barrier or part thereof.

D. Air barriers will be considered defective if they do not pass tests and inspections.

1. Apply additional air-barrier material, according to manufacturer's written instructions, where inspection results indicate insufficient thickness.
2. Remove and replace deficient air-barrier components for retesting as specified above.

E. Repair damage to air barriers caused by testing; follow manufacturer's written instructions.

F. Prepare test and inspection reports.

3.6 CLEANING AND PROTECTION

A. Protect air-barrier system from damage during application and remainder of construction period, according to manufacturer's written instructions.

1. Protect air barrier from exposure to UV light and harmful weather exposure as recommended in writing by manufacturer. If exposed to these conditions for longer than recommended, remove and replace air barrier or install additional, full-thickness, air-barrier application after repairing and preparing the overexposed materials according to air-barrier manufacturer's written instructions.
2. Protect air barrier from contact with incompatible materials and sealants not approved by air-barrier manufacturer.
B. Clean spills, stains, and soiling from construction that would be exposed in the completed work using cleaning agents and procedures recommended in writing by manufacturer of affected construction.

C. Remove masking materials after installation.

END OF SECTION
SECTION 074293

SOFFIT PANELS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section includes metal soffit panels.

1.3 ACTION SUBMITTALS
A. Product Data: For each type of product.
 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for each type of panel and accessory.
B. Shop Drawings:
 1. Include fabrication and installation layouts of metal panels; details of edge conditions, joints, panel profiles, corners, anchorages, attachment system, trim, flashings, closures, and accessories; and special details.
 2. Accessories: Include details of flashing, trim, and anchorage systems, at a scale of not less than 1-1/2 inches per 12 inches.
C. Samples for Verification: For each type of exposed finish required, prepared on Samples of size indicated below:
 1. Metal Panels: 12 inches long by actual panel width. Include fasteners, closures, and other metal panel accessories.

1.4 INFORMATIONAL SUBMITTALS
A. Qualification Data: For Installer.
B. Product Test Reports: For each product, tests performed by a qualified testing agency.
C. Sample Warranties: For special warranties.

1.5 CLOSEOUT SUBMITTALS
A. Maintenance Data: For metal panels to include in maintenance manuals.
1.6 QUALITY ASSURANCE

A. Installer Qualifications: An entity that employs installers and supervisors who are trained and approved by manufacturer.

B. Mockups: Build mockups to verify selections made under Sample submittals and to demonstrate aesthetic effects and set quality standards for fabrication and installation.

1. Build mockup of typical roof eave, including fascia, and soffit as shown on Drawings; approximately four panels wide by full eave width, including attachments and accessories.

2. Approval of mockups does not constitute approval of deviations from the Contract Documents contained in mockups unless Architect specifically approves such deviations in writing.

3. Subject to compliance with requirements, approved mockups may become part of the completed Work if undisturbed at time of Substantial Completion.

1.7 DELIVERY, STORAGE, AND HANDLING

A. Deliver components, metal panels, and other manufactured items so as not to be damaged or deformed. Package metal panels for protection during transportation and handling.

B. Unload, store, and erect metal panels in a manner to prevent bending, warping, twisting, and surface damage.

C. Stack metal panels horizontally on platforms or pallets, covered with suitable weathertight and ventilated covering. Store metal panels to ensure dryness, with positive slope for drainage of water. Do not store metal panels in contact with other materials that might cause staining, denting, or other surface damage.

D. Retain strippable protective covering on metal panels during installation.

1.8 FIELD CONDITIONS

A. Weather Limitations: Proceed with installation only when existing and forecasted weather conditions permit assembly of metal panels to be performed according to manufacturers' written instructions and warranty requirements.

1.9 COORDINATION

A. Coordinate metal panel installation with rain drainage work, flashing, trim, construction of walls, and other adjoining work to provide a leakproof, secure, and noncorrosive installation.

1.10 WARRANTY

A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components of metal panel systems that fail in materials or workmanship within specified warranty period.
1. Failures include, but are not limited to, the following:
 a. Structural failures including rupturing, cracking, or puncturing.
 b. Deterioration of metals and other materials beyond normal weathering.

2. Warranty Period: Two years from date of Substantial Completion.

B. Special Warranty on Panel Finishes: Manufacturer's standard form in which manufacturer agrees to repair finish or replace metal panels that show evidence of deterioration of factory-applied finishes within specified warranty period.

1. Exposed Panel Finish: Deterioration includes, but is not limited to, the following:
 a. Color fading more than 5 Hunter units when tested according to ASTM D2244.
 b. Chalking in excess of a No. 8 rating when tested according to ASTM D4214.
 c. Cracking, checking, peeling, or failure of paint to adhere to bare metal.

2. Finish Warranty Period: 20 years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Structural Performance: Provide metal panel systems capable of withstanding the effects of the following loads, based on testing according to ASTM E1592:

1. Wind Loads: As indicated on Structural Drawings.
2. Other Design Loads: As indicated on Structural Drawings.
3. Deflection Limits: For wind loads, no greater than 1/180 of the span.

B. Air Infiltiration: Air leakage of not more than 0.06 cfm/sq. ft. when tested according to ASTM E283 at the following test-pressure difference:

C. Water Penetration under Static Pressure: No water penetration when tested according to ASTM E331 at the following test-pressure difference:

D. Thermal Movements: Allow for thermal movements from ambient and surface temperature changes by preventing buckling, opening of joints, overstressing of components, failure of joint sealants, failure of connections, and other detrimental effects. Base calculations on surface temperatures of materials due to both solar heat gain and nighttime-sky heat loss.
1. Temperature Change (Range): 120 deg F, ambient; 180 deg F, material surfaces.

2.2 METAL SOFFIT PANELS

A. General: Provide metal soffit panels designed to be installed by lapping and interconnecting side edges of adjacent panels and mechanically attaching through panel to supports using concealed fasteners in side laps. Include accessories required for weathertight installation.

B. Flush-Profile Metal Soffit Panels: Solid panels formed with vertical panel edges and a flat pan between panel edges; with a flush joint between panels.

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. ATAS International, Inc.
 b. Dimensional Metals, Inc.
 c. Fabral.

2. Metallic-Coated Steel Sheet: Zinc-coated (galvanized) steel sheet complying with ASTM A653/A653M, G90 coating designation, or aluminum-zinc alloy-coated steel sheet complying with ASTM A792/A792M, Class AZ50 coating designation; structural quality. Prepainted by the coil-coating process to comply with ASTM A755/A755M.
 a. Nominal Thickness: 0.034 inch.
 c. Color: As selected by Architect from manufacturer's full range.

4. Panel Height: 0.50 inch.

2.3 MISCELLANEOUS MATERIALS

A. Miscellaneous Metal Subframing and Furring: ASTM C645, cold-formed, metallic-coated steel sheet, ASTM A653/A653M, G90 coating designation or ASTM A792/A792M, Class AZ50 aluminum-zinc-alloy coating designation unless otherwise indicated. Provide manufacturer's standard sections as required for support and alignment of metal panel system.

B. Panel Accessories: Provide components required for a complete, weathertight panel system including trim, clips, flashings, sealants, gaskets, fillers, closure strips, and similar items. Match material and finish of metal panels unless otherwise indicated.

1. Closure Strips: Closed-cell, expanded, cellular, rubber or crosslinked, polyolefin-foam or closed-cell laminated polyethylene; minimum 1-inch-thick, flexible closure strips; cut or premolded to match metal panel profile. Provide closure strips where indicated or necessary to ensure weathertight construction.
C. Flashing and Trim: Provide flashing and trim formed from same material as metal panels as required to seal against weather and to provide finished appearance. Finish flashing and trim with same finish system as adjacent metal panels.

D. Panel Fasteners: Self-tapping screws designed to withstand design loads. Provide exposed fasteners with heads matching color of metal panels by means of plastic caps or factory-applied coating. Provide EPDM or PVC sealing washers for exposed fasteners.

E. Panel Sealants: Provide sealant types recommended by manufacturer that are compatible with panel materials, are nonstaining, and do not damage panel finish.

 2. Joint Sealant: ASTM C920; elastomeric polyurethane or silicone sealant; of type, grade, class, and use classifications required to seal joints in metal panels and remain weathertight; and as recommended in writing by metal panel manufacturer.

2.4 FABRICATION

A. General: Fabricate and finish metal panels and accessories at the factory, by manufacturer's standard procedures and processes, as necessary to fulfill indicated performance requirements demonstrated by laboratory testing. Comply with indicated profiles and with dimensional and structural requirements.

B. Provide panel profile, including major ribs and intermediate stiffening ribs, if any, for full length of panel.

C. Fabricate metal panel joints with factory-installed captive gaskets or separator strips that provide a weathertight seal and prevent metal-to-metal contact, and that minimize noise from movements.

D. Sheet Metal Flashing and Trim: Fabricate flashing and trim to comply with manufacturer's recommendations and recommendations in SMACNA's "Architectural Sheet Metal Manual" that apply to design, dimensions, metal, and other characteristics of item indicated.

 1. Form exposed sheet metal accessories that are without excessive oil canning, buckling, and tool marks and that are true to line and levels indicated, with exposed edges folded back to form hems.

 2. Seams for Other Than Aluminum: Fabricate nonmoving seams in accessories with flat-lock seams. Tin edges to be seamed, form seams, and solder.

 3. Sealed Joints: Form nonexpansion, but movable, joints in metal to accommodate sealant and to comply with SMACNA standards.

 4. Conceal fasteners and expansion provisions where possible. Exposed fasteners are not allowed on faces of accessories exposed to view.
5. Fabricate cleats and attachment devices from same material as accessory being anchored or from compatible, noncorrosive metal recommended in writing by metal panel manufacturer.
 a. Size: As recommended by SMACNA's "Architectural Sheet Metal Manual" or metal soffit panel manufacturer for application but not less than thickness of metal being secured.

2.5 FINISHES
A. Protect mechanical and painted finishes on exposed surfaces from damage by applying a strippable, temporary protective covering before shipping.

B. Appearance of Finished Work: Variations in appearance of abutting or adjacent pieces are acceptable if they are within one-half of the range of approved Samples. Noticeable variations in same piece are not acceptable. Variations in appearance of other components are acceptable if they are within the range of approved Samples and are assembled or installed to minimize contrast.

C. Steel Panels and Accessories:
 1. Two-Coat Fluoropolymer: AAMA 621. Fluoropolymer finish containing not less than 70 percent PVDF resin by weight in both color coat and clear topcoat. Prepare, pretreat, and apply coating to exposed metal surfaces to comply with coating and resin manufacturers' written instructions.
 2. Concealed Finish: Apply pretreatment and manufacturer's standard white or light-colored acrylic or polyester backer finish consisting of prime coat and wash coat with a minimum total dry film thickness of 0.5 mil.

PART 3 - EXECUTION
3.1 EXAMINATION
A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for installation tolerances, metal panel supports, and other conditions affecting performance of the Work.
 1. Examine framing to verify that girts, angles, channels, studs, and other structural panel support members and anchorage have been installed within alignment tolerances required by metal panel manufacturer.
 2. Examine sheathing to verify that sheathing joints are supported by framing or blocking, and that installation is within flatness tolerances required by metal panel manufacturer.
 a. Verify that air- or water-resistant barriers been installed over sheathing or backing substrate to prevent air infiltration or water penetration.
B. Examine roughing-in for components and systems penetrating metal panels to verify actual locations of penetrations relative to seam locations of metal panels before installation.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Miscellaneous Supports: Install subframing, furring, and other miscellaneous panel support members and anchorages according to ASTM C754 and metal panel manufacturer's written recommendations.

1. Soffit Framing: Wire tie or clip furring channels to supports, as required to comply with requirements for assemblies indicated.

3.3 METAL PANEL INSTALLATION

A. General: Install metal panels according to manufacturer's written instructions in orientation, sizes, and locations indicated. Install panels perpendicular to supports unless otherwise indicated. Anchor metal panels and other components of the Work securely in place, with provisions for thermal and structural movement.

1. Shim or otherwise plumb substrates receiving metal panels.
2. Flash and seal metal panels at perimeter of all openings. Fasten with self-tapping screws. Do not begin installation until air- or water-resistant barriers and flashings that will be concealed by metal panels are installed.
3. Install screw fasteners in predrilled holes.
4. Locate and space fastenings in uniform vertical and horizontal alignment.
5. Install flashing and trim as metal panel work proceeds.
6. Locate panel splices over, but not attached to, structural supports. Stagger panel splices and end laps to avoid a four-panel lap splice condition.
7. Provide weathertight escutcheons for pipe- and conduit-penetrating panels.

B. Fasteners:

1. Steel Panels: Use stainless-steel fasteners for surfaces exposed to the exterior; use galvanized-steel fasteners for surfaces exposed to the interior.

C. Metal Protection: Where dissimilar metals contact each other or corrosive substrates, protect against galvanic action as recommended in writing by metal panel manufacturer.

D. Lap-Seam Metal Panels: Fasten metal panels to supports with fasteners at each lapped joint at location and spacing recommended by manufacturer.

1. Apply panels and associated items true to line for neat and weathertight enclosure.
2. Provide metal-backed washers under heads of exposed fasteners bearing on weather side of metal panels.
3. Locate and space exposed fasteners in uniform vertical and horizontal alignment. Use proper tools to obtain controlled uniform compression for positive seal without rupture of washer.

4. Install screw fasteners with power tools having controlled torque adjusted to compress washer tightly without damage to washer, screw threads, or panels. Install screws in predrilled holes.

E. Watertight Installation:

1. Apply a continuous ribbon of sealant or tape to seal lapped joints of metal panels, using sealant or tape as recommend by manufacturer on side laps of nesting-type panels and elsewhere as needed to make panels watertight.
2. Provide sealant or tape between panels and protruding equipment, vents, and accessories.
3. At panel splices, nest panels with minimum 6-inch end lap, sealed with sealant and fastened together by interlocking clamping plates.

F. Accessory Installation: Install accessories with positive anchorage to building and weathertight mounting and provide for thermal expansion. Coordinate installation with flashings and other components.

1. Install components required for a complete metal panel system including trim, corners, seam covers, flashings, sealants, gaskets, fillers, closure strips, and similar items. Provide types indicated by metal panel manufacturer; or, if not indicated, provide types recommended by metal panel manufacturer.

G. Flashing and Trim: Comply with performance requirements, manufacturer's written installation instructions, and SMACNA's "Architectural Sheet Metal Manual." Provide concealed fasteners where possible and set units true to line and level, as indicated. Install work with laps, joints, and seams that are permanently watertight.

1. Install exposed flashing and trim that is without buckling, and tool marks, and that is true to line and levels indicated, with exposed edges folded back to form hems. Install sheet metal flashing and trim to fit substrates and to achieve waterproof performance.
2. Expansion Provisions: Provide for thermal expansion of exposed flashing and trim. Space movement joints at a maximum of 10 feet with no joints allowed within 24 inches of corner or intersection. Where lapped expansion provisions cannot be used or would not be waterproof, form expansion joints of intermeshing hooked flanges, not less than 1 inch deep, filled with mastic sealant (concealed within joints).

3.4 CLEANING AND PROTECTION

A. Remove temporary protective coverings and strippable films, if any, as metal panels are installed unless otherwise indicated in manufacturer's written installation instructions. On completion of metal panel installation, clean finished surfaces as recommended by metal panel manufacturer. Maintain in a clean condition during construction.
B. After metal panel installation, clear weep holes and drainage channels of obstructions, dirt, and sealant.

C. Replace metal panels that have been damaged or have deteriorated beyond successful repair by finish touchup or similar minor repair procedures.

END OF SECTION
SECTION 074646
FIBER-CEMENT SIDING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes fiber-cement siding.
B. Related Requirements:

1.3 COORDINATION

A. Coordinate siding installation with flashings and other adjoining construction to ensure proper sequencing.

1.4 PREINSTALLATION MEETINGS

A. Preinstallation Conference: Conduct conference at Project site.

1.5 ACTION SUBMITTALS

A. Product Data: For each type of product. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes.
B. Samples for Verification: For each type, color, texture, and pattern required.
 1. 12-inch-long-by-actual-width Sample of siding.
 2. 12-inch-long-by-actual-width Samples of trim and accessories.

1.6 INFORMATIONAL SUBMITTALS

A. Product Test Reports: Based on evaluation of comprehensive tests performed by a qualified testing agency, for fiber-cement siding.
B. Research/Evaluation Reports: For each type of fiber-cement siding required, from ICC-ES.
C. Sample Warranty: For special warranty.

1.7 CLOSEOUT SUBMITTALS

A. Maintenance Data: For each type of product, including related accessories, to include in maintenance manuals.

1.8 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Furnish full lengths of fiber-cement siding including related accessories, in a quantity equal to 2 percent of amount installed.

1.9 QUALITY ASSURANCE

A. Manufacturer Qualifications:
 1. All fiber cement panels specified in this section must be supplied by a manufacturer with a minimum of 10 years of experience in fabricating and supplying fiber cement cladding systems.
 2. Provide technical and design support as needed regarding installation requirements and warranty compliance provisions.

B. Installer Qualifications: All products listed in this section are to be installed by a single installer trained by manufacturer or representative.

C. Mockups: Build mockups to verify selections made under Sample submittals and to demonstrate aesthetic effects and to set quality standards for fabrication and installation.
 1. Build mockup of typical wall area as shown on Drawings.
 2. Build mockups for fiber-cement siding including accessories.
 a. Size: 48 inches long by 60 inches high.
 b. Include outside corner on one end of mockup.
 3. Approval of mockups does not constitute approval of deviations from the Contract Documents contained in mockups unless Architect specifically approves such deviations in writing.
 4. Subject to compliance with requirements, approved mockups may become part of the completed Work if undisturbed at time of Substantial Completion.

1.10 DELIVERY, STORAGE, AND HANDLING

A. Deliver and store packaged materials in original containers with labels intact until time of use.

B. Store materials on elevated platforms, under cover, and in a dry location.
1.11 WARRANTY

A. Special Warranty: Manufacturer agrees to repair or replace products that fail in materials or workmanship within specified warranty period.

1. Failures include, but are not limited to, the following:
 a. Structural failures including cracking and deforming.
 b. Deterioration of materials beyond normal weathering.

2. Warranty Period: 15 years from date of Substantial Completion. Additional 5-year extension shall be available when refinished in year 14-15.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Source Limitations: Obtain products, including related accessories, from single source from single manufacturer.

2.2 FIBER-CEMENT PANEL TYPE 1

A. General: ASTM C1186, Type A, Grade II, fiber-cement board, noncombustible when tested according to ASTM E136; with a flame-spread index of 25 or less when tested according to ASTM E84.

1. Basis-of-Design Product: Subject to compliance with requirements, provide Nichiha; VintageWood as indicated on Drawings or comparable product by one of the following:
 a. James Hardie Building Products, Inc.
 b. American Fiber Cement Corporation.
 c. Approved Equal.

B. Labeling: Provide fiber-cement siding that is tested and labeled according to ASTM C1186 by a qualified testing agency acceptable to authorities having jurisdiction.

C. Dimensions: AWP-3030: 17-7/8” x 119-5/16”.

D. Nominal Thickness: Not less than 5/8 inch.

F. Color: As indicated on drawings.

2.3 FIBER-CEMENT PANEL TYPE 2

A. General: ASTM C1186, Type A, Grade II, fiber-cement board, noncombustible when tested according to ASTM E136; with a flame-spread index of 25 or less when tested according to ASTM E84.

1. Basis-of-Design Product: Subject to compliance with requirements, provide Nichiha; Illumination, as indicated on Drawings or comparable product by one of the following:
 a. James Hardie Building Products, Inc.
 b. Nichiha Fiber Cement.
 c. Approved Equal.

B. Dimensions: AWP-3030: 17-7/8” x 119-5/16”.

C. Nominal Thickness: Not less than 5/8 inch

D. Pattern: Smooth texture.

E. Factory Priming: Manufacturer's standard acrylic primer. Sealed on six sides.

2.4 ACCESSORIES

A. Siding Accessories, General: Provide starter tracks, panel clips, corner clips, edge trim, outside and inside corner caps, and other items as recommended by siding manufacturer for building configuration.

1. Provide accessories matching color and texture of adjacent siding unless otherwise indicated.

B. Flashing: Provide stainless-steel flashing complying with Section 076200 "Sheet Metal Flashing and Trim" at window and door heads and where indicated.

C. Fasteners:

1. For fastening to metal, use ribbed bugle-head screws of sufficient length to penetrate a minimum of 1/4 inch, or three screw-threads, into substrate.
2. For fastening fiber cement, use stainless-steel fasteners.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates for compliance with requirements for installation tolerances and other conditions affecting performance of fiber-cement siding and panels and related accessories.
B. Proceed with installation only after unsatisfactory conditions have been corrected.

C. Do not install panels or components that appear to be damaged or defective. Do not install wet panels.

3.2 PREPARATION

A. Clean substrates of projections and substances detrimental to application.

3.3 INSTALLATION

A. General: Comply with manufacturer's written installation instructions applicable to products and applications indicated unless more stringent requirements apply.

1. Do not install damaged components.
2. Install fasteners no more than 16 inches o.c.
3. Install fasteners at vertical start track no more than 9 inches o.c.

B. Install joint sealants as specified in Section 079200 "Joint Sealants" and to produce a weathertight installation.

3.4 ADJUSTING AND CLEANING

A. Remove damaged, improperly installed, or otherwise defective materials and replace with new materials complying with specified requirements.

B. Clean finished surfaces according to manufacturer's written instructions and maintain in a clean condition during construction.

END OF SECTION
SECTION 075419
POLYVINYL-CHLORIDE (PVC) ROOFING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Adhered polyvinyl chloride (PVC) roofing system.
2. Roof insulation.
3. Cover board.
4. Walkways.

B. Related Requirements:

1. Section 061053 "Miscellaneous Rough Carpentry" for wood nailers, curbs, and blocking; and for wood-based, structural-use roof deck panels.
2. Section 072100 "Thermal Insulation" for insulation beneath the roof deck.
3. Section 076200 "Sheet Metal Flashing and Trim" for metal roof flashings and counterflashings.
4. Section 079200 "Joint Sealants" for joint sealants, joint fillers, and joint preparation.
5. Section 221423 "Storm Drainage Piping Specialties" for roof drains.

1.3 DEFINITIONS

A. Roofing Terminology: Definitions in ASTM D1079 and glossary in NRCA's "The NRCA Roofing Manual: Membrane Roof Systems" apply to work of this Section.

1.4 PREINSTALLATION MEETINGS

A. Preinstallation Roofing Conference: Conduct conference at Project site.

1. Meet with Owner, Architect, Owner's insurer if applicable, testing and inspecting agency representative, roofing Installer, roofing system manufacturer's representative, deck Installer, air barrier Installer, and installers whose work interfaces with or affects roofing, including installers of roof accessories and roof-mounted equipment.

2. Review methods and procedures related to roofing installation, including manufacturer's written instructions.
3. Review and finalize construction schedule, and verify availability of materials, Installer's personnel, equipment, and facilities needed to make progress and avoid delays.

4. Examine deck substrate conditions and finishes for compliance with requirements, including flatness and fastening.

5. Review structural loading limitations of roof deck during and after roofing.

6. Review base flashings, special roofing details, roof drainage, roof penetrations, equipment curbs, and condition of other construction that affects roofing system.

7. Review governing regulations and requirements for insurance and certificates if applicable.

8. Review temporary protection requirements for roofing system during and after installation.

9. Review roof observation and repair procedures after roofing installation.

1.5 ACTION SUBMITTALS

A. Product Data: For each type of product.
 1. For insulation and roof system component fasteners, include copy of SPRI's Directory of Roof Assemblies listing.

B. Shop Drawings: Include roof plans, sections, details, and attachments to other work, including the following:
 1. Layout and thickness of insulation.
 2. Base flashings and membrane terminations.
 3. Flashing details at penetrations.
 4. Tapered insulation thickness and slopes.
 5. Roof plan showing orientation of steel roof deck and orientation of roof membrane, fastening spacings, and patterns for mechanically fastened roofing system.
 6. Insulation fastening patterns for corner, perimeter, and field-of-roof locations.
 7. Tie-in with air barrier.

C. Samples for Verification: For the following products:
 1. Roof membrane and flashing, of color required.
 2. Walkway pads or rolls, of color required.

D. Wind Uplift Resistance Submittal: For roofing system, indicating compliance with wind uplift performance requirements.

1.6 INFORMATIONAL SUBMITTALS

A. Qualification Data: For Installer and manufacturer.

B. Manufacturer Certificates:
1. Special Warranty Certificate: Signed by roof membrane manufacturer, certifying that all materials supplied under this Section are acceptable for special warranty.

C. Field quality-control reports.

D. Sample Warranties: For manufacturer's special warranties.

1.7 CLOSEOUT SUBMITTALS

A. Maintenance Data: For roofing system to include in maintenance manuals.

1.8 QUALITY ASSURANCE

A. Manufacturer Qualifications: A qualified manufacturer that is listed in SPRI's Directory of Roof Assemblies for roofing system identical to that used for this Project.

B. Installer Qualifications: Installer shall specialize in roof covering system applications, with a minimum of 5 years’ experience, and who is certified by the roof covering system Manufacturer as qualified to install the Manufacturer’s roofing materials, and who can provide the required Manufacturer’s warranty.

1.9 DELIVERY, STORAGE, AND HANDLING

A. Deliver roofing materials to Project site in original containers with seals unbroken and labeled with manufacturer's name, product brand name and type, date of manufacture, approval or listing agency markings, and directions for storing and mixing with other components.

B. Store liquid materials in their original undamaged containers in a clean, dry, protected location and within the temperature range required by roofing system manufacturer. Protect stored liquid material from direct sunlight.

1. Discard and legally dispose of liquid material that cannot be applied within its stated shelf life.

C. Protect roof insulation materials from physical damage and from deterioration by sunlight, moisture, soiling, and other sources. Store in a dry location. Comply with insulation manufacturer's written instructions for handling, storing, and protecting during installation.

D. Handle and store roofing materials, and place equipment in a manner to avoid permanent deflection of deck.

1.10 FIELD CONDITIONS

A. Weather Limitations: Proceed with installation only when existing and forecasted weather conditions permit roofing system to be installed according to manufacturer's written instructions and warranty requirements.
1.11 WARRANTY

A. Prior to submitting the final payment requisition, the Contractor shall submit the roof covering system Manufacturer’s 20-year warranty of workmanship, labor, and materials, for the new roof covering system placed on this project.

1. The warranty shall cover all defects and deficiencies in workmanship and materials, for all components of the built-up roofing, roof insulation assemblies, all flashing membranes, all sealants, fasteners, and all other materials supplied by the Manufacturer.

2. The warranty shall fully cover all sheet metal flashings installed on the new roof covering system; the warranty shall cover all sheet metal materials, fabrication, and installation workmanship, for the full 20-year period.

3. The warranty shall specifically stipulate full coverage for the 20-year period, with no dollar limitation of repair costs, no penal sum, and no proration of repair costs. The warranty shall also stipulate and include full coverage of all costs associated with locating and repairing roof leaks. The Contractor shall submit a sample copy of the Manufacturer’s warranty to the Owner for approval.

B. Prior to submitting the final payment requisition, the Contractor shall submit the Contractor's 5-year warranty of workmanship, materials, and performance, including all roof insulation/installation work, membrane work, sheet metal work, flashing work, carpentry work, caulk and sealant installation, and all other work that is covered or not covered in the roof covering system Manufacturer’s warranty, in a written form acceptable to the Owner.

C. Prior to submitting the final payment requisition, the Contractor shall confirm, in writing, to the Owner, the approval status of the Manufacturer’s warranty issuance, and a copy of the Manufacturer’s punch list items for completion.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. General Performance: Installed roofing and base flashings shall withstand specified uplift pressures, thermally induced movement, and exposure to weather without failure due to defective manufacture, fabrication, installation, or other defects in construction. Roof system and flashings shall remain watertight.

1. Accelerated Weathering: Roof membrane shall withstand 2000 hours of exposure when tested according to ASTM G152, ASTM G154, or ASTM G155.

2. Impact Resistance: Roof membrane shall resist impact damage when tested according to ASTM D3746, ASTM D4272/D4272M, or the "Resistance to Foot Traffic Test" in FM Approvals 4470.

B. Material Compatibility: Roofing materials shall be compatible with one another and adjacent materials under conditions of service and application required, as demonstrated by roof membrane manufacturer based on testing and field experience.
C. Wind Uplift Resistance: Design roofing system to resist the wind uplift pressures indicated on structural drawings when tested according to FM Approvals 4474, UL 580, or UL 1897.

D. ENERGY STAR Listing: Roofing system shall be listed on the DOE's ENERGY STAR "Roof Products Qualified Product List" for low-slope roof products.

E. Energy Performance: Roofing system shall have an initial solar reflectance of not less than 0.70 and an emissivity of not less than 0.85 when tested according to CRRC-1.

F. Exterior Fire-Test Exposure: ASTM E108 or UL 790, Class A; for application and roof slopes indicated; testing by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.

2.2 POLYVINYL CHLORIDE (PVC) ROOFING

A. PVC Sheet: ASTM D4434/D4434M, Type II, glass-fiber reinforced.

1. Basis-of-Design Product: Subject to compliance with requirements, provide Sarnafil; G410-15 or comparable product by one of the following:
 a. GAF
 b. Carlisle.

2. Thickness: 60 mils. Membrane thickness must meet or exceed the thickness indicated on package label.

3. Exposed Face Color: EnergySmart Tan

B. Source Limitations: Obtain components for roofing system from roof membrane manufacturer or manufacturers approved by roof membrane manufacturer.

2.3 AUXILIARY ROOFING MATERIALS

A. General: Auxiliary materials recommended by roofing system manufacturer for intended use and compatible with other roofing components.

1. Adhesives and Sealants: Comply with VOC limits of authorities having jurisdiction.

B. Sheet Flashing: Manufacturer's standard sheet flashing of same material, type, reinforcement, thickness, and color as PVC sheet.

C. Prefabricated Pipe Flashings: As recommended by roof membrane manufacturer.

D. Roof Vents: As recommended by roof membrane manufacturer.

1. Size: Not less than 4-inch diameter.
E. Water-Based, Fabric-Backed Membrane Adhesive: Roofing system manufacturer's standard water-based, cold-applied adhesive formulated for compatibility and use with fabric-backed membrane roofing.

F. Metal Termination Bars: Manufacturer's standard, predrilled stainless steel or aluminum bars, approximately 1 by 1/8 inch thick; with anchors.

G. Fasteners: Factory-coated steel fasteners and metal or plastic plates complying with corrosion-resistance provisions in FM Approvals 4470, designed for fastening roofing components to substrate, and acceptable to roofing system manufacturer.

H. Miscellaneous Accessories: Provide pourable sealers, preformed cone and vent sheet flashings, preformed inside and outside corner sheet flashings, T-joint covers, lap sealants, termination reglets, and other accessories.

2.4 ROOF INSULATION

A. General: Preformed roof insulation boards manufactured or approved by PVC roof membrane manufacturer.

B. Polyisocyanurate Board Insulation: ASTM C1289, felt or glass-fiber mat facer on both major surfaces.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Carlisle SynTec Incorporated.
 b. GAF.
 c. Johns Manville; a Berkshire Hathaway company.
 d. Sarnafil.

2. Compressive Strength: 20 psi.
3. Size: 48 by 48 inches or 48 by 96 inches.
4. Thickness: As indicated on drawings.

C. Tapered Insulation: Provide factory-tapered insulation boards.

1. Material: Match roof insulation.
3. Slope:
 a. Saddles and Crickets: 1/2 inch per foot unless otherwise indicated on Drawings.

2.5 INSULATION ACCESSORIES

A. General: Roof insulation accessories recommended by insulation manufacturer for intended use and compatibility with other roofing system components.
B. Fasteners: Factory-coated steel fasteners and metal or plastic plates complying with corrosion-resistance provisions in FM Approvals 4470, designed for fastening roof insulation and cover boards to substrate, and acceptable to roofing system manufacturer.

C. Insulation Adhesive: Insulation manufacturer's recommended adhesive formulated to attach roof insulation to substrate or to another insulation layer as follows:
1. Bead-applied, low-rise, one-component or multicomponent urethane adhesive.

D. Cover Board: ASTM C1177/C1177M, glass-mat, water-resistant gypsum board or ASTM C1278/C1278M fiber-reinforced gypsum board.
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. CertainTeed Corporation.
 b. Georgia-Pacific Gypsum LLC.
 c. National Gypsum Company.
2. Thickness: 1/2 inch.

2.6 BALLAST

A. Roof Pavers: Heavyweight, hydraulically pressed concrete units, with top edges beveled 3/16 inch, factory cast for use as roof pavers; absorption not greater than 5 percent, ASTM C140/C140M; no breakage and maximum 1 percent mass loss when tested for freeze-thaw resistance, ASTM C67; and as follows:
1. Size: 24 by 24 inches nominal. Manufacture pavers to dimensional tolerances of plus or minus 1/16 inch in length, height, and thickness.
2. Weight: 15-22 lb/sq. ft.
3. Compressive Strength: [7500 psi] [6500 psi] <Insert value>, minimum.
4. Colors and Textures: As selected by Architect from manufacturer's full range.
5. Pedestals: manufacturer’s standard adjustable pedestal and shims to accommodate various height adjustments of ½ inch to 2 inches. Minimum base diameter shall be 6” and minimum top diameter shall be 5 inch.

2.7 WALKWAYS

A. Flexible Walkways: Factory-formed, nonporous, heavy-duty, slip-resisting, surface-textured walkway pads or rolls, approximately 3/16 inch thick and acceptable to roofing system manufacturer.
1. Size: Approximately 36 by 60 inches.
PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements and other conditions affecting performance of the Work.

1. Verify that roof openings and penetrations are in place, curbs are set and braced, and roof-drain bodies are securely clamped in place.
2. Verify that wood blocking, curbs, and nailers are securely anchored to roof deck at penetrations and terminations and that nailers match thicknesses of insulation.
3. Verify that surface plane flatness and fastening of steel roof deck complies with requirements in Section 053100 "Steel Decking."

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Clean substrate of dust, debris, moisture, and other substances detrimental to roofing system installation according to roofing system manufacturer's written instructions. Remove sharp projections.

B. Prevent materials from entering and clogging roof drains and conductors and from spilling or migrating onto surfaces of other construction. Remove roof-drain plugs when no work is taking place or when rain is forecast.

C. Perform fastener-pullout tests according to roof system manufacturer's written instructions.

1. Submit test result within 24 hours of performing tests.
 a. Include manufacturer's requirements for any revision to previously submitted fastener patterns required to achieve specified wind uplift requirements.

3.3 INSTALLATION OF ROOFING, GENERAL

A. Install roofing system according to roofing system manufacturer's written instructions, SPRI's Directory of Roof Assemblies listed roof assembly requirements, and FM Global Property Loss Prevention Data Sheet 1-29.

B. Complete terminations and base flashings and provide temporary seals to prevent water from entering completed sections of roofing system at end of workday or when rain is forecast. Remove and discard temporary seals before beginning work on adjoining roofing.

C. Install roof membrane and auxiliary materials to tie in to existing roofing to maintain weathertightness of transition.
3.4 INSTALLATION OF INSULATION

A. Coordinate installing roofing system components, so insulation is not exposed to precipitation or left exposed at end of workday.

B. Comply with roofing system and insulation manufacturer's written instructions for installing roof insulation.

C. Installation Over Metal Decking:

1. Install base layer of insulation with joints staggered not less than 24 inches in adjacent rows and with long joints continuous at right angle to flutes of decking.
 a. Locate end joints over crests of decking.
 b. Trim insulation neatly to fit around penetrations and projections, and to fit tight to intersecting sloping roof decks.
 c. Make joints between adjacent insulation boards not more than 1/4 inch in width.
 d. At internal roof drains, slope insulation to create a square drain sump with each side equal to the diameter of the drain bowl plus 24 inches.
 1) Trim insulation so that water flow is unrestricted.
 e. Fill gaps exceeding 1/4 inch with insulation.
 f. Cut and fit insulation within 1/4 inch of nailers, projections, and penetrations.
 g. Loosely lay base layer of insulation units over substrate.
 h. Mechanically attach base layer of insulation using mechanical fasteners specifically designed and sized for fastening specified board-type roof insulation to metal decks.
 1) Fasten insulation to resist specified uplift pressure at corners, perimeter, and field of roof.

2. Install upper layers of insulation and tapered insulation with joints of each layer offset not less than 12 inches from previous layer of insulation.
 a. Staggered end joints within each layer not less than 24 inches in adjacent rows.
 b. Install with long joints continuous and with end joints staggered not less than 12 inches in adjacent rows.
 c. Trim insulation neatly to fit around penetrations and projections, and to fit tight to intersecting sloping roof decks.
 d. Make joints between adjacent insulation boards not more than 1/4 inch in width.
 e. At internal roof drains, slope insulation to create a square drain sump with each side equal to the diameter of the drain bowl plus 24 inches.
 f. Trim insulation so that water flow is unrestricted.
 g. Fill gaps exceeding 1/4 inch with insulation.
h. Cut and fit insulation within 1/4 inch of nailers, projections, and penetrations.
i. Loosely lay each layer of insulation units over substrate.
j. Adhere each layer of insulation to substrate using adhesive according to SPRI's Directory of Roof Assemblies listed roof assembly requirements for specified Wind Uplift Load Capacity and FM Global Property Loss Prevention Data Sheet 1-29, as follows:

1) Set each layer of insulation in a solid mopping of hot roofing asphalt, applied within plus or minus 25 deg F of equiviscous temperature.

2) Set each layer of insulation in ribbons of bead-applied insulation adhesive, firmly pressing and maintaining insulation in place.

3) Set each layer of insulation in a uniform coverage of full-spread insulation adhesive, firmly pressing and maintaining insulation in place.

3.5 INSTALLATION OF COVER BOARDS

A. Install cover boards over insulation with long joints in continuous straight lines with end joints staggered between rows. Offset joints of insulation below a minimum of 6 inches in each direction.

1. Trim cover board neatly to fit around penetrations and projections, and to fit tight to intersecting sloping roof decks.

2. At internal roof drains, conform to slope of drain sump.

 a. Trim cover board so that water flow is unrestricted.

3. Cut and fit cover board tight to nailers, projections, and penetrations.

4. Adhere cover board to substrate using adhesive according to SPRI's Directory of Roof Assemblies listed roof assembly requirements for specified Wind Uplift Load Capacity and FM Global Property Loss Prevention Data Sheet 1-29, as follows:

 a. Set cover board in a solid mopping of hot roofing asphalt, applied within plus or minus 25 deg F of equiviscous temperature.

 b. Set cover board in ribbons of bead-applied insulation adhesive, firmly pressing and maintaining insulation in place.

 c. Set cover board in a uniform coverage of full-spread insulation adhesive, firmly pressing and maintaining insulation in place.

3.6 INSTALLATION OF ADHERED ROOF MEMBRANE

A. Adhere roof membrane over area to receive roofing according to roofing system manufacturer's written instructions.

B. Unroll roof membrane and allow to relax before installing.
C. Start installation of roofing in presence of roofing system manufacturer's technical personnel.

D. Accurately align roof membrane and maintain uniform side and end laps of minimum dimensions required by manufacturer. Stagger end laps.

E. Bonding Adhesive: Apply to substrate and underside of roof membrane at rate required by manufacturer and allow to partially dry before installing roof membrane. Do not apply to splice area of roof membrane.

F. In addition to adhering, mechanically fasten roof membrane securely at terminations, penetrations, and perimeter of roofing.

G. Apply roof membrane with side laps shingled with slope of roof deck where possible.

H. Seams: Clean seam areas, overlap roofing, and hot-air weld side and end laps of roof membrane and sheet flashings to ensure a watertight seam installation.
 1. Test lap edges with probe to verify seam weld continuity. Apply lap sealant to seal cut edges of roof membrane and sheet flashings.
 2. Verify field strength of seams a minimum of twice daily, and repair seam sample areas.
 3. Repair tears, voids, and lapped seams in roof membrane that do not comply with requirements.

I. Spread sealant bed over deck-drain flange at roof drains, and securely seal roof membrane in place with clamping ring.

3.7 INSTALLATION OF BASE FLASHING

A. Install sheet flashings and preformed flashing accessories, and adhere to substrates according to roofing system manufacturer's written instructions.

B. Apply bonding adhesive to substrate and underside of sheet flashing at required rate, and allow to partially dry. Do not apply to seam area of flashing.

C. Flash penetrations and field-formed inside and outside corners with cured or uncured sheet flashing.

D. Clean seam areas, overlap, and firmly roll sheet flashings into the adhesive. Hot-air weld side and end laps to ensure a watertight seam installation.

E. Terminate and seal top of sheet flashings and mechanically anchor to substrate through termination bars.

3.8 INSTALLATION OF WALKWAYS

A. Flexible Walkways: Install walkway products according to manufacturer's written instructions.
1. Install flexible walkways at the following locations:
 a. Perimeter of each rooftop unit.
 b. Between each rooftop unit location, creating a continuous path connecting rooftop unit locations.
 c. Between each roof hatch and each rooftop unit location or path connecting rooftop unit locations.
 d. Top and bottom of each roof access ladder.
 e. Between each roof access ladder and each rooftop unit location or path connecting rooftop unit locations.
 f. Locations indicated on Drawings.
 g. As required by roof membrane manufacturer's warranty requirements.

2. Provide 6-inch clearance between adjoining pads.

3. Heat weld to substrate or adhere walkway products to substrate with compatible adhesive according to roofing system manufacturer's written instructions.

3.9 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to inspect substrate conditions, surface preparation, roof membrane application, sheet flashings, protection, and drainage components, and to furnish reports to Architect.

B. Perform the following tests:

1. Flood Testing: Flood test each roofing area for leaks, according to recommendations in ASTM D5957, after completing roofing and flashing but before overlying construction is placed. Install temporary containment assemblies, plug or dam drains, and flood with potable water.
 a. Perform tests before overlying construction is placed.
 b. Flood to an average depth of 2-1/2 inches with a minimum depth of 1 inch and not exceeding a depth of 4 inches. Maintain 2 inches of clearance from top of base flashing.
 c. Flood each area for 24 hours.
 d. After flood testing, repair leaks, repeat flood tests, and make further repairs until roofing and flashing installations are watertight.

 1) Cost of retesting is Contractor's responsibility.

 e. Testing agency shall prepare survey report indicating locations of initial leaks, if any, and final survey report.

2. Testing agency shall prepare survey report indicating locations of initial discontinuities, if any.

C. Final Roof Inspection: Arrange for roofing system manufacturer's technical personnel to inspect roofing installation on completion, in presence of Architect, and to prepare inspection report.
D. Repair or remove and replace components of roofing system where inspections indicate that they do not comply with specified requirements.

E. Additional testing and inspecting, at Contractor's expense, will be performed to determine if replaced or additional work complies with specified requirements.

3.10 PROTECTING AND CLEANING

A. Protect roofing system from damage and wear during remainder of construction period. When remaining construction does not affect or endanger roofing, inspect roofing system for deterioration and damage, describing its nature and extent in a written report, with copies to Architect and Owner.

B. Correct deficiencies in or remove roofing system that does not comply with requirements, repair substrates, and repair or reinstall roofing system to a condition free of damage and deterioration at time of Substantial Completion and according to warranty requirements.

C. Clean overspray and spillage from adjacent construction using cleaning agents and procedures recommended by manufacturer of affected construction.

END OF SECTION
SECTION 076200

SHEET METAL FLASHING AND TRIM

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Formed roof-drainage sheet metal fabrications.
 2. Formed low-slope roof sheet metal fabrications.
 3. Formed wall sheet metal fabrications.

B. Related Requirements:
 1. Section 042000 “Unit Masonry” for installation of manufactured sheet metal through-wall flashing and trim integral with masonry.
 2. Section 061053 ”Miscellaneous Rough Carpentry” for wood nailers, curbs, and blocking.
 3. Section 075419 “Polyvinyl-Chloride (PVC) Roofing” for installation of sheet metal flashing and trim integral with roofing.

1.3 COORDINATION

A. Coordinate sheet metal flashing and trim layout and seams with sizes and locations of penetrations to be flashed, and joints and seams in adjacent materials.

B. Coordinate sheet metal flashing and trim installation with adjoining roofing and wall materials, joints, and seams to provide leakproof, secure, and noncorrosive installation.

1.4 ACTION SUBMITTALS

A. Shop Drawings: For sheet metal flashing and trim.
 1. Include plans, elevations, sections, and attachment details.
 2. Detail fabrication and installation layouts, expansion-joint locations, and keyed details. Distinguish between shop- and field-assembled Work.
 3. Include identification of material, thickness, weight, and finish for each item and location in Project.
 4. Include details for forming, including profiles, shapes, seams, and dimensions.
5. Include details for joining, supporting, and securing, including layout and spacing of fasteners, cleats, clips, and other attachments. Include pattern of seams.
6. Include details of termination points and assemblies.
7. Include details of roof-penetration flashing.
8. Include details of edge conditions, including eaves, ridges, valleys, rakes, crickets, flashings, and counterflashings.
9. Include details of special conditions.
10. Include details of connections to adjoining work.
11. Detail formed flashing and trim at scale of not less than 1-1/2 inches per 12 inches.

B. Samples: For each exposed product and for each color and texture specified, 12 inches long by actual width.

1.5 INFORMATIONAL SUBMITTALS
A. Qualification Data: For fabricator.
B. Sample Warranty: For special warranty.

1.6 CLOSEOUT SUBMITTALS
A. Special warranty.

1.7 QUALITY ASSURANCE
A. Fabricator Qualifications: Employs skilled workers who custom fabricate sheet metal flashing and trim similar to that required for this Project and whose products have a record of successful in-service performance.

1.8 DELIVERY, STORAGE, AND HANDLING
A. Do not store sheet metal flashing and trim materials in contact with other materials that might cause staining, denting, or other surface damage.
 1. Store sheet metal flashing and trim materials away from uncured concrete and masonry.
 2. Protect stored sheet metal flashing and trim from contact with water.
B. Protect strippable protective covering on sheet metal flashing and trim from exposure to sunlight and high humidity, except to extent necessary for period of sheet metal flashing and trim installation.

1.9 WARRANTY
A. Manufacturer’s Warranty: Prefinished metal material shall require a written 20-year non-prorated warranty covering fade, chalking, and film integrity. The material shall not show a color change greater than 5 NBS color units, in accordance with ASTM D-2244,
or chalking excess of 8 units, in accordance with ASTM D-659. If either occurs, the material shall be replaced in accordance with the warranty, at no cost to the owner.

B. Contractor’s Warranty: The Contractor shall provide the Owner with a notarized written warranty assuring that all sheet metal work, including sealants and fasteners, to be watertight and secure for a period of 5 years from the date of final acceptance of the construction. The warranty shall include all materials and workmanship required to repair any leaks that develop and make good any damage to other work or equipment caused by such leaks or the repairs thereof.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. General: Sheet metal flashing and trim assemblies, including cleats, anchors, and fasteners, shall withstand wind loads, structural movement, thermally induced movement, and exposure to weather without failure due to defective manufacture, fabrication, installation, or other defects in construction. Completed sheet metal flashing and trim shall not rattle, leak, or loosen, and shall remain watertight.

B. Sheet Metal Standard for Flashing and Trim: Comply with NRCA’s "The NRCA Roofing Manual: Architectural Metal Flashing, Condensation and Air Leakage Control, and Reroofing” and SMACNA's "Architectural Sheet Metal Manual" requirements for dimensions and profiles shown unless more stringent requirements are indicated.

C. SPRI Wind Design Standard: Manufacture and install copings and roof edge flashings tested in accordance with ANSI/SPRI/FM 4435/ES-1 and capable of resisting the following design pressure:

1. Design Pressure: As indicated on Drawings.

D. Thermal Movements: Allow for thermal movements from ambient and surface temperature changes to prevent buckling, opening of joints, overstressing of components, failure of joint sealants, failure of connections, and other detrimental effects. Base calculations on surface temperatures of materials due to both solar heat gain and nighttime-sky heat loss.

1. Temperature Change: 120 deg F, ambient; 180 deg F, material surfaces.

2.2 SHEET METALS

A. General: Protect mechanical and other finishes on exposed surfaces from damage by applying strippable, temporary protective film before shipping.

B. Stainless Steel Sheet: ASTM A240/A240M, Type 304, dead soft, fully annealed; with smooth, flat surface.

a. Surface Preparation: Remove tool and die marks and stretch lines, or blend into finish.

C. Metallic-Coated Steel Sheet: Provide zinc-coated (galvanized) steel sheet in accordance with ASTM A653/A653M, G90 coating designation; prepainted by coil-coating process to comply with ASTM A755/A755M.

1. Surface: Smooth, flat.
2. Exposed Coil-Coated Finish:
 a. Three-Coat Fluoropolymer: AAMA 621. Fluoropolymer finish containing not less than 70 percent polyvinylidene fluoride (PVDF) resin by weight in both color coat and clear topcoat. Prepare, pretreat, and apply coating to exposed metal surfaces to comply with coating and resin manufacturers' written instructions.

3. Color: As selected by Owner from manufacturer's full range.
4. Concealed Finish: Pretreat with manufacturer's standard white or light-colored acrylic or polyester backer finish, consisting of prime coat and wash coat with minimum total dry film thickness of 0.5 mil.

D. Lead Sheet: ASTM B749 lead sheet.

2.3 UNDERLAYMENT MATERIALS

A. Self-Adhering, High-Temperature Sheet Underlayment: Minimum 30 mils thick, consisting of a slip-resistant polyethylene- or polypropylene-film top surface laminated to a layer of butyl- or SBS-modified asphalt adhesive, with release-paper backing; specifically designed to withstand high metal temperatures beneath metal roofing. Provide primer in accordance with underlayment manufacturer's written instructions.

1. Source Limitations: Obtain underlayment from single source from single manufacturer.

2.4 MISCELLANEOUS MATERIALS

A. General: Provide materials and types of fasteners, solder, protective coatings, sealants, and other miscellaneous items as required for complete sheet metal flashing and trim installation and as recommended by manufacturer of primary sheet metal or manufactured item unless otherwise indicated.

B. Fasteners: Wood screws, annular threaded nails, self-tapping screws, self-locking rivets and bolts, and other suitable fasteners designed to withstand design loads and recommended by manufacturer of primary sheet metal or manufactured item.

1. General: Blind fasteners or self-drilling screws, gasketed, with hex-washer head.
a. Exposed Fasteners: Heads matching color of sheet metal using plastic caps or factory-applied coating. Provide metal-backed EPDM or PVC sealing washers under heads of exposed fasteners bearing on weather side of metal.
b. Blind Fasteners: High-strength aluminum or stainless steel rivets suitable for metal being fastened.
c. Spikes and Ferrules: Same material as gutter; with spike with ferrule matching internal gutter width.

2. Fasteners for Stainless Steel Sheet: Series 300 stainless steel.
3. Fasteners for Zinc-Coated (Galvanized) Steel Sheet: Series 300 stainless steel or hot-dip galvanized steel in accordance with ASTM A153/A153M or ASTM F2329.

C. Solder: ANSI/ASTM B-32; Type 95/05.

D. Elastomeric Sealant: ASTM C920, elastomeric polyurethane polymer sealant; of type, grade, class, and use classifications required to seal joints in sheet metal flashing and trim and remain watertight.

E. Butyl Sealant: ASTM C1311, single-component, solvent-release butyl rubber sealant; polyisobutylene plasticized; heavy bodied for hooked-type expansion joints with limited movement.

2.5 FABRICATION, GENERAL

A. Custom fabricate sheet metal flashing and trim to comply with details indicated and recommendations in cited sheet metal standard that apply to design, dimensions, geometry, metal thickness, and other characteristics of item required.

1. Fabricate sheet metal flashing and trim in shop to greatest extent possible.
2. Fabricate sheet metal flashing and trim in thickness or weight needed to comply with performance requirements, but not less than that specified for each application and metal.
3. Verify shapes and dimensions of surfaces to be covered and obtain field measurements for accurate fit before shop fabrication.
4. Form sheet metal flashing and trim to fit substrates without excessive oil-canning, buckling, and tool marks; true to line, levels, and slopes; and with exposed edges folded back to form hems.
5. Conceal fasteners and expansion provisions where possible. Do not use exposed fasteners on faces exposed to view.

B. Fabrication Tolerances:

1. Fabricate sheet metal flashing and trim that is capable of installation to a tolerance of 1/4 inch in 20 feet on slope and location lines indicated on Drawings and within 1/8-inch offset of adjoining faces and of alignment of matching profiles.
2. Fabricate sheet metal flashing and trim that is capable of installation to tolerances specified.

C. Expansion Provisions: Form metal for thermal expansion of exposed flashing and trim.
 1. Form expansion joints of intermeshing hooked flanges, not less than 1 inch deep, filled with butyl sealant concealed within joints.
 2. Use lapped expansion joints only where indicated on Drawings.

D. Sealant Joints: Where movable, non-expansion-type joints are required, form metal in accordance with cited sheet metal standard to provide for proper installation of elastomeric sealant.

E. Fabricate cleats and attachment devices from same material as accessory being anchored or from compatible, noncorrosive metal.

F. Seams:
 1. Fabricate nonmoving seams with flat-lock seams. Form seams and seal with elastomeric sealant unless otherwise recommended by sealant manufacturer for intended use. Rivet joints where necessary for strength.

G. Do not use graphite pencils to mark metal surfaces.

2.6 ROOF-DRAINAGE SHEET METAL FABRICATIONS

A. Hanging Gutters:
 1. Fabricate to cross section required, complete with end pieces, outlet tubes, and other accessories as required.
 2. Fabricate in minimum 96-inch-long sections.
 3. Furnish flat-stock gutter brackets and flat-stock gutter spacers and straps fabricated from same metal as gutters, of size recommended by cited sheet metal standard, but with thickness not less than twice the gutter thickness.
 4. Fabricate expansion joints, expansion-joint covers and gutter accessories from same metal as gutters. Shop fabricate interior and exterior corners.
 5. Gutter Profile: Style A in accordance with cited sheet metal standard.
 7. Accessories: Continuous, removable leaf screen with sheet metal frame and hardware cloth screen.
 8. Gutters with Girth up to 15 Inches: Fabricate from the following materials:
 a. Metallic-Coated steel sheet with fluoropolymer finish.
 b. Thickness: 0.022 inch minimum.

B. Built-in Gutters:
 1. Fabricate to cross section required, with riveted and soldered joints, complete with end pieces, outlet tubes, and other special accessories as required.
2. Fabricate in minimum 96-inch-long sections. Fabricate expansion joints and accessories from same metal as gutters unless otherwise indicated.

3. Fabricate gutters with built-in expansion joints.

4. Accessories: Continuous, removable leaf screen with sheet metal frame and hardware cloth screen.

5. Fabricate from the following materials:
 a. Metallic-Coated steel sheet with fluoropolymer finish.
 b. Thickness: 0.022 inch minimum.

C. Downspouts: Fabricate rectangular downspouts to dimensions indicated on Drawings, complete with mitered elbows. Furnish with metal hangers from same material as downspouts and anchors. Shop fabricate elbows.

 1. Fabricated Hanger Style: Fig. 1-35B in accordance with SMACNA's "Architectural Sheet Metal Manual."
 2. Manufactured Hanger Style: Fig. 1-34B in accordance with SMACNA's "Architectural Sheet Metal Manual."
 3. Fabricate from the following materials:
 a. Metallic-Coated steel sheet with fluoropolymer finish.
 b. Thickness: 0.022 inch minimum.

D. Parapet Scuppers: Fabricate scuppers to dimensions required, with closure flange trim to exterior, 4-inch-wide wall flanges to interior, and base extending 4 inches beyond cant or tapered strip into field of roof. Fabricate from the following materials:

 1. Provide PVC coated material for transition to PVC flashings.
 2. Thickness: 0.0188 inch minimum.

2.7 LOW-SLOPE ROOF SHEET METAL FABRICATIONS

A. Roof Edge Flashing (Gravel Stop): Fabricate in minimum 96-inch-long, but not exceeding 12-foot-long sections. Furnish with 6-inch-wide, joint cover plates. Shop fabricate interior and exterior corners.

 1. Joint Style: Butted with expansion space and 6-inch-wide, exposed cover plate.
 2. Fabricate with scuppers spaced 10 feet apart, to dimensions required with 4-inch-wide flanges and base extending 4 inches beyond cant or tapered strip into field of roof. Fasten gravel guard angles to base of scupper.
 3. Fabricate from the following materials:
 a. Metallic-Coated steel sheet with fluoropolymer finish. Provide PVC coated material for transition to PVC flashings.
 b. Thickness: 0.028 inch minimum.

B. Copings: Fabricate in minimum 96-inch-long, but not exceeding 12-foot-long, sections. Fabricate joint plates of same thickness as copings. Furnish with continuous cleats to
support edge of external leg and drill elongated holes for fasteners on interior leg. Miter corners, fasten, and seal watertight. Shop fabricate interior and exterior corners.

1. Coping Profile: Fig. 3-4A in accordance with SMACNA's "Architectural Sheet Metal Manual."
2. Joint Style: Butted with expansion space and 6-inch-wide, exposed cover plate.
3. Fabricate from the following materials:
 a. Metallic-Coated steel sheet with fluoropolymer finish
 b. Thickness: 0.040 inch thick.

C. Counterflashing: Shop fabricate interior and exterior corners. Fabricate from the following materials:
 1. Stainless Steel: 0.0188 inch thick.

D. Roof-Drain Flashing: Fabricate from the following materials:
 1. Stainless Steel: 0.0156 inch thick.

2.8 WALL SHEET METAL FABRICATIONS

A. Through-Wall Flashing: Fabricate continuous flashings in minimum 96-inch-long, but not exceeding 12-foot-long, sections, under copings, and at shelf angles. Fabricate discontinuous lintel, sill, and similar flashings to extend 6 inches beyond each side of wall openings; and form with 2-inch-high, end dams. Fabricate from the following materials:
 1. Stainless Steel: 0.016 inch thick.

B. Opening Flashings in Frame Construction: Fabricate head, sill, and similar flashings to extend 4 inches beyond wall openings. Form head and sill flashing with 2-inch-high, end dams. Fabricate from the following materials:
 1. Stainless Steel: 0.016 inch thick.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates, areas, and conditions, with installer present, for compliance with requirements for installation tolerances, substrate, and other conditions affecting performance of the Work.
 1. Verify compliance with requirements for installation tolerances of substrates.
 2. Verify that substrate is sound, dry, smooth, clean, sloped for drainage, and securely anchored.
3. Verify that air- or water-resistant barriers have been installed over sheathing or backing substrate to prevent air infiltration or water penetration.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION OF UNDERLAYMENT

A. Self-Adhering, High-Temperature Sheet Underlayment:
 1. Install self-adhering, high-temperature sheet underlayment; wrinkle free.
 2. Prime substrate if recommended by underlayment manufacturer.
 3. Comply with temperature restrictions of underlayment manufacturer for installation; use primer for installing underlayment at low temperatures.
 4. Apply in shingle fashion to shed water, with end laps of not less than 6 inches staggered 24 inches between courses.
 5. Overlap side edges not less than 3-1/2 inches. Roll laps and edges with roller.
 6. Roll laps and edges with roller.
 7. Cover underlayment within 14 days.

3.3 INSTALLATION, GENERAL

A. Install sheet metal flashing and trim to comply with details indicated and recommendations of cited sheet metal standard that apply to installation characteristics required unless otherwise indicated on Drawings.
 1. Install fasteners, solder, protective coatings, separators, sealants, and other miscellaneous items as required to complete sheet metal flashing and trim system.
 2. Install sheet metal flashing and trim true to line, levels, and slopes. Provide uniform, neat seams with minimum exposure of sealant.
 3. Anchor sheet metal flashing and trim and other components of the Work securely in place, with provisions for thermal and structural movement.
 4. Install sheet metal flashing and trim to fit substrates and to result in watertight performance.
 5. Space individual cleats not more than 12 inches apart. Attach each cleat with at least two fasteners. Bend tabs over fasteners.
 6. Install exposed sheet metal flashing and trim with limited oil-canning, and free of buckling and tool marks.
 7. Do not field cut sheet metal flashing and trim by torch.
 8. Do not use graphite pencils to mark metal surfaces.

B. Metal Protection: Where dissimilar metals contact each other, or where metal contacts pressure-treated wood or other corrosive substrates, protect against galvanic action or corrosion by painting contact surfaces with bituminous coating or by other permanent separation as recommended by sheet metal manufacturer or cited sheet metal standard.
1. Coat concealed side of stainless-steel sheet metal flashing and trim with bituminous coating where flashing and trim contact wood, ferrous metal, or cementitious construction.

C. Expansion Provisions: Provide for thermal expansion of exposed flashing and trim.

1. Space movement joints at maximum of 10 feet with no joints within 24 inches of corner or intersection.
2. Form expansion joints of intermeshing hooked flanges, not less than 1 inch deep, filled with sealant concealed within joints.

D. Fasteners: Use fastener sizes that penetrate substrate not less than recommended by fastener manufacturer to achieve maximum pull-out resistance.

E. Conceal fasteners and expansion provisions where possible in exposed work and locate to minimize possibility of leakage. Cover and seal fasteners and anchors as required for a tight installation.

F. Seal joints as required for watertight construction.

1. Use sealant-filled joints unless otherwise indicated.
 a. Embed hooked flanges of joint members not less than 1 inch into sealant.
 b. Form joints to completely conceal sealant.
 c. When ambient temperature at time of installation is between 40 and 70 deg F, set joint members for 50 percent movement each way.
 d. Adjust setting proportionately for installation at higher ambient temperatures.

 1) Do not install sealant-type joints at temperatures below 40 deg F.

2. Prepare joints and apply sealants to comply with requirements in Section 079200 "Joint Sealants."

G. Soldered Joints: Clean surfaces to be soldered, removing oils and foreign matter.

1. Pretin edges of sheets with solder to width of 1-1/2 inches; however, reduce pretinning where pretinned surface would show in completed Work.
2. Do not use torches for soldering.
3. Heat surfaces to receive solder, and flow solder into joint.
 a. Fill joint completely.
 b. Completely remove flux and spatter from exposed surfaces.

4. Stainless Steel Soldering:
 a. Tin edges of uncoated sheets, using solder for stainless steel and acid flux.
b. Promptly remove acid-flux residue from metal after tinning and soldering.
c. Comply with solder manufacturer's recommended methods for cleaning and neutralization.

3.4 INSTALLATION OF ROOF-DRAINAGE SYSTEM

A. Install sheet metal roof-drainage items to produce complete roof-drainage system in accordance with cited sheet metal standard unless otherwise indicated. Coordinate installation of roof perimeter flashing with installation of roof-drainage system.

B. Hanging Gutters:
 1. Join sections with joints sealed with sealant.
 2. Provide for thermal expansion.
 3. Attach gutters at eave or fascia to firmly anchor them in position.
 4. Provide end closures and seal watertight with sealant.
 5. Slope to downspouts.
 6. Fasten gutter spacers to front and back of gutter.
 7. Anchor and loosely lock back edge of gutter to continuous cleat.
 8. Anchor gutter with gutter brackets spaced not more than 24 inches apart to roof deck unless otherwise indicated, and loosely lock to front gutter bead.
 9. Install gutter with expansion joints at locations indicated on Drawings, but not exceeding, 50 feet apart. Install expansion-joint caps.
 10. Install continuous gutter screens on gutters with noncorrosive fasteners, removable for cleaning gutters.

C. Built-in Gutters:
 1. Join sections with joints sealed with sealant.
 2. Provide for thermal expansion.
 3. Slope to downspouts.
 4. Provide end closures and seal watertight with sealant.
 5. Install underlayment layer in built-in gutter trough and extend to drip edge at eaves and under underlayment on roof sheathing.
 a. Lap sides minimum of 2 inches over underlying course.
 b. Lap ends minimum of 4 inches.
 c. Stagger end laps between succeeding courses at least 72 inches.
 d. Fasten with roofing nails.
 e. Install slip sheet over underlayment.
 6. Anchor and loosely lock back edge of gutter to continuous cleat.

D. Parapet Scuppers:
 1. Continuously support scupper, set to correct elevation, and seal flanges to interior wall face, over cants or tapered edge strips, and under roofing membrane.
2. Anchor scupper closure trim flange to exterior wall and solder or seal with elastomeric sealant to scupper.

E. Downspouts:
 1. Join sections with 1-1/2-inch telescoping joints.
 2. Provide hangers with fasteners designed to hold downspouts securely to walls.
 3. Locate hangers at top and bottom and at approximately 60 inches o.c.
 4. Provide elbows at base of downspout to direct water away from building.
 5. Connect downspouts to underground drainage system.

3.5 INSTALLATION OF ROOF FLASHINGS

A. Install sheet metal flashing and trim to comply with performance requirements, sheet metal manufacturer's written installation instructions, and cited sheet metal standard.
 1. Provide concealed fasteners where possible, and set units true to line, levels, and slopes.
 2. Install work with laps, joints, and seams that are permanently watertight and weather resistant.

B. Roof Edge Flashing:
 1. Install roof edge flashings in accordance with ANSI/SPRI/FM 4435/ES-1.
 2. Anchor to resist uplift and outward forces in accordance with recommendations in cited sheet metal standard unless otherwise indicated. Interlock bottom edge of roof edge flashing with continuous cleat anchored to substrate at staggered 3-inch centers.

C. Copings:
 1. Install roof edge flashings in accordance with ANSI/SPRI/FM 4435/ES-1.
 2. Anchor to resist uplift and outward forces in accordance with recommendations in cited sheet metal standard unless otherwise indicated.
 a. Interlock exterior bottom edge of coping with continuous cleat anchored to substrate at 16-inch centers.
 b. Anchor interior leg of coping with washers and screw fasteners through slotted holes at 24-inch centers.

D. Counterflashing: Coordinate installation of counterflashing with installation of base flashing.
 1. Insert counterflashing in reglets or receivers and fit tightly to base flashing.
 2. Extend counterflashing 4 inches over base flashing.
 3. Lap counterflashing joints minimum of 4 inches.
 4. Secure in waterproof manner by means of interlocking folded seam or blind rivets and sealant unless otherwise indicated.
3.6 INSTALLATION OF WALL FLASHINGS

A. Install sheet metal wall flashing to intercept and exclude penetrating moisture in accordance with cited sheet metal standard unless otherwise indicated. Coordinate installation of wall flashing with installation of wall-opening components such as windows, doors, and louvers.

B. Opening Flashings in Frame Construction: Install continuous head, sill, and similar flashings to extend 4 inches beyond wall openings.

3.7 INSTALLATION TOLERANCES

A. Installation Tolerances: Shim and align sheet metal flashing and trim within installed tolerance of 1/4 inch in 20 feet on slope and location lines indicated on Drawings and within 1/8-inch offset of adjoining faces and of alignment of matching profiles.

3.8 CLEANING

A. Clean exposed metal surfaces of substances that interfere with uniform oxidation and weathering.

B. Clean and neutralize flux materials. Clean off excess solder.

C. Clean off excess sealants.

3.9 PROTECTION

A. Remove temporary protective coverings and strippable films as sheet metal flashing and trim are installed unless otherwise indicated in manufacturer's written installation instructions.

B. On completion of sheet metal flashing and trim installation, remove unused materials and clean finished surfaces as recommended in writing by sheet metal flashing and trim manufacturer.

C. Maintain sheet metal flashing and trim in clean condition during construction.

D. Replace sheet metal flashing and trim that have been damaged or that have deteriorated beyond successful repair by finish touchup or similar minor repair procedures, as determined by Architect.

END OF SECTION
SECTION 078413

PENETRATION FIRESTOPPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Penetrations in fire-resistance-rated walls.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. Product Schedule: For each penetration firestopping system. Include location, illustration of firestopping system, and design designation of qualified testing and inspecting agency.

1. Engineering Judgments: Where Project conditions require modification to a qualified testing and inspecting agency’s illustration for a particular penetration firestopping system, submit illustration, with modifications marked, approved by penetration firestopping system manufacturer's fire-protection engineer as an engineering judgment or equivalent fire-resistance-rated assembly. Obtain approval of authorities having jurisdiction prior to submittal.

1.4 INFORMATIONAL SUBMITTALS

A. Qualification Data: For Installer.

B. Product Test Reports: For each penetration firestopping system, for tests performed by a qualified testing agency.

1.5 CLOSEOUT SUBMITTALS

A. Installer Certificates: From Installer indicating that penetration firestopping systems have been installed in compliance with requirements and manufacturer's written instructions.
1.6 QUALITY ASSURANCE

A. Installer Qualifications: A firm that has been approved by FM Approval according to FM Approval 4991, "Approval Standard for Firestop Contractors," or been evaluated by UL and found to comply with its "Qualified Firestop Contractor Program Requirements."

1.7 PROJECT CONDITIONS

A. Environmental Limitations: Do not install penetration firestopping system when ambient or substrate temperatures are outside limits permitted by penetration firestopping system manufacturers or when substrates are wet because of rain, frost, condensation, or other causes.

B. Install and cure penetration firestopping materials per manufacturer's written instructions using natural means of ventilations or, where this is inadequate, forced-air circulation.

1.8 COORDINATION

A. Coordinate construction of openings and penetrating items to ensure that penetration firestopping systems can be installed according to specified firestopping system design.

B. Coordinate sizing of sleeves, openings, core-drilled holes, or cut openings to accommodate penetration firestopping systems.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Fire-Test-Response Characteristics:

1. Perform penetration firestopping system tests by a qualified testing agency acceptable to authorities having jurisdiction.

2. Test per testing standards referenced in "Penetration Firestopping Systems" Article. Provide rated systems complying with the following requirements:

 a. Penetration firestopping systems shall bear classification marking of a qualified testing agency.

 1) UL in its "Fire Resistance Directory."
 2) Intertek Group in its "Directory of Listed Building Products."
 3) FM Approval in its "Approval Guide."

2.2 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

2. Hilti Construction Chemicals, Inc.
3. 3M Fire Protection Products.
4. Tremco.

2.3 PENETRATION FIRESTOPPING SYSTEMS

A. Penetration Firestopping Systems: Systems that resist spread of fire, passage of smoke and other gases, and maintain original fire-resistance rating of construction penetrated. Penetration firestopping systems shall be compatible with one another, with the substrates forming openings, and with penetrating items if any.

B. Penetrations in Fire-Resistance-Rated Walls: Penetration firestopping systems with ratings determined per ASTM E814 or UL 1479, based on testing at a positive pressure differential of 0.01-inch wg.

1. F-Rating: Not less than the fire-resistance rating of constructions penetrated.

C. Penetrations in Horizontal Assemblies: Penetration firestopping systems with ratings determined per ASTM E814 or UL 1479, based on testing at a positive pressure differential of 0.01-inch wg.

1. F-Rating: At least one hour, but not less than the fire-resistance rating of constructions penetrated.
2. T-Rating: At least one hour, but not less than the fire-resistance rating of constructions penetrated except for floor penetrations within the cavity of a wall.
3. W-Rating: Provide penetration firestopping systems showing no evidence of water leakage when tested according to UL 1479.

D. Exposed Penetration Firestopping Systems: Flame-spread and smoke-developed indexes of less than 25 and 450, respectively, per ASTM E84.

E. Accessories: Provide components for each penetration firestopping system that are needed to install fill materials and to maintain ratings required. Use only those components specified by penetration firestopping system manufacturer and approved by qualified testing and inspecting agency for conditions indicated.

1. Permanent forming/damming/backing materials.
2. Substrate primers.
3. Collars.
4. Steel sleeves.

2.4 FILL MATERIALS

A. Latex Sealants: Single-component latex formulations that do not re-emulsify after cure during exposure to moisture.

B. Firestop Devices: Factory-assembled collars formed from galvanized steel and lined with intumescent material sized to fit specific diameter of penetrant.
C. Intumescent Composite Sheets: Rigid panels consisting of aluminum-foil-faced intumescent elastomeric sheet bonded to galvanized-steel sheet.

D. Intumescent Putties: Nonhardening, water-resistant, intumescent putties containing no solvents or inorganic fibers.

E. Intumescent Wrap Strips: Single-component intumescent elastomeric sheets with aluminum foil on one side.

F. Mortars: Prepackaged dry mixes consisting of a blend of inorganic binders, hydraulic cement, fillers and lightweight aggregate formulated for mixing with water at Project site to form a nonshrinking, homogeneous mortar.

G. Silicone Foams: Multicomponent, silicone-based liquid elastomers that, when mixed, expand and cure in place to produce a flexible, nonshrinking foam.

2.5 MIXING

A. Penetration Firestopping Materials: For those products requiring mixing before application, comply with penetration firestopping system manufacturer's written instructions for accurate proportioning of materials, water (if required), type of mixing equipment, selection of mixer speeds, mixing containers, mixing time, and other items or procedures needed to produce products of uniform quality with optimum performance characteristics for application indicated.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates and conditions, with Installer present, for compliance with requirements for opening configurations, penetrating items, substrates, and other conditions affecting performance of the Work.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Surface Cleaning: Before installing penetration firestopping systems, clean out openings immediately to comply with manufacturer's written instructions and with the following requirements:

1. Remove from surfaces of opening substrates and from penetrating items foreign materials that could interfere with adhesion of penetration firestopping materials.
2. Clean opening substrates and penetrating items to produce clean, sound surfaces capable of developing optimum bond with penetration firestopping materials. Remove loose particles remaining from cleaning operation.
3. Remove laitance and form-release agents from concrete.

B. Prime substrates where recommended in writing by manufacturer using that manufacturer's recommended products and methods. Confine primers to areas of bond; do not allow spillage and migration onto exposed surfaces.

3.3 INSTALLATION

A. General: Install penetration firestopping systems to comply with manufacturer's written installation instructions and published drawings for products and applications.

B. Install forming materials and other accessories of types required to support fill materials during their application and in the position needed to produce cross-sectional shapes and depths required to achieve fire ratings.

1. After installing fill materials and allowing them to fully cure, remove combustible forming materials and other accessories not forming permanent components of firestopping.

C. Install fill materials by proven techniques to produce the following results:

1. Fill voids and cavities formed by openings, forming materials, accessories and penetrating items to achieve required fire-resistance ratings.
2. Apply materials so they contact and adhere to substrates formed by openings and penetrating items.
3. For fill materials that will remain exposed after completing the Work, finish to produce smooth, uniform surfaces that are flush with adjoining finishes.

3.4 IDENTIFICATION

A. Wall Identification: Permanently label walls containing penetration firestopping systems with the words "FIRE AND/OR SMOKE BARRIER - PROTECT ALL OPENINGS," using lettering not less than 3 inches high and with minimum 0.375-inch strokes.

1. Locate in accessible concealed floor, floor-ceiling, or attic space at 15 feet from end of wall and at intervals not exceeding 30 feet.

B. Penetration Identification: Identify each penetration firestopping system with legible metal or plastic labels. Attach labels permanently to surfaces adjacent to and within 6 inches of penetration firestopping system edge so labels are visible to anyone seeking to remove penetrating items or firestopping systems. Use mechanical fasteners or self-adhering-type labels with adhesives capable of permanently bonding labels to surfaces on which labels are placed. Include the following information on labels:

1. The words "Warning - Penetration Firestopping - Do Not Disturb. Notify Building Management of Any Damage."
2. Contractor's name, address, and phone number.
3. Designation of applicable testing and inspecting agency.
4. Date of installation.
5. Manufacturer's name.
6. Installer's name.

3.5 FIELD QUALITY CONTROL
A. Engage a qualified testing agency to perform tests and inspections according to ASTM E2174.
B. Where deficiencies are found or penetration firestopping system is damaged or removed because of testing, repair or replace penetration firestopping system to comply with requirements.
C. Proceed with enclosing penetration firestopping systems with other construction only after inspection reports are issued and installations comply with requirements.

3.6 CLEANING AND PROTECTION
A. Clean off excess fill materials adjacent to openings as the Work progresses by methods and with cleaning materials that are approved in writing by penetration firestopping system manufacturers and that do not damage materials in which openings occur.
B. Provide final protection and maintain conditions during and after installation that ensure that penetration firestopping systems are without damage or deterioration at time of Substantial Completion. If, despite such protection, damage or deterioration occurs, immediately cut out and remove damaged or deteriorated penetration firestopping material and install new materials to produce systems complying with specified requirements.

3.7 PENETRATION FIRESTOPPING SYSTEM SCHEDULE
A. Where UL-classified systems are indicated, they refer to system numbers in UL's "Fire Resistance Directory" under product Category XHEZ.
B. Where Intertek Group-listed systems are indicated, they refer to design numbers in Intertek Group's "Directory of Listed Building Products" under "Firestop Systems."
C. Where FM Approval-approved systems are indicated, they refer to design numbers listed in FM Approval's "Approval Guide" under "Wall and Floor Penetration Fire Stops."
D. Penetration Firestopping Systems for Metallic Pipes, Conduit, or Tubing:
 2. F-Rating: Not less than the wall or partition penetrated.
 3. T-Rating: Not less than the wall or partition penetrated.
 4. W-Rating: No leakage of water at completion of water leakage testing.
E. Penetration Firestopping Systems for Nonmetallic Pipe, Conduit, or Tubing:
2. F-Rating: Not less than the wall or partition penetrated.
3. T-Rating: Not less than the wall or partition penetrated.
4. W-Rating: No leakage of water at completion of water leakage testing.

F. Penetration Firestopping Systems for Electrical Cables:
 1. UL-Classified Systems: C-AJ-3001-3999.
 2. F-Rating: Not less than the wall or partition penetrated.
 3. T-Rating: Not less than the wall or partition penetrated.
 4. W-Rating: No leakage of water at completion of water leakage testing.

G. Penetration Firestopping Systems for Insulated Pipes:
 1. UL-Classified Systems: C-AJ-5001-5999.
 2. F-Rating: Not less than the wall or partition penetrated.
 3. T-Rating: Not less than the wall or partition penetrated.
 4. W-Rating: No leakage of water at completion of water leakage testing.

H. Penetration Firestopping Systems for Miscellaneous Mechanical Penetrants:
 1. UL-Classified Systems: C-AJ-7001-7999.
 2. F-Rating: Not less than the wall or partition penetrated.
 3. T-Rating: Not less than the wall or partition penetrated.
 4. W-Rating: No leakage of water at completion of water leakage testing.

END OF SECTION
SECTION 078443

JOINT FIRESTOPPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Joints in or between fire-resistance-rated constructions.
2. Joints at exterior curtain-wall/floor intersections.

B. Related Requirements:

1. Section 078413 "Penetration Firestopping" for penetrations in fire-resistance-rated walls, horizontal assemblies, and smoke barriers.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. Product Schedule: For each joint firestopping system. Include location, illustration of firestopping system, and design designation of qualified testing agency.

1. Engineering Judgments: Where Project conditions require modification to a qualified testing agency's illustration for a particular joint firestopping system condition, submit illustration, with modifications marked, approved by joint firestopping system manufacturer's fire-protection engineer as an engineering judgment or equivalent fire-resistance-rated assembly.

1.4 INFORMATIONAL SUBMITTALS

A. Qualification Data: For Installer.

B. Product Test Reports: For each joint firestopping system, for tests performed by a qualified testing agency.

1.5 CLOSEOUT SUBMITTALS

A. Installer Certificates: From Installer indicating that joint firestopping systems have been installed in compliance with requirements and manufacturer's written instructions.
1.6 QUALITY ASSURANCE

A. Installer Qualifications: A firm that has been approved by FM Approvals according to FM Approvals 4991, "Approval of Firestop Contractors," or been evaluated by UL and found to comply with UL's "Qualified Firestop Contractor Program Requirements."

1.7 PROJECT CONDITIONS

A. Environmental Limitations: Do not install joint firestopping systems when ambient or substrate temperatures are outside limits permitted by joint firestopping system manufacturers or when substrates are wet due to rain, frost, condensation, or other causes.

B. Install and cure joint firestopping systems per manufacturer's written instructions using natural means of ventilation or, where this is inadequate, forced-air circulation.

1.8 COORDINATION

A. Coordinate construction of joints to ensure that joint firestopping systems can be installed according to specified firestopping system design.

B. Coordinate sizing of joints to accommodate joint firestopping systems.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Fire-Test-Response Characteristics:

1. Perform joint firestopping system tests by a qualified testing agency acceptable to authorities having jurisdiction.

2. Test per testing standards referenced in "Joint Firestopping Systems" Article. Provide rated systems complying with the following requirements:

 a. Joint firestopping systems shall bear classification marking of a qualified testing agency.

 1) UL in its "Fire Resistance Directory."
 2) Intertek Group in its "Directory of Listed Building Products."

2.2 JOINT FIRESTOPPING SYSTEMS

A. Joint Firestopping Systems: Systems that resist spread of fire, passage of smoke and other gases, and maintain original fire-resistance rating of assemblies in or between which joint firestopping systems are installed. Joint firestopping systems shall accommodate building movements without impairing their ability to resist the passage of fire and hot gases.

B. Joints in or between Fire-Resistance-Rated Construction: Provide joint firestopping systems with ratings determined per ASTM E1966 or UL 2079.
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. 3M Fire Protection Products.
 c. Hilti, Inc.
 d. Rockwool International.
 e. Thermafiber, Inc.; an Owens Corning company.
 f. Tremco, Inc.

2. Fire-Resistance Rating: Equal to or exceeding the fire-resistance rating of the wall, floor, or roof in or between which it is installed.

C. Joints at Exterior Curtain-Wall/Floor Intersections: Provide joint firestopping systems with rating determined per ASTM E2307.
 1. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 a. 3M Fire Protection Products.
 b. Hilti, Inc.
 c. Rockwool International.

2. F-Rating: Equal to or exceeding the fire-resistance rating of the floor assembly.

D. Accessories: Provide components of joint firestopping systems, including primers and forming materials, that are needed to install elastomeric fill materials and to maintain ratings required. Use only components specified by joint firestopping system manufacturer and approved by the qualified testing agency for conditions indicated.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates and conditions, with Installer present, for compliance with requirements for joint configurations, substrates, and other conditions affecting performance of the Work.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Surface Cleaning: Before installing joint firestopping systems, clean joints immediately to comply with fire-resistive joint system manufacturer's written instructions and the following requirements:

1. Remove from surfaces of joint substrates foreign materials that could interfere with adhesion of elastomeric fill materials or compromise fire-resistive rating.
2. Clean joint substrates to produce clean, sound surfaces capable of developing optimum bond with elastomeric fill materials. Remove loose particles remaining from cleaning operation.

3. Remove laitance and form-release agents from concrete.

B. Prime substrates where recommended in writing by joint firestopping system manufacturer using that manufacturer's recommended products and methods. Confine primers to areas of bond; do not allow spillage and migration onto exposed surfaces.

3.3 INSTALLATION

A. General: Install joint firestopping systems to comply with manufacturer's written installation instructions and published drawings for products and applications indicated.

B. Install forming materials and other accessories of types required to support elastomeric fill materials during their application and in position needed to produce cross-sectional shapes and depths required to achieve fire ratings indicated.

1. After installing elastomeric fill materials and allowing them to fully cure, remove combustible forming materials and other accessories not indicated as permanent components of fire-resistive joint system.

C. Install elastomeric fill materials for joint firestopping systems by proven techniques to produce the following results:

1. Elastomeric fill voids and cavities formed by joints and forming materials as required to achieve fire-resistance ratings indicated.

2. Apply elastomeric fill materials so they contact and adhere to substrates formed by joints.

3. For elastomeric fill materials that will remain exposed after completing the Work, finish to produce smooth, uniform surfaces that are flush with adjoining finishes.

3.4 FIELD QUALITY CONTROL

A. Inspecting Agency: Owner may engage a qualified testing agency to perform tests and inspections according to ASTM E2393.

B. Where deficiencies are found or joint firestopping systems are damaged or removed due to testing, repair or replace joint firestopping systems so they comply with requirements.

C. Proceed with enclosing joint firestopping systems with other construction only after inspection reports are issued and installations comply with requirements.

3.5 CLEANING AND PROTECTION

A. Clean off excess elastomeric fill materials adjacent to joints as the Work progresses by methods and with cleaning materials that are approved in writing by joint firestopping system manufacturers and that do not damage materials in which joints occur.
B. Provide final protection and maintain conditions during and after installation that ensure joint firestopping systems are without damage or deterioration at time of Substantial Completion. If damage or deterioration occurs despite such protection, cut out and remove damaged or deteriorated joint firestopping systems immediately and install new materials to produce joint firestopping systems complying with specified requirements.

END OF SECTION
SECTION 079200

JOINT SEALANTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Non-staining silicone joint sealants.
2. Urethane joint sealants.
3. Mildew-resistant joint sealants.
4. Butyl joint sealants.
5. Latex joint sealants.

1.3 ACTION SUBMITTALS

A. Product Data: For each joint-sealant product.

B. Samples for Verification: For each kind and color of joint sealant required, provide Samples with joint sealants in 1/2-inch-wide joints formed between two 6-inch-long strips of material matching the appearance of exposed surfaces adjacent to joint sealants.

C. Joint-Sealant Schedule: Include the following information:

1. Joint-sealant application, joint location, and designation.
2. Joint-sealant manufacturer and product name.

1.4 INFORMATIONAL SUBMITTALS

A. Sample Warranties: For special warranties.

1.5 QUALITY ASSURANCE

A. Installer Qualifications: An authorized representative who is trained and approved by manufacturer.

B. Product Testing: Test joint sealants using a qualified testing agency.
1. Testing Agency Qualifications: Qualified according to ASTM C1021 to conduct the testing indicated.

C. Mockups: Install sealant in mockups of assemblies specified in other Sections that are indicated to receive joint sealants specified in this Section. Use materials and installation methods specified in this Section.

1.6 PRECONSTRUCTION TESTING

A. Preconstruction Field-Adhesion Testing: Before installing sealants, field test their adhesion to Project joint substrates as follows:

1. Locate test joints where indicated on Project or, if not indicated, as directed by Engineer.
2. Conduct field tests for each kind of sealant and joint substrate.
3. Notify Engineer seven days in advance of dates and times when test joints will be erected.
4. Arrange for tests to take place with joint-sealant manufacturer's technical representative present.

1) For joints with dissimilar substrates, verify adhesion to each substrate separately; extend cut along one side, verifying adhesion to opposite side. Repeat procedure for opposite side.

5. Report whether sealant failed to adhere to joint substrates or tore cohesively. Include data on pull distance used to test each kind of product and joint substrate. For sealants that fail adhesively, retest until satisfactory adhesion is obtained.
6. Evaluation of Preconstruction Field-Adhesion-Test Results: Sealants not evidencing adhesive failure from testing, in absence of other indications of noncompliance with requirements, will be considered satisfactory. Do not use sealants that fail to adhere to joint substrates during testing.

1.7 FIELD CONDITIONS

A. Do not proceed with installation of joint sealants under the following conditions:

1. When ambient and substrate temperature conditions are outside limits permitted by joint-sealant manufacturer or are below 40 deg F.
2. When joint substrates are wet.
3. Where joint widths are less than those allowed by joint-sealant manufacturer for applications indicated.
4. Where contaminants capable of interfering with adhesion have not yet been removed from joint substrates.
1.8 WARRANTY

A. Special Installer's Warranty: Installer agrees to repair or replace joint sealants that do not comply with performance and other requirements specified in this Section within specified warranty period.

1. Warranty Period: Two years from date of Substantial Completion.

B. Special Manufacturer's Warranty: Manufacturer agrees to furnish joint sealants to repair or replace those joint sealants that do not comply with performance and other requirements specified in this Section within specified warranty period.

1. Warranty Period: Five years from date of Substantial Completion.

C. Special warranties specified in this article exclude deterioration or failure of joint sealants from the following:

1. Movement of the structure caused by stresses on the sealant exceeding sealant manufacturer's written specifications for sealant elongation and compression.
2. Disintegration of joint substrates from causes exceeding design specifications.
3. Mechanical damage caused by individuals, tools, or other outside agents.
4. Changes in sealant appearance caused by accumulation of dirt or other atmospheric contaminants.

PART 2 - PRODUCTS

2.1 JOINT SEALANTS, GENERAL

A. Compatibility: Provide joint sealants, backings, and other related materials that are compatible with one another and with joint substrates under conditions of service and application, as demonstrated by joint-sealant manufacturer, based on testing and field experience.

B. Colors of Exposed Joint Sealants: As selected by Owner from manufacturer's full range.

2.2 NON-STAINING SILICONE JOINT SEALANTS

A. Non-staining Joint Sealants: No staining of substrates when tested according to ASTM C1248.

B. Silicone, Non-staining, S, NS, 50, NT: Non-staining, single-component, non-sag, plus 50 percent and minus 50 percent movement capability, nontraffic-use, neutral-curing silicone joint sealant; ASTM C920, Type S, Grade NS, Class 50, Use NT.

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
a. Dow Corning Corporation.
b. Pecora Corporation.
c. Sika Corporation; Joint Sealants.

2.3 URETHANE JOINT SEALANTS

A. Urethane, S, P, 25, T, NT: Single-component, pourable, plus 25 percent and minus 25 percent movement capability, traffic- and nontraffic-use, urethane joint sealant; ASTM C920, Type S, Grade P, Class 25, Uses T and NT.

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

a. BASF Corporation.
b. Pecora Corporation.
c. Polymeric Systems, Inc.
d. Schnee-Morehead, Inc., an ITW company.

2.4 MILDEW-RESISTANT JOINT SEALANTS

A. Mildew-Resistant Joint Sealants: Formulated for prolonged exposure to humidity with fungicide to prevent mold and mildew growth.

B. Silicone, Mildew Resistant, Acid Curing, S, NS, 25, NT: Mildew-resistant, single-component, non-sag, plus 25 percent and minus 25 percent movement capability, nontraffic-use, acid-curing silicone joint sealant; ASTM C920, Type S, Grade NS, Class 25, Use NT.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

a. Dow Corning Corporation.
c. Pecora Corporation.

2.5 BUTYL JOINT SEALANTS

A. Butyl-Rubber-Based Joint Sealants: ASTM C1311.

1. Manufacturers: Subject to compliance with requirements, provide products by the following:

a. Bostik, Inc.
b. Approved Equal
2.6 LATEX JOINT SEALANTS
A. Acrylic Latex: Acrylic latex or siliconized acrylic latex, ASTM C834, Type OP, Grade NF.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Pecora Corporation.
 c. Sherwin-Williams Company (The).

2.7 JOINT-SEALANT BACKING
A. Sealant Backing Material, General: Nontainting; compatible with joint substrates, sealants, primers, and other joint fillers; and approved for applications indicated by sealant manufacturer based on field experience and laboratory testing.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Adfast.
 b. Alcot Plastics Ltd.
 c. BASF Corporation.
 d. Approved Equal

B. Cylindrical Sealant Backings: ASTM C1330, Type C (closed-cell material with a surface skin), and of size and density to control sealant depth and otherwise contribute to producing optimum sealant performance.

2.8 MISCELLANEOUS MATERIALS
A. Primer: Material recommended by joint-sealant manufacturer where required for adhesion of sealant to joint substrates indicated, as determined from preconstruction joint-sealant-substrate tests and field tests.

B. Cleaners for Nonporous Surfaces: Chemical cleaners acceptable to manufacturers of sealants and sealant backing materials, free of oily residues or other substances capable of staining or harming joint substrates and adjacent nonporous surfaces in any way, and formulated to promote optimum adhesion of sealants to joint substrates.

C. Masking Tape: Non-staining, nonabsorbent material compatible with joint sealants and surfaces adjacent to joints.

PART 3 - EXECUTION
3.1 EXAMINATION
A. Examine joints indicated to receive joint sealants, with Installer present, for compliance with requirements for joint configuration, installation tolerances, and other conditions affecting performance of the Work.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Surface Cleaning of Joints: Clean out joints immediately before installing joint sealants to comply with joint-sealant manufacturer's written instructions and the following requirements:

1. Remove all foreign material from joint substrates that could interfere with adhesion of joint sealant, including dust, paints (except for permanent, protective coatings tested and approved for sealant adhesion and compatibility by sealant manufacturer), old joint sealants, oil, grease, waterproofing, water repellents, water, surface dirt, and frost.

2. Clean porous joint substrate surfaces by brushing, grinding, mechanical abrading, or a combination of these methods to produce a clean, sound substrate capable of developing optimum bond with joint sealants. Remove loose particles remaining after cleaning operations above by vacuuming or blowing out joints with oil-free compressed air. Porous joint substrates include the following:
 a. Concrete.
 b. Masonry.
 c. Unglazed surfaces of ceramic tile.

3. Remove laitance and form-release agents from concrete.

4. Clean nonporous joint substrate surfaces with chemical cleaners or other means that do not stain, harm substrates, or leave residues capable of interfering with adhesion of joint sealants. Nonporous joint substrates include the following:
 a. Metal.
 b. Glass.
 c. Porcelain enamel.
 d. Glazed surfaces of ceramic tile.

B. Joint Priming: Prime joint substrates where recommended by joint-sealant manufacturer or as indicated by preconstruction joint-sealant-substrate tests or prior experience. Apply primer to comply with joint-sealant manufacturer's written instructions. Confine primers to areas of joint-sealant bond; do not allow spillage or migration onto adjoining surfaces.

C. Masking Tape: Use masking tape where required to prevent contact of sealant or primer with adjoining surfaces that otherwise would be permanently stained or damaged by such contact or by cleaning methods required to remove sealant smears. Remove tape immediately after tooling without disturbing joint seal.

3.3 INSTALLATION OF JOINT SEALANTS
A. General: Comply with joint-sealant manufacturer's written installation instructions for products and applications indicated, unless more stringent requirements apply.

B. Sealant Installation Standard: Comply with recommendations in ASTM C1193 for use of joint sealants as applicable to materials, applications, and conditions indicated.

C. Install sealant backings of kind indicated to support sealants during application and at position required to produce cross-sectional shapes and depths of installed sealants relative to joint widths that allow optimum sealant movement capability.
 1. Do not leave gaps between ends of sealant backings.
 2. Do not stretch, twist, puncture, or tear sealant backings.
 3. Remove absorbent sealant backings that have become wet before sealant application and replace them with dry materials.

D. Install sealants using proven techniques that comply with the following and at the same time backings are installed:
 1. Place sealants so they directly contact and fully wet joint substrates.
 2. Completely fill recesses in each joint configuration.
 3. Produce uniform, cross-sectional shapes and depths relative to joint widths that allow optimum sealant movement capability.

E. Tooling of Non-sag Sealants: Immediately after sealant application and before skinning or curing begins, tool sealants according to requirements specified in subparagraphs below to form smooth, uniform beads of configuration indicated; to eliminate air pockets; and to ensure contact and adhesion of sealant with sides of joint.
 1. Remove excess sealant from surfaces adjacent to joints.
 2. Use tooling agents that are approved in writing by sealant manufacturer and that do not discolor sealants or adjacent surfaces.
 3. Provide concave joint profile per Figure 8A in ASTM C1193 unless otherwise indicated.

3.4 FIELD QUALITY CONTROL

A. Field-Adhesion Testing: Field test joint-sealant adhesion to joint substrates as follows:
 1. Extent of Testing: Test completed and cured sealant joints as follows:
 a. Perform 10 tests for the first 1000 feet of joint length for each kind of sealant and joint substrate.
 b. Perform one test for each 1000 feet of joint length thereafter or one test per each floor per elevation.
a. For joints with dissimilar substrates, verify adhesion to each substrate separately; extend cut along one side, verifying adhesion to opposite side. Repeat procedure for opposite side.

3. Inspect tested joints and report on the following:
 a. Whether sealants filled joint cavities and are free of voids.
 b. Whether sealant dimensions and configurations comply with specified requirements.
 c. Whether sealants in joints connected to pulled-out portion failed to adhere to joint substrates or tore cohesively. Include data on pull distance used to test each kind of product and joint substrate. Compare these results to determine if adhesion complies with sealant manufacturer's field-adhesion hand-pull test criteria.

4. Record test results in a field-adhesion-test log. Include dates when sealants were installed, names of persons who installed sealants, test dates, test locations, whether joints were primed, adhesion results and percent elongations, sealant material, sealant configuration, and sealant dimensions.

5. Repair sealants pulled from test area by applying new sealants following same procedures used originally to seal joints. Ensure that original sealant surfaces are clean and that new sealant contacts original sealant.

B. Evaluation of Field-Adhesion-Test Results: Sealants not evidencing adhesive failure from testing or noncompliance with other indicated requirements will be considered satisfactory. Remove sealants that fail to adhere to joint substrates during testing or to comply with other requirements. Retest failed applications until test results prove sealants comply with indicated requirements.

3.5 CLEANING
 A. Clean off excess sealant or sealant smears adjacent to joints as the Work progresses by methods and with cleaning materials approved in writing by manufacturers of joint sealants and of products in which joints occur.

3.6 PROTECTION
 A. Protect joint sealants during and after curing period from contact with contaminating substances and from damage resulting from construction operations or other causes so sealants are without deterioration or damage at time of Substantial Completion. If, despite such protection, damage or deterioration occurs, cut out, remove, and repair damaged or deteriorated joint sealants immediately so installations with repaired areas are indistinguishable from original work.

3.7 JOINT-SEALANT SCHEDULE
1. Joint Locations:
 b. Control and expansion joints in unit masonry.
 c. Joints between metal panels.
 d. Joints between different materials listed above.
 e. Perimeter joints between materials listed above and frames of doors, windows, and louveres.
 f. Other joints as indicated on Drawings.

2. Joint Sealant: Silicone, nonstaining, S, NS, 50, NT.

3. Joint-Sealant Color: As selected by Owner from manufacturer's full range of colors.

B. Joint-Sealant Application: Interior joints in horizontal traffic surfaces.

1. Joint Locations:
 b. Control and expansion joints in tile flooring.
 c. Other joints as indicated on Drawings.

3. Joint-Sealant Color: As selected by Owner from manufacturer's full range of colors.

C. Joint-Sealant Application: Interior joints in vertical surfaces and horizontal nontraffic surfaces not subject to significant movement.

1. Joint Locations:
 a. Control joints on exposed interior surfaces of exterior walls.
 b. Perimeter joints between interior wall surfaces and frames of interior doors, windows and elevator entrances.
 c. Other joints as indicated on Drawings.

3. Joint-Sealant Color: As selected by Architect from manufacturer's full range of colors.

D. Joint-Sealant Application: Mildew-resistant interior joints in vertical surfaces and horizontal nontraffic surfaces.

1. Joint Locations:
 a. Joints between plumbing fixtures and adjoining walls, floors, and counters.
 b. Tile control and expansion joints where indicated.
 c. Other joints as indicated on Drawings.
2. Joint Sealant: Silicone, mildew resistant, acid curing, S, NS, 25, NT.
3. Joint-Sealant Color: As selected by Owner from manufacturer's full range of colors.

E. Joint-Sealant Application: Concealed mastics.

1. Joint Locations:
 a. Aluminum thresholds.
 b. Sill plates.
 c. Other joints as indicated on Drawings.

3. Joint-Sealant Color: As selected by Owner from manufacturer's full range of colors.

END OF SECTION
SECTION 081113
HOLLOW METAL DOORS AND FRAMES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section includes:
 1. Interior standard steel doors and frames.
 2. Exterior standard steel doors and frames.
B. Related Requirements:
 1. Section 087100 "Door Hardware" for door hardware for hollow-metal doors.
 2. Division 28 Section "Access Control" for access control devices installed at door openings and provided as part of a security access control system.

1.3 DEFINITIONS
A. Minimum Thickness: Minimum thickness of base metal without coatings according to NAAMM-HMMA 803 or ANSI/SDI A250.8.

1.4 COORDINATION
A. Coordinate anchorage installation for hollow-metal frames. Furnish setting drawings, templates, and directions for installing anchorages, including sleeves, concrete inserts, anchor bolts, and items with integral anchors. Deliver such items to Project site in time for installation.
B. Coordinate requirements for installation of door hardware, electrified door hardware, and access control and security systems.

1.5 ACTION SUBMITTALS
A. Product Data: For each type of product.
 1. Include construction details, material descriptions, core descriptions, fire-resistance ratings, and finishes.
B. Shop Drawings: Include the following:
1. Elevations of each door type.
2. Details of doors, including vertical- and horizontal-edge details and metal thicknesses.
3. Frame details for each frame type, including dimensioned profiles and metal thicknesses.
4. Locations of reinforcement and preparations for hardware.
5. Details of each different wall opening condition.
6. Details of electrical raceway and preparation for electrified hardware, access control systems, and security systems.
7. Details of anchorages, joints, field splices, and connections.
8. Details of accessories.
9. Details of moldings, removable stops, and glazing.

C. Product Schedule: For hollow-metal doors and frames, prepared by or under the supervision of supplier, using same reference numbers for details and openings as those on Drawings. Coordinate with final door hardware schedule.

1.6 INFORMATIONAL SUBMITTALS

A. Product Test Reports: For each type of fire-rated hollow-metal door and frame assembly, fire-rated borrowed-lite assembly, and thermally rated door assemblies for tests performed by a qualified testing agency indicating compliance with performance requirements.

1.7 CLOSEOUT SUBMITTALS

A. Record Documents: For fire-rated doors, list of door numbers and applicable room name and number to which door accesses.

1.8 DELIVERY, STORAGE, AND HANDLING

A. Deliver hollow-metal doors and frames palletized, packaged, or crated to provide protection during transit and Project-site storage. Do not use non-vented plastic.

1. Provide additional protection to prevent damage to factory-finished units.

B. Deliver welded frames with two removable spreader bars across bottom of frames, tack welded to jambs and mullions.

C. Store hollow-metal doors and frames vertically under cover at Project site with head up. Place on minimum 4-inch-high wood blocking. Provide minimum 1/4-inch space between each stacked door to permit air circulation.

PART 2 - PRODUCTS

2.1 MANUFACTURERS
A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

1. Ceco Door; ASSA ABLOY. (CE)
2. Curries Company; ASSA ABLOY. (CU)
3. Steelcraft; an Allegion brand. (ST)

2.2 PERFORMANCE REQUIREMENTS

A. Fire-Rated Door Assemblies: Assemblies complying with NFPA 80 that are listed and labeled by a qualified testing agency acceptable to authorities having jurisdiction for fire-protection ratings and temperature-rise limits indicated on Drawings, based on testing at positive pressure according to NFPA 252 or UL 10C.

1. Smoke- and Draft-Control Door Assemblies: Listed and labeled for smoke and draft control by a qualified testing agency acceptable to authorities having jurisdiction, based on testing according to UL 1784 and installed in compliance with NFPA 105.
2. Oversize Fire-Rated Door Assemblies: For units exceeding sizes of tested assemblies, provide certification by a qualified testing agency that doors comply with standard construction requirements for tested and labeled fire-rated door assemblies except for size.
3. Temperature-Rise Limit: At vertical exit enclosures and exit passageways, provide doors that have a maximum transmitted temperature end point of not more than 450 deg F above ambient after 30 minutes of standard fire-test exposure.

B. Thermally Rated Door Assemblies: Provide door assemblies with U-factor of not more than 0.50 deg Btu/F x h x sq. ft when tested according to ASTM C518.

C. Air Infiltration (Exterior Openings): Independent testing laboratory certification for exterior door assemblies being tested in accordance with ASTM E283 to meet or exceed the following requirements:

1. Rate of leakage of the door assembly shall not exceed 0.25 cfm per square foot of static differential air pressure of 1.567 psf (equivalent to 25 mph wind velocity).

2.3 INTERIOR STANDARD STEEL DOORS AND FRAMES

A. Construct hollow-metal doors and frames to comply with standards indicated for materials, fabrication, hardware locations, hardware reinforcement, tolerances, and clearances, and as specified.

B. Heavy-Duty Doors and Frames: ANSI/SDI A250.8, Level 2; ANSI/SDI A250.4, Level B.

1. Doors:
 a. Type: As indicated in the Door and Frame Schedule.
2.1 Doors:
 b. Face: Metallic-coated steel sheet, minimum thickness of 0.042 inch.
 c. Edge Construction: Model 1, Full Flush.
 d. Edge Bevel: Provide manufacturer's standard beveled or square edges.
 e. Core: Manufacturer's standard.
 f. Fire-Rated Core: Manufacturer's standard core for fire-rated and temperature-rise-rated doors.
 g. Hinge Reinforcement: Minimum 7 gauge (3/16") plate 1-1/4" x 9" or minimum 14 gauge continuous channel with pierced holes, drilled and tapped.
 h. Hardware Reinforcements: Fabricate according to ANSI/SDI A250.6 with reinforcing plates from same material as door face sheets.

2. Frames:
 a. Materials: Uncoated steel sheet, minimum thickness of 0.053 inch.
 c. Manufacturers Basis of Design:
 1) Curries Company (CU) - M Series.
 d. Fire rated frames: Fabricate frames in accordance with NFPA 80, listed and labeled by a qualified testing agency, for fire-protection ratings indicated.
 e. Hardware Reinforcement: Fabricate according to ANSI/SDI A250.6 Table 4 with reinforcement plates from same material as frames.

2.4 EXTERIOR STANDARD STEEL DOORS AND FRAMES

A. Construct hollow-metal doors and frames to comply with standards indicated for materials, fabrication, hardware locations, hardware reinforcement, tolerances, and clearances, and as specified.

B. Extra-Heavy-Duty Doors and Frames: ANSI/SDI A250.8, Level 3; ANSI/SDI A250.4, Level A.

1. Doors:
 a. Type: As indicated in the Door and Frame Schedule.
 c. Face: Metallic-coated steel sheet, minimum thickness of 0.053 inch, with minimum A60 coating.
 d. Edge Construction: Model 1, Full Flush.
 e. Edge Bevel: Provide manufacturer's standard beveled or square edges.
 f. Top Edge Closures: Close top edges of doors with flush closures of same material as face sheets. Seal joints against water penetration.

2.4 EXTERIOR STANDARD STEEL DOORS AND FRAMES

A. Construct hollow-metal doors and frames to comply with standards indicated for materials, fabrication, hardware locations, hardware reinforcement, tolerances, and clearances, and as specified.

B. Extra-Heavy-Duty Doors and Frames: ANSI/SDI A250.8, Level 3; ANSI/SDI A250.4, Level A.

1. Doors:
 a. Type: As indicated in the Door and Frame Schedule.
 c. Face: Metallic-coated steel sheet, minimum thickness of 0.053 inch, with minimum A60 coating.
 d. Edge Construction: Model 1, Full Flush.
 e. Edge Bevel: Provide manufacturer's standard beveled or square edges.
 f. Top Edge Closures: Close top edges of doors with flush closures of same material as face sheets. Seal joints against water penetration.
g. Bottom Edges: Close bottom edges of doors where required for attachment of weather stripping with end closures or channels of same material as face sheets. Provide weep-hole openings in bottoms of exterior doors to permit moisture to escape.

h. Core: Manufacturer's standard.

1) Thermal properties to rate at a fully operable minimum U-Factor 0.374 and R-Value 2.53, including insulated door, Mercury thermal-break frame and threshold.

2) Kerf Type Frames: Thermal properties to rate at a fully operable minimum U-Factor 0.378 and R-Value 2.5, including insulated door, kerf type frame, and threshold.

i. Hinge Reinforcement: Minimum 7 gauge (3/16") plate 1-1/4" x 9".

j. Hardware Reinforcements: Fabricate according to ANSI/SDI A250.6 with reinforcing plates from same material as door face sheets.

2. Frames:

a. Materials: Metallic-coated steel sheet, minimum thickness of 0.053 inch, with minimum A60 coating.

b. Construction: Face welded.

c. Manufacturers Basis of Design:

1) Curries Company (CU) - Thermal Break TQ Series.

2.5 FRAME ANCHORS

A. Jamb Anchors:

1. Type: Anchors of minimum size and type required by applicable door and frame standard, and suitable for performance level indicated.

2. Quantity: Minimum of three anchors per jamb, with one additional anchor for frames with no floor anchor. Provide one additional anchor for each 24 inches of frame height above 7 feet.

B. Floor Anchors: Provide floor anchors for each jamb and mullion that extends to floor.

C. Material: ASTM A879/A879M, Commercial Steel (CS), 04Z coating designation; mill phosphatized.

1. For anchors built into exterior walls, steel sheet complying with ASTM A1008/A1008M or ASTM A1011/A1011M; hot-dip galvanized according to ASTM A153/A153M, Class B.
D. Mortar Guards: Formed from same material as frames, not less than 0.016 inches thick.

2.6 MATERIALS

A. Recycled Content of Steel Products: Postconsumer recycled content plus one-half of pre-consumer recycled content not less than 25 percent.

B. Metallic-Coated Steel Sheet: ASTM A653/A653M, Commercial Steel (CS), Type B.

C. Inserts, Bolts, and Fasteners: Hot-dip galvanized according to ASTM A153/A153M.

D. Power-Actuated Fasteners in Concrete: Fastener system of type suitable for application indicated, fabricated from corrosion-resistant materials, with clips or other accessory devices for attaching hollow-metal frames of type indicated.

E. Mineral-Fiber Insulation: ASTM C665, Type I (blankets without membrane facing); consisting of fibers manufactured from slag or rock wool; with maximum flame-spread and smoke-developed indexes of 25 and 50, respectively; passing ASTM E136 for combustion characteristics.

F. Glazing: Comply with requirements in Section 088000 "Glazing."

2.7 FABRICATION

A. Door Astragals: Provide overlapping astragal on one leaf of pairs of doors where required by NFPA 80 for fire-performance rating or where indicated. Extend minimum 3/4 inch beyond edge of door on which astragal is mounted or as required to comply with published listing of qualified testing agency.

B. Hollow Metal Doors:

1. Exterior Doors: Provide optional weep-hole openings in bottom of exterior doors to permit moisture to escape where specified.

2. Glazed Lites: Factory cut openings in doors with applied trim or kits to fit. Factory install glazing where indicated.

3. Astragals: Provide overlapping astragals as noted in door hardware sets in Division 08 Section "Door Hardware" on one leaf of pairs of doors where required by NFPA 80 for fire-performance rating or where indicated. Extend minimum 3/4 inch beyond edge of door on which astragal is mounted.

4. Continuous Hinge Reinforcement: Provide welded continuous 12 gauge strap for continuous hinges specified in hardware sets in Division 08 Section "Door Hardware".

5. Electrical Raceways: Provide hollow metal doors to receive electrified hardware with concealed wiring harness and standardized Molex™ plug connectors on both ends to accommodate up to twelve wires. Coordinate connectors on end of the wiring harness to plug directly into the electrified hardware and the through-wire transfer hardware or wiring harness specified in hardware sets in Division 08 Sections "Door Hardware" and "Access Control Hardware". Wire nut connections are not acceptable.
C. **Hollow-Metal Frames**: Fabricate in one piece except where handling and shipping limitations require multiple sections. Where frames are fabricated in sections, provide alignment plates or angles at each joint, fabricated of metal of same or greater thickness as frames.

1. **Sidelite and Transom Bar Frames**: Provide closed tubular members with no visible face seams or joints, fabricated from same material as door frame. Fasten members at crossings and to jambs by welding, or by rigid mechanical anchors.
2. **Provide countersunk, flat- or oval-head exposed screws and bolts for exposed fasteners unless otherwise indicated.**
3. **Door Silencers**: Except on weather-stripped frames, drill stops to receive door silencers as follows. Keep holes clear during construction.
 a. **Single-Door Frames**: Drill stop in strike jamb to receive three door silencers.
 b. **Double-Door Frames**: Drill stop in head jamb to receive two door silencers.

D. **Hardware Preparation**: Factory prepare hollow-metal doors and frames to receive templated mortised hardware, and electrical wiring; include cutouts, reinforcement, mortising, drilling, and tapping according to ANSI/SDI A250.6, the Door Hardware Schedule, and templates.

1. **Reinforce doors and frames to receive non-templated, mortised, and surface-mounted door hardware.**
2. **Comply with BHMA A156.115 for preparing hollow-metal doors and frames for hardware.**

E. **Glazed Lites**: Provide stops and moldings around glazed lites where indicated. Form corners of stops and moldings with butted or mitered hairline joints.

1. **Provide stops and moldings flush with face of door, and with square stops unless otherwise indicated.**
2. **Multiple Glazed Lites**: Provide fixed and removable stops and moldings so that each glazed lite is capable of being removed independently.
3. **Provide fixed frame moldings on outside of exterior and on secure side of interior doors and frames. Provide loose stops and moldings on inside of hollow-metal doors and frames.**
4. **Coordinate rabbet width between fixed and removable stops with glazing and installation types indicated.**
5. **Provide stops for installation with countersunk flat- or oval-head machine screws spaced uniformly not more than 9 inches o.c. and not more than 2 inches o.c. from each corner.**

2.8 **STEEL FINISHES**

A. **Prime Finish**: Clean, pretreat, and apply manufacturer's standard primer.
1. Shop Primer: Manufacturer's standard, fast-curing, lead- and chromate-free primer complying with ANSI/SDI A250.10; recommended by primer manufacturer for substrate; compatible with substrate and field-applied coatings despite prolonged exposure.

2.9 LOUVERS

A. Provide louver for interior doors, where indicated, which comply with SDI 111, with blades or baffles formed of 0.020-inch-thick, cold-rolled steel sheet set into 0.032-inch-thick steel frame.

1. Sightproof Louver: Stationary louver constructed with inverted-V or inverted-Y blades.

B. Form corners of moldings with hairline joints. Provide fixed frame moldings on outside of exterior and on secure side of interior doors and frames.

PART 3 - EXECUTION

3.1 PREPARATION

A. Remove welded-in shipping spreaders installed at factory. Restore exposed finish by grinding, filling, and dressing, as required to make repaired area smooth, flush, and invisible on exposed faces. Touch up factory-applied finishes where spreaders are removed.

B. Drill and tap doors and frames to receive non-templated, mortised, and surface-mounted door hardware.

3.2 INSTALLATION

A. Install hollow-metal doors and frames plumb, rigid, properly aligned, and securely fastened in place. Comply with approved Shop Drawings and with manufacturer's written instructions.

B. Hollow-Metal Frames: Comply with ANSI/SDI A250.11.

1. Set frames accurately in position; plumbed, aligned, and braced securely until permanent anchors are set. After wall construction is complete, remove temporary braces without damage to completed Work.

 a. Where frames are fabricated in sections, field splice at approved locations by welding face joint continuously; grind, fill, dress, and make splice smooth, flush, and invisible on exposed faces. Touch-up finishes.

 b. Install frames with removable stops located on secure side of opening.

2. Fire-Rated Openings: Install frames according to NFPA 80.

3. Floor Anchors: Secure with post-installed expansion anchors.
a. Floor anchors may be set with power-actuated fasteners instead of post-installed expansion anchors if so indicated and approved on Shop Drawings.

4. Solidly pack mineral-fiber insulation inside frames.

5. Masonry Walls: Coordinate installation of frames to allow for solidly filling space between frames and masonry with grout or mortar.

6. Installation Tolerances: Adjust hollow-metal frames to the following tolerances:
 a. Squareness: Plus or minus 1/16 inch, measured at door rabbet on a line 90 degrees from jamb perpendicular to frame head.
 b. Alignment: Plus or minus 1/16 inch, measured at jambs on a horizontal line parallel to plane of wall.
 c. Twist: Plus or minus 1/16 inch, measured at opposite face corners of jambs on parallel lines, and perpendicular to plane of wall.
 d. Plumbness: Plus or minus 1/16 inch, measured at jambs at floor.

C. Hollow-Metal Doors: Fit and adjust hollow-metal doors accurately in frames, within clearances specified below.

2. Fire-Rated Doors: Install doors with clearances according to NFPA 80.
3. Smoke-Control Doors: Install doors according to NFPA 105.

D. Glazing: Comply with installation requirements in Section 088000 "Glazing" and with hollow-metal manufacturer's written instructions.

3.3 REPAIR

A. Prime-Coat Touchup: Immediately after erection, sand smooth rusted or damaged areas of prime coat and apply touchup of compatible air-drying, rust-inhibitive primer.

B. Metallic-Coated Surface Touchup: Clean abraded areas and repair with galvanizing repair paint according to manufacturer's written instructions.

END OF SECTION
SECTION 081216
ALUMINUM FRAMES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Interior aluminum frames for doors installed in gypsum board partitions.
 2. Interior aluminum frames for glazing installed in gypsum board partitions.

1.3 ACTION SUBMITTALS
A. Product Data: For each type of product.
 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes.

B. Shop Drawings: For aluminum frames:
 1. Include elevations, sections, and installation details for each wall-opening condition.
 2. Include details for each frame type, including dimensioned profiles and metal thicknesses.
 3. Include locations of reinforcements and preparations for hardware.
 4. Include details of anchorages, joints, field splices, connections, and accessories.
 5. Include details of moldings, removable stops, and glazing.

C. Samples: For each exposed product and for each color and texture specified, in manufacturer's standard sizes.

D. Product Schedule: For aluminum frames. Use same designations indicated on Drawings. Coordinate with door hardware schedule and glazing.

1.4 CLOSEOUT SUBMITTALS
A. Maintenance Data: For aluminum frames to include in maintenance manuals.

1.5 QUALITY ASSURANCE
A. Mockups: Build mockups to verify selections made under Sample submittals and to demonstrate aesthetic effects and to set quality standards for fabrication and installation.

1. Build mockup of each type of aluminum frame in typical wall area as shown on Drawings.
2. Approval of mockups does not constitute approval of deviations from the Contract Documents contained in mockups unless Architect specifically approves such deviations in writing.
3. Subject to compliance with requirements, approved mockups may become part of the completed Work if undisturbed at time of Substantial Completion.

PART 2 - PRODUCTS

2.1 MANUFACTURERS
A. Source Limitations: Obtain aluminum frames from single source from single manufacturer.

2.2 COMPONENTS
A. Basis-of-Design Product: Subject to compliance with requirements, provide Kawneer North America, an Arconic company; Trifab 451 or comparable product by one of the following:
 1. EFCO Corporation.
 2. Kawneer North America, an Arconic company.
 3. Oldcastle BuildingEnvelope™.

B. Aluminum Framing: ASTM B221, with alloy and temper required to suit structural and finish requirements, and not less than 0.062 inch thick.

C. Door Frames: Extruded aluminum, reinforced for hinges, strikes, and closers.

D. Glazing Frames: Extruded aluminum, for indicated glass thickness.

E. Doors: As specified in Section 081416 "Flush Wood Doors”.

F. Frame and Trim Finish: Clear-anodized aluminum.

2.3 ACCESSORIES
A. Fasteners: Aluminum, nonmagnetic, stainless-steel or other noncorrosive metal fasteners compatible with frames, stops, panels, reinforcement plates, hardware, anchors, and other items being fastened.

B. Door Silencers: Manufacturer's standard continuous mohair, wool pile, or vinyl seals in black color.
C. Glazing Gaskets: Manufacturer's standard extruded or molded rubber or plastic, to accommodate glazing thickness indicated; in black.

D. Glass: As specified in Section 088000 "Glazing".

E. Door Hardware: As specified in Section 087100 "Door Hardware”.

2.4 FABRICATION

A. Provide concealed corner reinforcements and alignment clips for accurately fitted hairline joints at butted and mitered connections.

B. Factory prepare aluminum frames to receive templated mortised hardware; include cutouts, reinforcements, mortising, drilling, and tapping, according to the Door Hardware Schedule and templates furnished as specified in Section 087100 "Door Hardware”.

1. Locate hardware cutouts and reinforcements as required by fire-rated label for assembly.

C. Fabricate frames for glazing with removable stops to allow glazing replacement without dismantling frame.

1. Locate removable stops on the inside of spaces accessed by keyed doors.

D. Fabricate components to allow secure installation without exposed fasteners.

2.5 GENERAL FINISH REQUIREMENTS

A. Appearance of Finished Work: Noticeable variations in same piece are not acceptable. Variations in appearance of adjoining components are acceptable if they are within the range of approved Samples and are assembled or installed to minimize contrast.

2.6 ALUMINUM FINISHES

A. Clear Anodic Finish: AAMA 611, AA-M12C22A31, Class II, 0.010 mm or thicker.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.

B. Verify that wall thickness does not exceed standard tolerances allowed by throat size of indicated aluminum frame.

C. Proceed with installation only after unsatisfactory conditions have been corrected.
3.2 INSTALLATION

A. Install aluminum frames plumb, rigid, properly aligned, and securely fastened in place; according to manufacturer's written instructions.

B. Install frame components in the longest possible lengths with no piece less than 48 inches; components 96 inches or shorter shall be one piece.
 1. Use concealed installation clips to produce tightly fitted and aligned splices and connections.
 2. Secure clips to extruded main-frame components and not to snap-in or trim members.
 3. Do not leave screws or other fasteners exposed to view when installation is complete.

C. Glass: Install glass according to Section 088000 "Glazing" and aluminum-frame manufacturer's written instructions.

D. Doors: Install doors aligned with frames and fitted with required hardware.

E. Door Hardware: Install according to Section 087100 "Door Hardware" and aluminum-frame manufacturer's written instructions.

3.3 ADJUSTING

A. Inspect installation, correct misalignments, and tighten loose connections.

B. Doors: Adjust doors to operate smoothly and easily, without binding or warping. Adjust hardware to function smoothly and lubricate as recommended by manufacturer.

C. Clean exposed frame surfaces promptly after installation, using cleaning methods recommended in writing by frame manufacturer and according to AAMA 609 & 610.

D. Touch Up: Repair marred frame surfaces to blend inconspicuously with adjacent unrepaired surface as viewed by Architect. Remove and replace frames with damaged finish that cannot be satisfactorily repaired.

END OF SECTION
SECTION 081416

FLUSH WOOD DOORS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Five-ply flush wood veneer-faced doors for transparent finish.
2. Factory finishing flush wood doors.

B. Related Requirements:

1. Section 088000 “Glazing” for glass view panels in flush wood doors.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product, including the following:

1. Door core materials and construction.
2. Door edge construction
3. Door face type and characteristics.
4. Door frame construction.
5. Factory-machining criteria.

B. Shop Drawings: Indicate location, size, and hand of each door; elevation of each type of door; construction details not covered in Product Data; and the following:

1. Door schedule indicating door and frame location, type, size, fire protection rating, and swing.
2. Door elevations, dimension and locations of hardware, lite and louver cutouts, and glazing thicknesses.
3. Details of frame for each frame type, including dimensions and profile.
4. Details of electrical raceway and preparation for electrified hardware, access control systems, and security systems.
5. Dimensions and locations of blocking for hardware attachment.
6. Dimensions and locations of mortises and holes for hardware.
7. Clearances and undercuts.
8. Requirements for veneer matching.
9. Doors to be factory finished and application requirements.
10. Apply AWI Quality Certification Program label to Shop Drawings.

C. Samples for Verification:
 1. Factory finishes applied to actual door face materials, approximately 8 by 10 inches, for each material and finish.
 2. Polymer edging, in manufacturer's standard colors.

1.4 INFORMATIONAL SUBMITTALS
 A. Sample Warranty: For special warranty.

1.5 CLOSEOUT SUBMITTALS
 A. Special warranties.

1.6 DELIVERY, STORAGE, AND HANDLING
 A. Comply with requirements of referenced standard and manufacturer's written instructions.
 B. Package doors individually in cardboard cartons, and wrap bundles of doors in plastic sheeting.
 C. Mark each door on bottom rail with opening number used on Shop Drawings.

1.7 FIELD CONDITIONS
 A. Environmental Limitations: Do not deliver or install doors until spaces are enclosed and weathertight, wet-work in spaces is complete and dry, and HVAC system is operating and maintaining temperature and relative humidity at levels designed for building occupants for the remainder of construction period.

1.8 WARRANTY
 A. Special Warranty: Manufacturer agrees to repair or replace doors that fail in materials or workmanship within specified warranty period.
 1. Failures include, but are not limited to, the following:
 a. Delamination of veneer.
 b. Warping (bow, cup, or twist) more than 1/4 inch in a 42-by-84-inch section.
 c. Telegraphing of core construction in face veneers exceeding 0.01 inch in a 3-inch span.
 2. Warranty shall also include installation and finishing that may be required due to repair or replacement of defective doors.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Source Limitations: Obtain flush wood doors from single manufacturer.

2.2 PERFORMANCE REQUIREMENTS

A. Fire-Rated Wood Door Assemblies: Assemblies complying with NFPA 80 that are listed and labeled by a qualified testing agency acceptable to authorities having jurisdiction, for fire-protection ratings and temperature-rise limits indicated on Drawings, based on testing at positive pressure in accordance with NFPA 252.

1. Oversize Fire-Rated Door Assemblies: For units exceeding sizes of tested assemblies, provide certification by a qualified testing agency that doors comply with standard construction requirements for tested and labeled fire-rated door assemblies except for size.

2. Temperature-Rise Limit: At vertical exit enclosures and exit passageways, provide doors that have a maximum transmitted temperature end point of not more than 450 deg F above ambient after 30 minutes of standard fire-test exposure.

B. Smoke- and Draft-Control Door Assemblies: Listed and labeled for smoke and draft control by a qualified testing agency acceptable to authorities having jurisdiction, based on testing in accordance with UL 1784 and installed in compliance with NFPA 105.

2.3 FLUSH WOOD DOORS, GENERAL

A. Quality Standard: In addition to requirements specified, comply with AWI/AWMAC/WT's "Architectural Woodwork Standards."

1. Provide labels and certificates from AWI certification program indicating that doors comply with requirements of grades specified.

2. The Contract Documents contain requirements that are more stringent than the referenced quality standard. Comply with the Contract Documents in addition to those of the referenced quality standard.

2.4 SOLID-CORE FIVE-PLY FLUSH WOOD VENEER-FACED DOORS FOR TRANSPARENT FINISH

A. Interior Doors:

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
a. Eggers Industries.
b. Lambton Doors.
c. Oshkosh Door Company.

2. Performance Grade: ANSI/WDMA I.S. 1A Heavy Duty.

3. Faces: Single-plywood veneer not less than 1/50-inch thick.
 a. Species: Red oak or White oak.
 b. Cut: Quarter sliced or rift.
 c. Match between Veneer Leaves: Slip match.
 d. Assembly of Veneer Leaves on Door Faces: Balance match.
 e. Room Match: Provide door faces of compatible color and grain within each separate room or area of building.
 f. Exposed Vertical Edges: Applied wood-veneer edges of same species as faces and covering edges of faces - Architectural Woodwork Standards edge Type B.

4. Core for Non-Fire-Rated Doors:
 a. ANSI A208.1, Grade LD-2 particleboard.
 1) Blocking: Provide wood blocking in particleboard-core doors as needed to eliminate through-bolting hardware.

5. Core for Fire-Rated Doors: As required to achieve fire-protection rating indicated on Drawings.

6. Construction: Five plies, hot-pressed bonded (vertical and horizontal edging is bonded to core), with entire unit abrasive planed before veneering.

2.5 LIGHT FRAMES AND LOUVERS

A. Metal Frames for Light Openings in Fire-Rated Doors: Manufacturer’s standard frame formed of 0.048-inch- thick, cold-rolled steel sheet; with baked-enamel- or powder-coated finish; and approved for use in doors of fire-protection rating indicated on Drawings.

B. Metal Louvers:
 1. Blade Type: Vision-proof, inverted V.
 2. Metal and Finish: Hot-dip galvanized steel, 0.040-inch-thick, with baked-enamel- or powder-coated finish.

2.6 FABRICATION

A. Factory fit doors to suit frame-opening sizes indicated.
 1. Comply with clearance requirements of referenced quality standard for fitting unless otherwise indicated.
B. Factory machine doors for hardware that is not surface applied.
 1. Locate hardware to comply with DHI-WDHS-3.
 2. Comply with final hardware schedules, door frame Shop Drawings, ANSI/BHMA-156.115-W, and hardware templates.
 3. Coordinate with hardware mortises in metal frames, to verify dimensions and alignment before factory machining.
 4. For doors scheduled to receive electrified locksets, provide factory-installed raceway and wiring to accommodate specified hardware.

C. Openings: Factory cut and trim openings through doors.
 1. Light Openings: Trim openings with moldings of material and profile indicated.
 2. Glazing: Factory install glazing in doors indicated to be factory finished. Comply with applicable requirements in Section 088000 "Glazing."

2.7 FACTORY FINISHING

A. Comply with referenced quality standard for factory finishing.
 1. Complete fabrication, including fitting doors for openings and machining for hardware that is not surface applied, before finishing.
 2. Finish faces, all four edges, edges of cutouts, and mortises.
 3. Stains and fillers may be omitted on top and bottom edges, edges of cutouts, and mortises.

B. Factory finish doors where indicated in schedules or on Drawings as factory finished.

C. Transparent Finish:
 3. Staining: As selected by Owner from manufacturer's full range.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine doors and installed door frames, with Installer present, before hanging doors.
 1. Verify that installed frames comply with indicated requirements for type, size, location, and swing characteristics and have been installed with level heads and plumb jambs.
 2. Reject doors with defects.
3.2 INSTALLATION

A. Hardware: For installation, see Section 087100 "Door Hardware”.

B. Install doors to comply with manufacturer's written instructions and referenced quality standard, and as indicated.

C. Install frames level, plumb, true, and straight.

1. Shim as required with concealed shims. Install level and plumb to a tolerance of 1/8 inch in 96 inches.
2. Anchor frames to anchors or blocking built in or directly attached to substrates.
 a. Secure with countersunk, concealed fasteners and blind nailing.
 b. Use fine finishing nails for exposed fastening, countersunk and filled flush with woodwork.
 1) For factory-finished items, use filler matching finish of items being installed.

D. Job-Fitted Doors:

1. Align and fit doors in frames with uniform clearances and bevels as indicated below.
 a. Do not trim stiles and rails in excess of limits set by manufacturer.
3. Seal edges of doors, edges of cutouts, and mortises after fitting and machining.
4. Clearances:
 a. Provide 1/8 inch at heads, jambs, and between pairs of doors.
 b. Provide 1/8 inch from bottom of door to top of decorative floor finish or covering unless otherwise indicated on Drawings.
 c. Where threshold is shown or scheduled, provide 1/4 inch from bottom of door to top of threshold unless otherwise indicated.
5. Bevel non-fire-rated doors 1/8 inch in 2 inches at lock and hinge edges.

E. Factory-Fitted Doors: Align in frames for uniform clearance at each edge.

F. Factory-Finished Doors: Restore finish before installation if fitting or machining is required at Project site.

3.3 ADJUSTING

A. Operation: Rehang or replace doors that do not swing or operate freely.
B. Finished Doors: Replace doors that are damaged or that do not comply with requirements. Doors may be repaired or refinished if Work complies with requirements and shows no evidence of repair or refinishing.

END OF SECTION
PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Storefront framing.

1.3 ACTION SUBMITTALS
A. Product Data: For each type of product.
 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes.

B. Shop Drawings: For aluminum-framed entrances and storefronts. Include plans, elevations, sections, full-size details, and attachments to other work.
 1. Include details of provisions for assembly expansion and contraction and for draining moisture occurring within the assembly to the exterior.
 2. Include full-size isometric details of each type of vertical-to-horizontal intersection of aluminum-framed entrances and storefronts, showing the following:
 a. Joinery, including concealed welds.
 b. Anchorage.
 c. Expansion provisions.
 d. Glazing.
 e. Flashing and drainage.
 3. Show connection to and continuity with adjacent thermal, weather, air, and vapor barriers.
 4. Include point-to-point wiring diagrams showing the following:
 a. Power requirements for each electrically operated door hardware.
 b. Location and types of switches, signal device, conduit sizes, and number and size of wires.
C. Samples for Verification: For each type of exposed finish required, in manufacturer's standard sizes.

D. Entrance Door Hardware Schedule: Prepared by or under supervision of supplier, detailing fabrication and assembly of entrance door hardware, as well as procedures and diagrams. Coordinate final entrance door hardware schedule with doors, frames, and related work to ensure proper size, thickness, hand, function, and finish of entrance door hardware.

1.4 INFORMATIONAL SUBMITTALS

A. Qualification Data: For Installer and field testing agency.

B. Energy Performance Certificates: For aluminum-framed entrances and storefronts, accessories, and components, from manufacturer.
 1. Basis for Certification: NFRC-certified energy performance values for each aluminum-framed entrance and storefront.

C. Product Test Reports: For aluminum-framed entrances and storefronts, for tests performed by a qualified testing agency.

D. Sample Warranties: For special warranties.

1.5 CLOSEOUT SUBMITTALS

A. Maintenance Data: For aluminum-framed entrances and storefronts to include in maintenance manuals.

1.6 QUALITY ASSURANCE

A. Installer Qualifications: An entity that employs installers and supervisors who are trained and approved by manufacturer.

B. Product Options: Information on Drawings and in Specifications establishes requirements for aesthetic effects and performance characteristics of assemblies. Aesthetic effects are indicated by dimensions, arrangements, alignment, and profiles of components and assemblies as they relate to sightlines, to one another, and to adjoining construction.
 1. Do not change intended aesthetic effects, as judged solely by Architect, except with Architect's approval. If changes are proposed, submit comprehensive explanatory data to Architect for review.

1.7 MOCKUPS

A. Mockups: Build mockups to verify selections made under Sample submittals and to demonstrate aesthetic effects and set quality standards for fabrication and installation.
 1. Build mockup of typical wall area as shown on Drawings.
2. Testing shall be performed on mockups according to requirements in "Field Quality Control" Article.
3. Approval of mockups does not constitute approval of deviations from the Contract Documents contained in mockups unless Architect specifically approves such deviations in writing.
4. Subject to compliance with requirements, approved mockups may become part of the completed Work if undisturbed at time of Substantial Completion.

1.8 WARRANTY

A. Special Warranty: Manufacturer agrees to repair or replace components of aluminum-framed entrances and storefronts that do not comply with requirements or that fail in materials or workmanship within specified warranty period.

1. Failures include, but are not limited to, the following:
 a. Structural failures, including, but not limited to, excessive deflection.
 b. Noise or vibration created by wind and thermal and structural movements.
 c. Delete option in first subparagraph below if retaining "Special Finish Warranty” Paragraph.
 d. Deterioration of metals, metal finishes, and other materials beyond normal weathering.
 e. Water penetration through fixed glazing and framing areas.
 f. Failure of operating components.

2. Warranty Period: 10 years from date of Substantial Completion.

B. Special Finish Warranty: Standard form in which manufacturer agrees to repair finishes or replace aluminum that shows evidence of deterioration of factory-applied finishes within specified warranty period.

1. Deterioration includes, but is not limited to, the following:
 a. Color fading more than 5 Hunter units when tested according to ASTM D2244.
 b. Chalking in excess of a No. 8 rating when tested according to ASTM D4214.
 c. Cracking, checking, peeling, or failure of paint to adhere to bare metal.

2. Warranty Period: 20 years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Source Limitations: Obtain all components of aluminum-framed entrance and storefront system, including framing and accessories, from single manufacturer.
2.2 PERFORMANCE REQUIREMENTS

A. General Performance: Comply with performance requirements specified, as determined by testing of aluminum-framed entrances and storefronts representing those indicated for this Project without failure due to defective manufacture, fabrication, installation, or other defects in construction.

1. Aluminum-framed entrances and storefronts shall withstand movements of supporting structure, including, but not limited to, twist, column shortening, long-term creep, and deflection from uniformly distributed and concentrated live loads.
2. Failure also includes the following:
 a. Thermal stresses transferring to building structure.
 b. Glass breakage.
 c. Noise or vibration created by wind and thermal and structural movements.
 d. Loosening or weakening of fasteners, attachments, and other components.
 e. Failure of operating units.

B. Structural Loads:

1. Wind Loads: As indicated on Structural Drawings.
2. Other Design Loads: As indicated on Structural Drawings.

C. Deflection of Framing Members: At design wind pressure, as follows:

1. Deflection Normal to Wall Plane: Limited to edge of glass in a direction perpendicular to glass plane not exceeding 1/175 of the glass edge length for each individual glazing lite or an amount that restricts edge deflection of individual glazing lites to 3/4 inch, whichever is less.
2. Deflection Parallel to Glazing Plane: Limited to 1/360 of clear span or 1/8 inch, whichever is smaller.
3. Cantilever Deflection: Where framing members overhang an anchor point, as follows:
 a. Perpendicular to Plane of Wall: No greater than 1/240 of clear span plus 1/4 inch for spans greater than 11 feet 8-1/4 inches or 1/175 times span, for spans of less than 11 feet 8-1/4 inches.

D. Structural: Test according to ASTM E330/E330M as follows:

1. When tested at positive and negative wind-load design pressures, storefront assemblies, including entrance doors, do not evidence deflection exceeding specified limits.
2. When tested at 150 percent of positive and negative wind-load design pressures, storefront assemblies, including entrance doors and anchorage, do not evidence
material failures, structural distress, or permanent deformation of main framing members exceeding 0.2 percent of span.

3. Test Durations: As required by design wind velocity, but not less than 10 seconds.

E. Air Infiltration: Test according to ASTM E283 for infiltration as follows:

1. Fixed Framing and Glass Area:
 a. Maximum air leakage of 0.06 cfm/sq. ft. at a static-air-pressure differential of 6.24 lbf/sq. ft.

2. Entrance Doors:
 a. Single Doors: Maximum air leakage of 0.5 cfm/sq. ft. at a static-air-pressure differential of 1.57 lbf/sq. ft.

F. Water Penetration under Static Pressure: Test according to ASTM E331 as follows:

1. No evidence of water penetration through fixed glazing and framing areas, including entrance doors, when tested according to a minimum static-air-pressure differential of 20 percent of positive wind-load design pressure, but not less than 6.24 lbf/sq. ft.

G. Water Penetration under Dynamic Pressure: Test according to AAMA 501.1 as follows:

1. No evidence of water penetration through fixed glazing and framing areas when tested at dynamic pressure equal to 20 percent of positive wind-load design pressure, but not less than 6.24 lbf/sq. ft.

2. Maximum Water Leakage: According to AAMA 501.1. Water leakage does not include water controlled by flashing and gutters, or water that is drained to exterior.

H. Seismic Performance: Aluminum-framed entrances and storefronts shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.

1. Seismic Drift Causing Glass Fallout: Complying with criteria for passing based on building occupancy type when tested according to AAMA 501.6 at design displacement and 1.5 times the design displacement.

I. Energy Performance: Certify and label energy performance according to NFRC as follows:

1. Thermal Transmittance (U-factor): Fixed glazing and framing areas as a system shall have U-factor of not more than 0.45 Btu/sq. ft. x h x deg F as determined according to NFRC 100.

2. Solar Heat Gain Coefficient (SHGC): Fixed glazing and framing areas as a system shall have SHGC of no greater than 0.27 as determined according to NFRC 200.
3. Condensation Resistance: Fixed glazing and framing areas as a system shall have an NFRC-certified condensation resistance rating of no less than 55 as determined according to NFRC 500.

J. Noise Reduction: Test according to ASTM E90, with ratings determined by ASTM E1332, as follows.

K. Thermal Movements: Allow for thermal movements resulting from ambient and surface temperature changes.
 1. Temperature Change: 120 deg F, ambient; 180 deg F, material surfaces.
 2. Thermal Cycling: No buckling; stress on glass; sealant failure; excess stress on framing, anchors, and fasteners; or reduction of performance when tested according to AAMA 501.5.
 a. High Exterior Ambient-Air Temperature: That which produces an exterior metal-surface temperature of 180 deg F.
 b. Low Exterior Ambient-Air Temperature: 0 deg F.
 c. Interior Ambient-Air Temperature: 75 deg F.

2.3 STOREFRONT SYSTEMS

A. Basis-of-Design Product: Subject to compliance with requirements, provide Kawneer North America, an Arconic company; Trifab 601T or comparable product by one of the following:
 1. EFCO Corporation.
 2. Kawneer North America, an Arconic company.
 3. Oldcastle BuildingEnvelope™.

B. Framing Members: Manufacturer's extruded- or formed-aluminum framing members of thickness required and reinforced as required to support imposed loads.
 2. Glazing System: Retained mechanically with gaskets on four sides.
 5. Fabrication Method: Field-fabricated stick system.
 6. Aluminum: Alloy and temper recommended by manufacturer for type of use and finish indicated.
 7. Steel Reinforcement: As required by manufacturer.

C. Backer Plates: Manufacturer's standard, continuous backer plates for framing members, if not integral, where framing abuts adjacent construction.

D. Brackets and Reinforcements: Manufacturer's standard high-strength aluminum with nonstaining, nonferrous shims for aligning system components.
2.4 ENTRANCE DOOR SYSTEMS

A. Basis-of-Design Product: Subject to compliance with requirements, provide Kawneer North America, an Arconic company; AA 425 Thermal Entrance or comparable product by one of the following:

1. EFCO Corporation.
2. Kawneer North America, an Arconic company.
3. Oldcastle BuildingEnvelope™.

B. Entrance Doors: Manufacturer's standard glazed entrance doors for manual-swing or automatic operation.

1. Door Construction: 2-inch overall thickness, with minimum 0.188-inch thick, extruded-aluminum tubular rail and stile members. Mechanically fasten corners with reinforcing brackets that are deeply penetrated and fillet welded, or that incorporate concealed tie rods.
 a. Thermal Construction: High-performance plastic connectors separate aluminum members exposed to the exterior from members exposed to the interior.

2. Door Design: As indicated.
 a. Provide nonremovable glazing stops on outside of door.

4. Finish: Match adjacent storefront framing finish.

2.5 ENTRANCE DOOR HARDWARE

A. Entrance Door Hardware: Hardware not specified in this Section is specified in Section 087100 "Door Hardware."

B. General: Provide entrance door hardware and entrance door hardware sets indicated in "Entrance Door Hardware Sets" Article for each entrance door, to comply with requirements in this Section.

1. Entrance Door Hardware Sets: Provide quantity, item, size, finish or color indicated, and products complying with BHMA standard referenced.
2. Sequence of Operation: Provide electrified door hardware function, sequence of operation, and interface with other building control systems indicated.
3. Opening-Force Requirements:
 a. Egress Doors: Not more than 15 lbf to release the latch and not more than 30 lbf to set the door in motion and not more than 15 lbf to open the door to its minimum required width.
 b. Accessible Interior Doors: Not more than 5 lbf to fully open door.
C. Designations: Requirements for design, grade, function, finish, quantity, size, and other distinctive qualities of each type of entrance door hardware are indicated in "Entrance Door Hardware Sets" Article. Products are identified by using entrance door hardware designations as follows:

1. Named Manufacturers' Products: Manufacturer and product designation are listed for each door hardware type required for the purpose of establishing minimum requirements. Manufacturers' names are abbreviated in "Entrance Door Hardware Sets" Article.
2. References to BHMA Standards: Provide products complying with these standards and requirements for description, quality, and function.

D. Cylinders: As specified in Section 087100 "Door Hardware."

E. Pivot Hinges: BHMA A156.4, Grade 1.

1. Offset-Pivot Hinges: Provide top, bottom, and intermediate offset pivots at each door leaf.

F. Butt Hinges: BHMA A156.1, Grade 1, radius corner.

1. Nonremovable Pins: Provide setscrew in hinge barrel that, when tightened into a groove in hinge pin, prevents removal of pin while entrance door is closed.
2. Exterior Hinges: Stainless steel, with stainless-steel pin.
3. Quantities:
 a. For doors up to 87 inches high, provide three hinges per leaf.

G. Mortise Auxiliary Locks: BHMA A156.5, Grade 1.

H. Strikes: Provide strike with black-plastic dust box for each latch or lock bolt; fabricated for aluminum framing.

I. Operating Trim: BHMA A156.6.

J. Closers: BHMA A156.4, Grade 1, with accessories required for a complete installation, sized as required by door size, exposure to weather, and anticipated frequency of use; adjustable to comply with field conditions and requirements for opening force.

K. Door Stops: BHMA A156.16, Grade 1, floor or wall mounted, as appropriate for door location indicated, with integral rubber bumper.

L. Weather Stripping: Manufacturer's standard replaceable components.

1. Compression Type: Made of ASTM D2000 molded neoprene or ASTM D2287 molded PVC.
2. Sliding Type: AAMA 701/702, made of wool, polypropylene, or nylon woven pile with nylon-fabric or aluminum-strip backing.
M. Weather Sweeps: Manufacturer's standard exterior-door bottom sweep with concealed fasteners on mounting strip.

N. Thresholds: BHMA A156.21 raised thresholds beveled with a slope of not more than 1:2, with maximum height of 1/2 inch.

2.6 GLAZING

A. Glazing: Comply with Section 088000 "Glazing."

B. Glazing Gaskets: Comply with Section 088000 "Glazing."

C. Glazing Sealants: As recommended by manufacturer.

2.7 MATERIALS

A. Sheet and Plate: ASTM B209.

B. Extruded Bars, Rods, Profiles, and Tubes: ASTM B221.

C. Extruded Structural Pipe and Tubes: ASTM B429/B429M.

D. Structural Profiles: ASTM B308/B308M.

E. Steel Reinforcement:

1. Structural Shapes, Plates, and Bars: ASTM A36/A36M.

2. Cold-Rolled Sheet and Strip: ASTM A1008/A1008M.

3. Hot-Rolled Sheet and Strip: ASTM A1011/A1011M.

4. Primer: Manufacturer's standard zinc-rich, corrosion-resistant primer complying with SSPC-PS Guide No. 12.00; applied immediately after surface preparation and pretreatment. Select surface preparation methods according to recommendations in SSPC-SP COM, and prepare surfaces according to applicable SSPC standard.

2.8 ACCESSORIES

A. Fasteners and Accessories: Manufacturer's standard corrosion-resistant, non-staining, nonbleeding fasteners and accessories compatible with adjacent materials.

1. Use self-locking devices where fasteners are subject to loosening or turning out from thermal and structural movements, wind loads, or vibration.

2. Reinforce members as required to receive fastener threads.

3. Use exposed fasteners with countersunk Phillips screw heads, finished to match framing system.

B. Anchors: Three-way adjustable anchors with minimum adjustment of 1 inch that accommodate fabrication and installation tolerances in material and finish compatible with adjoining materials and recommended by manufacturer.
C. Concealed Flashing: Dead-soft, 0.018-inch-thick stainless steel, complying with ASTM A240/A240M, of type recommended by manufacturer.

D. Bituminous Paint: Cold-applied asphalt-mastic paint containing no asbestos, formulated for 30-mil thickness per coat.

E. Rigid PVC Filler.

2.9 FABRICATION

A. Form or extrude aluminum shapes before finishing.

B. Weld in concealed locations to greatest extent possible to minimize distortion or discoloration of finish. Remove weld spatter and welding oxides from exposed surfaces by descaling or grinding.

C. Fabricate components that, when assembled, have the following characteristics:

1. Profiles that are sharp, straight, and free of defects or deformations.
2. Accurately fitted joints with ends coped or mitered.
3. Physical and thermal isolation of glazing from framing members.
4. Accommodations for thermal and mechanical movements of glazing and framing to maintain required glazing edge clearances.
5. Provisions for field replacement of glazing from interior.
6. Fasteners, anchors, and connection devices that are concealed from view to greatest extent possible.

D. Mechanically Glazed Framing Members: Fabricate for flush glazing without projecting stops.

E. Storefront Framing: Fabricate components for assembly using shear-block system.

F. Entrance Door Frames: Reinforce as required to support loads imposed by door operation and for installing entrance door hardware.

1. At interior and exterior doors, provide compression weather stripping at fixed stops.

G. Entrance Doors: Reinforce doors as required for installing entrance door hardware.

1. At exterior doors, provide weather sweeps applied to door bottoms.

H. Entrance Door Hardware Installation: Factory install entrance door hardware to the greatest extent possible. Cut, drill, and tap for factory-installed entrance door hardware before applying finishes.

I. After fabrication, clearly mark components to identify their locations in Project according to Shop Drawings.
2.10 ALUMINUM FINISHES

A. High-Performance Organic Finish: Three-coat fluoropolymer finish complying with AAMA 2605 and containing not less than 70 percent PVDF resin by weight in both color coat and clear topcoat. Prepare, pretreat, and apply coating to exposed metal surfaces to comply with coating and resin manufacturers’ written instructions.

 1. Color and Gloss: As selected by Owner from manufacturer's full range.

2.11 SOURCE QUALITY CONTROL

A. Structural Sealant: Perform quality-control procedures complying with ASTM C1401 recommendations, including, but not limited to, assembly material qualification procedures, sealant testing, and assembly fabrication reviews and checks.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Prepare surfaces that are in contact with structural sealant according to sealant manufacturer's written instructions, to ensure compatibility and adhesion. Preparation includes, but is not limited to, cleaning and priming surfaces.

3.3 INSTALLATION

A. General:

 1. Comply with manufacturer's written instructions.
 2. Do not install damaged components.
 3. Fit joints to produce hairline joints free of burrs and distortion.
 4. Rigidly secure nonmovement joints.
 5. Install anchors with separators and isolators to prevent metal corrosion and electrolytic deterioration and to prevent impeding movement of moving joints.
 6. Seal perimeter and other joints watertight unless otherwise indicated.

B. Metal Protection:

 1. Where aluminum is in contact with dissimilar metals, protect against galvanic action by painting contact surfaces with materials recommended by manufacturer for this purpose or by installing nonconductive spacers.
2. Where aluminum is in contact with concrete or masonry, protect against corrosion by painting contact surfaces with bituminous paint.

C. Set continuous sill members and flashing in full sealant bed, as specified in Section 079200 "Joint Sealants," to produce weathertight installation.

D. Install components plumb and true in alignment with established lines and grades.

E. Install operable units level and plumb, securely anchored, and without distortion. Adjust weather-stripping contact and hardware movement to produce proper operation.

F. Install glazing as specified in Section 088000 "Glazing."

G. Install weatherseal sealant according to Section 079200 "Joint Sealants" and according to sealant manufacturer's written instructions to produce weatherproof joints. Install joint filler behind sealant as recommended by sealant manufacturer.

H. Entrance Doors: Install doors to produce smooth operation and tight fit at contact points.
 1. Exterior Doors: Install to produce weathertight enclosure and tight fit at weather stripping.
 2. Field-Installed Entrance Door Hardware: Install surface-mounted entrance door hardware according to entrance door hardware manufacturers' written instructions using concealed fasteners to greatest extent possible.

3.4 ERECTION TOLERANCES

A. Erection Tolerances: Install aluminum-framed entrances and storefronts to comply with the following maximum tolerances:
 1. Plumb: 1/8 inch in 10 feet; 1/4 inch in 40 feet.
 2. Level: 1/8 inch in 20 feet; 1/4 inch in 40 feet.
 3. Alignment:
 a. Where surfaces abut in line or are separated by reveal or protruding element up to 1/2-inch-wide, limit offset from true alignment to 1/16 inch.
 b. Where surfaces are separated by reveal or protruding element from 1/2 to 1 inch wide, limit offset from true alignment to 1/8 inch.
 c. Where surfaces are separated by reveal or protruding element of 1 inch wide or more, limit offset from true alignment to 1/4 inch.
 4. Location: Limit variation from plane to 1/8 inch in 12 feet; 1/2 inch over total length.

3.5 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
B. Field Quality-Control Testing: Perform the following test on representative areas of aluminum-framed entrances and storefronts.

1. Water-Spray Test: Before installation of interior finishes has begun, areas designated by Architect shall be tested according to AAMA 501.2 and shall not evidence water penetration.
 a. Perform a minimum of two tests in areas as directed by the Engineer.

2. Air Infiltration: ASTM E783 at 1.5 times the rate specified for laboratory testing in "Performance Requirements" Article but no more than 0.09 cfm/sq. ft. at a static-air-pressure differential of 1.57 lbf/sq. ft..
 a. Perform a minimum of two tests in areas as directed by the Engineer.

3. Water Penetration: ASTM E1105 at a minimum uniform and cyclic static-air-pressure differential of 0.67 times the static-air-pressure differential specified for laboratory testing in "Performance Requirements" Article, but not less than 6.24 lbf/sq. ft., and shall not evidence water penetration.

C. Aluminum-framed entrances and storefronts will be considered defective if they do not pass tests and inspections.

D. Prepare test and inspection reports.

3.6 MAINTENANCE SERVICE

A. Entrance Door Hardware:

1. Maintenance Tools and Instructions: Furnish a complete set of specialized tools and maintenance instructions as needed for Owner's continued adjustment, maintenance, and removal and replacement of entrance door hardware.

2. Initial Maintenance Service: Beginning at Substantial Completion, provide six months' full maintenance by skilled employees of entrance door hardware Installer. Include quarterly preventive maintenance, repair or replacement of worn or defective components, lubrication, cleaning, and adjusting as required for proper entrance door hardware operation at rated speed and capacity. Use parts and supplies that are the same as those used in the manufacture and installation of original equipment.

END OF SECTION
SECTION 084413
GLAZED ALUMINUM CURTAIN WALLS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Glazed aluminum curtain wall systems.

B. Related Requirements:
 1. Section 079200 "Joint Sealants" for installation of joint sealants installed with glazed aluminum curtain walls and for sealants to the extent not specified in this Section.
 2. Section 088000 "Glazing" for curtain wall glazing.

1.3 PREINSTALLATION MEETINGS
A. Preinstallation Conference: Conduct conference at Project site.

1.4 ACTION SUBMITTALS
A. Product Data: For each type of product.
 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes.

B. Shop Drawings: For glazed aluminum curtain walls. Include plans, elevations, sections, full-size details, and attachments to other work.
 1. Include details of provisions for assembly expansion and contraction and for draining moisture occurring within the assembly to the exterior.
 2. Include full-size isometric details of each type of vertical-to-horizontal intersection of glazed aluminum curtain walls, showing the following:
 a. Joinery, including concealed welds.
 b. Anchorage.
 c. Expansion provisions.
 d. Glazing.
e. Flashing and drainage.

3. Show connection to and continuity with adjacent thermal, weather, air, and vapor barriers.

C. Samples for Verification: For each type of exposed finish required, in manufacturer's standard sizes.

D. Fabrication Sample: Of each vertical-to-horizontal intersection of assemblies, made from 12-inch lengths of full-size components and showing details of the following:
 1. Joinery, including concealed welds.
 2. Anchorage.
 5. Flashing and drainage.

1.5 INFORMATIONAL SUBMITTALS

A. Qualification Data:
 1. For Installer and field testing agency.

B. Energy Performance Certificates: For glazed aluminum curtain walls, accessories, and components from manufacturer.
 1. Basis for Certification: NFRC-certified energy performance values for each glazed aluminum curtain wall.

C. Field quality-control reports.

D. Sample Warranties: For special warranties.

1.6 CLOSEOUT SUBMITTALS

A. Maintenance Data: For glazed aluminum curtain walls to include in maintenance manuals.

1.7 QUALITY ASSURANCE

A. Installer Qualifications: An entity that employs installers and supervisors who are trained and approved by manufacturer.

B. Product Options: Information on Drawings and in Specifications establishes requirements for aesthetic effects and performance characteristics of assemblies. Aesthetic effects are indicated by dimensions, arrangements, alignment, and profiles of components and assemblies as they relate to sightlines, to one another, and to adjoining construction.
1. Do not change intended aesthetic effects, as judged solely by Architect, except with Architect's approval. If changes are proposed, submit comprehensive explanatory data to Architect for review.

1.8 MOCKUPS

A. Build mockups to verify selections made under Sample submittals and to demonstrate aesthetic effects and set quality standards for fabrication and installation.

1. Build mockup of typical wall area as shown on Drawings.
2. Testing shall be performed on mockups in accordance with requirements in "Field Quality Control" Article.
3. Approval of mockups does not constitute approval of deviations from the Contract Documents contained in mockups unless Architect specifically approves such deviations in writing.
4. Subject to compliance with requirements, approved mockups may become part of the completed Work if undisturbed at time of Substantial Completion.

1.9 WARRANTY

A. Special Assembly Warranty: Manufacturer agrees to repair or replace components of glazed aluminum curtain wall that do not comply with requirements or that fail in materials or workmanship within specified warranty period.

1. Failures include, but are not limited to, the following:
 a. Structural failures including, but not limited to, excessive deflection.
 b. Noise or vibration created by wind and thermal and structural movements.
 c. Deterioration of metals, metal finishes, and other materials beyond normal weathering.
 d. Water penetration through fixed glazing and framing areas.
 e. Failure of operating components.

2. Warranty Period: 10 years from date of Substantial Completion.

B. Special Finish Warranty, Factory-Applied Finishes: Standard form in which manufacturer agrees to repair finishes or replace aluminum that shows evidence of deterioration of baked enamel, powder coat, or organic finishes within specified warranty period.

1. Deterioration includes, but is not limited to, the following:
 a. Color fading more than 5 Delta E units when tested in accordance with ASTM D2244.
 b. Chalking in excess of a No. 8 rating when tested in accordance with ASTM D4214.
 c. Cracking, checking, peeling, or failure of paint to adhere to bare metal.

2. Warranty Period: 20 years from date of Substantial Completion.
PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. General Performance: Comply with performance requirements specified, as determined by testing of glazed aluminum curtain walls representing those indicated for this Project without failure due to defective manufacture, fabrication, installation, or other defects in construction.

1. Glazed aluminum curtain walls shall withstand movements of supporting structure, including, but not limited to, story drift, twist, column shortening, long-term creep, and deflection from uniformly distributed and concentrated live loads.
2. Failure also includes the following:
 a. Thermal stresses transferring to building structure.
 b. Glass breakage.
 c. Noise or vibration created by wind and thermal and structural movements.
 d. Loosening or weakening of fasteners, attachments, and other components.
 e. Failure of operating units.

B. Structural Loads:

1. Wind Loads: As indicated on Drawings.
2. Other Design Loads: As indicated on Drawings.

C. Deflection of Framing Members: At design wind pressure, as follows:

1. Deflection Normal to Wall Plane: Limited to [edge of glass in a direction perpendicular to glass plane not exceeding 1/175 of the glass edge length for each individual glazing lite or an amount that restricts edge deflection of individual glazing lites to 3/4 inch, whichever is less.
2. Deflection Parallel to Glazing Plane: Limited to 1/360 of clear span or 1/8 inch, whichever is smaller.
 a. Operable Units: Provide a minimum 1/16-inch clearance between framing members and operable units.
3. Cantilever Deflection: Where framing members overhang an anchor point, as follows:
 a. Perpendicular to Plane of Wall: No greater than 1/240 of clear span plus 1/4-inch for spans of greater than 11 feet 8-1/4 inches or 1/175 times span, for spans of less than 11 feet 8-1/4 inches.

D. Structural: Test in accordance with ASTM E330/E330M as follows:
1. When tested at positive and negative wind-load design pressures, assemblies do not evidence deflection exceeding specified limits.

2. When tested at 150 percent of positive and negative wind-load design pressures, assemblies, including anchorage, do not evidence material failures, structural distress, or permanent deformation of main framing members exceeding 0.2 percent of span.

3. Test Durations: As required by design wind velocity, but not less than 10 seconds.

E. Water Penetration under Static Pressure: Test in accordance with ASTM E331 as follows:

1. No evidence of water penetration through fixed glazing and framing areas when tested in accordance with a minimum static-air-pressure differential of 20 percent of positive wind-load design pressure, but not less than 6.24 lbf/sq. ft.

F. Water Penetration under Dynamic Pressure: Test in accordance with AAMA 501.1 as follows:

1. No evidence of water penetration through fixed glazing and framing areas when tested at dynamic pressure equal to 20 percent of positive wind-load design pressure, but not less than 6.24 lbf/sq. ft.

2. Maximum Water Leakage: In accordance with AAMA 501.1. Water leakage does not include water controlled by flashing and gutters or water that is drained to exterior.

G. Interstory Drift: Accommodate design displacement of adjacent stories indicated.

1. Design Displacement: As indicated on Drawings.

2. Test Performance: Complying with criteria for passing based on building occupancy type when tested in accordance with AAMA 501.4 at design displacement.

H. Seismic Performance: Glazed aluminum curtain walls shall withstand the effects of earthquake motions determined in accordance with ASCE/SEI 7.

1. Seismic Drift Causing Glass Fallout: Complying with criteria for passing based on building occupancy type when tested in accordance with AAMA 501.6 at design displacement.

2. Vertical Interstory Movement: Complying with criteria for passing based on building occupancy type when tested in accordance with AAMA 501.7 at design displacement.

I. Energy Performance: Certified and labelled by manufacturer for energy performance as follows:

1. Thermal Transmittance (U-factor):
a. Fixed Glazing and Framing Areas: U-factor for the system of not more than 0.45 Btu/sq. ft. x h x deg F as determined in accordance with NFRC 100.

2. Solar Heat Gain Coefficient (SHGC):
 a. Fixed Glazing and Framing Areas: SHGC for the system of not more than 0.27 as determined in accordance with NFRC 200.

3. Air Leakage:
 a. Fixed Glazing and Framing Areas: Air leakage for the system of not more than 0.06 cfm/sq. ft. at a static-air-pressure differential of 6.24 lbf/sq. ft when tested in accordance with ASTM E283.

4. Condensation Resistance Factor (CRF):
 a. Fixed Glazing and Framing Areas: CRF for the system of not less than 55 as determined in accordance with AAMA 1503.

J. Noise Reduction: Test in accordance with ASTM E90, with ratings determined by ASTM E1332, as follows:

K. Thermal Movements: Allow for thermal movements resulting from ambient and surface temperature changes:
 1. Temperature Change: 120 deg F, ambient; 180 deg F, material surfaces.
 2. Thermal Cycling: No buckling; stress on glass; sealant failure; excess stress on framing, anchors, and fasteners; or reduction of performance when tested in accordance with AAMA 501.5.
 a. High Exterior Ambient-Air Temperature: That which produces an exterior metal-surface temperature of 180 deg F.
 b. Low Exterior Ambient-Air Temperature: 0 deg F.

2.2 SOURCE LIMITATIONS

A. Obtain all components of curtain-wall system and storefront system, including framing entrances, sun control and accessories, from single manufacturer.

2.3 GLAZED ALUMINUM CURTAIN WALL SYSTEMS

A. Basis-of-Design Product: Subject to compliance with requirements, provide Kawneer North America, an Arconic company; 1600 Wall System or a comparable product by one of the following:
 1. EFCO Corporation.
2. Kawneer North America, an Arconic company.
3. Oldcastle BuildingEnvelope™,

B. Framing Members: Manufacturer's extruded- or formed-aluminum framing members of thickness required and reinforced as required to support imposed loads.
 2. Glazing System: Retained mechanically with gaskets on four sides.
 5. Fabrication Method: Either factory- or Field-fabricated stick system.
 6. Aluminum: Alloy and temper recommended by manufacturer for type of use and finish indicated.
 7. Steel Reinforcement: As required by manufacturer.

C. Pressure Caps: Manufacturer's standard aluminum components that mechanically retain glazing.
 1. Include snap-on aluminum trim that conceals fasteners.
 2. Provide manufacturer’s standard profiles indicated on drawings.

D. Sill Extenders: Manufacturer's standard aluminum components that extend sill to cover floor to wall joint.

E. Brackets and Reinforcements: Manufacturer's standard high-strength aluminum with nonstaining, nonferrous shims for aligning system components.

F. Entrance Door Systems: Comply with Section 084113 "Aluminum-Framed Entrances and Storefronts”.

2.4 GLAZING

A. Glazing: Comply with Section 088000 "Glazing."

B. Glazing Gaskets: ASTM C509 or ASTM C864. Comply with Section 088000 "Glazing.".

C. Glazing Sealants: Comply with Section 088000 "Glazing."

D. Weatherseal Sealants: ASTM C920 for Type S; Grade NS; Class 25; Uses NT, G, A, and O; chemically curing silicone formulation that is compatible with structural sealant and other system components with which it comes into contact; recommended by structural-sealant, weatherseal-sealant, and structural-sealant-glazed curtain-wall manufacturers for this use.

2.5 MATERIALS

A. Sheet and Plate: ASTM B209.

B. Extruded Bars, Rods, Profiles, and Tubes: ASTM B221.
C. Extruded Structural Pipe and Tubes: ASTM B429/B429M.

D. Structural Profiles: ASTM B308/B308M.

E. Steel Reinforcement:
 1. Structural Shapes, Plates, and Bars: ASTM A36/A36M.
 2. Cold-Rolled Sheet and Strip: ASTM A1008/A1008M.
 3. Hot-Rolled Sheet and Strip: ASTM A1011/A1011M.

F. Steel Reinforcement Primer: Manufacturer's standard zinc-rich, corrosion-resistant primer complying with SSPC-PS Guide No. 12.00; applied immediately after surface preparation and pretreatment. Select surface preparation methods in accordance with recommendations in SSPC-SP COM, and prepare surfaces in accordance with applicable SSPC standard.

2.6 ACCESSORIES

A. Fasteners and Accessories: Manufacturer's standard corrosion-resistant, nonstaining, nonbleeding fasteners and accessories compatible with adjacent materials.
 1. Use self-locking devices where fasteners are subject to loosening or turning out from thermal and structural movements, wind loads, or vibration.
 2. Reinforce members as required to receive fastener threads.
 3. Use exposed fasteners with countersunk Phillips screw heads, finished to match framing system.

B. Anchors: Three-way adjustable anchors with minimum adjustment of 1 inch that accommodate fabrication and installation tolerances in material and finish compatible with adjoining materials and recommended by manufacturer.
 1. Concrete and Masonry Inserts: Hot-dip galvanized cast-iron, malleable-iron, or steel inserts complying with ASTM A123/A123M or ASTM A153/A153M requirements.

C. Concealed Flashing: Dead-soft, 0.018-inch-thick stainless steel, ASTM A240/A240M of type recommended by manufacturer.

2.7 FABRICATION

A. Form or extrude aluminum shapes before finishing.

B. Weld in concealed locations to greatest extent possible to minimize distortion or discoloration of finish. Remove weld spatter and welding oxides from exposed surfaces by descaling or grinding.

C. Fabricate components that, when assembled, have the following characteristics:
 1. Profiles that are sharp, straight, and free of defects or deformations.
2. Accurately fitted joints with ends coped or mitered.
3. Physical and thermal isolation of glazing from framing members.
4. Accommodations for thermal and mechanical movements of glazing and framing to maintain required glazing edge clearances.
5. Provisions for field replacement of glazing from exterior.
6. Fasteners, anchors, and connection devices that are concealed from view to greatest extent possible.

D. Fabricate components to resist water penetration as follows:
 1. Pressure-equalized system or double barrier design with primary air and vapor barrier at interior side of glazed aluminum curtain wall and secondary seal weeped and vented to exterior.

E. Curtain-Wall Framing: Fabricate components for assembly using manufacturer's standard assembly method.

F. After fabrication, clearly mark components to identify their locations in Project in accordance with Shop Drawings.

2.8 ALUMINUM FINISHES

A. High-Performance Organic Finish, Three-Coat PVDF: Fluoropolymer finish complying with AAMA 2605 and containing not less than 70 percent PVDF resin by weight in both color coat and clear topcoat.
 1. Prepare, pretreat, and apply coating to exposed metal surfaces to comply with coating and resin manufacturers' written instructions.
 2. Color and Gloss: As selected by Architect and Owner from manufacturer's full range.

2.9 SOURCE QUALITY CONTROL

A. Structural Sealant: Perform quality-control procedures complying with ASTM C1401 recommendations, including, but not limited to, assembly material qualification procedures, sealant testing, and assembly fabrication reviews and checks.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION, GENERAL
A. Comply with manufacturer's written instructions.
B. Do not install damaged components.
C. Fit joints to produce hairline joints free of burrs and distortion.
D. Rigidly secure nonmovement joints.
E. Install anchors with separators and isolators to prevent metal corrosion and electrolytic deterioration and to prevent impeding movement of moving joints.
F. Where welding is required, weld components in concealed locations to minimize distortion or discoloration of finish. Protect glazing surfaces from welding.
G. Seal joints watertight unless otherwise indicated.
H. Metal Protection:
 1. Where aluminum is in contact with dissimilar metals, protect against galvanic action by painting contact surfaces with primer, applying sealant or tape, or installing nonconductive spacers as recommended by manufacturer for this purpose.
 2. Where aluminum is in contact with concrete or masonry, protect against corrosion by painting contact surfaces with bituminous paint.
I. Install components to drain water passing joints, condensation occurring within framing members, and moisture migrating within glazed aluminum curtain wall to exterior.
J. Install components plumb and true in alignment with established lines and grades.

3.3 INSTALLATION OF GLAZING
A. Install glazing as specified in Section 088000 "Glazing."

3.4 INSTALLATION OF WEATHERSEAL SEALANT
A. After structural sealant has completely cured, remove temporary retainers and insert backer rod between lites of glass, as recommended by sealant manufacturer.
B. Install weatherseal sealant to completely fill cavity, in accordance with sealant manufacturer's written instructions, to produce weatherproof joints.

3.5 ERECTION TOLERANCES
A. Install glazed aluminum curtain walls to comply with the following maximum tolerances:
 1. Plumb: 1/8 inch in 10 feet; 1/4 inch in 40 feet.
 2. Level: 1/8 inch in 20 feet; 1/4 inch in 40 feet.
 3. Alignment:
a. Where surfaces abut in line or are separated by reveal or protruding element up to 1/2 inch wide, limit offset from true alignment to 1/16 inch.
b. Where surfaces are separated by reveal or protruding element from 1/2 to 1 inch wide, limit offset from true alignment to 1/8 inch.
c. Where surfaces are separated by reveal or protruding element of 1 inch wide or more, limit offset from true alignment to 1/4 inch.

4. Location: Limit variation from plane to 1/8 inch in 12 feet; 1/2 inch over total length.

3.6 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

B. Test Area: Perform tests on representative areas of glazed aluminum curtain walls.

C. Field Quality-Control Testing: Perform the following test on representative areas of glazed aluminum curtain walls.

1. Water-Spray Test: Before installation of interior finishes has begun, areas designated by Architect shall be tested in accordance with AAMA 501.2 and shall not evidence water penetration.

 a. Perform a minimum of two tests in areas as directed by Engineer.

2. Air Leakage: ASTM E783 at 1.5 times the rate specified for laboratory testing in "Performance Requirements" Article but not more than 0.09 cfm/sq. ft. at a static-air-pressure differential of 1.57 lbf/sq. ft..

 a. Perform a minimum of two tests in areas as directed by Engineer.

D. Glazed aluminum curtain walls will be considered defective if they do not pass tests and inspections.

E. Prepare test and inspection reports.

END OF SECTION
THIS PAGE INTENTIONALLY LEFT BLANK
SECTION 086300

METAL-FRAMED SKYLIGHTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes skylights with metal framing.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.
 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for metal-framed skylights.

B. Shop Drawings: For metal-framed skylights.
 1. Include plans, elevations, sections, and attachment details.
 2. Indicate structural loadings and reactions to be transmitted to supporting curbs.
 3. Include details of provisions for assembly expansion and contraction and for draining moisture within the assembly to the exterior.
 4. Include full-size isometric details of each vertical-to-horizontal intersection of assembly, showing the following:
 a. Joinery including concealed welds.
 b. Anchorage.
 c. Expansion provisions.
 d. Glazing.
 e. Flashing and drainage.

C. Samples for Verification: For each type of exposed finish required, in manufacturer's standard sizes.

D. Fabrication Sample: Of each framing intersection of assemblies, made from 12-inch lengths of full-size components and showing details of the following:
 1. Joinery including concealed welds.
 2. Anchorage.
5. Flashing and drainage.

E. Delegated-Design Submittal: For metal-framed skylights indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

1.4 INFORMATIONAL SUBMITTALS

A. Qualification Data: For Installer.

B. Product Test Reports: For metal-framed skylights, for tests performed by a qualified testing agency.

C. Field quality-control reports.

D. Sample Warranties: For special warranties.

1.5 CLOSEOUT SUBMITTALS

A. Maintenance Data: For metal-framed skylights to include in maintenance manuals.

1.6 QUALITY ASSURANCE

A. Installer Qualifications: Manufacturer's authorized representative who is trained and approved for installation of metal-framed skylights required for this Project.

B. Mockups: Build mockups to verify selections made under Sample submittals and to demonstrate aesthetic effects and set quality standards for fabrication and installation.

1. Build mockup of typical metal-framed skylights as shown on Drawings.

2. Approval of mockups does not constitute approval of deviations from the Contract Documents contained in mockups unless Architect specifically approves such deviations in writing.

3. Subject to compliance with requirements, approved mockups may become part of the completed Work if undisturbed at time of Substantial Completion.

1.7 WARRANTY

A. Manufacturer's Warranty: Manufacturer agrees to repair or replace components of metal framed skylights that fail in materials or workmanship within specified warranty period.

1. Failures include, but are not limited to, the following:

 a. Structural failures including, but not limited to, excessive deflection.
 b. Noise or vibration caused by thermal movements.
 c. Deterioration of metals, metal finishes, and other materials beyond normal weathering.
 d. Adhesive or cohesive sealant failures.
 e. Water leakage.
2. Warranty Period: Five years from date of Substantial Completion.

B. Special Aluminum-Finish Warranty: Manufacturer agrees to repair or replace components on which finishes fail within specified warranty period. Warranty does not include normal weathering.

1. Failures include, but are not limited to, checking, crazing, peeling, chalking, and fading of finishes.
2. Warranty Period: 20 years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Delegated Design: Engage a qualified professional engineer, as defined in Section 014000 "Quality Requirements," to design metal-framed skylights.

B. Structural Loads: As indicated on structural drawings.

C. Deflection of Framing Members: At design wind pressure, as follows:

1. Deflection Normal to Glazing Plane: Limited to 1/175 of clear span for spans up to 13 feet 6 inches and to 1/240 of clear span plus 1/4 inch for spans more than 13 feet 6 inches or an amount that restricts edge deflection of individual glazing lites to 3/4 inch, whichever is less.
2. Deflection Parallel to Glazing Plane: Limited to L/360 of clear span or 1/8 inch, whichever is smaller.

D. Lateral Bracing of Framing Members: Compression flanges of flexural members are laterally braced by cross members with minimum depth equal to 50 percent of flexural member that is braced. Glazing does not provide lateral support.

E. Structural-Test Performance: Metal-framed skylights tested according to ASTM E330, as follows:

1. When tested at positive and negative wind-load design pressures, assemblies do not evidence deflection exceeding specified deflection limits.
2. When tested at 150 percent of positive and negative wind-load design pressures, assemblies, including anchorage, do not evidence material failures, structural distress, and permanent deformation of main framing members exceeding 0.2 percent of span.
3. Test Durations: As required by design wind velocity, but not less than 10 seconds.

F. Air Infiltration: Metal-framed skylights with maximum air leakage through fixed glazing and framing areas of 0.06 cfm/sq. ft. of when tested according to ASTM E283 at a minimum static-air-pressure difference of 6.24 lbf/sq. ft.
G. Water Penetration under Static Pressure: Metal-framed skylights that do not evidence water penetration through fixed glazing and framing areas when tested according to ASTM E331 at a minimum static-air-pressure difference of 20 percent of positive wind-load design pressure, but not less than 6.24 lbf/sq. ft.

H. Thermal Movements: Allow for thermal movements from ambient and surface temperature changes.

1. Temperature Change: 120 deg F, ambient; 180 deg F, material surfaces.

I. Condensation Resistance: Metal-framed skylights with fixed glazing and framing areas having condensation-resistance factor (CRF) of not less than 45 when tested according to AAMA 1503.

J. Structural Sealant: Capable of withstanding tensile and shear stresses imposed without failing adhesively or cohesively. When tested for preconstruction adhesion and compatibility, cohesive failure of sealant shall occur before adhesive failure.

K. Energy Performance: Provide metal-framed skylights with performance properties specified, as indicated in manufacturer's published test data, based on procedures indicated below and certified and labeled according to NFRC:

1. Thermal Transmittance (U-Factor): Fixed glazing and framing areas shall have U-factor of not more than 0.65 Btu/sq. ft. x h x deg F as determined according to NFRC 100.
2. Solar Heat Gain Coefficient: Fixed glazing and framing areas shall have a solar heat gain coefficient of no greater than 0.6 as determined according to NFRC 200.

2.2 METAL-FRAMED SKYLIGHTS

A. Metal-Framed Skylights: Glazed skylight assemblies supported by aluminum framing.

1. Basis-of-Design Product: Subject to compliance with requirements, provide Wasco; Classic System or a comparable product by one of the following:
 a. GSI Glazed Structures, Inc.
 b. Kawneer North America, an Arconic company.
 c. Super Sky Products Inc.

B. Aluminum Framing Systems: Manufacturer’s standard extruded-aluminum members of thickness required and reinforced as required to support imposed loads. Provide integral condensation gutter system with corners fully welded for waterproof quality. Sill frame to have glass fiber reinforced polymer thermal break.

1. Poured and de-bridged polyurethane thermal breaks are not acceptable.

C. Aluminum: Alloy and temper as recommended in writing by manufacturer for type of use and finish indicated.
2. Extruded Bars, Rods, Profiles, and Tubes: ASTM B221.
3. Extruded Structural Pipe and Tubes: ASTM B429/B429M.
4. Structural Profiles: ASTM B308/B308M.

D. Pressure Caps: Manufacturer's standard aluminum components that mechanically retain glazing.
 1. Include snap-on aluminum trim that conceals fasteners.

E. Brackets and Reinforcements: Manufacturer's standard high-strength aluminum with nonstaining, nonferrous shims for aligning skylight components.

F. Fasteners and Accessories: Manufacturer's standard, stainless steel, non-staining, non-bleeding fasteners and accessories compatible with adjacent materials.
 1. At pressure caps, use ASTM A193/A193M stainless-steel screws.
 2. Use self-locking devices where fasteners are subject to loosening or turning out from thermal and structural movements, wind loads, or vibration.
 3. Reinforce members as required to receive fastener threads.
 4. Use exposed fasteners with countersunk Phillips screw heads, fabricated from Series 300 stainless steel.

H. Concealed Flashing: Manufacturer's standard, corrosion-resistant, non-staining, non-bleeding flashing compatible with adjacent materials.

I. Exposed Flashing and Closures: Manufacturer's standard aluminum components not less than 0.060 inch thick.

J. Framing Sealants: As recommended in writing by manufacturer.

2.3 GLAZING

A. Glazing: As specified in Section 088000 "Glazing".

B. Glazing Gaskets: Manufacturer's standard sealed-corner pressure-glazing system of black, resilient elastomeric glazing gaskets, setting blocks, and shims or spacers.

C. Spacers and Setting Blocks: Manufacturer's standard elastomeric types.

D. Glazing Sealants: As recommended in writing by manufacturer.

E. Structural Glazing Sealants:
 1. Weatherseal Sealant: ASTM C920 for Type S, Grade NS, Class 25, Uses NT, G, A, and O; neutral-curing silicone formulation compatible with structural sealant and other components with which it comes in contact; and recommended in
writing by structural- and weatherseal-sealant and metal-framed skylight manufacturers for this use.

2.4 FABRICATION

A. Where practical, fit and assemble metal-framed skylights in manufacturer's plant. To ensure proper assembly at Project site, clearly identify work that cannot be permanently factory assembled before shipment.

B. Fabricate aluminum components that, when assembled, have the following characteristics:

1. Profiles that are sharp, straight, and free of defects or deformations.
2. Accurately fitted joints with ends coped or mitered.
3. Internal guttering systems or other means to drain water passing joints and moisture migrating within skylight to exterior.
4. Physical and thermal isolation of glazing from framing members.
5. Accommodations for thermal and mechanical movements of glazing and framing to maintain required glazing edge clearances.

C. Fabricate aluminum sill closures with weep holes and for installation as continuous component.

D. Reinforce aluminum components as required to receive fastener threads.

E. Factory-Glazed, Metal-Framed Skylights:

1. Factory install glazing to comply with requirements in Section 088000 "Glazing”.

F. After fabrication, clearly mark components to identify their locations in Project according to Shop Drawings.

2.5 ALUMINUM FINISHES

A. High-Performance Organic Finish: Three-coat fluoropolymer finish complying with AAMA 2605 and containing not less than 70 percent PVDF resin by weight in both color coat and clear topcoat. Prepare, pretreat, and apply coating to exposed metal surfaces to comply with coating and resin manufacturers' written instructions.

1. Color and Gloss: As selected by Architect from manufacturer's full range.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. General: Comply with manufacturer's written instructions.
 1. Do not install damaged components.
 2. Fit joints between aluminum components to produce hairline joints free of burrs and distortion.
 3. Rigidly secure nonmovement joints.
 4. Install anchors with separators and isolators to prevent metal corrosion and electrolytic deterioration and to prevent impeding movement of moving joints.
 5. Seal joints watertight unless otherwise indicated.

B. Metal Protection: Where aluminum will contact dissimilar materials, protect against galvanic action by painting contact surfaces with protective coating or by installing nonconductive spacers as recommended in writing by manufacturer for this purpose.

C. Install continuous aluminum sill closure with weatherproof expansion joints and locked and sealed or welded corners. Locate weep holes at rafters.

D. Install components to drain water passing joints, and moisture migrating within skylight to exterior.

E. Install components plumb and true in alignment with established lines and elevations.

F. Glazing: Install glazing as specified in Section 088000 “Glazing”.

G. Erection Tolerances: Install metal-framed skylights to comply with the following maximum tolerances:
 1. Alignment: Limit offset from true alignment to 1/32 inch where surfaces abut in line, edge to edge, at corners, or where a reveal or protruding element separates aligned surfaces by less than 3 inches; otherwise, limit offset to 1/8 inch.
 2. Location and Plane: Limit variation from true location and plane to 1/8 inch in 12 feet but no greater than 1/2 inch over total length.

3.3 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
 1. Water-Spray Test: Before installation of interior finishes has begun, skylights shall be tested according to AAMA 501.2 and shall not evidence water penetration.

B. Repair or remove work where test results and inspections indicate that it does not comply with specified requirements.
C. Additional testing and inspecting, at Contractor's expense, will be performed to determine compliance of replaced or additional work with specified requirements.

D. Prepare test and inspection reports.

3.4 CLEANING AND PROTECTION

A. Clean exposed surfaces immediately after installing skylights. Avoid damaging protective coatings and finishes. Remove excess sealants, glazing materials, dirt, and other substances.

B. Remove and replace glass that has been broken, chipped, cracked, abraded, or damaged during construction period.

C. Protect skylights from contact with contaminating substances resulting from construction operations. If contaminating substances do contact skylight surfaces, remove contaminants immediately according to manufacturer's written instructions.

END OF SECTION
SECTION 087100

DOOR HARDWARE

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes commercial door hardware for the following:
 1. Swinging doors.
 2. Other doors to the extent indicated.

B. Door hardware includes, but is not necessarily limited to, the following:
 1. Mechanical door hardware.
 2. Electromechanical door hardware.
 3. Cylinders specified for doors in other sections.

C. Related Sections:
 1. Division 08 Section “Hollow Metal Doors and Frames”.
 2. Division 08 Section “Flush Wood Doors”.
 3. Division 08 Section “Aluminum-Framed Entrances and Storefronts”.
 4. Division 28 Section “Access Control”.

D. Codes and References: Comply with the version year adopted by the Authority Having Jurisdiction.

 6. NFPA 105 - Installation of Smoke Door Assemblies.
 7. State Building Codes, Local Amendments.

E. Standards: All hardware specified herein shall comply with the following industry standards:

 1. ANSI/BHMA Certified Product Standards - A156 Series
 2. UL10C – Positive Pressure Fire Tests of Door Assemblies
1.3 SUBMITTALS

A. Product Data: Manufacturer's product data sheets including installation details, material descriptions, dimensions of individual components and profiles, operational descriptions and finishes.

B. Door Hardware Schedule: Prepared by or under the supervision of supplier, detailing fabrication and assembly of door hardware, as well as procedures and diagrams. Coordinate the final Door Hardware Schedule with doors, frames, and related work to ensure proper size, thickness, hand, function, and finish of door hardware.

1. Format: Comply with scheduling sequence and vertical format in DHI's "Sequence and Format for the Hardware Schedule."

2. Organization: Organize the Door Hardware Schedule into door hardware sets indicating complete designations of every item required for each door or opening. Organize door hardware sets in same order as in the Door Hardware Sets at the end of Part 3. Submittals that do not follow the same format and order as the Door Hardware Sets will be rejected and subject to resubmission.

3. Content: Include the following information:
 a. Type, style, function, size, label, hand, and finish of each door hardware item.
 b. Manufacturer of each item.
 c. Fastenings and other pertinent information.
 d. Location of door hardware set, cross-referenced to Drawings, both on floor plans and in door and frame schedule.
 e. Explanation of abbreviations, symbols, and codes contained in schedule.
 f. Mounting locations for door hardware.
 g. Door and frame sizes and materials.
 h. Warranty information for each product.

4. Submittal Sequence: Submit the final Door Hardware Schedule at earliest possible date, particularly where approval of the Door Hardware Schedule must precede fabrication of other work that is critical in the Project construction schedule. Include Product Data, Samples, Shop Drawings of other work affected by door hardware, and other information essential to the coordinated review of the Door Hardware Schedule.

C. Shop Drawings: Details of electrified access control hardware indicating the following:

1. Wiring Diagrams: Upon receipt of approved schedules, submit detailed system wiring diagrams for power, signaling, monitoring, communication, and control of the access control system electrified hardware. Differentiate between manufacturer-installed and field-installed wiring. Include the following:
 a. Elevation diagram of each unique access controlled opening showing location and interconnection of major system components with respect to their placement in the respective door openings.
b. Complete (risers, point-to-point) access control system block wiring diagrams.

c. Wiring instructions for each electronic component scheduled herein.

2. Electrical Coordination: Coordinate with related sections the voltages and wiring details required at electrically controlled and operated hardware openings.

D. Keying Schedule: After a keying meeting with the owner has taken place prepare a separate keying schedule detailing final instructions. Submit the keying schedule in electronic format. Include keying system explanation, door numbers, key set symbols, hardware set numbers and special instructions. Owner must approve submitted keying schedule prior to the ordering of permanent cylinders/cores.

E. Informational Submittals:

1. Product Test Reports: Indicating compliance with cycle testing requirements, based on evaluation of comprehensive tests performed by manufacturer and witnessed by a qualified independent testing agency.

F. Operating and Maintenance Manuals: Provide manufacturers operating and maintenance manuals for each item comprising the complete door hardware installation in quantity as required in Division 01, Closeout Submittals.

1.4 QUALITY ASSURANCE

A. Manufacturers Qualifications: Engage qualified manufacturers with a minimum 5 years of documented experience in producing hardware and equipment similar to that indicated for this Project and that have a proven record of successful in-service performance.

B. Installer Qualifications: A minimum 3 years documented experience installing both standard and electrified door hardware similar in material, design, and extent to that indicated for this Project and whose work has resulted in construction with a record of successful in-service performance.

C. Door Hardware Supplier Qualifications: Experienced commercial door hardware distributors with a minimum 5 years documented experience supplying both mechanical and electromechanical hardware installations comparable in material, design, and extent to that indicated for this Project. Supplier recognized as a factory direct distributor by the manufacturers of the primary materials with a warehousing facility in Project's vicinity. Supplier to have on staff a certified Architectural Hardware Consultant (AHC) available during the course of the Work to consult with Contractor, Architect, and Owner concerning both standard and electromechanical door hardware and keying.

D. Source Limitations: Obtain each type and variety of door hardware specified in this section from a single source unless otherwise indicated.

1. Electrified modifications or enhancements made to a source manufacturer's product line by a secondary or third party source will not be accepted.
2. Provide electromechanical door hardware from the same manufacturer as mechanical door hardware, unless otherwise indicated.

E. Each unit to bear third party permanent label demonstrating compliance with the referenced standards.

F. Keying Conference: Conduct conference to comply with requirements in Division 01 Section "Project Meetings." Keying conference to incorporate the following criteria into the final keying schedule document:

1. Function of building, purpose of each area and degree of security required.
2. Plans for existing and future key system expansion.
3. Requirements for key control storage and software.
4. Installation of permanent keys, cylinder cores and software.
5. Address and requirements for delivery of keys.

G. Pre-Submittal Conference: Conduct coordination conference in compliance with requirements in Division 01 Section "Project Meetings" with attendance by representatives of Supplier(s), Installer(s), and Contractor(s) to review proper methods and the procedures for receiving, handling, and installing door hardware.

1. Prior to installation of door hardware, conduct a project specific training meeting to instruct the installing contractors' personnel on the proper installation and adjustment of their respective products. Product training to be attended by installers of door hardware (including electromechanical hardware) for aluminum, hollow metal and wood doors. Training will include the use of installation manuals, hardware schedules, templates and physical product samples as required.
2. Inspect and discuss electrical roughing-in, power supply connections, and other preparatory work performed by other trades.
3. Review sequence of operation narratives for each unique access controlled opening.
4. Review and finalize construction schedule and verify availability of materials.
5. Review the required inspecting, testing, commissioning, and demonstration procedures

H. At completion of installation, provide written documentation that components were applied to manufacturer's instructions and recommendations and according to approved schedule.

1.5 DELIVERY, STORAGE, AND HANDLING

A. Inventory door hardware on receipt and provide secure lock-up and shelving for door hardware delivered to Project site. Do not store electronic access control hardware, software or accessories at Project site without prior authorization.

B. Tag each item or package separately with identification related to the final Door Hardware Schedule, and include basic installation instructions with each item or package.
C. Deliver, as applicable, permanent keys, cylinders, cores, access control credentials, software and related accessories directly to Owner via registered mail or overnight package service. Instructions for delivery to the Owner shall be established at the "Keying Conference".

1.6 COORDINATION

A. Templates: Obtain and distribute to the parties involved templates for doors, frames, and other work specified to be factory prepared for installing standard and electrified hardware. Check Shop Drawings of other work to confirm that adequate provisions are made for locating and installing hardware to comply with indicated requirements.

B. Door Hardware and Electrical Connections: Coordinate the layout and installation of scheduled electrified door hardware and related access control equipment with required connections to source power junction boxes, low voltage power supplies, detection and monitoring hardware, and fire and detection alarm systems.

C. Door and Frame Preparation: Doors and corresponding frames are to be prepared, reinforced and pre-wired (if applicable) to receive the installation of the specified electrified, monitoring, signaling and access control system hardware without additional in-field modifications.

1.7 WARRANTY

A. General Warranty: Reference Division 01, General Requirements. Special warranties specified in this Article shall not deprive Owner of other rights Owner may have under other provisions of the Contract Documents and shall be in addition to, and run concurrent with, other warranties made by Contractor under requirements of the Contract Documents.

B. Warranty Period: Written warranty, executed by manufacturer(s), agreeing to repair or replace components of standard and electrified door hardware that fails in materials or workmanship within specified warranty period after final acceptance by the Owner. Failures include, but are not limited to, the following:

1. Structural failures including excessive deflection, cracking, or breakage.
2. Faulty operation of the hardware.
3. Deterioration of metals, metal finishes, and other materials beyond normal weathering.
4. Electrical component defects and failures within the systems operation.

C. Standard Warranty Period: One year from date of Substantial Completion, unless otherwise indicated.

D. Special Warranty Periods:

1. Ten years for mortise locks and latches.
2. Five years for exit hardware.
3. Twenty five years for manual surface door closer bodies.
4. Five years for motorized electric latch retraction exit devices.
5. Two years for electromechanical door hardware.

1.8 MAINTENANCE SERVICE

A. Maintenance Tools and Instructions: Furnish a complete set of specialized tools and maintenance instructions as needed for Owner's continued adjustment, maintenance, and removal and replacement of door hardware.

PART 2 - PRODUCTS

2.1 SCHEDULED DOOR HARDWARE

A. General: Provide door hardware for each door to comply with requirements in Door Hardware Sets and each referenced section that products are to be supplied under.

B. Designations: Requirements for quantity, item, size, finish or color, grade, function, and other distinctive qualities of each type of door hardware are indicated in the Door Hardware Sets at the end of Part 3. Products are identified by using door hardware designations, as follows:

1. Named Manufacturer's Products: Product designation and manufacturer are listed for each door hardware type required for the purpose of establishing requirements. Manufacturers' names are abbreviated in the Door Hardware Schedule.

C. Substitutions: Requests for substitution and product approval for inclusive mechanical and electromechanical door hardware in compliance with the specifications must be submitted in writing and in accordance with the procedures and time frames outlined in Division 01, Substitution Procedures. Approval of requests is at the discretion of the architect, owner, and their designated consultants.

2.2 HANGING DEVICES

A. Hinges: ANSI/BHMA A156.1 certified butt hinges with number of hinge knuckles and other options as specified in the Door Hardware Sets.

1. Quantity: Provide the following hinge quantity:
 a. Two Hinges: For doors with heights up to 60 inches.
 b. Three Hinges: For doors with heights 61 to 90 inches.
 c. Four Hinges: For doors with heights 91 to 120 inches.
 d. For doors with heights more than 120 inches, provide 4 hinges, plus 1 hinge for every 30 inches of door height greater than 120 inches.

2. Hinge Size: Provide the following, unless otherwise indicated, with hinge widths sized for door thickness and clearances required:
a. Widths up to 3’0”: 4-1/2” standard or heavy weight as specified.
b. Sizes from 3’1” to 4’0”: 5” standard or heavy weight as specified.

3. Hinge Weight and Base Material: Unless otherwise indicated, provide the following:
 a. Interior Doors: Standard weight, steel, ball bearing or oil impregnated bearing hinges unless Hardware Sets indicate heavy weight.

4. Hinge Options: Comply with the following:
 a. Non-removable Pins: Provide set screw in hinge barrel that, when tightened into a groove in hinge pin, prevents removal of pin while door is closed; for the all out-swinging lockable doors.

5. Manufacturers:
 a. Bommer Industries (BO).
 b. Lawrence Brothers (LA).
 c. McKinney Products (MK).

B. Continuous Geared Hinges: ANSI/BHMA A156.26 Grade 1-600 certified continuous geared hinge. with minimum 0.120-inch thick extruded 6060 T6 aluminum alloy hinge leaves and a minimum overall width of 4 inches. Hinges are non-handed, reversible and fabricated to template screw locations. Factory trim hinges to suit door height and prepare for electrical cut-outs.

 1. Manufacturers:
 b. McKinney Products (MK).
 c. Pemko Products (PE).

C. Pivots: ANSI/BHMA A156.4, Grade 1, certified. Space intermediate pivots equally not less than 25 inches on center apart or not more than 35 inches on center for doors over 121 inches high. Pivot hinges to have oil impregnated bronze bearing in the top pivot and a radial roller and thrust bearing in the bottom pivot with the bottom pivot designed to carry the full weight of the door. Pivots to be UL listed for windstorm where applicable.

 1. Manufacturers:
 a. Accurate Lock and Hardware (AC).
 b. Architectural Builders Hardware (AH).
 c. Rixson Door Controls (RF).

2.3 POWER TRANSFER DEVICES

A. Electrified Quick Connect Transfer Hinges: Provide electrified transfer hinges with Molex™ standardized plug connectors and sufficient number of concealed wires (up to
12) to accommodate the electrified functions specified in the Door Hardware Sets. Connectors plug directly to through-door wiring harnesses for connection to electric locking devices and power supplies. Wire nut connections are not acceptable.

1. Manufacturers:
 a. Bommer Industries (BO) - (# wires) Option.
 b. Lawrence Brothers (LA) - (# wires) Option.
 c. McKinney Products (MK) - QC (# wires) Option.

B. Electrified Quick Connect Intermediate Transfer Pivots: Provide electrified offset intermediate transfer pivot hinges with Molex™ standardized plug connectors and sufficient number of concealed wires (up to 12) to accommodate the electrified functions specified in the Door Hardware Sets. Connectors plug directly to through-door wiring harnesses for connection to electric locking devices and power supplies. Wire nut connections are not acceptable.

1. Manufacturers:
 a. Accurate Lock and Hardware (AC) - (# wires).
 c. Rixson Door Controls (RF) - E-M19-QC (# wires).

C. Concealed Quick Connect Electric Power Transfers: Provide concealed wiring pathway housing mortised into the door and frame for low voltage electrified door hardware. Furnish with Molex™ standardized plug connectors and sufficient number of concealed wires (up to 12) to accommodate the electrified functions specified in the Door Hardware Sets. Connectors plug directly to through-door wiring harnesses for connection to electric locking devices and power supplies. Wire nut connections are not acceptable.

1. Manufacturers:
 a. Architectural Builders Hardware (AH) - PT1000-EZ Series.
 b. Pemko Products (PE) - EL-CEPT Series.
 c. Securitron (SU) - EL-CEPT Series.

D. Electric Door Wire Harnesses: Provide electric/data transfer wiring harnesses with standardized plug connectors to accommodate up to twelve (12) wires. Connectors plug directly to through-door wiring harnesses for connection to electric locking devices and power supplies. Provide sufficient number and type of concealed wires to accommodate electric function of specified hardware. Provide a connector for through-door electronic locking devices and from hinge to junction box above the opening. Wire nut connections are not acceptable. Determine the length required for each electrified hardware component for the door type, size and construction, minimum of two per electrified opening.

1. Provide one each of the following tools as part of the base bid contract:
b. McKinney Products (MK) - Connector Hand Tool: QC-R003.

2. Manufacturers:
 a. McKinney Products (MK) - QC-C Series.

E. Provide mortar guard enclosure on steel frames installed at masonry openings for each electrical hinge specified.

2.4 DOOR OPERATING TRIM

A. Door Push Plates and Pulls: ANSI/BHMA A156.6 certified door pushes and pulls of type and design specified in the Hardware Sets. Coordinate and provide proper width and height as required where conflicting hardware dictates.

1. Push/Pull Plates: Minimum .050 inch thick, size as indicated in hardware sets, with beveled edges, secured with exposed screws unless otherwise indicated.
2. Offset Pull Design: Size, shape, and material as indicated in the hardware sets. Minimum clearance of 2 1/2-inches from face of door and offset of 90 degrees unless otherwise indicated.
3. Fasteners: Provide manufacturer's designated fastener type as indicated in Hardware Sets.
4. Manufacturers:
 a. Hiawatha, Inc. (HI).
 b. Rockwood Products (RO).
 c. Trimco (TC).

2.5 CYLINDERS AND KEYING

A. General: Cylinder manufacturer to have minimum (10) years’ experience designing secured master key systems and have on record a published security keying system policy.

B. Permanent cylinders to be purchased through Allied Lock & Safe Company (302) 658-3172.

C. Source Limitations: Obtain each type of temporary keyed cylinder and keys from the same source manufacturer as locksets and exit devices, unless otherwise indicated.

1. Manufacturers:
 a. Corbin Russwin Hardware (RU).
 b. Sargent Manufacturing (SA).
 c. Yale Locks and Hardware (YA).

D. Cylinders: Original manufacturer cylinders complying with the following:
1. Mortise Type: Threaded cylinders with rings and cams to suit hardware application.
2. Rim Type: Cylinders with back plate, flat-type vertical or horizontal tailpiece, and raised trim ring.
3. Mortise and rim cylinder collars to be solid and recessed to allow the cylinder face to be flush and be free spinning with matching finishes.

E. Patented Cylinders: ANSI/BHMA A156.5, Grade 1, certified cylinders employing a utility patented and restricted keyway requiring the use of patented controlled keys. Provide bump resistant, fixed core cylinders as standard with solid recessed cylinder collars. Cylinders are to be factory keyed where permanent keying records will be established and maintained.

1. Provide a 6 pin multi-level master key system comprised of patented controlled keys and security and high security cylinders operated by one (1) key of the highest level. Geographical exclusivity to be provided for all security and high security cylinders and UL437 certification where specified.
 a. Level 1 Cylinders: Provide utility patented controlled keyway cylinders that are furnished with patented keys available only from authorized distribution.

2. Manufacturers:
 a. Corbin Russwin (RU) - Access 3 Series.
 b. Medeco (MC) - Keymark Series.
 c. Sargent Manufacturing (SA) - Degree Series.

F. Keying System: Each type of lock and cylinders to be factory keyed.

1. Conduct specified "Keying Conference" to define and document keying system instructions and requirements.
2. Furnish factory cut, nickel-silver large bow permanently inscribed with a visual key control number as directed by Owner.
3. New System: Key locks to a new key system as directed by the Owner.

G. Key Quantity: Provide the following minimum number of keys:

1. Change Keys per Cylinder: Three (3) each.
2. Master Keys (per Master Key Level/Group): Five (5) each.
3. Construction Keys: Ten (10) each.

H. Construction Keying: Provide construction master keyed cylinders.

I. Key Registration List (Bitting List):

1. Provide keying transcript list to Owner's representative in the proper format for importing into key control software.
2. Provide transcript list in writing or electronic file as directed by the Owner.

J. Key Control Cabinet: Provide a key control system including envelopes, labels, and tags with self-locking key clips, receipt forms, 3-way visible card index, temporary markers, permanent markers, and standard metal cabinet. Key control cabinet shall have expansion capacity of 150% of the number of locks required for the project.

1. Manufacturers:
 a. Lund Equipment (LU).
 b. MMF Industries (MM).
 c. Telkee (TK).

K. Key Control Software: Provide one network version of "Key Wizard" branded key management software package that includes one year of technical support and upgrades to software at no charge. Provide factory key system formatted for importing into “Key Wizard” software.

2.6 MECHANICAL LOCKS AND LATCHING DEVICES

A. Mortise Locksets, Grade 1 (Heavy Duty): ANSI/BHMA A156.13, Series 1000, Operational Grade 1 certified. Locksets are to be manufactured with a corrosion resistant steel case and be field-reversible for handing without disassembly of the lock body.

1. Manufacturers:
 a. Corbin Russwin Hardware (RU) - ML2000 Series.
 b. Sargent Manufacturing (SA) - 8200 Series.
 c. Yale Locks and Hardware (YA) - 8800FL Series.

B. Knurling: Where required by local code provide knurling or abrasive coating to all levers on doors leading to hazardous areas such as mechanical rooms, boiler and furnace rooms, janitor closets, and as otherwise required or specified.

2.7 ELECTROMECHANICAL LOCKING DEVICES

A. Electromechanical Mortise Locksets, Grade 1 (Heavy Duty): Subject to same compliance standards and requirements as mechanical mortise locksets, electrified locksets to be of type and design as specified below.

1. Electrified Lock Options: Where indicated in the Hardware Sets, provide electrified options including: outside door lock/unlock trim control, latchbolt and lock/unlock status monitoring, deadbolt monitoring, and request-to-exit signaling. Support end-of-line resistors contained within the lock case. Unless otherwise indicated, provide electrified locksets standard as fail secure.

2. Manufacturers:
 a. Corbin Russwin Hardware (RU) - ML20900 Series.
 b. Sargent Manufacturing (SA) - 8200 Series.
c. Yale Locks and Hardware (YA) - 8800FL Series.

2.8 LOCK AND LATCH STRIKES

A. Strikes: Provide manufacturer’s standard strike with strike box for each latch or lock bolt, with curved lip extended to protect frame, finished to match door hardware set, unless otherwise indicated, and as follows:

1. Flat-Lip Strikes: For locks with three-piece antifriction latchbolts, as recommended by manufacturer.
2. Aluminum-Frame Strike Box: Provide manufacturer’s special strike box fabricated for aluminum framing.

B. Standards: Comply with the following:

2. Dustproof Strikes: BHMA A156.16.

2.9 CONVENTIONAL EXIT DEVICES

A. General Requirements: All exit devices specified herein shall meet or exceed the following criteria:

1. At doors not requiring a fire rating, provide devices complying with NFPA 101 and listed and labeled for "Panic Hardware" according to UL305. Provide proper fasteners as required by manufacturer including sex nuts and bolts at openings specified in the Hardware Sets.
2. Where exit devices are required on fire rated doors, provide devices complying with NFPA 80 and with UL labeling indicating "Fire Exit Hardware". Provide devices with the proper fasteners for installation as tested and listed by UL. Consult manufacturer’s catalog and template book for specific requirements.
3. Except on fire rated doors, provide exit devices with hex key dogging device to hold the pushbar and latch in a retracted position. Provide optional keyed cylinder dogging on devices where specified in Hardware Sets.
4. Devices must fit flat against the door face with no gap that permits unauthorized dogging of the push bar. The addition of filler strips is required in any case where the door light extends behind the device as in a full glass configuration.
5. Flush End Caps: Provide flush end caps made of architectural metal in the same finish as the devices as in the Hardware Sets. Plastic end caps will not be acceptable.
6. Electromechanical Options: Subject to same compliance standards and requirements as mechanical exit devices, electrified devices to be of type and design as specified in hardware sets. Include any specific controllers when conventional power supplies are not sufficient to provide the proper inrush current.
7. Motorized Electric Latch Retraction: Devices with an electric latch retraction feature must use motors which have a maximum current draw of 600mA. Solenoid driven latch retraction is not acceptable.
8. Lever Operating Trim: Where exit devices require lever trim, furnish manufacturer's heavy duty escutcheon trim with threaded studs for thru-bolts.
 a. Lock Trim Design: As indicated in Hardware Sets, provide finishes and designs to match that of the specified locksets.
 b. Where function of exit device requires a cylinder, provide a cylinder (Rim or Mortise) as specified in Hardware Sets.
9. Vertical Rod Exit Devices: Where surface or concealed vertical rod exit devices are used at interior openings, provide as less bottom rod (LBR) unless otherwise indicated. Provide dust proof strikes where thermal pins are required to project into the floor.
10. Narrow Stile Applications: At doors constructed with narrow stiles, or as specified in Hardware Sets, provide devices designed for maximum 2” wide stiles.
11. Extended cycle test: Devices to have been cycle tested in ordinance with ANSI/BHMA 156.3 requirements to 9 million cycles.
12. Rail Sizing: Provide exit device rails factory sized for proper door width application.

B. Conventional Push Rail Exit Devices (Heavy Duty): ANSI/BHMA A156.3, Grade 1 certified panic and fire exit hardware devices furnished in the functions specified in the Hardware Sets. Exit device latch to be stainless steel, pullman type, with deadlock feature.
 1. Manufacturers:
 a. Corbin Russwin Hardware (RU) - ED4000/ED5000 Series.
 b. Sargent Manufacturing (SA) - 80 Series.
 c. Yale Locks and Hardware (YA) - 7000 Series.

2.10 DOOR CLOSERS

A. All door closers specified herein shall meet or exceed the following criteria:
 1. General: Door closers to be from one manufacturer, matching in design and style, with the same type door preparations and templates regardless of application or spring size. Closers to be non-handed with full sized covers including installation and adjusting information on inside of cover.
 2. Standards: Closers to comply with UL-10C for Positive Pressure Fire Test and be U.L. listed for use of fire rated doors.
 3. Cycle Testing: Provide closers which have surpassed 15 million cycles in a test witnessed and verified by UL.
 4. Size of Units: Comply with manufacturer's written recommendations for sizing of door closers depending on size of door, exposure to weather, and anticipated frequency of use. Where closers are indicated for doors required to be accessible to the physically handicapped, provide units complying with ANSI ICC/A117.1.
 5. Closer Arms: Provide heavy duty, forged steel closer arms unless otherwise indicated in Hardware Sets.
6. Closers shall not be installed on exterior or corridor side of doors; where possible install closers on door for optimum aesthetics.
7. Closer Accessories: Provide door closer accessories including custom templates, special mounting brackets, spacers and drop plates as required for proper installation. Provide through-bolt and security type fasteners as specified in the hardware sets.

B. Door Closers, Surface Mounted (Heavy Duty): ANSI/BHMA A156.4, Grade 1 surface mounted, heavy duty door closers with complete spring power adjustment, sizes 1 thru 6; and fully operational adjustable according to door size, frequency of use, and opening force. Closers to be rack and pinion type, one piece cast iron or aluminum alloy body construction, with adjustable backcheck and separate non-critical valves for closing sweep and latch speed control. Provide non-handed units standard.

1. Manufacturers:
 a. Corbin Russwin Hardware (RU) - DC6000 Series.
 b. Norton Door Controls (NO) - 7500 Series.
 c. Sargent Manufacturing (SA) - 351 Series.

C. Door Closers, Surface Mounted (Cam Action): ANSI/BHMA 156.4, Grade 1 certified surface mounted, high efficiency door closers with complete spring power adjustment, sizes 1 thru 6; and fully operational adjustable according to door size, frequency of use, and opening force. Closers to be of the cam and roller design, one piece cast aluminum silicon alloy body with adjustable backcheck and independently controlled valves for closing sweep and latch speed.

1. Manufacturers:
 a. Corbin Russwin (RU) - DC5000 Series.
 b. Norton Door Controls (NO) - 2800ST Series.
 c. Sargent Manufacturing (SA) - 422 Series.

2.11 ARCHITECTURAL TRIM

A. Door Protective Trim

1. General: Door protective trim units to be of type and design as specified below or in the Hardware Sets.
2. Size: Fabricate protection plates (kick, armor, or mop) not more than 2" less than door width (LDW) on stop side of single doors and 1" LDW on stop side of pairs of doors, and not more than 1" less than door width on pull side. Coordinate and provide proper width and height as required where conflicting hardware dictates. Height to be as specified in the Hardware Sets.
3. Where plates are applied to fire rated doors with the top of the plate more than 16" above the bottom of the door, provide plates complying with NFPA 80. Consult manufacturer’s catalog and template book for specific requirements for size and applications.
4. Protection Plates: ANSI/BHMA A156.6 certified protection plates (kick, armor, or mop), fabricated from the following:
 a. Stainless Steel: 300 grade, 050-inch thick.

5. Options and fasteners: Provide manufacturer's designated fastener type as specified in the Hardware Sets. Provide countersunk screw holes.

6. Manufacturers:
 a. Hiawatha, Inc. (HI).
 b. Rockwood Products (RO).
 c. Trimco (TC).

2.12 DOOR STOPS AND HOLDERS

A. General: Door stops and holders to be of type and design as specified below or in the Hardware Sets.

B. Door Stops and Bumpers: ANSI/BHMA A156.16, Grade 1 certified door stops and wall bumpers. Provide wall bumpers, either convex or concave types with anchorage as indicated, unless floor or other types of door stops are specified in Hardware Sets. Do not mount floor stops where they will impede traffic. Where floor or wall bumpers are not appropriate, provide overhead type stops and holders.

 1. Manufacturers:
 a. Hiawatha, Inc. (HI).
 b. Rockwood Products (RO).
 c. Trimco (TC).

C. Overhead Door Stops and Holders: ANSI/BHMA A156.6, Grade 1 certified overhead stops and holders to be surface or concealed types as indicated in Hardware Sets. Track, slide, arm and jamb bracket to be constructed of extruded bronze and shock absorber spring of heavy tempered steel. Provide non-handed design with mounting brackets as required for proper operation and function.

 1. Manufacturers:
 a. Rixson Door Controls (RF).
 b. Rockwood Products (RO).
 c. Sargent Manufacturing (SA).

2.13 ARCHITECTURAL SEALS

A. General: Thresholds, weatherstripping, and gasket seals to be of type and design as specified below or in the Hardware Sets. Provide continuous weatherstrip gasketing on exterior doors and provide smoke, light, or sound gasketing on interior doors where indicated. At exterior applications provide non-corrosive fasteners and elsewhere where indicated.
B. Smoke Labeled Gasketing: Assemblies complying with NFPA 105 that are listed and labeled by a testing and inspecting agency acceptable to authorities having jurisdiction, for smoke control ratings indicated, based on testing according to UL 1784.

1. Provide smoke labeled perimeter gasketing at all smoke labeled openings.

C. Fire Labeled Gasketing: Assemblies complying with NFPA 80 that are listed and labeled by a testing and inspecting agency acceptable to authorities having jurisdiction, for fire ratings indicated, based on testing according to UL-10C.

D. Sound-Rated Gasketing: Assemblies that are listed and labeled by a testing and inspecting agency, for sound ratings indicated.

E. Replaceable Seal Strips: Provide only those units where resilient or flexible seal strips are easily replaceable and readily available from stocks maintained by manufacturer.

F. Manufacturers:

1. National Guard Products (NG).
2. Pemko Products (PE).

2.14 ELECTRONIC ACCESSORIES

A. Door Position Switches: Door position magnetic reed contact switches specifically designed for use in commercial door applications. On recessed models the contact and magnetic housing snap-lock into a 1” diameter hole. Surface mounted models include wide gap distance design complete with armored flex cabling. Provide SPDT, N/O switches with optional Rare Earth Magnet installation on steel doors with flush top channels.

1. Manufacturers:
 a. Sargent Manufacturing (SA) - 3280 Series.
 b. Security Door Controls (SD) - DPS Series.
 c. Securitron (SU) - DPS Series.

2.15 FABRICATION

A. Fasteners: Provide door hardware manufactured to comply with published templates generally prepared for machine, wood, and sheet metal screws. Provide screws according to manufacturers recognized installation standards for application intended.
2.16 FINISHES

A. Standard: Designations used in the Hardware Sets and elsewhere indicate hardware finishes complying with ANSI/BHMA A156.18, including coordination with traditional U.S. finishes indicated by certain manufacturers for their products.

B. Provide quality of finish, including thickness of plating or coating (if any), composition, hardness, and other qualities complying with manufacturer's standards, but in no case less than specified by referenced standards for the applicable units of hardware

C. Protect mechanical finishes on exposed surfaces from damage by applying a strippable, temporary protective covering before shipping.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine scheduled openings, with Installer present, for compliance with requirements for installation tolerances, labeled fire door assembly construction, wall and floor construction, and other conditions affecting performance.

B. Notify architect of any discrepancies or conflicts between the door schedule, door types, drawings and scheduled hardware. Proceed only after such discrepancies or conflicts have been resolved in writing.

3.2 PREPARATION

A. Hollow Metal Doors and Frames: Comply with ANSI/DHI A115 series.

3.3 INSTALLATION

A. Install each item of mechanical and electromechanical hardware and access control equipment to comply with manufacturer's written instructions and according to specifications.

1. Installers are to be trained and certified by the manufacturer on the proper installation and adjustment of fire, life safety, and security products including: hanging devices; locking devices; closing devices; and seals.

B. Mounting Heights: Mount door hardware units at heights indicated in following applicable publications, unless specifically indicated or required to comply with governing regulations:

2. Wood Doors: DHI WDHS.3, "Recommended Locations for Architectural Hardware for Wood Flush Doors."

3. Where indicated to comply with accessibility requirements, comply with ANSI A117.1 "Accessibility Guidelines for Buildings and Facilities."

4. Provide blocking in drywall partitions where wall stops or other wall mounted hardware is located.

C. Retrofitting: Install door hardware to comply with manufacturer's published templates and written instructions. Where cutting and fitting are required to install door hardware onto or into surfaces that are later to be painted or finished in another way, coordinate removal, storage, and reinstallation of surface protective trim units with finishing work specified in Division 9 Sections. Do not install surface-mounted items until finishes have been completed on substrates involved.

D. Thresholds: Set thresholds for exterior and acoustical doors in full bed of sealant complying with requirements specified in Division 7 Section "Joint Sealants."

E. Storage: Provide a secure lock up for hardware delivered to the project but not yet installed. Control the handling and installation of hardware items so that the completion of the work will not be delayed by hardware losses before and after installation.

3.4 FIELD QUALITY CONTROL

A. Field Inspection: Supplier will perform a final inspection of installed door hardware and state in report whether work complies with or deviates from requirements, including whether door hardware is properly installed, operating and adjusted.

3.5 ADJUSTING

A. Initial Adjustment: Adjust and check each operating item of door hardware and each door to ensure proper operation or function of every unit. Replace units that cannot be adjusted to operate as intended. Adjust door control devices to compensate for final operation of heating and ventilating equipment and to comply with referenced accessibility requirements.

3.6 CLEANING AND PROTECTION

A. Protect all hardware stored on construction site in a covered and dry place. Protect exposed hardware installed on doors during the construction phase. Install any and all hardware at the latest possible time frame.

B. Clean adjacent surfaces soiled by door hardware installation.

C. Clean operating items as necessary to restore proper finish. Provide final protection and maintain conditions that ensure door hardware is without damage or deterioration at time of owner occupancy.
3.7 DEMONSTRATION

A. Instruct Owner's maintenance personnel to adjust, operate, and maintain mechanical and electromechanical door hardware.

3.8 DOOR HARDWARE SETS

A. The hardware sets represent the design intent and direction of the owner and architect. They are a guideline only and should not be considered a detailed hardware schedule. Discrepancies, conflicting hardware and missing items should be brought to the attention of the architect with corrections made prior to the bidding process. Omitted items not included in a hardware set should be scheduled with the appropriate additional hardware required for proper application and functionality.

B. The supplier is responsible for handing and sizing all products and providing the correct option for the appropriate door type and material where more than one is presented in the hardware sets. Quantities listed are for each pair of doors, or for each single door.

Set: 1 – Stair

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Quantity</th>
<th>Manufacturer</th>
<th>Model</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 Hinge</td>
<td>T4A3786 4-1/2" x 4-1/2" NRP</td>
<td></td>
<td>US26D</td>
<td>MK</td>
<td></td>
</tr>
<tr>
<td>1 Electric Hinge</td>
<td>T4A3786 4-1/2" x 4-1/2" QC-12</td>
<td></td>
<td>US26D</td>
<td>MK</td>
<td></td>
</tr>
<tr>
<td>1 ElectroLynx Harness</td>
<td>QC-C1500P</td>
<td></td>
<td>MK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Mortar Box</td>
<td>MG-16</td>
<td></td>
<td>US2C</td>
<td>MK</td>
<td></td>
</tr>
<tr>
<td>1 Electrified Exit Device (Fail Safe)</td>
<td>12 21 43 8875 F x 775-8 ETMD x 24VDC US32D</td>
<td></td>
<td>SA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 ElectroLynx Harness</td>
<td>QC-CXXX x required length</td>
<td></td>
<td>MK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Rim Cylinder</td>
<td>100400XX x MK</td>
<td></td>
<td>US26D</td>
<td>MC</td>
<td></td>
</tr>
<tr>
<td>1 Closer</td>
<td>351 P10</td>
<td></td>
<td>EN</td>
<td>SA</td>
<td></td>
</tr>
<tr>
<td>1 Kickplate</td>
<td>K1050 8" x 2" LDW 4BE CSK</td>
<td></td>
<td>US32D</td>
<td>RO</td>
<td></td>
</tr>
<tr>
<td>1 Wall Stop</td>
<td>406</td>
<td></td>
<td>US32D</td>
<td>RO</td>
<td></td>
</tr>
<tr>
<td>3 Silencer</td>
<td>608-RKW</td>
<td></td>
<td>RO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Card Reader</td>
<td>Furnished and installed by security contractor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Door Position Switch</td>
<td>DPS-W-BK</td>
<td></td>
<td>SU</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Power Supply</td>
<td>AQD4-1R</td>
<td></td>
<td>SU</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Wiring Diagram</td>
<td>WD-SYSPK</td>
<td></td>
<td>RU</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Electrified exit device to be tied into the building fire alarm system
Upon activation of the building fire alarm system power to be terminated to the electrified exit device unlocking the pull side lever
Card reader to be used by authorized persons to gain entry from the pull side of the opening
Card reader to be used to unlock the pull side lever of the electrified exit device
Push bar of electrified exit device always free for immediate egress
Set: 2 – Stair

Doors: 1stb1, 2sta1, 2stb

3 Hinge T4A3786 4-1/2" x 4-1/2" US26D MK
1 Exit Device 12 43 8815 F x 715-8 ETMD US32D SA
1 Closer 422 CTB2 EN SA
1 Kickplate K1050 8" x 2" LDW 4BE CSK US32D RO
1 Wall Stop 406 US32D RO

(for door 1stb1 only)

1 Door Stop 481 US26D RO
3 Silencer 608-RKW RO

Set: 3 – Exterior Stair

Doors: 1stb2

1 Continuous Hinge MCK-25HD x 83" Clear MK
1 Exit Device 12 43 8810 F US32D SA
1 Closer 351 P3 EN SA
1 Kickplate K1050 8" x 2" LDW 4BE CSK US32D RO
1 Overhead Stop 59XS x 90 deg US26D SA
1 Threshold 171 A x DOW x MS & ES25 PE
1 Gasketing (Set) 316 AS x DOW x DOH PE
1 Door Bottom Seal 345 AV x DOW PE
1 Drip Strip 346 C x DOW + 4" PE
1 Door Position Switch DPS-M-BK SU

Set: 4 – Exterior Terrace

Doors: 2sta2, 213

1 Continuous Hinge MCK-25HD x 83" Clear MK
1 Power Transfer EL-CEPT SU
1 ElectroLynx Harness QC-C1500P MK

(Install between power transfer and junction box)

1 Electrified Lockset (Fail Secure) 21 8271 LNMB x 24VDC US26D SA
1 ElectroLynx Harness QC-CXXX x required length MK

(Install between power transfer and electrified lockset)

1 Mortise Cylinder 100200X x Z20 x MK US26D SA
1 Closer 351 O EN SA
1 Kickplate K1050 8" x 2" LDW 4BE CSK US32D RO
1 Wall Stop 406 US32D RO
1 Door Stop 481 US26D RO

(for door 2sta2 only)

1 Threshold 1715 A x DOW x MS & ES25 PE
1 Gasketing (Set) S88 BL x DOW x DOH PE
1 Door Bottom Seal 345 AV x DOW PE
1 Drip Strip 346 C x DOW + 4" PE
1 Card Reader Furnished and installed by security contractor OT
1 Door Position Switch DPS-M-BK SU
1 Power Supply AQD4-1R SU
1 Wiring Diagram WD-SYSPK RU

Card reader to be used by authorized persons to gain entry from the exterior side of the opening
Card reader to be used to unlock the exterior side lever of the electrified lockset
Pull side lever of the electrified lockset always free for immediate egress

Set: 5 – Exterior Entry

Doors: 100a

2 Pivot (Set) 147 626 RF
1 Intermediate Pivot M19 626 RF
1 Electrified Intermediate Pivot E-M19 x QC-12 626 RF
(For active leaf of pair only)
1 ElectroLynx Harness QC-C1500P MK
(Install between electric intermediate pivot and junction box)
1 Electric Latch Retraction Exit Device (Fail 16 21 43 56 AD8410 F x less pull x 24VDC US32D Secure)
1 ElectroLynx Harness QC-CXXX x required length MK
(Install between electric intermediate pivot and electric latch retraction exit device)
1 Exit Device 16 21 43 AD8410 F US32D SA
3 Mortise Cylinder 100200X x Z20 x MK US26D SA
2 Pull RM201 x Type 12HD mounting US32D RO
2 Closer 351 P10 x 581-2 EN SA
2 Mounting Plate 351-D EN SA
2 Overhead Stop 69XS x 90 deg US26D SA
1 Threshold 170 A x DOW x MS & ES25 PE
2 Door Bottom Seal 345 AV x DOW PE
1 Astragal (Set) (2) 297 AS x DOH PE
1 Drip Strip 346 C x DOW + 4" PE
1 Card Reader Furnished and installed by security contractor OT
2 Door Position Switch DPS-M-BK SU
1 Power Supply AQD4-1R SU
1 Wiring Diagram WD-SYSPK RU

Gasketing furnished by frame manufacturer
Card reader to be used by authorized persons to gain entry from the exterior side of the opening
Card reader to be used to retract the latch of the electric latch retraction exit device
Push bar of exit devices always free for immediate egress

Set: 5.1 – Entry Vestibule

Doors: 100b
2 Pivot (Set) 147 626 RF
1 Intermediate Pivot M19 626 RF
1 Electrified Intermediate Pivot E-M19 x QC-12 626 RF
 (For active leaf of pair only)
1 ElectroLynx Harness QC-C1500P MK
 (Install between electric intermediate pivot and junction box)
1 Electric Latch Retraction Exit Device (Fail Secure) 16 21 43 56 AD8410 F x less pull x24VDC US32D SA
1 ElectroLynx Harness QC-CXXX x required length MK
 (Install between electric intermediate pivot and electric latch retraction exit device)
3 Mortise Cylinder 100200X x Z20 x MK US26D SA
1 Exit Device 16 21 43 AD8410 F x DG1 x MK US32D SA
2 Pull RM201 x Type 12HD mounting US32D RO
2 Closer 351 P10 x 581-2 EN SA
2 Mounting Plate 351-D EN SA
2 Overhead Stop 69XS x 90 deg US26D SA
1 Threshold 170 A x DOW x MS & ES25 PE
2 Door Bottom Seal 321 CN x DOW PE
1 Astragal (Set) (2) 297 AS x DOH PE
1 Card Reader Furnished and installed by security contractor
 OT
2 Door Position Switch DPS-M-BK SU
1 Power Supply AQD4-1R SU
1 Wiring Diagram WD-SYSPK RU

Gasketing furnished by frame manufacturer
Card reader to be used by authorized persons to gain entry from the pull side of the opening
Card reader to be used to retract the latch of the electric latch retraction exit device
Push bar of exit devices always free for immediate egress

Set: 6 – Elevator Machine Room

Doors: 101a

2 Hinge TA2714 4-1/2" x 4-1/2" US26D MK
1 Electric Hinge TA2714 4-1/2" x 4-1/2" QC-12 US26D MK
 (Install at middle hinge)
1 ElectroLynx Harness QC-C1500P MK
 (Install between electric hinge and junction box)
1 Mortar Box MG-16 US2C MK
1 Electrified Lockset (Fail Secure) 21 86 8271 LNMB x 24VDC US26D SA
1 ElectroLynx Harness QC-CXXX x required length MK
 (Install between electric hinge and electrified lockset)
1 Mortise Cylinder 100200X x Z20 x MK US26D SA
1 Closer 351 O EN SA
1 Kickplate K1050 8" x 2" LDW 4BE CSK US32D RO
1 Wall Stop 406 US32D RO
1 Threshold 151 A x DOW x MS & ES25 PE
<table>
<thead>
<tr>
<th>Item</th>
<th>Specification</th>
<th>Brand</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gasketing (Set)</td>
<td>S88 BL x DOW x DOH</td>
<td>PE</td>
</tr>
<tr>
<td>Door Bottom Seal</td>
<td>234 AV x DOW</td>
<td>PE</td>
</tr>
<tr>
<td>Card Reader</td>
<td>Furnished and installed by security contractor OT</td>
<td></td>
</tr>
<tr>
<td>Door Position Switch</td>
<td>DPS-W-BK</td>
<td>SU</td>
</tr>
<tr>
<td>Power Supply</td>
<td>AQD4-1R</td>
<td>SU</td>
</tr>
<tr>
<td>Wiring Diagram</td>
<td>WD-SYSPK</td>
<td>RU</td>
</tr>
</tbody>
</table>

Card reader to be used by authorized persons to gain entry from the push side of the opening
Card reader to be used to unlock the push side lever of the electrified lockset
Pull side lever of the electrified lockset always free for immediate egress

Set: 7 – Janitor

Doors: 101b, 209

<table>
<thead>
<tr>
<th>Item</th>
<th>Specification</th>
<th>Brand</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 Hinge</td>
<td>TA2714 4-1/2" x 4-1/2"</td>
<td>US26D</td>
</tr>
<tr>
<td>1 Storeroom Lockset</td>
<td>21 8204 LNMB</td>
<td>US26D</td>
</tr>
<tr>
<td>1 Mortise Cylinder</td>
<td>100200X x Z20 x MK</td>
<td>US26D</td>
</tr>
<tr>
<td>1 Kickplate</td>
<td>K1050 8" x 2" LDW 4BE CSK</td>
<td>US32D</td>
</tr>
<tr>
<td>1 Mop Plate</td>
<td>K1050 4" x 1" LDW 4BE CSK</td>
<td>US32D</td>
</tr>
<tr>
<td>1 Wall Stop</td>
<td>406</td>
<td>US32D</td>
</tr>
<tr>
<td>3 Silencer</td>
<td>608-RKW</td>
<td>RO</td>
</tr>
</tbody>
</table>

Set: 8 – Corridor Storage

Doors: 102a, 130

<table>
<thead>
<tr>
<th>Item</th>
<th>Specification</th>
<th>Brand</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 Hinge</td>
<td>T4A3786 4-1/2" x 4-1/2"</td>
<td>US26D</td>
</tr>
<tr>
<td>1 Storeroom Lockset</td>
<td>21 8204 LNMB</td>
<td>US26D</td>
</tr>
<tr>
<td>1 Mortise Cylinder</td>
<td>100200X x Z20 x MK</td>
<td>US26D</td>
</tr>
<tr>
<td>1 Closer</td>
<td>351 O</td>
<td>EN</td>
</tr>
<tr>
<td>1 Kickplate</td>
<td>K1050 8" x 2" LDW 4BE CSK</td>
<td>US32D</td>
</tr>
<tr>
<td>1 Wall Stop</td>
<td>406</td>
<td>US32D</td>
</tr>
<tr>
<td>1 Gasketing (Set)</td>
<td>S88 BL x DOW x DOH</td>
<td>PE</td>
</tr>
</tbody>
</table>

Set: 9 – Office

<table>
<thead>
<tr>
<th>Item</th>
<th>Specification</th>
<th>Brand</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 Hinge</td>
<td>TA2714 4-1/2" x 4-1/2"</td>
<td>US26D</td>
</tr>
<tr>
<td>1 Office Lockset</td>
<td>21 8255 LNMB</td>
<td>US26D</td>
</tr>
<tr>
<td>1 Mortise Cylinder</td>
<td>100200X x Z20 x MK</td>
<td>US26D</td>
</tr>
<tr>
<td>1 Wall Stop</td>
<td>406</td>
<td>US32D</td>
</tr>
<tr>
<td>1 Coat Hook</td>
<td>RM802</td>
<td>US26D</td>
</tr>
</tbody>
</table>
Set: 10 – Exterior Corridor

Doors: 105b

1 Pivot (Set) 147 626 RF
1 Electrified Intermediate Pivot E-M19 x QC-12 626 RF
1 ElectroLynx Harness QC-C1500P MK

(Install between electric intermediate pivot and junction box)

1 Electric Latch Retraction Exit Device (Fail) 21 43 56 LD AD8504 F x less pull x 24VDC US32D SA
1 ElectroLynx Harness QC-CXXX x required length MK

(Install between electric intermediate pivot and electric latch retraction exit device)

1 Rim Cylinder 100400XX x MK US26D MC
1 Pull RM201 x Type 12HD mounting US32D RO
1 Closer 351 P10 x 581-2 EN SA
1 Mounting Plate 351-D EN SA
1 Overhead Stop 69XS x 90 deg US26D SA
1 Threshold 170 A x DOW x MS & ES25 PE
1 Door Bottom Seal 345 AV x DOW PE
1 Drip Strip 346 C x DOW + 4" PE
1 Card Reader Furnished and installed by security contractor OT
1 Door Position Switch DPS-M-BK SU
1 Power Supply AQR4-1R SU
1 Wiring Diagram WD-SYSPK RU

Gasketing furnished by frame manufacturer
Card reader to be used by authorized persons to gain entry from the exterior side of the opening
Card reader to be used to retract the latch of the electric latch retraction exit device
Push bar of electric latch retraction exit device always free for immediate egress

Set: 11 – Training

Doors: 106a, 106b, 106c

3 Hinge T4A3786 4-1/2" x 4-1/2" NRP US26D MK
1 Exit Device 16 21 43 8813 F x 713-8 ETMD US32D SA
2 Mortise Cylinder 100200X x Z20 x MK US26D SA
1 Closer 351 P10 EN SA
1 Kickplate K1050 8" x 2" LDW 4BE CSK US32D RO
1 Door Stop & Holder 494R US26D RO

(Install at top of door)

3 Silencer 608-RKW RO

Set: 12 – Corridor Conference

Doors: 107

<table>
<thead>
<tr>
<th>Set</th>
<th>Description</th>
<th>Quantity</th>
<th>Model Number</th>
<th>Finish</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>Group Toilet</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Classroom Lockset</td>
<td>1</td>
<td>21 8237 LNMB</td>
<td>US26D</td>
<td>SA</td>
</tr>
<tr>
<td></td>
<td>Mortise Cylinder</td>
<td>1</td>
<td>100200X x Z20 x MK</td>
<td>US26D</td>
<td>SA</td>
</tr>
<tr>
<td></td>
<td>Close</td>
<td>1</td>
<td>351 O</td>
<td>EN</td>
<td>SA</td>
</tr>
<tr>
<td></td>
<td>Kickplate</td>
<td>1</td>
<td>K1050 8" x 2" LDW 4BE CSK</td>
<td>US32D</td>
<td>RO</td>
</tr>
<tr>
<td></td>
<td>Door Stop & Holder</td>
<td></td>
<td></td>
<td></td>
<td>(Install at top of door)</td>
</tr>
<tr>
<td></td>
<td>Silencer</td>
<td>3</td>
<td>608-RKW</td>
<td></td>
<td>RO</td>
</tr>
<tr>
<td>14</td>
<td>Shower</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Push Plate</td>
<td>1</td>
<td>70C 4 x 16</td>
<td>US32D</td>
<td>RO</td>
</tr>
<tr>
<td></td>
<td>Pull Plate</td>
<td>1</td>
<td>110 x 70C 4 x 16</td>
<td>US32D</td>
<td>RO</td>
</tr>
<tr>
<td></td>
<td>Close</td>
<td>1</td>
<td>422 CTB2</td>
<td>EN</td>
<td>SA</td>
</tr>
<tr>
<td></td>
<td>Kickplate</td>
<td>1</td>
<td>K1050 8" x 2" LDW 4BE CSK</td>
<td>US32D</td>
<td>RO</td>
</tr>
<tr>
<td></td>
<td>Mop Plate</td>
<td>1</td>
<td>K1050 4" x 1" LDW 4BE CSK</td>
<td>US32D</td>
<td>RO</td>
</tr>
<tr>
<td></td>
<td>Wall Stop</td>
<td>1</td>
<td>406</td>
<td>US32D</td>
<td>RO</td>
</tr>
<tr>
<td></td>
<td>Silencer</td>
<td>3</td>
<td>608-RKW</td>
<td></td>
<td>RO</td>
</tr>
<tr>
<td>15</td>
<td>Utility</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Storeroom Lockset</td>
<td>1</td>
<td>21 8204 LNMB</td>
<td>US26D</td>
<td>SA</td>
</tr>
<tr>
<td></td>
<td>Mortise Cylinder</td>
<td>1</td>
<td>100200X x Z20 x MK</td>
<td>US26D</td>
<td>SA</td>
</tr>
<tr>
<td></td>
<td>Close</td>
<td>1</td>
<td>351 O</td>
<td>EN</td>
<td>SA</td>
</tr>
<tr>
<td></td>
<td>Kickplate</td>
<td>1</td>
<td>K1050 8" x 2" LDW 4BE CSK</td>
<td>US32D</td>
<td>RO</td>
</tr>
<tr>
<td></td>
<td>Wall Stop</td>
<td>1</td>
<td>406</td>
<td>US32D</td>
<td>RO</td>
</tr>
<tr>
<td></td>
<td>Silencer</td>
<td>3</td>
<td>608-RKW</td>
<td></td>
<td>RO</td>
</tr>
<tr>
<td>15.1</td>
<td>Utility</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Storeroom Lockset</td>
<td>1</td>
<td>21 8204 LNMB</td>
<td>US26D</td>
<td>SA</td>
</tr>
<tr>
<td></td>
<td>Mortise Cylinder</td>
<td>1</td>
<td>100200X x Z20 x MK</td>
<td>US26D</td>
<td>SA</td>
</tr>
<tr>
<td></td>
<td>Close</td>
<td>1</td>
<td>351 O</td>
<td>EN</td>
<td>SA</td>
</tr>
<tr>
<td></td>
<td>Kickplate</td>
<td>1</td>
<td>K1050 8" x 2" LDW 4BE CSK</td>
<td>US32D</td>
<td>RO</td>
</tr>
<tr>
<td></td>
<td>Wall Stop</td>
<td>1</td>
<td>406</td>
<td>US32D</td>
<td>RO</td>
</tr>
<tr>
<td></td>
<td>Silencer</td>
<td>3</td>
<td>608-RKW</td>
<td></td>
<td>RO</td>
</tr>
</tbody>
</table>
3 Hinge TA2714 4-1/2" x 4-1/2" NRP US26D MK
1 Storeroom Lockset 21 8204 LNMB x DG1 x MK US26D SA
1 Closer/Stop 351 CPS EN SA
1 Kickplate K1050 8" x 2" LDW 4BE CSK US32D RO
3 Silencer 608-RKW RO

Set: 16 – Personal

Doors: 111, 208

3 Hinge T4A3786 4-1/2" x 4-1/2" US26D MK
1 Privacy Set & Indicator 49 8265 LNMB US26D SA
1 Closer 422 CTB2 EN SA
1 Kickplate K1050 8" x 2" LDW 4BE CSK US32D RO
1 Mop Plate K1050 4" x 1" LDW 4BE CSK US32D RO
1 Wall Stop 406 US32D RO
3 Silencer 608-RKW RO

Set: 17 – Mechanical Room

Doors: 112

2 Hinge TA2714 4-1/2" x 4-1/2" USP MK
1 Electric Hinge TA2714 4-1/2" x 4-1/2" QC-12 USP MK
* (Install at middle hinge)*
1 ElectroLynx Harness QC-C1500P MK
* (Install between electric hinge and junction box)*
1 Mortar Box MG-16 US2C MK
1 Electrified Lockset (Fail Secure) 21 8271 LNMB x 24VDC US26D SA
1 ElectroLynx Harness QC-CXXX x required length MK
* (Install between electric hinge and electrified lockset)*
1 Mortise Cylinder 100200X x Z20 x MK US26D SA
1 Closer 351 O EN SA
1 Kickplate K1050 8" x 2" LDW 4BE CSK US32D RO
1 Wall Stop 406 US32D RO
1 Threshold 151 A x DOW x MS & ES25 PE
1 Gasketing (Set) S88 BL x DOW x DOH PE
1 Automatic Door Bottom 420 APKL x DOW PE
1 Card Reader Furnished and installed by security contractor
OT
1 Door Position Switch DPS-M-BK SU
1 Power Supply AQD4-1R SU
1 Wiring Diagram WD-SYSPK RU

Card reader to be used by authorized persons to gain entry from the push side of the opening
Card reader to be used to unlock the push side lever of the electrified lockset
Pull side lever of the electrified lockset always free for immediate egress
Set: 18 – Utility

Doors: 113

2 Hinge TA2714 4-1/2" x 4-1/2" USP MK
1 Electric Hinge TA2714 4-1/2" x 4-1/2" QC-12 USP MK
(Install at middle hinge)
1 ElectroLynx Harness QC-C1500P MK
(Install between electric hinge and junction box)
1 Mortar Box MG-16 US2C MK
1 Electrified Lockset (Fail Secure) 21 8271 LNMB x 24VDC US26D SA
1 ElectroLynx Harness QC-CXXX x required length MK
(Install between electric hinge and electrified lockset)
1 Mortise Cylinder 100200X x Z20 x MK US26D SA
1 Closer 351 O EN SA
1 Kickplate K1050 8" x 2" LDW 4BE CSK US32D RO
1 Wall Stop 406 US32D RO
3 Silencer 608-RKW RO
1 Card Reader Furnished and installed by security contractor OT
1 Door Position Switch DPS-M-BK SU
1 Power Supply AQD4-1R SU
1 Wiring Diagram WD-SYSPK RU

Card reader to be used by authorized persons to gain entry from the push side of the opening
Card reader to be used to unlock the push side lever of the electrified lockset
Pull side lever of the electrified lockset always free for immediate egress

Set: 18.1 – IT

Doors: 216

6 Hinge TA2714 4-1/2" x 4-1/2" NRP US26D MK
1 Electric Hinge TA2714 4-1/2" x 4-1/2" QC-12 US26D MK
(Install at middle hinge-active leaf only)
1 ElectroLynx Harness QC-C1500P MK
(Install between electric hinge and junction box)
1 Mortar Box MG-16 US2C MK
1 Electrified Lockset (Fail Secure) 21 8271 LNMB x 24VDC US26D SA
1 ElectroLynx Harness QC-CXXX x required length MK
(Install between electric hinge and electrified lockset)
1 Mortise Cylinder 100200X x Z20 x MK US26D SA
2 Flush Bolt 555 x 12" US26D RO
1 Dust Proof Strike 570 US26D RO
1 Closer 351 P10 EN SA
(for active leaf only)
1 Kickplate K1050 8" x 1" LDW 4BE CSK US32D RO
<table>
<thead>
<tr>
<th>Item</th>
<th>Model</th>
<th>Finish</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wall Stop</td>
<td>406</td>
<td>US32D</td>
<td>RO</td>
</tr>
<tr>
<td>Silencer</td>
<td>608-RKW</td>
<td></td>
<td>RO</td>
</tr>
<tr>
<td>Card Reader</td>
<td></td>
<td></td>
<td>Furnished and installed by security contractor OT</td>
</tr>
<tr>
<td>Door Position Switch</td>
<td>DPS-W-BK</td>
<td></td>
<td>SU</td>
</tr>
<tr>
<td>Power Supply</td>
<td>AQD4-1R</td>
<td></td>
<td>SU</td>
</tr>
<tr>
<td>Wiring Diagram</td>
<td>WD-SYSPK</td>
<td></td>
<td>RU</td>
</tr>
</tbody>
</table>

Wood astragal furnished by door manufacturer
Card reader to be used by authorized persons to gain entry from the pull side of the opening
Card reader to be used to unlock the pull side lever of the electrified lockset
Push side lever of the electrified lockset always free for immediate egress

Set: 19 – Exterior Utility

Doors: 114

<table>
<thead>
<tr>
<th>Item</th>
<th>Model</th>
<th>Finish</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continuous Hinge</td>
<td>MCK-25HD x 83"</td>
<td>Clear</td>
<td>MK</td>
</tr>
<tr>
<td>Power Transfer</td>
<td>EL-CEPT</td>
<td></td>
<td>SU</td>
</tr>
<tr>
<td>ElectroLynx Harness</td>
<td>QC-C1500P</td>
<td></td>
<td>MK</td>
</tr>
<tr>
<td>(Install between power transfer and junction box)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electrified Lockset (Fail Secure)</td>
<td>21 8271 LNMB x 24VDC</td>
<td>US26D</td>
<td>SA</td>
</tr>
<tr>
<td>Electrified Lockset</td>
<td>QC-CXXXX x required length</td>
<td>MK</td>
<td></td>
</tr>
<tr>
<td>(Install between power transfer and electrified lockset)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mortise Cylinder</td>
<td>100200X x Z20 x MK</td>
<td>US26D</td>
<td>SA</td>
</tr>
<tr>
<td>Closer</td>
<td>351 O</td>
<td>EN</td>
<td>SA</td>
</tr>
<tr>
<td>Kickplate</td>
<td>K1050 8" x 2" LDW 4BE CSK</td>
<td>US32D</td>
<td>RO</td>
</tr>
<tr>
<td>Door Stop</td>
<td>481</td>
<td></td>
<td>RO</td>
</tr>
<tr>
<td>Threshold</td>
<td>1715 A x DOW x MS & ES25</td>
<td>PE</td>
<td></td>
</tr>
<tr>
<td>Gasketing (Set)</td>
<td>S88 BL x DOW x DOH</td>
<td>PE</td>
<td></td>
</tr>
<tr>
<td>Door Bottom Seal</td>
<td>345 AV x DOW</td>
<td>PE</td>
<td></td>
</tr>
<tr>
<td>Drip Strip</td>
<td>346 C x DOW + 4"</td>
<td>PE</td>
<td></td>
</tr>
<tr>
<td>Card Reader</td>
<td>Furnished and installed by security contractor OT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Door Position Switch</td>
<td>DPS-M-BK</td>
<td></td>
<td>SU</td>
</tr>
<tr>
<td>Power Supply</td>
<td>AQD4-1R</td>
<td></td>
<td>SU</td>
</tr>
<tr>
<td>Wiring Diagram</td>
<td>WD-SYSPK</td>
<td></td>
<td>RU</td>
</tr>
</tbody>
</table>

Card reader to be used by authorized persons to gain entry from the exterior side of the opening
Card reader to be used to unlock the exterior side lever of the electrified lockset
Pull side lever of the electrified lockset always free for immediate egress

Set: 20 – Open Office

Doors: 115

<table>
<thead>
<tr>
<th>Item</th>
<th>Model</th>
<th>Finish</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hinge</td>
<td>T4A3786 4-1/2" x 4-1/2" NRP</td>
<td>US26D</td>
<td>MK</td>
</tr>
<tr>
<td>Electric Hinge</td>
<td>T4A3786 4-1/2" x 4-1/2" QC-12</td>
<td>US26D</td>
<td>MK</td>
</tr>
</tbody>
</table>
Pull side card reader to be used by authorized persons to gain entry from the pull side of the opening

Pull side card reader to be used to unlock the pull side lever of the electrified exit device

Push side card reader to be used by authorized persons to exit from the push side of the opening

Push side card reader to be used to shunt the alarm

Depressing the push bar of the exit device without use of the push side card reader will activate the alarm

Push bar of electrified exit device always free for immediate egress

Set: 21 – Exterior Open Office

Doors: 115a

<table>
<thead>
<tr>
<th>Item</th>
<th>Model/Specification</th>
<th>Finish</th>
<th>Manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Continuous Hinge</td>
<td>MCK-25HD x 83”</td>
<td>Clear</td>
<td>MK</td>
</tr>
<tr>
<td>1 Exit Device</td>
<td>16 21 43 8804 F x 704 ETMD</td>
<td>US32D</td>
<td>SA</td>
</tr>
<tr>
<td>1 Rim Cylinder</td>
<td>100400XX x MK</td>
<td>US26D</td>
<td>MC</td>
</tr>
<tr>
<td>1 Closer</td>
<td>351 P3</td>
<td>EN</td>
<td>SA</td>
</tr>
<tr>
<td>1 Kickplate</td>
<td>K1050 8” x 2” LDW 4BE CSK</td>
<td>US32D</td>
<td>RO</td>
</tr>
<tr>
<td>1 Overhead Stop</td>
<td>59XS x 90 deg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Threshold</td>
<td>171 A x DOW x MS & ES25</td>
<td></td>
<td>PE</td>
</tr>
<tr>
<td>1 Gasketing (Set)</td>
<td>316 AS x DOW x DOH</td>
<td></td>
<td>PE</td>
</tr>
<tr>
<td>1 Door Bottom Seal</td>
<td>345 AV x DOW</td>
<td></td>
<td>PE</td>
</tr>
<tr>
<td>1 Drip Strip</td>
<td>346 C x DOW + 4”</td>
<td></td>
<td>PE</td>
</tr>
<tr>
<td>1 Door Position Switch</td>
<td>DPS-M-BK</td>
<td></td>
<td>SU</td>
</tr>
</tbody>
</table>

Set: 22 – Storage

Doors: 116

<table>
<thead>
<tr>
<th>Item</th>
<th>Model/Specification</th>
<th>Finish</th>
<th>Manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 Hinge</td>
<td>TA2714 4-1/2” x 4-1/2”</td>
<td>US26D</td>
<td>MK</td>
</tr>
<tr>
<td>1 Storeroom Lockset</td>
<td>21 8204 LNMB</td>
<td>US26D</td>
<td>SA</td>
</tr>
<tr>
<td>Item</td>
<td>Model Number</td>
<td>Finish</td>
<td>Notes</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>--------------</td>
<td>--------</td>
<td>--</td>
</tr>
<tr>
<td>Mortise Cylinder</td>
<td>100200X x Z20 x MK</td>
<td>US26D SA</td>
<td></td>
</tr>
<tr>
<td>Wall Stop</td>
<td>406</td>
<td>US32D RO</td>
<td></td>
</tr>
<tr>
<td>Silencer</td>
<td>608-RKW</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Set: 23 – Conference

Doors: 117, 138, 203, 204

<table>
<thead>
<tr>
<th>Item</th>
<th>Model Number</th>
<th>Finish</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Hinge</td>
<td>TA2714 4-1/2" x 4-1/2"</td>
<td>US26D MK</td>
<td></td>
</tr>
<tr>
<td>Passage Set</td>
<td>8215 LNMB</td>
<td>US26D SA</td>
<td></td>
</tr>
<tr>
<td>Wall Stop</td>
<td>406</td>
<td>US32D RO</td>
<td></td>
</tr>
</tbody>
</table>

Set: 24 – Open Office

Doors: 131a, 131b

<table>
<thead>
<tr>
<th>Item</th>
<th>Model Number</th>
<th>Finish</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 Hinge</td>
<td>T4A3786 4-1/2" x 4-1/2" NRP</td>
<td>US26D MK</td>
<td></td>
</tr>
<tr>
<td>Electric Hinge</td>
<td>T4A3786 4-1/2" x 4-1/2" QC-12</td>
<td>US26D MK</td>
<td>Install at middle hinge</td>
</tr>
<tr>
<td>ElectroLynx Harness</td>
<td>QC-C1500P</td>
<td>MK</td>
<td>Install between electric hinge and junction box</td>
</tr>
<tr>
<td>Mortar Box</td>
<td>MG-16</td>
<td>US2C MK</td>
<td></td>
</tr>
<tr>
<td>Electrified Exit Device (Fail Secure)</td>
<td>16 21 43 8876 F x 776-8 ETMD x24VDC</td>
<td>US32D SA</td>
<td></td>
</tr>
<tr>
<td>ElectroLynx Harness</td>
<td>QC-CXXX x required length</td>
<td>MK</td>
<td></td>
</tr>
<tr>
<td>Rim Cylinder</td>
<td>100400XX x MK</td>
<td>US26D MC</td>
<td></td>
</tr>
<tr>
<td>Closer</td>
<td>351 P10 x 581-2</td>
<td>EN SA</td>
<td>For door 131b only</td>
</tr>
<tr>
<td>Closer/Stop</td>
<td>351 CPS x 581-2</td>
<td>EN SA</td>
<td></td>
</tr>
<tr>
<td>Kickplate</td>
<td>K1050 8" x 2" LDW 4BE CSK</td>
<td>US32D RO</td>
<td></td>
</tr>
<tr>
<td>Wall Stop</td>
<td>406</td>
<td>US32D RO</td>
<td>For door 131b only</td>
</tr>
<tr>
<td>Card Reader</td>
<td>Furnished and installed by security contractor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Door Position Switch</td>
<td>DPS-W-BK</td>
<td>SU</td>
<td></td>
</tr>
<tr>
<td>Power Supply</td>
<td>AQD4-1R</td>
<td>SU</td>
<td></td>
</tr>
<tr>
<td>Wiring Diagram</td>
<td>WD-SYSPK</td>
<td>RU</td>
<td></td>
</tr>
</tbody>
</table>

Card reader to be used by authorized persons to gain entry from the pull side of the opening
Card reader to be used to unlock the pull side lever of the electrified exit device
Push bar of electrified exit device always free for immediate egress

Set: 25 – Workroom

Doors: 207

<table>
<thead>
<tr>
<th>Item</th>
<th>Model Number</th>
<th>Finish</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 Hinge</td>
<td>TA2714 4-1/2" x 4-1/2"</td>
<td>US26D MK</td>
<td></td>
</tr>
<tr>
<td>Passage Set</td>
<td>8215 LNMB</td>
<td>US26D SA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wall Stop</td>
<td></td>
<td>406</td>
</tr>
<tr>
<td>---</td>
<td>-----------</td>
<td>---</td>
<td>-----</td>
</tr>
<tr>
<td>3</td>
<td>Silencer</td>
<td></td>
<td>608-RKW</td>
</tr>
</tbody>
</table>

END OF SECTION
THIS PAGE INTENTIONALLY LEFT BLANK
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes:

1. Glass for windows, doors, interior borrowed lites, storefront framing, and glazed aluminum curtain walls.
2. Glazing sealants and accessories.

1.3 DEFINITIONS

A. Glass Manufacturers: Firms that produce primary glass, fabricated glass, or both, as defined in referenced glazing publications.

B. Glass Thicknesses: Indicated by thickness designations in millimeters according to ASTM C1036.

D. Interspace: Space between lites of an insulating-glass unit.

1.4 COORDINATION

A. Coordinate glazing channel dimensions to provide necessary bite on glass, minimum edge and face clearances, and adequate sealant thicknesses, with reasonable tolerances.

1.5 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. Glass Samples: For each type of the following products; 12 inches square.

1. Tinted glass.
2. Insulating glass.

C. Glazing Accessory Samples: For sealants, in 12-inch lengths.
D. Glazing Schedule: List glass types and thicknesses for each size opening and location. Use same designations indicated on Drawings.

1.6 INFORMATIONAL SUBMITTALS

A. Qualification Data: For Installer.

B. Product Certificates: For glass.

C. Product Test Reports: For tinted glass, insulating glass, and glazing sealants, for tests performed by a qualified testing agency.
 1. For glazing sealants, provide test reports based on testing current sealant formulations within previous 36-month period.

D. Preconstruction adhesion and compatibility test report.

E. Sample Warranties: For special warranties.

1.7 QUALITY ASSURANCE

A. Manufacturer Qualifications for Insulating-Glass Units with Sputter-Coated, Low-E Coatings: A qualified insulating-glass manufacturer who is approved and certified by coated-glass manufacturer.

B. Installer Qualifications: A qualified installer who employs glass installers for this Project who are certified under the National Glass Association's Certified Glass Installer Program.

C. Glass Testing Agency Qualifications: A qualified independent testing agency accredited according to the NFRC CAP 1 Certification Agency Program.

D. Sealant Testing Agency Qualifications: An independent testing agency qualified according to ASTM C1021 to conduct the testing indicated.

E. Mockups: Build mockups to demonstrate aesthetic effects and to set quality standards for materials and execution.
 1. Install glazing in mockups specified in Section 084113 “Aluminum-Framed Entrances and Storefronts” and Section 084413 “Glazed Aluminum Curtain Walls” to match glazing systems required for Project, including glazing methods.
 2. Subject to compliance with requirements, approved mockups may become part of the completed Work if undisturbed at time of Substantial Completion.

1.8 DELIVERY, STORAGE, AND HANDLING

A. Protect glazing materials according to manufacturer's written instructions. Prevent damage to glass and glazing materials from condensation, temperature changes, direct exposure to sun, or other causes.
B. Comply with insulating-glass manufacturer's written instructions for venting and sealing units to avoid hermetic seal ruptures due to altitude change.

1.9 FIELD CONDITIONS

A. Environmental Limitations: Do not proceed with glazing when ambient and substrate temperature conditions are outside limits permitted by glazing material manufacturers and when glazing channel substrates are wet from rain, frost, condensation, or other causes.

1. Do not install glazing sealants when ambient and substrate temperature conditions are outside limits permitted by sealant manufacturer or are below 40 deg F.

1.10 WARRANTY

A. Manufacturer's Special Warranty for Insulating Glass: Manufacturer agrees to replace insulating-glass units that deteriorate within specified warranty period. Deterioration of insulating glass is defined as failure of hermetic seal under normal use that is not attributed to glass breakage or to maintaining and cleaning insulating glass contrary to manufacturer's written instructions. Evidence of failure is the obstruction of vision by dust, moisture, or film on interior surfaces of glass.

1. Warranty Period: 10 years from date of Substantial Completion.

B. Manufacturer's Special Warranty on Laminated Glass: Manufacturer agrees to replace laminated-glass units that deteriorate within specified warranty period. Deterioration of laminated glass is defined as defects developed from normal use that are not attributed to glass breakage or to maintaining and cleaning laminated glass contrary to manufacturer's written instructions. Defects include edge separation, delamination materially obstructing vision through glass, and blemishes exceeding those allowed by referenced laminated-glass standard.

1. Warranty Period: 10 years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

1. AGC Glass Company North America, Inc.
2. Oldcastle BuildingEnvelope™
4. Viracon, Inc.
B. Source Limitations for Glass: Obtain from single source from single manufacturer for each glass type.

 1. Obtain tinted glass from single source from single manufacturer.

C. Source Limitations for Glazing Accessories: Obtain from single source from single manufacturer for each product and installation method.

2.2 PERFORMANCE REQUIREMENTS

A. General: Installed glazing systems shall withstand normal thermal movement and wind and impact loads (where applicable) without failure, including loss or glass breakage attributable to the following: defective manufacture, fabrication, or installation; failure of sealants or gaskets to remain watertight and airtight; deterioration of glazing materials; or other defects in construction.

B. Structural Performance: Glazing shall withstand the following design loads within limits and under conditions indicated determined according to the IBC and ASTM E1300.

 1. Design Wind Pressures: As indicated on Drawings.
 2. Maximum Lateral Deflection: For glass supported on all four edges, limit center-of-glass deflection at design wind pressure to not more than 1/50 times the short-side length or 1 inch, whichever is less.
 3. Differential Shading: Design glass to resist thermal stresses induced by differential shading within individual glass lites.

C. Safety Glazing: Where safety glazing is indicated, provide glazing that complies with 16 CFR 1201, Category II.

D. Thermal and Optical Performance Properties: Provide glass with performance properties specified, as indicated in manufacturer's published test data, based on procedures indicated below:

 1. For insulating-glass units, properties are based on units of thickness indicated for overall unit and for each lite.
 2. U-Factors: Center-of-glassing values, according to NFRC 100 and based on LBL's WINDOW 5.2 computer program, expressed as Btu/sq. ft. x h x deg F.
 3. Solar Heat-Gain Coefficient and Visible Transmittance: Center-of-glassing values, according to NFRC 200 and based on LBL's WINDOW 5.2 computer program.
 4. Visible Reflectance: Center-of-glassing values, according to NFRC 300.

2.3 GLASS PRODUCTS, GENERAL

A. Glazing Publications: Comply with published recommendations of glass product manufacturers and organizations below unless more stringent requirements are indicated. See these publications for glazing terms not otherwise defined in this Section or in referenced standards.
1. GANA Publications: "Glazing Manual."

B. Safety Glazing Labeling: Where safety glazing is indicated, permanently mark glazing with certification label of the SGCC or another certification agency acceptable to authorities having jurisdiction or manufacturer. Label shall indicate manufacturer's name, type of glass, thickness, and safety glazing standard with which glass complies.

C. Insulating-Glass Certification Program: Permanently marked either on spacers or on at least one component lite of units with appropriate certification label of IGCC.

D. Thickness: Where glass thickness is indicated, it is a minimum.
 1. Minimum Glass Thickness for Exterior Lites: 6 mm.
 2. Thickness of Tinted Glass: Provide same thickness for each tint color indicated throughout Project.

E. Strength: Where annealed float glass is indicated, provide annealed float glass, heat-strengthened float glass, or fully tempered float glass as needed to comply with "Performance Requirements" Article. Where heat-strengthened float glass is indicated, provide heat-strengthened float glass or fully tempered float glass as needed to comply with "Performance Requirements" Article. Where fully tempered float glass is indicated, provide fully tempered float glass.

2.4 GLASS PRODUCTS

A. Clear Annealed Float Glass: ASTM C1036, Type I, Class 1 (clear), Quality-Q3.

B. Fully Tempered Float Glass: ASTM C1048, Kind FT (fully tempered), Condition A (uncoated) unless otherwise indicated, Type I, Class 1 (clear) or Class 2 (tinted) as indicated, Quality-Q3.
 1. Fabrication Process: By horizontal (roller-hearth) process with roll-wave distortion parallel to bottom edge of glass as installed unless otherwise indicated.

C. Heat-Strengthened Float Glass: ASTM C1048, Kind HS (heat strengthened), Type I, Condition A (uncoated) unless otherwise indicated, Type I, Class 1 (clear) or Class 2 (tinted) as indicated, Quality-Q3.
 1. Fabrication Process: By horizontal (roller-hearth) process with roll-wave distortion parallel to bottom edge of glass as installed unless otherwise indicated.

D. Laminated Glass: ASTM C1172. Use materials that have a proven record of no tendency to bubble, discolor, or lose physical and mechanical properties after fabrication and installation.
1. Construction: Laminate glass with polyvinyl butyral interlayer unless fire-protection or fire-resistance rating is based on another product.
2. Interlayer Thickness: Provide thickness as needed to comply with requirements.
3. Interlayer Color: Clear unless otherwise indicated.

2.5 INSULATING GLASS

A. Insulating-Glass Units: Factory-assembled units consisting of sealed lites of glass separated by a dehydrated interspace, qualified according to ASTM E2190.
 1. Sealing System: Dual seal, with manufacturer's standard primary and secondary sealants.
 2. Perimeter Spacer: Manufacturer's standard spacer material and construction

2.6 ACCESSORIES

A. Glazing Materials: Select glazing sealants, tapes, gaskets and additional glazing materials of proven compatibility with other materials they will contact, including glass products, seals of insulating glass units and glazing channel substrates, under conditions of installation and service, as demonstrated by testing and field experience.
 1. Setting blocks to be 100% silicone with a durameter hardness of 85±5.

B. Glazing Sealants for Fire-Rated Glazing Products: Neutral-curing silicone glazing sealant complying with ASTM C920, Type S, Grade NS, Class 50, Use NT. Comply with sealant and glass manufacturers' written instructions for selecting glazing sealants suitable for applications indicated.

2.7 FABRICATION OF GLAZING UNITS

A. Fabricate glazing units in sizes required to fit openings indicated for Project, with edge and face clearances, edge and surface conditions, and bite complying with written instructions of product manufacturer and referenced glazing publications, to comply with system performance requirements.
 1. Allow for thermal movements from ambient and surface temperature changes acting on glass framing members and glazing components.
 a. Temperature Change: 120 deg F, ambient; 180 deg F, material surfaces.

B. Clean-cut or flat-grind vertical edges of butt-glazed monolithic lites to produce square edges with slight chamfers at junctions of edges and faces.

C. Grind smooth and polish exposed glass edges and corners.

PART 3 - EXECUTION

3.1 EXAMINATION
A. Examine framing, glazing channels, and stops, with Installer present, for compliance with the following:

1. Manufacturing and installation tolerances, including those for size, squareness, and offsets at corners.
2. Presence and functioning of weep systems.
3. Minimum required face and edge clearances.
4. Effective sealing between joints of glass-framing members.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Clean glazing channels and other framing members receiving glass immediately before glazing. Remove coatings not firmly bonded to substrates.

B. Examine glazing units to locate exterior and interior surfaces. Label or mark units as needed so that exterior and interior surfaces are readily identifiable. Do not use materials that leave visible marks in the completed Work.

3.3 GLAZING, GENERAL

A. Comply with combined written instructions of manufacturers of glass, sealants, gaskets, and other glazing materials, unless more stringent requirements are indicated, including those in referenced glazing publications.

B. Protect glass edges from damage during handling and installation. Remove damaged glass from Project site and legally dispose of off Project site. Damaged glass includes glass with edge damage or other imperfections that, when installed, could weaken glass, impair performance, or impair appearance.

C. Apply primers to joint surfaces where required for adhesion of sealants, as determined by preconstruction testing.

D. Install setting blocks in sill rabbets, sized and located to comply with referenced glazing publications, unless otherwise required by glass manufacturer. Set blocks in thin course of compatible sealant suitable for heel bead.

E. Do not exceed edge pressures stipulated by glass manufacturers for installing glass lites.

F. Provide spacers for glass lites where length plus width is larger than 50 inches.

1. Locate spacers directly opposite each other on both inside and outside faces of glass. Install correct size and spacing to preserve required face clearances, unless gaskets and glazing tapes are used that have demonstrated ability to maintain required face clearances and to comply with system performance requirements.

2. Provide 1/8-inch minimum bite of spacers on glass and use thickness equal to sealant width. With glazing tape, use thickness slightly less than final compressed thickness of tape.
G. Provide edge blocking where indicated or needed to prevent glass lites from moving sideways in glazing channel, as recommended in writing by glass manufacturer and according to requirements in referenced glazing publications.

H. Set glass lites in each series with uniform pattern, draw, bow, and similar characteristics.

I. Set glass lites with proper orientation so that coatings face exterior or interior as specified.

J. Where wedge-shaped gaskets are driven into one side of channel to pressurize sealant or gasket on opposite side, provide adequate anchorage so gasket cannot walk out when installation is subjected to movement.

K. Square cut wedge-shaped gaskets at corners and install gaskets in a manner recommended by gasket manufacturer to prevent corners from pulling away; seal corner joints and butt joints with sealant recommended by gasket manufacturer.

3.4 TAPE GLAZING

A. Position tapes on fixed stops so that, when compressed by glass, their exposed edges are flush with or protrude slightly above sightline of stops.

B. Install tapes continuously, but not necessarily in one continuous length. Do not stretch tapes to make them fit opening.

C. Cover vertical framing joints by applying tapes to heads and sills first, then to jambs. Cover horizontal framing joints by applying tapes to jambs, then to heads and sills.

D. Place joints in tapes at corners of opening with adjoining lengths butted together, not lapped. Seal joints in tapes with compatible sealant approved by tape manufacturer.

E. Do not remove release paper from tape until right before each glazing unit is installed.

F. Apply heel bead of elastomeric sealant.

G. Center glass lites in openings on setting blocks, and press firmly against tape by inserting dense compression gaskets formed and installed to lock in place against faces of removable stops. Start gasket applications at corners and work toward centers of openings.

H. Apply cap bead of elastomeric sealant over exposed edge of tape.

3.5 GASKET GLAZING (DRY)

A. Cut compression gaskets to lengths recommended by gasket manufacturer to fit openings exactly, with allowance for stretch during installation.

B. Insert soft compression gasket between glass and frame or fixed stop so it is securely in place with joints miter cut and bonded together at corners.
C. Installation with Drive-in Wedge Gaskets: Center glass lites in openings on setting blocks and press firmly against soft compression gasket by inserting dense compression gaskets formed and installed to lock in place against faces of removable stops. Start gasket applications at corners and work toward centers of openings. Compress gaskets to produce a weathertight seal without developing bending stresses in glass. Seal gasket joints with sealant recommended by gasket manufacturer.

D. Installation with Pressure-Glazing Stops: Center glass lites in openings on setting blocks and press firmly against soft compression gasket. Install dense compression gaskets and pressure-glazing stops, applying pressure uniformly to compression gaskets. Compress gaskets to produce a weathertight seal without developing bending stresses in glass. Seal gasket joints with sealant recommended by gasket manufacturer.

E. Install gaskets so they protrude past face of glazing stops.

3.6 CLEANING AND PROTECTION

A. Immediately after installation remove nonpermanent labels and clean surfaces.

B. Protect glass from contact with contaminating substances resulting from construction operations. Examine glass surfaces adjacent to or below exterior concrete and other masonry surfaces at frequent intervals during construction, but not less than once a month, for buildup of dirt, scum, alkaline deposits, or stains.

1. If, despite such protection, contaminating substances do come into contact with glass, remove substances immediately as recommended in writing by glass manufacturer. Remove and replace glass that cannot be cleaned without damage to coatings.

C. Remove and replace glass that is damaged during construction period.

D. Wash glass on both exposed surfaces not more than four days before date scheduled for inspections that establish date of Substantial Completion. Wash glass as recommended in writing by glass manufacturer.

3.7 MONOLITHIC GLASS SCHEDULE

A. Glass Type: Clear heat-strengthened float glass.

1. Minimum Thickness: 6 mm.
2. Safety glazing required where indicated.

3.8 INSULATING GLASS SCHEDULE

A. Glass Type: Low-E-coated, tinted insulating glass.

1. Basis-of-Design Product: Vitro Architectural Glass; Solarban 70XL.
2. Overall Unit Thickness: 1 inch.
3. Minimum Thickness of Each Glass Lite: 6 mm.
4. Outdoor Lite: Tinted heat-strengthened float glass.
5. Tint Color: Clear
8. Low-E Coating: Sputtered on second surface.
11. Visible Light Transmittance: 64 percent minimum.
13. Safety glazing required where indicated.

END OF SECTION
SECTION 088813

FIRE-RATED GLAZING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Fire-resistance-rated glazing.

1.3 DEFINITIONS

A. Glass Manufacturers: Firms that produce primary glass, fabricated glass, or both, as defined in referenced glazing publications.

B. Glass Thicknesses: Indicated by thickness designations in millimeters according to ASTM C1036.

1.4 COORDINATION

A. Coordinate glazing channel dimensions to provide necessary bite on glass, minimum edge and face clearances, and adequate sealant thicknesses, with reasonable tolerances.

1.5 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. Glass Samples: For each type of glass product; 12 inches square.

C. Glazing Schedule: List glass types and thicknesses for each size opening and location. Use same designations indicated on Drawings.

1.6 INFORMATIONAL SUBMITTALS

A. Qualification Data: For installers and glass testing agency.

B. Product Certificates: For each type of glass and glazing product, from manufacturer.

C. Sample Warranties: For special warranties.
1.7 QUALITY ASSURANCE

A. Installer Qualifications: A qualified installer who employs glass installers for this Project who are certified under the National Glass Association's Certified Glass Installer Program.

1.8 DELIVERY, STORAGE, AND HANDLING

A. Protect glazing materials according to manufacturer's written instructions. Prevent damage to glass and glazing materials from condensation, temperature changes, direct exposure to sun, or other causes.

1.9 FIELD CONDITIONS

A. Environmental Limitations: Do not deliver or install fire-resistant glazing until spaces are enclosed and weathertight and temporary HVAC system is operating and maintaining ambient temperature conditions at occupancy levels during the remainder of the construction period.

1.10 WARRANTY

A. Manufacturer's Special Warranty on Laminated Glass: Manufacturer agrees to replace laminated-glass units that deteriorate within specified warranty period. Deterioration of laminated glass is defined as defects developed from normal use that are not attributed to glass breakage or to maintaining and cleaning laminated glass contrary to manufacturer's written instructions. Defects include edge separation, delamination materially obstructing vision through glass, and blemishes exceeding those allowed by referenced laminated-glass standard.

1. Warranty Period: Five years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Source Limitations for Glass: Obtain from single source from single manufacturer for each glass type.

B. Source Limitations for Glazing Accessories: Obtain from single source from single manufacturer for each product and installation method.

2.2 PERFORMANCE REQUIREMENTS

A. General: Installed glazing systems shall withstand normal thermal movement and impact loads (where applicable) without failure, including loss or glass breakage attributable to the following: defective manufacture, fabrication, or installation; deterioration of glazing materials; or other defects in construction.
2.3 GLASS PRODUCTS, GENERAL

A. Glazing Publications: Comply with published recommendations of glass product manufacturers and organization below unless more stringent requirements are indicated. Refer to these publications for glazing terms not otherwise defined in this Section or in referenced standards.

B. Safety Glazing Labeling: Permanently mark glazing with certification label of the Safety Glazing Certification Council, another certification agency acceptable to authorities having jurisdiction, or the manufacturer. Label shall indicate manufacturer's name, type of glass, glass thickness, and safety glazing standard with which glass complies.

2.4 GLASS PRODUCTS

A. Float Glass: ASTM C1036, Type I, Quality-Q3, Class I (clear) unless otherwise indicated.

B. Tempered Float Glass: ASTM C1048, Kind FT (fully tempered), Condition A (uncoated) unless otherwise indicated, Type I, Class I (clear) unless otherwise indicated, Quality-Q3.

1. Fabrication Process: By horizontal (roller-hearth) process with roll-wave distortion parallel to bottom edge of glass as installed unless otherwise indicated.

C. Laminated Glass: ASTM C1172. Use materials that have a proven record of no tendency to bubble, discolor, or lose physical and mechanical properties after fabrication and installation.

1. Construction: Laminate glass with polyvinyl butyral interlayer unless fire-protection or fire-resistance rating is based on another product.
2. Interlayer Thickness: Provide thickness as needed to comply with requirements.
3. Interlayer Color: Clear unless otherwise indicated.

2.5 FIRE-RESISTANCE-RATED GLAZING

A. Fire-Resistance-Rated Glazing: Listed and labeled by a testing agency acceptable to authorities having jurisdiction, for fire-resistance ratings indicated, based on testing according to ASTM E119 or UL 263.

B. Fire-Resistance-Rated Glazing Labeling: Permanently mark fire-resistance-rated glazing with certification label of a testing agency acceptable to authorities having jurisdiction. Label shall indicate manufacturer's name, test standard, that the glazing is approved for use in walls, and the fire-resistance rating in minutes.

C. Laminated Glass with Intumescent Interlayers: Laminated glass made from multiple plies of uncoated, ultraclear float glass; with intumescent interlayers; and complying with 16 CFR 1201, Category II.
1. **Basis-of-Design Product:** Subject to compliance with requirements, provide SAFTI FIRST Fire Rated Glazing Solutions; SuperLite II-XL 60 or a comparable product by one of the following:
 b. Vetrotech Saint-Gobain.

2. Comprised of an inboard and outboard lite of clear tempered protecting a clear, fire resistive, intumescent interlayer.

3. **Thickness:** 1-1/8” standard to 7/8” thin profile.

4. **Weight:** 8 lbs/sq. ft. in 1-1/8” standard profile.

5. **Visible Light Transmission:** 0.856 with clear tempered

6. **U-Factor:** Must meet 0.90 with standard clear tempered make-up.

7. **Sound Transmission Rating:** Must provide a minimum of STC 42 rating in 1-1/8” standard profile.

8. **Outdoor/Indoor Transmission Class:** Must provide minimum OITC 39 rating in 1-1/8” standard profile.

9. **Fire Rating:** Must be fire rated to 60 minutes with hose stream and meet ASTM E-119.

10. **Impact Safety Resistance:** CPSC 16 CFR 1201 Cat. I & II

11. **Hard Body Impact Classification:** Must meet ASTM C1629/C1629M Level 3.

12. **Soft Body Impact Classification:** Must meet ASTM E695 Level 3.

13. **Surface Abrasion Resistance:** Must meet ASTM D4977 Level 3.

2.6 GLAZING ACCESSORIES

A. Provide glazing gaskets, glazing sealants, glazing tapes, setting blocks, spacers, edge blocks, and other glazing accessories that are compatible with glazing products and each other and are approved by testing agencies that listed and labeled fire-resistant glazing products with which products are used for applications and fire-protection ratings indicated.

B. Glazing Sealants for Fire-Rated Glazing Products: Neutral-curing silicone glazing sealant complying with ASTM C920, Type S, Grade NS, Class 50, Use NT. Comply with sealant and glass manufacturers' written instructions for selecting glazing sealants suitable for applications indicated.

C. Back-Bedding Mastic Glazing Tapes: Preformed, butyl-based, 100 percent solids elastomeric tape; nonstaining and nonmigrating in contact with nonporous surfaces; with or without spacer rod as recommended in writing by tape and glass manufacturers for application indicated; and complying with ASTM C1281 and AAMA 800 for products indicated below:

1. AAMA 804.3 tape, where indicated.
2. AAMA 806.3 tape, for glazing applications in which tape is subject to continuous pressure.
3. AAMA 807.3 tape, for glazing applications in which tape is not subject to continuous pressure.
D. Expanded Cellular Glazing Tapes: Closed-cell, PVC foam tapes; factory coated with adhesive on both surfaces; and complying with AAMA 800 for the following types:

1. AAMA 810.1, Type 1, for glazing applications in which tape acts as the primary sealant.
2. AAMA 810.1, Type 2, for glazing applications in which tape is used in combination with a full bead of liquid sealant.

2.7 MISCELLANEOUS GLAZING MATERIALS

A. General: Provide products of material, size, and shape complying with referenced glazing standard, requirements of manufacturers of glass and other glazing materials for application indicated, and with a proven record of compatibility with surfaces contacted in installation.

B. Cylindrical Glazing Sealant Backing: ASTM C1330, Type O (open-cell material), of size and density to control glazing sealant depth and otherwise produce optimum glazing sealant performance.

C. Perimeter Insulation for Fire-Resistive Glazing: Product that is approved by testing agency that listed and labeled fire-resistant glazing product with which it is used for application and fire-protection rating indicated.

2.8 FABRICATION OF GLAZING UNITS

A. Fabricate glazing units in sizes required to fit openings indicated for Project, with edge and face clearances, edge and surface conditions, and bite complying with written instructions of product manufacturer and referenced glazing publications, to comply with system performance requirements.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine framing, glazing channels, and stops, with Installer present, for compliance with manufacturing and installation tolerances, including those for size, squareness, and offsets at corners, and for compliance with minimum required face and edge clearances.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Clean glazing channels and other framing members receiving glass immediately before glazing. Remove coatings not firmly bonded to substrates.

B. Examine glazing units to locate fire side and protected side. Label or mark units as needed so that fire side and protected side are readily identifiable. Do not use materials that leave visible marks in the completed work.
3.3 GLAZING, GENERAL

A. Use methods approved by testing agencies that listed and labeled fire-resistant glazing products.

B. Comply with combined written instructions of manufacturers of glass, sealants, gaskets, and other glazing materials unless more stringent requirements are indicated, including those in referenced glazing publications.

C. Protect glass edges from damage during handling and installation. Remove damaged glass from Project site and legally dispose of off Project site. Damaged glass is glass with edge damage or other imperfections that, when installed, could weaken glass and impair performance and appearance.

D. Apply primers to joint surfaces where required for adhesion of sealants, as determined by preconstruction testing.

E. Install setting blocks in sill rabbets, sized and located to comply with referenced glazing publications unless otherwise required by glass manufacturer. Set blocks in thin course of compatible sealant suitable for heel bead.

F. Do not exceed edge pressures stipulated by glass manufacturers for installing glass lites.

G. Provide spacers for glass lites where length plus width is larger than 50 inches.
 1. Locate spacers directly opposite each other on both inside and outside faces of glass. Install correct size and spacing to preserve required face clearances unless gaskets and glazing tapes are used that have demonstrated ability to maintain required face clearances and to comply with system performance requirements.
 2. Provide 1/8-inch minimum bite of spacers on glass and use thickness equal to sealant width. With glazing tape, use thickness slightly less than final compressed thickness of tape.

H. Provide edge blocking where indicated or needed to prevent glass lites from moving sideways in glazing channel, as recommended in writing by glass manufacturer and according to requirements in referenced glazing publications.

I. Set glass lites with proper orientation so that coatings face fire side or protected side as specified.

J. Where wedge-shaped gaskets are driven into one side of channel to pressurize sealant or gasket on opposite side, provide adequate anchorage so gasket cannot walk out when installation is subjected to movement.

K. Square cut wedge-shaped gaskets at corners and install gaskets in a manner recommended by gasket manufacturer to prevent corners from pulling away; seal corner joints and butt joints with sealant recommended by gasket manufacturer.
3.4 **GASKET GLAZING (DRY)**

A. Cut compression gaskets to lengths recommended by gasket manufacturer to fit openings exactly, with allowance for stretch during installation.

B. Insert soft compression gasket between glass and frame or fixed stop, so it is securely in place with joints miter cut and bonded together at corners.

C. Installation with Drive-in Wedge Gaskets: Center glass lites in openings on setting blocks and press firmly against soft compression gasket by inserting dense compression gaskets formed and installed to lock in place against faces of removable stops. Start gasket applications at corners and work toward centers of openings.

D. Install gaskets so they protrude past face of glazing stops.

3.5 **SEALANT GLAZING (WET)**

A. Install continuous spacers, or spacers combined with cylindrical sealant backing, between glass lites and glazing stops to maintain glass face clearances. Secure spacers or spacers and backings in place and in position to control depth of installed sealant relative to edge clearance for optimum sealant performance.

B. Force sealants into glazing channels to eliminate voids and to ensure complete wetting or bond of sealant to glass and channel surfaces.

C. Tool exposed surfaces of sealants to provide a substantial washaway from glass.

3.6 **CLEANING AND PROTECTION**

A. Immediately after installation, remove nonpermanent labels and clean surfaces.

B. Protect glass from contact with contaminating substances resulting from construction operations. Examine glass surfaces adjacent to or below exterior concrete and other masonry surfaces at frequent intervals during construction, but not less than once a month, for buildup of dirt, scum, alkaline deposits, or stains.

 1. If, despite such protection, contaminating substances do come into contact with glass, remove substances immediately as recommended in writing by glass manufacturer.

C. Remove and replace glass that is damaged during construction period.

D. Wash glass on both exposed surfaces in each area of Project not more than four days before date scheduled for inspections that establish date of Substantial Completion. Wash glass as recommended in writing by glass manufacturer.
3.7 FIRE-RESISTANCE-RATED GLAZING SCHEDULE

A. Glass Type: 60-minute fire-resistance-rated glazing with 450 deg F temperature-rise limitation; laminated glass with intumescent interlayers.

END OF SECTION
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Non-load-bearing steel framing systems for interior partitions.
2. Suspension systems for interior ceilings and soffits.
3. Grid suspension systems for gypsum board ceilings.

B. Related Requirements:

1. Section 054000 "Cold-Formed Metal Framing" for exterior and interior load-bearing and exterior non-load-bearing wall studs; floor joists; and roof rafters and ceiling joists.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

1.4 INFORMATIONAL SUBMITTALS

A. Product Certificates: For each type of code-compliance certification for studs and tracks.

B. Evaluation Reports: For post-installed anchors and power-actuated fasteners, from ICC-ES or other qualified testing agency acceptable to authorities having jurisdiction.

1.5 QUALITY ASSURANCE

A. Code-Compliance Certification of Studs and Tracks: Provide documentation that framing members are certified according to the product-certification program of the Steel Framing Industry Association or the Steel Stud Manufacturers Association.
PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Fire-Test-Response Characteristics: For fire-resistance-rated assemblies that incorporate non-load-bearing steel framing, provide materials and construction identical to those tested in assembly indicated, according to ASTM E119 by an independent testing agency.

B. STC-Rated Assemblies: For STC-rated assemblies, provide materials and construction identical to those tested in assembly indicated on Drawings, according to ASTM E90 and classified according to ASTM E413 by an independent testing agency.

2.2 FRAMING SYSTEMS

A. Framing Members, General: Comply with ASTM C754 for conditions indicated.

1. Steel Sheet Components: Comply with ASTM C645 requirements for steel unless otherwise indicated.

B. Studs and Tracks: ASTM C645.

1. Steel Studs and Tracks:

 a. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

 1) ClarkDietrich.
 2) MarinoWARE.
 3) MRI Steel Framing, LLC.
 4) Phillips Manufacturing Co.

 b. Minimum Base-Steel Thickness: 0.0269 inch.
 c. Depth: As indicated on Drawings.

C. Slip-Type Head Joints: Where indicated, provide one of the following:

1. Clip System: Clips designed for use in head-of-wall deflection conditions that provide a positive attachment of studs to tracks while allowing 1-1/2-inch minimum vertical movement.

 a. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
1) ClarkDietrich.
2) MarinoWARE.
3) Super Stud Building Products Inc.

2. Single Long-Leg Track System: ASTM C645 top track with 2-inch-deep flanges in thickness not less than indicated for studs, installed with studs friction fit into top track and with continuous bridging located within 12 inches of the top of studs to provide lateral bracing.

3. Double-Track System: ASTM C645 top outer tracks, inside track with 2-inch-deep flanges in thickness not less than indicated for studs and fastened to studs, and outer track sized to friction-fit over inner track.

4. Deflection Track: Steel sheet top track manufactured to prevent cracking of finishes applied to interior partition framing resulting from deflection of structure above; in thickness not less than indicated for studs and in width to accommodate depth of studs.

 a. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

 1) ClarkDietrich.
 2) MarinoWARE.
 3) SCAFCO Steel Stud Company.

D. Firestop Tracks: Top track manufactured to allow partition heads to expand and contract with movement of structure while maintaining continuity of fire-resistance-rated assembly indicated; in thickness not less than indicated for studs and in width to accommodate depth of studs.

E. Flat Strap and Backing Plate: Steel sheet for blocking and bracing in length and width indicated.

 1. Minimum Base-Steel Thickness: 0.0296 inch.

F. Hat-Shaped, Rigid Furring Channels: ASTM C645.

 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

 a. ClarkDietrich.
 b. MarinoWARE.
 c. SCAFCO Steel Stud Company.

 2. Minimum Base-Steel Thickness: 0.0296 inch.
 3. Depth: As indicated on Drawings.
2.3 SUSPENSION SYSTEMS

A. Grid Suspension System for Gypsum Board Ceilings: ASTM C645, direct-hung system composed of main beams and cross-furring members that interlock.

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

 a. Armstrong World Industries, Inc.
 b. Rockfon (Rockwool International).
 c. Approved Equal.

2.4 AUXILIARY MATERIALS

A. General: Provide auxiliary materials that comply with referenced installation standards.

1. Fasteners for Steel Framing: Of type, material, size, corrosion resistance, holding power, and other properties required to fasten steel members to substrates.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas and substrates, with Installer present, and including welded hollow-metal frames, cast-in anchors, and structural framing, for compliance with requirements and other conditions affecting performance of the Work.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Suspended Assemblies: Coordinate installation of suspension systems with installation of overhead structure to ensure that inserts and other provisions for anchorages to building structure have been installed to receive hangers at spacing required to support the Work and that hangers will develop their full strength.

3.3 INSTALLATION, GENERAL

A. Installation Standard: ASTM C754.

1. Gypsum Board Assemblies: Also comply with requirements in ASTM C840 that apply to framing installation.

B. Install framing and accessories plumb, square, and true to line, with connections securely fastened.
C. Install supplementary framing, and blocking to support fixtures, equipment services, heavy trim, grab bars, toilet accessories, furnishings, or similar construction.

D. Install bracing at terminations in assemblies.

E. Do not bridge building control and expansion joints with non-load-bearing steel framing members. Frame both sides of joints independently.

3.4 INSTALLING FRAMED ASSEMBLIES

A. Install framing system components according to spacings indicated, but not greater than spacings required by referenced installation standards for assembly types.

1. Single-Layer Application: 16 inches o.c unless otherwise indicated.
2. Tile Backing Panels: 16 inches o.c. unless otherwise indicated.

B. Where studs are installed directly against exterior masonry walls or dissimilar metals at exterior walls, install isolation strip between studs and exterior wall.

C. Install studs so flanges within framing system point in same direction.

D. Install tracks at floors and overhead supports. Extend framing full height to structural supports or substrates above suspended ceilings except where partitions are indicated to terminate at suspended ceilings. Continue framing around ducts that penetrate partitions above ceiling.

1. Slip-Type Head Joints: Where framing extends to overhead structural supports, install to produce joints at tops of framing systems that prevent axial loading of finished assemblies.
2. Door Openings: Screw vertical studs at jambs to jamb anchor clips on door frames; install track section (for cripple studs) at head and secure to jamb studs.
 a. Install two studs at each jamb unless otherwise indicated.
 b. Install cripple studs at head adjacent to each jamb stud, with a minimum 1/2-inch clearance from jamb stud to allow for installation of control joint in finished assembly.
 c. Extend jamb studs through suspended ceilings and attach to underside of overhead structure.

3. Other Framed Openings: Frame openings other than door openings the same as required for door openings unless otherwise indicated. Install framing below sills of openings to match framing required above door heads.
4. Fire-Resistance-Rated Partitions: Install framing to comply with fire-resistance-rated assembly indicated and support closures and to make partitions continuous from floor to underside of solid structure.
 a. Firestop Track: Where indicated, install to maintain continuity of fire-resistance-rated assembly indicated.
5. Sound-Rated Partitions: Install framing to comply with sound-rated assembly indicated.

E. Direct Furring:
 1. Screw to wood framing.
 2. Attach to concrete or masonry with stub nails, screws designed for masonry attachment, or powder-driven fasteners spaced 24 inches o.c.

F. Installation Tolerance: Install each framing member so fastening surfaces vary not more than 1/8 inch from the plane formed by faces of adjacent framing.

3.5 INSTALLING CEILING SUSPENSION SYSTEMS

A. Grid Suspension Systems: Attach perimeter wall track or angle where grid suspension systems meet vertical surfaces. Mechanically join main beam and cross-furring members to each other and butt-cut to fit into wall track.

B. Installation Tolerances: Install suspension systems that are level to within 1/8 inch in 12 feet measured lengthwise on each member that will receive finishes and transversely between parallel members that will receive finishes.

END OF SECTION
SECTION 092900
GYPSUM BOARD

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Interior gypsum board.
 2. Tile backing panels.

B. Related Requirements:
 1. Section 061600 "Sheathing" for gypsum sheathing for exterior walls.
 2. Section 092216 "Non-Structural Metal Framing" for non-structural steel framing and suspension systems that support gypsum board panels.

1.3 ACTION SUBMITTALS
A. Product Data: For each type of product.

1.4 DELIVERY, STORAGE AND HANDLING
A. Store materials inside under cover and keep them dry and protected against weather, condensation, direct sunlight, construction traffic, and other potential causes of damage. Stack panels flat and supported on risers on a flat platform to prevent sagging.

1.5 FIELD CONDITIONS
A. Environmental Limitations: Comply with ASTM C840 requirements or gypsum board manufacturer's written instructions, whichever are more stringent.

B. Do not install paper-faced gypsum panels until installation areas are enclosed and conditioned.

C. Do not install panels that are wet, moisture damaged, and mold damaged.
 1. Indications that panels are wet or moisture damaged include, but are not limited to, discoloration, sagging, or irregular shape.
2. Indications that panels are mold damaged include, but are not limited to, fuzzy or splotchy surface contamination and discoloration.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Fire-Resistance-Rated Assemblies: For fire-resistance-rated assemblies, provide materials and construction identical to those tested in assembly indicated according to ASTM E119 by an independent testing agency.

B. STC-Rated Assemblies: For STC-rated assemblies, provide materials and construction identical to those tested in assembly indicated according to ASTM E90 and classified according to ASTM E413 by an independent testing agency.

2.2 GYPSUM BOARD, GENERAL

A. Size: Provide maximum lengths and widths available that will minimize joints in each area and that correspond with support system indicated.

2.3 INTERIOR GYPSUM BOARD

A. Gypsum Wallboard: ASTM C1396/C1396M.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. CertainTeed Corporation.
 b. Georgia-Pacific Gypsum LLC.
 c. National Gypsum Company.
 2. Thickness: As indicated on drawings.

B. Gypsum Board, Type X: ASTM C1396/C1396M.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. CertainTeed Corporation.
 b. Georgia-Pacific Gypsum LLC.
 c. National Gypsum Company.
 2. Thickness: 5/8 inch.

C. Gypsum Ceiling Board: ASTM C1396/C1396M.
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. CertainTeed Corporation.
 b. Georgia-Pacific Gypsum LLC.
 c. National Gypsum Company.

2. Thickness: 1/2 inch.

2.4 TILE BACKING PANELS
 A. Glass-Mat, Water-Resistant Backing Board: ASTM C1178/C1178M, with manufacturer's standard edges.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. CertainTeed Corporation.
 b. Georgia-Pacific Gypsum LLC.
 c. National Gypsum Company.
 2. Core: 5/8-inch, Type X.
 3. Mold Resistance: ASTM D3273, score of 10 as rated according to ASTM D3274.

2.5 TRIM ACCESSORIES
 A. Interior Trim: ASTM C1047.
 1. Material: Galvanized or aluminum-coated steel sheet or rolled zinc.
 2. Shapes:
 a. Cornerbead.
 b. LC-Bead: J-shaped; exposed long flange receives joint compound.
 c. L-Bead: L-shaped; exposed long flange receives joint compound.
 d. U-Bead: J-shaped; exposed short flange does not receive joint compound.

2.6 JOINT TREATMENT MATERIALS
 A. General: Comply with ASTM C475/C475M.
 B. Joint Tape:
 1. Interior Gypsum Board: Paper.
 2. Tile Backing Panels: As recommended by panel manufacturer.
 C. Joint Compound for Interior Gypsum Board: For each coat, use formulation that is compatible with other compounds applied on previous or for successive coats.
1. Prefilling: At open joints, rounded or beveled panel edges, and damaged surface areas, use setting-type taping compound.
2. Embedding and First Coat: For embedding tape and first coat on joints, fasteners, and trim flanges, use drying-type, all-purpose compound.
3. Fill Coat: For second coat, use drying-type, all-purpose compound.
4. Finish Coat: For third coat, use drying-type, all-purpose compound.

D. Joint Compound for Tile Backing Panels:
1. Glass-Mat, Water-Resistant Backing Panel: As recommended by backing panel manufacturer.
2. Cementitious Backer Units: As recommended by backer unit manufacturer.
3. Water-Resistant Gypsum Backing Board: Use setting-type taping compound and setting-type, sandable topping compound.

2.7 AUXILIARY MATERIALS
A. General: Provide auxiliary materials that comply with referenced installation standards and manufacturer's written instructions.

B. Steel Drill Screws: ASTM C1002 unless otherwise indicated.
1. Use screws complying with ASTM C954 for fastening panels to steel members from 0.033 to 0.112 inch thick.
2. For fastening cementitious backer units, use screws of type and size recommended by panel manufacturer.

C. Sound-Attenuation Blankets: ASTM C665, Type I (blankets without membrane facing) produced by combining thermosetting resins with mineral fibers manufactured from glass, slag wool, or rock wool.

D. Acoustical Sealant: Manufacturer's standard nonsag, paintable, nonstaining latex sealant complying with ASTM C834. Product effectively reduces airborne sound transmission through perimeter joints and openings in building construction as demonstrated by testing representative assemblies according to ASTM E90.

E. Thermal Insulation: As specified in Section 072100 "Thermal Insulation."

PART 3 - EXECUTION

3.1 EXAMINATION
A. Examine areas and substrates including welded hollow-metal frames and support framing, with Installer present, for compliance with requirements and other conditions affecting performance of the Work.

B. Examine panels before installation. Reject panels that are wet, moisture damaged, and mold damaged.
C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 APPLYING AND FINISHING PANELS, GENERAL

A. Comply with ASTM C840.

B. Install ceiling panels across framing to minimize the number of abutting end joints and to avoid abutting end joints in central area of each ceiling. Stagger abutting end joints of adjacent panels not less than one framing member.

C. Install panels with face side out. Butt panels together for a light contact at edges and ends with not more than 1/16 inch of open space between panels. Do not force into place.

D. Locate edge and end joints over supports, except in ceiling applications where intermediate supports or gypsum board back-blocking is provided behind end joints. Do not place tapered edges against cut edges or ends. Stagger vertical joints on opposite sides of partitions. Do not make joints other than control joints at corners of framed openings.

E. Form control and expansion joints with space between edges of adjoining gypsum panels.

F. Cover both faces of support framing with gypsum panels in concealed spaces (above ceilings, etc.), except in chases braced internally.

 1. Unless concealed application is indicated or required for sound, fire, air, or smoke ratings, coverage may be accomplished with scraps of not less than 8 sq. ft. in area.
 2. Fit gypsum panels around ducts, pipes, and conduits.
 3. Where partitions intersect structural members projecting below underside of floor/roof slabs and decks, cut gypsum panels to fit profile formed by structural members; allow 1/4- to 3/8-inch-wide joints to install sealant.

G. Isolate perimeter of gypsum board applied to non-load-bearing partitions at structural abutments. Provide 1/4- to 1/2-inch-wide spaces at these locations and trim edges with edge trim where edges of panels are exposed. Seal joints between edges and abutting structural surfaces with acoustical sealant.

H. Attachment to Steel Framing: Attach panels so leading edge or end of each panel is attached to open (unsupported) edges of stud flanges first.

I. Wood Framing: Install gypsum panels over wood framing, with floating internal corner construction. Do not attach gypsum panels across the flat grain of wide-dimension lumber, including floor joists and headers. Float gypsum panels over these members or provide control joints to counteract wood shrinkage.

J. STC-Rated Assemblies: Seal construction at perimeters, behind control joints, and at openings and penetrations with a continuous bead of acoustical sealant. Install acoustical sealant at both faces of partitions at perimeters and through penetrations. Comply with ASTM C919 and with manufacturer’s written instructions for locating edge trim and
closing off sound-flanking paths around or through assemblies, including sealing partitions above acoustical ceilings.

K. Install sound attenuation blankets before installing gypsum panels unless blankets are readily installed after panels have been installed on one side.

3.3 APPLYING INTERIOR GYPSUM BOARD

A. Single-Layer Application:

1. On ceilings, apply gypsum panels before wall/partition board application to greatest extent possible and at right angles to framing unless otherwise indicated.

2. On partitions/walls, apply gypsum panels vertically (parallel to framing unless otherwise indicated or required by fire-resistance-rated assembly, and minimize end joints.

 a. Stagger abutting end joints not less than one framing member in alternate courses of panels.

 b. At stairwells and other high walls, install panels horizontally unless otherwise indicated or required by fire-resistance-rated assembly.

3. On Z-shaped furring members, apply gypsum panels vertically (parallel to framing) with no end joints. Locate edge joints over furring members.

4. Fastening Methods: Apply gypsum panels to supports with steel drill screws.

B. Multilayer Application:

1. On ceilings, apply gypsum board indicated for base layers before applying base layers on walls/partitions; apply face layers in same sequence. Apply base layers at right angles to framing members and offset face-layer joints one framing member, 16 inches minimum, from parallel base-layer joints, unless otherwise indicated or required by fire-resistance-rated assembly.

2. On partitions/walls, apply gypsum board indicated for base layers and face layers vertically (parallel to framing) with joints of base layers located over stud or furring member and face-layer joints offset at least one stud or furring member with base-layer joints unless otherwise indicated or required by fire-resistance-rated assembly. Stagger joints on opposite sides of partitions.

3. On Z-shaped furring members, apply base layer vertically (parallel to framing) and face layer either vertically (parallel to framing) or horizontally (perpendicular to framing) with vertical joints offset at least one furring member. Locate edge joints of base layer over furring members.

4. Fastening Methods: Fasten base layers and face layers separately to supports with screws.

3.4 APPLYING TILE BACKING PANELS

A. Glass-Mat, Water-Resistant Backing Panels: Comply with manufacturer's written installation instructions and install at locations indicated to receive tile. Install with 1/4-inch gap where panels abut other construction or penetrations.
B. Where tile backing panels abut other types of panels in same plane, shim surfaces to produce a uniform plane across panel surfaces.

3.5 INSTALLING TRIM ACCESSORIES

A. General: For trim with back flanges intended for fasteners, attach to framing with same fasteners used for panels. Otherwise, attach trim according to manufacturer's written instructions.

B. Control Joints: Install control joints according to ASTM C840 and in specific locations approved by Architect for visual effect.

C. Interior Trim: Install in the following locations:
 1. Cornerbead: Use at outside corners.
 2. LC-Bead: Use at exposed panel edges.
 3. L-Bead: Use where indicated.
 4. U-Bead: Use at exposed panel edges.

3.6 FINISHING GYPSUM BOARD

A. General: Treat gypsum board joints, interior angles, edge trim, control joints, penetrations, fastener heads, surface defects, and elsewhere as required to prepare gypsum board surfaces for decoration. Promptly remove residual joint compound from adjacent surfaces.

B. Prefill open joints, rounded or beveled edges, and damaged surface areas.

C. Apply joint tape over gypsum board joints, except for trim products specifically indicated as not intended to receive tape.

D. Gypsum Board Finish Levels: Finish panels to levels indicated below and according to ASTM C840:
 1. Level 1: Ceiling plenum areas, concealed areas, and where indicated.
 2. Level 2: Panels that are substrate for tile.
 3. Level 3 is suitable for surfaces receiving medium- or heavy-textured finishes before painting or heavy wallcoverings where lighting conditions are not critical.
 4. Level 4: At panel surfaces that will be exposed to view unless otherwise indicated.
 a. Primer and its application to surfaces are specified in Section 099123 "Interior Painting."
 5. Level 5: Where indicated on Drawings.
 a. Primer and its application to surfaces are specified in Section 099123 "Interior Painting."
3.7 PROTECTION

A. Protect adjacent surfaces from drywall compound and promptly remove from floors and other non-drywall surfaces. Repair surfaces stained, marred, or otherwise damaged during drywall application.

B. Protect installed products from damage from weather, condensation, direct sunlight, construction, and other causes during remainder of the construction period.

C. Remove and replace panels that are wet, moisture damaged, and mold damaged.
 1. Indications that panels are wet or moisture damaged include, but are not limited to, discoloration, sagging, or irregular shape.
 2. Indications that panels are mold damaged include, but are not limited to, fuzzy or splotchy surface contamination and discoloration.

END OF SECTION
SECTION 093013
CERAMIC TILING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary
 Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Porcelain tile.
 2. Glazed wall tile.
 3. Metal edge strips.

B. Related Requirements:
 1. Section 079200 "Joint Sealants" for sealing of expansion, contraction, control,
 and isolation joints in tile surfaces.
 2. Section 092900 "Gypsum Board" for glass-mat, water-resistant backer board.

1.3 DEFINITIONS

A. General: Definitions in the ANSI A108 series of tile installation standards and in
 ANSI A137.1 apply to Work of this Section unless otherwise specified.

B. ANSI A108 Series: ANSI A108.01, ANSI A108.02, ANSI A108.1A, ANSI A108.1B,
 ANSI A108.1C, ANSI A108.4, ANSI A108.5, ANSI A108.6, ANSI A108.8,
 ANSI A108.9, ANSI A108.10, ANSI A108.11, ANSI A108.12, ANSI A108.13,
 ANSI A108.14, ANSI A108.15, ANSI A108.16, and ANSI A108.17, which are contained
 in its "Specifications for Installation of Ceramic Tile."

C. Face Size: Actual tile size, excluding spacer lugs.

D. Module Size: Actual tile size plus joint width indicated.

1.4 PREINSTALLATION MEETINGS

A. Preinstallation Conference: Conduct conference at Project site.
 1. Review requirements in ANSI A108.01 for substrates and for preparation by
 other trades.
1.5 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. Shop Drawings: Show locations of each type of tile and tile pattern. Show widths, details, and locations of expansion, contraction, control, and isolation joints in tile substrates and finished tile surfaces.

C. Samples for Verification:
 1. Full-size units of each type and composition of tile and for each color and finish required.
 2. Assembled samples mounted on a rigid panel, with grouted joints, for each type and composition of tile and for each color and finish required. Make samples at least 36 inches square, but not fewer than four tiles. Use grout of type and in color or colors approved for completed Work.
 3. Full-size units of each type of trim and accessory for each color and finish required.
 4. Metal edge strips in 6-inch lengths.

1.6 INFORMATIONAL SUBMITTALS

A. Qualification Data: For Installer.

1.7 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match and are from same production runs as products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Tile and Trim Units: Furnish quantity of full-size units equal to 3 percent of amount installed for each type, composition, color, pattern, and size indicated.
 2. Grout: Furnish quantity of grout equal to 3 percent of amount installed for each type, composition, and color indicated.

1.8 QUALITY ASSURANCE

A. Installer Qualifications:
 1. Installer is a Five-Star member of the National Tile Contractors Association or a Trowel of Excellence member of the Tile Contractors' Association of America.
 2. Installer's supervisor for Project holds the International Masonry Institute's Foreman Certification.
 3. Installer employs at least one installer for Project that has completed the Advanced Certification for Tile Installers (ACT) certification for installation of large format tile.

B. Mockups: Build mockups to verify selections made under Sample submittals and to demonstrate aesthetic effects and set quality standards for materials and execution.
1. Build mockup of floor tile installation.
2. Build mockup of wall tile installation.
3. Subject to compliance with requirements, approved mockups may become part of the completed Work if undisturbed at time of Substantial Completion.

1.9 DELIVERY, STORAGE, AND HANDLING

A. Deliver and store packaged materials in original containers with seals unbroken and labels intact until time of use. Comply with requirements in ANSI A137.1 for labeling tile packages.

B. Store tile and cementitious materials on elevated platforms, under cover, and in a dry location.

C. Store aggregates where grading and other required characteristics can be maintained and contamination can be avoided.

D. Store liquid materials in unopened containers and protected from freezing.

1.10 FIELD CONDITIONS

A. Environmental Limitations: Do not install tile until construction in spaces is complete and ambient temperature and humidity conditions are maintained at the levels indicated in referenced standards and manufacturer's written instructions.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Source Limitations for Tile: Obtain tile of each type and color or finish from single source or producer.

 1. Obtain tile of each type and color or finish from same production run and of consistent quality in appearance and physical properties for each contiguous area.

B. Source Limitations for Setting and Grouting Materials: Obtain ingredients of a uniform quality for each mortar, adhesive, and grout component from single manufacturer and each aggregate from single source or producer.

 1. Obtain setting and grouting materials, except for unmodified Portland cement and aggregate, from single manufacturer.

C. Source Limitations for Other Products: Obtain each of the following products specified in this Section from a single manufacturer:

 1. Metal edge strips.

2.2 PRODUCTS, GENERAL
A. ANSI Ceramic Tile Standard: Provide tile that complies with ANSI A137.1 for types, compositions, and other characteristics indicated.

1. Provide tile complying with Standard grade requirements.

B. ANSI Standards for Tile Installation Materials: Provide materials complying with ANSI A108.02, ANSI standards referenced in other Part 2 articles, ANSI standards referenced by TCNA installation methods specified in tile installation schedules, and other requirements specified.

C. Factory Blending: For tile exhibiting color variations within ranges, blend tile in factory and package so tile units taken from one package show same range in colors as those taken from other packages and match approved Samples.

2.3 TILE PRODUCTS

A. Ceramic Tile Type T-1: Porcelain floor tile.

1. Basis-of-Design Product: Subject to compliance with requirements, provide Emil Ceramica; Stone Box or a comparable product by one of the following:

a. Approved Equal

2. Certification: Tile certified by the Porcelain Tile Certification Agency.

3. Face Size: 18 inch by 36 inch nominal.

4. Face Size Variation: Rectified.

5. Thickness: 3/8 inch.

6. Face: Plain with square edges.

7. Dynamic Coefficient of Friction: Not less than 0.42.

8. Tile Color, Glaze, and Pattern: As indicated on drawings.

9. Grout Color: As indicated on drawings.

B. Ceramic Tile Type T-2: Porcelain floor tile.

1. Basis-of-Design Product: Subject to compliance with requirements, provide Florida Tile; Edge or a comparable product by one of the following:

a. Approved Equal

2. Certification: Tile certified by the Porcelain Tile Certification Agency.

3. Face Size: 12 inch by 24 inch nominal.

4. Face Size Variation: Rectified.

5. Thickness: 3/8 inch.

6. Face: Plain with square edges.

7. Dynamic Coefficient of Friction: Not less than 0.42.

8. Tile Color, Glaze, and Pattern: As indicated on drawings.

9. Grout Color: As indicated on drawings.
C. Ceramic Tile Type T-3: Porcelain wall tile.

1. Basis-of-Design Product: Subject to compliance with requirements, provide Trinity Tile; Cadence or a comparable product by one of the following:
 a. Approved Equal

2. Module Size: 12 inch by 24 inch nominal.
3. Face Size Variation: Rectified.
5. Face: Plain with modified square edges.
6. Tile Color and Pattern: As indicated on drawings.
7. Grout Color: As indicated on drawings.
8. Trim Units: Coordinated with sizes and coursing of adjoining flat tile where applicable and matching characteristics of adjoining flat tile. Provide shapes as follows, selected from manufacturer's standard shapes:
 a. External Corners for Thinset Mortar Installations: Surface bullnose, same size as adjoining flat tile.
 b. Internal Corners: Field-butted square corners. For coved base and cap use angle pieces designed to fit with stretcher shapes.

9. Coordinating Base B-3: Provide matching tile base in size indicated on drawings

D. Ceramic Tile Type T-3 & T-4: Porcelain wall tile.

1. Basis-of-Design Product: Subject to compliance with requirements, provide Architectural Ceramics; Classic Collection or a comparable product by one of the following:
 a. Approved Equal

3. Face Size Variation: Rectified.
5. Face: Plain with modified square edges.
6. Tile Color and Pattern: As indicated on drawings.
7. Grout Color: As indicated on drawings.
8. Trim Units: Coordinated with sizes and coursing of adjoining flat tile where applicable and matching characteristics of adjoining flat tile. Provide shapes as follows, selected from manufacturer's standard shapes:
 a. External Corners for Thinset Mortar Installations: Surface bullnose, same size as adjoining flat tile.
 b. Internal Corners: Field-butted square corners. For coved base and cap use angle pieces designed to fit with stretcher shapes.

2.4 SETTING MATERIALS
A. Improved Modified Dry-Set Mortar (Thinset): ANSI A118.15.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Bonsal American, an Oldcastle company.
 b. Custom Building Products.
 c. H.B. Fuller Construction Products Inc. / TEC.
 d. LATICRETE SUPERCAP, LLC.

2. Provide prepackaged, dry-mortar mix containing dry, redispersible, vinyl acetate or acrylic additive to which only water must be added at Project site.

3. For wall applications, provide mortar that complies with requirements for nonsagging mortar in addition to the other requirements in ANSI A118.15.

2.5 GROUT MATERIALS

A. High-Performance Tile Grout: ANSI A118.7.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Bostik, Inc.
 b. Custom Building Products.
 c. H.B. Fuller Construction Products Inc. / TEC.
 d. LATICRETE SUPERCAP, LLC.

2. Polymer Type: Ethylene vinyl acetate or acrylic additive, in dry, redispersible form, prepackaged with other dry ingredients.

2.6 MISCELLANEOUS MATERIALS

A. Trowelable Underlayments and Patching Compounds: Latex-modified, portland cement-based formulation provided or approved by manufacturer of tile-setting materials for installations indicated.

B. Vapor-Retarder Membrane: Polyethylene sheeting, ASTM D4397, 4.0 mils thick.

C. Metal Edge Strips: Angle or L-shaped, height to match tile and setting-bed thickness, metallic or combination of metal and PVC or neoprene base, designed specifically for flooring applications; stainless-steel, ASTM A666, 300 Series exposed-edge material.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Ceramic Tool Company, Inc.
 c. Schluter.
D. **Tile Cleaner**: A neutral cleaner capable of removing soil and residue without harming tile and grout surfaces, specifically approved for materials and installations indicated by tile and grout manufacturers.

E. **Floor Sealer**: Manufacturer's standard product for sealing grout joints and that does not change color or appearance of grout.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Bonsal American, an Oldcastle company.
 b. Custom Building Products.
 c. Jamo Inc.
 d. Southern Grouts & Mortars, Inc.

2.7 MIXING MORTARS AND GROUT

A. Mix mortars and grouts to comply with referenced standards and mortar and grout manufacturers' written instructions.

B. Add materials, water, and additives in accurate proportions.

C. Obtain and use type of mixing equipment, mixer speeds, mixing containers, mixing time, and other procedures to produce mortars and grouts of uniform quality with optimum performance characteristics for installations indicated.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates, areas, and conditions where tile will be installed, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.

1. Verify that substrates for setting tile are firm; dry; clean; free of coatings that are incompatible with tile-setting materials, including curing compounds and other substances that contain soap, wax, oil, or silicone; and comply with flatness tolerances required by ANSI A108.01 for installations indicated.

2. Verify that concrete substrates for tile floors installed with thinset mortar comply with surface finish requirements in ANSI A108.01 for installations indicated.

 a. Verify that surfaces that received a steel trowel finish have been mechanically scarified.

 b. Verify that protrusions, bumps, and ridges have been removed by sanding or grinding.
3. Verify that installation of grounds, anchors, recessed frames, electrical and mechanical units of work, and similar items located in or behind tile has been completed.

4. Verify that joints and cracks in tile substrates are coordinated with tile joint locations; if not coordinated, adjust joint locations in consultation with Architect.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Fill cracks, holes, and depressions in concrete substrates for tile floors installed with thinset mortar with trowelable leveling and patching compound specifically recommended by tile-setting material manufacturer.

B. Where indicated, prepare substrates to receive waterproof membrane by applying a reinforced mortar bed that complies with ANSI A108.1A and is sloped 1/4 inch per foot toward drains.

C. Blending: For tile exhibiting color variations, verify that tile has been factory blended and packaged so tile units taken from one package show same range of colors as those taken from other packages and match approved Samples. If not factory blended, either return to manufacturer or blend tiles at Project site before installing.

3.3 INSTALLATION OF CERAMIC TILE

A. Comply with TCNA's "Handbook for Ceramic, Glass, and Stone Tile Installation" for TCNA installation methods specified in tile installation schedules. Comply with parts of the ANSI A108 series "Specifications for Installation of Ceramic Tile" that are referenced in TCNA installation methods, specified in tile installation schedules, and apply to types of setting and grouting materials used.

 1. For the following installations, follow procedures in the ANSI A108 series of tile installation standards for providing 95 percent mortar coverage:

 a. Tile floors in wet areas.
 b. Tile floors consisting of tiles 8 by 8 inches or larger.

B. Extend tile work into recesses and under or behind equipment and fixtures to form complete covering without interruptions unless otherwise indicated. Terminate work neatly at obstructions, edges, and corners without disrupting pattern or joint alignments.

C. Accurately form intersections and returns. Perform cutting and drilling of tile without marring visible surfaces. Carefully grind cut edges of tile abutting trim, finish, or built-in items for straight aligned joints. Fit tile closely to electrical outlets, piping, fixtures, and other penetrations so plates, collars, or covers overlap tile.

D. Provide manufacturer's standard trim shapes where necessary to eliminate exposed tile edges.
E. Where accent tile differs in thickness from field tile, vary setting-bed thickness so that tiles are flush.

F. Jointing Pattern: Lay tile in grid pattern unless otherwise indicated. Lay out tile work and center tile fields in both directions in each space or on each wall area. Lay out tile work to minimize the use of pieces that are less than half of a tile. Provide uniform joint widths unless otherwise indicated.

1. Where adjoining tiles on floor, base, walls, or trim are specified or indicated to be same size, align joints.
2. Where tiles are specified or indicated to be whole integer multiples of adjoining tiles on floor, base, walls, or trim, align joints unless otherwise indicated.

G. Joint Widths: Unless otherwise indicated, install tile with the following joint widths:

1. Wall Tile: 1/8 inch.

H. Expansion Joints: Provide expansion joints and other sealant-filled joints, including control, contraction, and isolation joints, where indicated. Form joints during installation of setting materials, mortar beds, and tile. Do not saw-cut joints after installing tiles.

1. Where joints occur in concrete substrates, locate joints in tile surfaces directly above them.

I. Metal Edge Strips: Install at locations indicated and the following:

1. Where exposed edge of tile flooring meets carpet, wood, or other flooring that finishes flush with or below top of tile and no threshold is indicated.

J. Floor Sealer: Apply floor sealer to grout joints in tile floors according to floor-sealer manufacturer's written instructions. As soon as floor sealer has penetrated grout joints, remove excess sealer and sealer from tile faces by wiping with soft cloth.

3.4 ADJUSTING AND CLEANING

A. Remove and replace tile that is damaged or that does not match adjoining tile. Provide new matching units, installed as specified and in a manner to eliminate evidence of replacement.

B. Cleaning: On completion of placement and grouting, clean all ceramic tile surfaces so they are free of foreign matter.

1. Remove grout residue from tile as soon as possible.
2. Clean grout smears and haze from tile according to tile and grout manufacturer's written instructions but no sooner than 10 days after installation. Use only cleaners recommended by tile and grout manufacturers and only after determining that cleaners are safe to use by testing on samples of tile and other
surfaces to be cleaned. Protect metal surfaces and plumbing fixtures from effects of cleaning. Flush surfaces with clean water before and after cleaning.

3.5 PROTECTION

A. Protect installed tile work with kraft paper or other heavy covering during construction period to prevent staining, damage, and wear. If recommended by tile manufacturer, apply coat of neutral protective cleaner to completed tile walls and floors.

B. Prohibit foot and wheel traffic from tiled floors for at least seven days after grouting is completed.

C. Before final inspection, remove protective coverings and rinse neutral protective cleaner from tile surfaces.

3.6 INTERIOR CERAMIC TILE INSTALLATION SCHEDULE

A. Interior Floor Installations, Concrete Subfloor:

1. Ceramic Tile Installation: TCNA F113; thinset mortar.

 a. Ceramic Tile Type: T-1.
 b. Thinset Mortar: Improved modified dry-set mortar.

B. Interior Wall Installations, Wood or Metal Studs or Furring:

1. Ceramic Tile Installation: TCNA W245 or TCNA W248; thinset mortar on glass-mat, water-resistant gypsum backer board.

 a. Ceramic Tile Type: T-2 and T-3.
 b. Thinset Mortar: Improved modified dry-set mortar.

END OF SECTION
SECTION 095113
ACOUSTICAL PANEL CEILINGS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section includes acoustical panels and exposed suspension systems for interior ceilings.

1.3 ACTION SUBMITTALS
A. Product Data: For each type of product.
B. Samples: For each exposed product and for each color and texture specified, 6 inches in size.

1.4 INFORMATIONAL SUBMITTALS
A. Coordination Drawings: Reflected ceiling plans, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:

1. Ceiling suspension-system members.
2. Structural members to which suspension systems will be attached.
3. Method of attaching hangers to building structure.
 a. Furnish layouts for cast-in-place anchors, clips, and other ceiling attachment devices whose installation is specified in other Sections.
4. Carrying channels or other supplemental support for hanger-wire attachment where conditions do not permit installation of hanger wires at required spacing.
5. Size and location of initial access modules for acoustical panels.
6. Items penetrating finished ceiling and ceiling-mounted items including the following:
 a. Lighting fixtures.
 b. Diffusers.
 c. Grilles.
 d. Speakers
 e. Sprinklers
7. Show operation of hinged and sliding components covered by or adjacent to acoustical panels.

B. Evaluation Reports: For each acoustical panel ceiling suspension system from ICC-ES.

1.5 CLOSEOUT SUBMITTALS

A. Maintenance Data: For finishes to include in maintenance manuals.

1.6 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials, from the same product run, that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Acoustical Ceiling Units: Full-size panels equal to 2 percent of quantity installed.
2. Suspension-System Components: Quantity of each exposed component equal to 2 percent of quantity installed.

1.7 DELIVERY, STORAGE, AND HANDLING

A. Deliver acoustical panels, suspension-system components, and accessories to Project site and store them in a fully enclosed, conditioned space where they will be protected against damage from moisture, humidity, temperature extremes, direct sunlight, surface contamination, and other causes.

B. Before installing acoustical panels, permit them to reach room temperature and a stabilized moisture content.

1.8 FIELD CONDITIONS

A. Environmental Limitations: Do not install acoustical panel ceilings until spaces are enclosed and weathertight, wet-work in spaces is complete and dry, work above ceilings is complete, and ambient temperature and humidity conditions are maintained at the levels indicated for Project when occupied for its intended use.

1. Pressurized Plenums: Operate ventilation system for not less than 48 hours before beginning acoustical panel ceiling installation.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Source Limitations: Obtain each type of acoustical ceiling panel and its supporting suspension system from single source from single manufacturer.
2.2 PERFORMANCE REQUIREMENTS

A. Surface-Burning Characteristics: Comply with ASTM E84; testing by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.
 1. Flame-Spread Index: Class A according to ASTM E1264.
 2. Smoke-Developed Index: 50 or less.

2.3 ACOUSTICAL PANELS

A. Basis-of-Design Product: Subject to compliance with requirements, provide Armstrong World Industries; Cirrus High NRC or comparable product by one of the following:
 1. Armstrong World Industries, Inc.
 2. CertainTeed Corporation.
 3. Rockfon (Rockwool International).

B. Acoustical Panel Standard: Provide manufacturer's standard panels according to ASTM E1264 and designated by type, form, pattern, acoustical rating, and light reflectance unless otherwise indicated.

C. Classification: Provide panels as follows:
 1. Type and Form: Type III, mineral base with painted finish; Form 1, nodular.

D. Color: White.

E. Light Reflectance (LR): Not less than 0.85.

F. Ceiling Attenuation Class (CAC): Not less than 35.

G. Noise Reduction Coefficient (NRC): Not less than 0.75.

H. Articulation Class (AC): Not less than 170.

I. Edge/Joint Detail: Reveal sized to fit flange of exposed suspension-system members.

J. Thickness: 7/8 inch.

K. Modular Size: 24 by 24 inches.

L. Antimicrobial Treatment: Manufacturer's standard broad spectrum, antimicrobial formulation that inhibits fungus, mold, mildew, and gram-positive and gram-negative bacteria and showing no mold, mildew, or bacterial growth when tested according to ASTM D3273, ASTM D3274, or ASTM G21 and evaluated according to ASTM D3274 or ASTM G21.
2.4 METAL SUSPENSION SYSTEM

A. Basis-of-Design Product: Subject to compliance with requirements, provide Armstrong World Industries; Suprafine 9/16” or comparable product by one of the following:

1. Armstrong World Industries, Inc.
2. CertainTeed Corporation.
3. Rockfon (Rockwool International).

B. Metal Suspension-System Standard: Provide manufacturer's standard, direct-hung, metal suspension system and accessories according to ASTM C635/C635M and designated by type, structural classification, and finish indicated.

C. Wide-Face, Capped, Double-Web, Steel Suspension System: Main and cross runners roll formed from cold-rolled steel sheet; pre painted, electrolytically zinc coated, or hot-dip galvanized, G30 coating designation; with prefinished 15/16-inch-wide metal caps on flanges.

1. Structural Classification: Heavy-duty system.
2. Face Design: Flat, flush.

2.5 ACCESSORIES

A. Attachment Devices: Size for five times the design load indicated in ASTM C635/C635M, Table 1, "Direct Hung," unless otherwise indicated. Comply with seismic design requirements.

B. Wire Hangers, Braces, and Ties: Provide wires as follows:

2. Size: Wire diameter sufficient for its stress at three times hanger design load (ASTM C635/C635M, Table 1, "Direct Hung") will be less than yield stress of wire, but not less than #12-gauge diameter wire.

C. Hanger Rods: Mild steel, zinc coated or protected with rust-inhibitive paint.

D. Hold-Down Clips: Manufacturer's standard hold-down.

2.6 METAL EDGE MOLDINGS AND TRIM

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Armstrong World Industries, Inc.
2. CertainTeed Corporation.
3. Rockfon (Rockwool International).
B. Roll-Formed, Sheet-Metal Edge Moldings and Trim: Type and profile indicated or, if not indicated, manufacturer's standard moldings for edges and penetrations that comply with seismic design requirements; formed from sheet metal of same material, finish, and color as that used for exposed flanges of suspension-system runners.

1. Edge moldings shall fit acoustical panel edge details and suspension systems indicated and match width and configuration of exposed runners unless otherwise indicated.
2. For circular penetrations of ceiling, provide edge moldings fabricated to diameter required to fit penetration exactly.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates, areas, and conditions, including structural framing to which acoustical panel ceilings attach or abut, with Installer present, for compliance with requirements specified in this and other Sections that affect ceiling installation and anchorage and with requirements for installation tolerances and other conditions affecting performance of acoustical panel ceilings.

B. Examine acoustical panels before installation. Reject acoustical panels that are wet, moisture damaged, or mold damaged.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Measure each ceiling area and establish layout of acoustical panels to balance border widths at opposite edges of each ceiling. Avoid using less-than-half-width panels at borders unless otherwise indicated and comply with layout shown on reflected ceiling plans.

B. Layout openings for penetrations centered on the penetrating items.

3.3 INSTALLATION

A. Install acoustical panel ceilings according to ASTM C636/C636M and manufacturer's written instructions.

B. Suspend ceiling hangers from building's structural members and as follows:

1. Install hangers plumb and free from contact with insulation or other objects within ceiling plenum that are not part of supporting structure or of ceiling suspension system.
2. Splay hangers only where required to miss obstructions; offset resulting horizontal forces by bracing, countersplaying, or other equally effective means.
3. Where width of ducts and other construction within ceiling plenum produces hanger spacings that interfere with location of hangers at spacings required to support standard suspension-system members, install supplemental suspension members and hangers in form of trapezes or equivalent devices.

4. Secure wire hangers to ceiling-suspension members and to supports above with a minimum of three tight turns. Connect hangers directly to structure or to inserts, eye screws, or other devices that are secure and appropriate for substrate and that will not deteriorate or otherwise fail due to age, corrosion, or elevated temperatures.

5. Secure flat, angle, channel, and rod hangers to structure, including intermediate framing members, by attaching to inserts, eye screws, or other devices that are secure and appropriate for both the structure to which hangers are attached and the type of hanger involved. Install hangers in a manner that will not cause them to deteriorate or fail due to age, corrosion, or elevated temperatures.

6. Do not support ceilings directly from permanent metal forms or floor deck. Fasten hangers to cast-in-place hanger inserts, post-installed mechanical or adhesive anchors, or power-actuated fasteners that extend through forms into concrete.

7. When steel framing does not permit installation of hanger wires at spacing required, install carrying channels or other supplemental support for attachment of hanger wires.

8. Do not attach hangers to steel deck tabs.

9. Do not attach hangers to steel roof deck. Attach hangers to structural members.

10. Space hangers not more than 48 inches o.c. along each member supported directly from hangers unless otherwise indicated; provide hangers not more than 8 inches from ends of each member.

11. Size supplemental suspension members and hangers to support ceiling loads within performance limits established by referenced standards.

C. Secure bracing wires to ceiling suspension members and to supports with a minimum of four tight turns. Suspend bracing from building's structural members as required for hangers, without attaching to permanent metal forms, steel deck, or steel deck tabs.

D. Install edge moldings and trim of type indicated at perimeter of acoustical ceiling area and where necessary to conceal edges of acoustical panels.

1. Apply acoustical sealant in a continuous ribbon concealed on back of vertical legs of moldings before they are installed.

2. Screw attach moldings to substrate at intervals not more than 16 inches o.c. and not more than 3 inches from ends. Miter corners accurately and connect securely.

3. Do not use exposed fasteners, including pop rivets, on moldings and trim.

E. Install suspension-system runners so they are square and securely interlocked with one another. Remove and replace dented, bent, or kinked members.

F. Install acoustical panels with undamaged edges and fit accurately into suspension-system runners and edge moldings. Scribe and cut panels at borders and penetrations to provide precise fit.
1. For square-edged panels, install panels with edges fully hidden from view by flanges of suspension-system runners and moldings.
2. For reveal-edged panels on suspension-system runners, install panels with bottom of reveal in firm contact with top surface of runner flanges.
3. Paint cut edges of panel remaining exposed after installation; match color of exposed panel surfaces using coating recommended in writing for this purpose by acoustical panel manufacturer.
4. Install hold-down clips in areas indicated; space according to panel manufacturer's written instructions unless otherwise indicated.
 a. Hold-Down Clips: Space 24 inches o.c. on all cross runners.
5. Protect lighting fixtures and air ducts according to requirements indicated for fire-resistance-rated assembly.

3.4 ERECTION TOLERANCES

A. Suspended Ceilings: Install main and cross runners level to a tolerance of 1/8 inch in 12 feet, non-cumulative.

B. Moldings and Trim: Install moldings and trim to substrate and level with ceiling suspension system to a tolerance of 1/8 inch in 12 feet, non-cumulative.

3.5 CLEANING

A. Clean exposed surfaces of acoustical panel ceilings, including trim, edge moldings, and suspension-system members. Comply with manufacturer's written instructions for cleaning and touchup of minor finish damage.

B. Remove and replace ceiling components that cannot be successfully cleaned and repaired to permanently eliminate evidence of damage.

END OF SECTION
SECTION 096513
RESILIENT BASE AND ACCESSORIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Vinyl base.
 2. Rubber stair accessories.
 3. Vinyl molding accessories.

1.3 ACTION SUBMITTALS
A. Product Data: For each type of product.
B. Samples: For each exposed product and for each color and texture specified, not less than 12 inches long.
C. Product Schedule: For resilient base and accessory products. Use same designations indicated on Drawings.

1.4 MAINTENANCE MATERIAL SUBMITTALS
A. Furnish extra materials, from the same product run, that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Furnish not less than 10 linear feet for every 500 linear feet or fraction thereof, of each type, color, pattern, and size of resilient product installed.

1.5 DELIVERY, STORAGE, AND HANDLING
A. Store resilient products and installation materials in dry spaces protected from the weather, with ambient temperatures maintained within range recommended by manufacturer, but not less than 50 deg F or more than 90 deg F.
1.6 FIELD CONDITIONS

A. Maintain ambient temperatures within range recommended by manufacturer, but not less than 70 deg F or more than 95 deg F, in spaces to receive resilient products during the following periods:

1. 48 hours before installation.
2. During installation.
3. 48 hours after installation.

B. After installation and until Substantial Completion, maintain ambient temperatures within range recommended by manufacturer, but not less than 55 deg F or more than 95 deg F.

C. Install resilient products after other finishing operations, including painting, have been completed.

PART 2 - PRODUCTS

2.1 VINYL BASE <B-1>

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Armstrong World Industries, Inc.
2. Johnsonite; a Tarkett company.
3. Roppe Corporation, USA.

B. Product Standard: ASTM F1861, Type TV (vinyl, thermoplastic).

2. Style: Style B, Cove.

C. Minimum Thickness: 0.125 inch.

D. Height: 4 inches.

E. Lengths: Coils in manufacturer’s standard length.

F. Outside Corners: Job formed.

G. Inside Corners: Job formed.

H. Colors and Patterns: As indicated on drawings.

2.2 RUBBER STAIR ACCESSORIES <RT1>

A. Fire-Test-Response Characteristics: As determined by testing identical products according to ASTM E648 or NFPA 253 by a qualified testing agency.
1. Critical Radiant Flux Classification: Class I, not less than 0.45 W/sq. cm.

B. Basis-of-Design Product: Subject to compliance with requirements, provide Tarkett; Hammered Tread/Riser (VIHNTR) or comparable product by one of the following:

1. Armstrong World Industries, Inc.
2. Johnsonite; a Tarkett company.
3. Roppe Corporation, USA.

C. Stair Treads: ASTM F2169.

1. Type: Synthetic Rubber
2. Class: 2 (pattern; embossed, grooved, or ribbed).
3. Group: 2 (with 2” contrasting color for the visually impaired).
4. Nosing Style: Square, adjustable to cover angles between 60 and 90 degrees.
5. Nosing Height: 2 inches.
6. Thickness: 1/4 inch and tapered to back edge.
7. Size: Lengths and depths to fit each stair tread in one piece.
8. Integral Risers: Smooth, flat; in height that fully covers substrate.

D. Landing Tile: Matching treads; produced by same manufacturer as treads and recommended by manufacturer for installation with treads.

E. Locations: Provide rubber stair accessories in areas indicated on drawings.

F. Colors and Patterns: As indicated on drawings.

2.3 VINYL MOLDING ACCESSORY

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Armstrong World Industries, Inc.
2. Burke Mercer Flooring Products; a division of Burke Industries Inc.
3. Johnsonite; a Tarkett company.

B. Description: Vinyl reducer strip for resilient floor covering.

C. Profile and Dimensions: As indicated.

D. Locations: Provide vinyl molding accessories in areas indicated.

E. Colors and Patterns: As indicated by manufacturer's designations.

2.4 INSTALLATION MATERIALS

A. Trowelable Leveling and Patching Compounds: Latex-modified, portland-cement-based or blended hydraulic-cement-based formulation provided or approved by resilient-product manufacturer for applications indicated.
B. Adhesives: Water-resistant type recommended by resilient-product manufacturer for resilient products and substrate conditions indicated.

C. Metal Edge Strips: Extruded aluminum with mill finish, nominal 2 inches wide, of height required to protect exposed edges of flooring, and in maximum available lengths to minimize running joints.

D. Floor Polish: Provide protective, liquid floor-polish products recommended by resilient stair-tread manufacturer.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates, with Installer present, for compliance with requirements for maximum moisture content and other conditions affecting performance of the Work.

1. Verify that finishes of substrates comply with tolerances and other requirements specified in other Sections and that substrates are free of cracks, ridges, depressions, scale, and foreign deposits that might interfere with adhesion of resilient products.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

1. Installation of resilient products indicates acceptance of surfaces and conditions.

3.2 PREPARATION

A. Prepare substrates according to manufacturer's written instructions to ensure adhesion of resilient products.

B. Fill cracks, holes, and depressions in substrates with trowelable leveling and patching compound; remove bumps and ridges to produce a uniform and smooth substrate.

C. Do not install resilient products until materials are the same temperature as space where they are to be installed.

1. At least 48 hours in advance of installation, move resilient products and installation materials into spaces where they will be installed.

D. Immediately before installation, sweep and vacuum clean substrates to be covered by resilient products.

3.3 RESILIENT BASE INSTALLATION

A. Comply with manufacturer's written instructions for installing resilient base.
B. Apply resilient base to walls, columns, pilasters, casework and cabinets in toe spaces, and other permanent fixtures in rooms and areas where base is required.

C. Install resilient base in lengths as long as practical without gaps at seams and with tops of adjacent pieces aligned.

D. Tightly adhere resilient base to substrate throughout length of each piece, with base in continuous contact with horizontal and vertical substrates.

E. Do not stretch resilient base during installation.

F. On masonry surfaces or other similar irregular substrates, fill voids along top edge of resilient base with manufacturer's recommended adhesive filler material.

G. Job-Formed Corners:
 1. Outside Corners: Use straight pieces of maximum lengths possible and form with returns not less than 3 inches in length.
 a. Form without producing discoloration (whitening) at bends.
 2. Inside Corners: Use straight pieces of maximum lengths possible and form with returns not less than 3 inches in length.
 a. Miter or cope corners to minimize open joints.

3.4 RESILIENT ACCESSORY INSTALLATION

A. Comply with manufacturer's written instructions for installing resilient accessories.

B. Resilient Stair Accessories:
 1. Use stair-tread-nose filler to fill nosing substrates that do not conform to tread contours.
 2. Tightly adhere to substrates throughout length of each piece.

C. Resilient Molding Accessories: Butt to adjacent materials and tightly adhere to substrates throughout length of each piece. Install reducer strips at edges of floor covering that would otherwise be exposed.

3.5 CLEANING AND PROTECTION

A. Comply with manufacturer's written instructions for cleaning and protecting resilient products.

B. Perform the following operations immediately after completing resilient-product installation:
 1. Remove adhesive and other blemishes from surfaces.
2. Sweep and vacuum horizontal surfaces thoroughly.
3. Damp-mop horizontal surfaces to remove marks and soil.

C. Protect resilient products from mars, marks, indentations, and other damage from construction operations and placement of equipment and fixtures during remainder of construction period.

D. Floor Polish: Remove soil, adhesive, and blemishes from resilient stair treads before applying liquid floor polish.
 1. Apply two coat(s).

E. Cover resilient products subject to wear and foot traffic until Substantial Completion.

END OF SECTION
SECTION 096519
RESILIENT TILE FLOORING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Rubber floor tile
 2. Vinyl composition floor tile.

1.3 ACTION SUBMITTALS
A. Product Data: For each type of product.
B. Shop Drawings: For each type of resilient floor tile.
 1. Include floor tile layouts, edges, columns, doorways, enclosing partitions, built-in furniture, cabinets, and cutouts.
 2. Show details of special patterns.
C. Samples: Full-size units of each color, texture, and pattern of floor tile required.
D. Product Schedule: For floor tile. Use same designations indicated on Drawings.

1.4 INFORMATIONAL SUBMITTALS
A. Qualification Data: For Installer.

1.5 CLOSEOUT SUBMITTALS
A. Maintenance Data: For each type of floor tile to include in maintenance manuals.

1.6 MAINTENANCE MATERIAL SUBMITTALS
A. Furnish extra materials, from the same product run, that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
1. Floor Tile: Furnish one box for every 50 boxes or fraction thereof, of each type, color, and pattern of floor tile installed.

1.7 QUALITY ASSURANCE

A. Installer Qualifications: An entity that employs installers and supervisors who are competent in techniques required by manufacturer for floor tile installation and seaming method indicated.

1. Engage an installer who employs workers for this Project who are trained or certified by floor tile manufacturer for installation techniques required.

1.8 DELIVERY, STORAGE, AND HANDLING

A. Store floor tile and installation materials in dry spaces protected from the weather, with ambient temperatures maintained within range recommended by manufacturer, but not less than 50 deg F or more than 90 deg F. Store floor tiles on flat surfaces.

1.9 FIELD CONDITIONS

A. Maintain ambient temperatures within range recommended by manufacturer, but not less than 70 deg F or more than 95 deg F, in spaces to receive floor tile during the following periods:

1. 48 hours before installation.
2. During installation.
3. 48 hours after installation.

B. After installation and until Substantial Completion, maintain ambient temperatures within range recommended by manufacturer, but not less than 55 deg F or more than 95 deg F.

C. Close spaces to traffic during floor tile installation.

D. Close spaces to traffic for 48 hours after floor tile installation.

E. Install floor tile after other finishing operations, including painting, have been completed.

1.10 WARRANTY

A. Resilient Flooring System: Submit a written warranty executed by the manufacturer, agreeing to repair or replace system (subfloor preparation products, adhesive, and floor covering) that fails within the warranty period.

B. Limited Warranty Period: 10 years on top of the Resilient Flooring Limited Warranty
PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Fire-Test-Response Characteristics: For resilient floor tile, as determined by testing identical products according to ASTM E648 or NFPA 253 by a qualified testing agency.

1. Critical Radiant Flux Classification: Class I, not less than 0.45 W/sq. cm.

2.2 RUBBER FLOOR TILE <R1 & R2>

A. Basis-of-Design Product: Subject to compliance with requirements, provide Tarkett; Solid Color Rubber Tile or a comparable product by one of the following:

1. Roppe.
2. Approved Equal.

C. Hardness: Grade 1, minimum hardness of 85, measured using Shore, Type A durometer according to ASTM D2240.

D. Wearing Surface: Brushed.

E. Thickness: 0.125 inch.

F. Size: 24 by 24 inches.

G. Color: As indicated on drawings.

2.3 VINYL COMPOSITION FLOOR TILE <VCT-1>

A. Basis-of-Design Product: Subject to compliance with requirements, provide Armstrong World Industries, Inc; Standard Excelon Imperial Textures or a comparable product by one of the following:

2. Johnsonite; a Tarkett company.
3. Approved Equal.

B. Tile Standard: ASTM F1066, Class 2, through pattern.

C. Wearing Surface: Smooth.

D. Thickness: 0.125 inch.

E. Size: 12 by 12 inches.

F. Colors and Patterns: As indicated on drawings.
2.4 INSTALLATION MATERIALS

A. Trowelable Leveling and Patching Compounds: Latex-modified, portland-cement-based or blended hydraulic-cement-based formulation provided or approved by floor tile manufacturer for applications indicated.

B. Adhesives: Water-resistant type recommended by floor tile and adhesive manufacturers to suit floor tile and substrate conditions indicated.

C. Floor Polish: Provide protective, liquid floor-polish products recommended by floor tile manufacturer, for each type of tile specified.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates, with Installer present, for compliance with requirements for maximum moisture content and other conditions affecting performance of the Work.

1. Verify that finishes of substrates comply with tolerances and other requirements specified in other Sections and that substrates are free of cracks, ridges, depressions, scale, and foreign deposits that might interfere with adhesion of floor tile.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Prepare substrates according to floor tile manufacturer's written instructions to ensure adhesion of resilient products.

B. Concrete Substrates: Prepare according to ASTM F710.

1. Verify that substrates are dry and free of curing compounds, sealers, and hardeners.

2. Remove substrate coatings and other substances that are incompatible with adhesives and that contain soap, wax, oil, or silicone, using mechanical methods recommended by floor tile manufacturer. Do not use solvents.

3. Alkalinity and Adhesion Testing: Perform tests recommended by floor tile manufacturer. Proceed with installation only after substrate alkalinity falls within range on pH scale recommended by manufacturer in writing, but not less than 5 or more than 9 pH.

4. Moisture Testing: Perform tests so that each test area does not exceed 1000 sq. ft., and perform no fewer than three tests in each installation area and with test areas evenly spaced in installation areas.
a. Anhydrous Calcium Chloride Test: ASTM F1869. Proceed with installation only after substrates have maximum moisture-vapor-emission rate of 3 lb of water/1000 sq. ft. in 24 hours.

b. Relative Humidity Test: Using in-situ probes, ASTM F2170. Proceed with installation only after substrates have a maximum 75 percent relative humidity level measurement.

C. Fill cracks, holes, and depressions in substrates with trowelable leveling and patching compound; remove bumps and ridges to produce a uniform and smooth substrate.

D. Do not install floor tiles until materials are the same temperature as space where they are to be installed.

1. At least 48 hours in advance of installation, move resilient floor tile and installation materials into spaces where they will be installed.

E. Immediately before installation, sweep and vacuum clean substrates to be covered by resilient floor tile.

3.3 FLOOR TILE INSTALLATION

A. Comply with manufacturer's written instructions for installing floor tile.

B. Lay out floor tiles from center marks established with principal walls, discounting minor offsets, so tiles at opposite edges of room are of equal width. Adjust as necessary to avoid using cut widths that equal less than one-half tile at perimeter.

1. Lay tiles square with room axis.

C. Match floor tiles for color and pattern by selecting tiles from cartons in the same sequence as manufactured and packaged, if so numbered. Discard broken, cracked, chipped, or deformed tiles.

1. Lay tiles in pattern of colors and sizes indicated.

D. Scribe, cut, and fit floor tiles to butt neatly and tightly to vertical surfaces and permanent fixtures including built-in furniture, cabinets, pipes, outlets, and door frames.

E. Extend floor tiles into toe spaces, door reveals, closets, and similar openings. Extend floor tiles to center of door openings.

F. Maintain reference markers, holes, and openings that are in place or marked for future cutting by repeating on floor tiles as marked on substrates. Use chalk or other nonpermanent marking device.

G. Install floor tiles on covers for telephone and electrical ducts, building expansion-joint covers, and similar items in installation areas. Maintain overall continuity of color and pattern between pieces of tile installed on covers and adjoining tiles. Tightly adhere tile edges to substrates that abut covers and to cover perimeters.
H. Adhere floor tiles to substrates using a full spread of adhesive applied to substrate to produce a completed installation without open cracks, voids, raising and puckering at joints, telegraphing of adhesive spreader marks, and other surface imperfections.

3.4 CLEANING AND PROTECTION

A. Comply with manufacturer's written instructions for cleaning and protecting floor tile.

B. Perform the following operations immediately after completing floor tile installation:

1. Remove adhesive and other blemishes from surfaces.
2. Sweep and vacuum surfaces thoroughly.
3. Damp-mop surfaces to remove marks and soil.

C. Protect floor tile from mars, marks, indentations, and other damage from construction operations and placement of equipment and fixtures during remainder of construction period.

D. Floor Polish: Remove soil, adhesive, and blemishes from floor tile surfaces before applying liquid floor polish.

1. Apply two coat(s).

E. Cover floor tile until Substantial Completion.

END OF SECTION
SECTION 096813
TILE CARPETING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Modular carpet tile.
 2. Walk off mat carpet tile.

B. Related Requirements:
 1. Section 096513 "Resilient Base and Accessories” for resilient wall base and accessories installed with carpet tile.

1.3 PREINSTALLATION MEETINGS
A. Preinstallation Conference: Conduct conference at Project site.
 1. Review methods and procedures related to carpet tile installation including, but not limited to, the following:
 a. Review delivery, storage, and handling procedures.
 b. Review ambient conditions and ventilation procedures.
 c. Review subfloor preparation procedures.

1.4 ACTION SUBMITTALS
A. Product Data: For each type of product.
 1. Include manufacturer’s written data on physical characteristics, durability, and fade resistance.
 2. Include manufacturer’s written installation recommendations for each type of substrate.

B. Samples: For each of the following products and for each color and texture required. Label each Sample with manufacturer’s name, material description, color, pattern, and designation indicated on Drawings and in schedules.
2. Exposed Edge, Transition, and Other Accessory Stripping: 12-inch-long Samples.

C. Product Schedule: For carpet tile. Use same designations indicated on Drawings.

1.5 INFORMATIONAL SUBMITTALS

A. Qualification Data: For Installer.

B. Sample Warranty: For special warranty.

1.6 CLOSEOUT SUBMITTALS

A. Maintenance Data: For carpet tiles to include in maintenance manuals. Include the following:
 1. Methods for maintaining carpet tile, including cleaning and stain-removal products and procedures and manufacturer's recommended maintenance schedule.
 2. Precautions for cleaning materials and methods that could be detrimental to carpet tile.

1.7 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials, from the same product run, that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Carpet Tile: Full-size units equal to 5 percent of amount installed for each type indicated, but not less than 10 sq. yd.

1.8 QUALITY ASSURANCE

A. Installer Qualifications: An experienced installer who is certified by the International Certified Floorcovering Installers Association at the Master II certification level.

B. Mockups: Build mockups to verify selections made under Sample submittals, to demonstrate aesthetic effects, and to set quality standards for fabrication and installation.
 1. Build mockups at locations and in sizes shown on Drawings.
 2. Subject to compliance with requirements, approved mockups may become part of the completed Work if undisturbed at time of Substantial Completion.
1.9 DELIVERY, STORAGE, AND HANDLING

A. Comply with the Carpet and Rug Institute's CRI 104.

1.10 FIELD CONDITIONS

A. Comply with the Carpet and Rug Institute's CRI 104 for temperature, humidity, and ventilation limitations.

B. Environmental Limitations: Do not deliver or install carpet tiles until spaces are enclosed and weathertight, wet-work in spaces is complete and dry, and ambient temperature and humidity conditions are maintained at levels planned for building occupants during the remainder of the construction period.

C. Do not install carpet tiles over concrete slabs until slabs have cured and are sufficiently dry to bond with adhesive and concrete slabs have pH range recommended by carpet tile manufacturer.

D. Where items are indicated for installation on top of carpet tiles, install carpet tiles before installing these items.

1.11 WARRANTY

A. Special Warranty for Carpet Tiles: Manufacturer agrees to repair or replace components of carpet tile installation that fail in materials or workmanship within specified warranty period.

1. Warranty does not include deterioration or failure of carpet tile due to unusual traffic, failure of substrate, vandalism, or abuse.

2. Failures include, but are not limited to, the following:

 a. More than 10 percent edge raveling, snags, and runs.
 b. Dimensional instability.
 c. Excess static discharge.
 d. Loss of tuft-bind strength.
 e. Loss of face fiber.
 f. Delamination.

3. Warranty Period: 15 years from date of Substantial Completion.

B. Flooring contractor to provide owner a written warranty that guarantees the completed installation to be free from defects in materials and workmanship for a period of no less than two years after job completion.

PART 2 - PRODUCTS

2.1 CARPET TILE <CT1 & CT2>
A. Basis-of-Design Product: Subject to compliance with requirements, provide Milliken; Current or a comparable product by one of the following:

2. Shaw Contract Group; a Berkshire Hathaway company.

B. Color: As indicated on drawings

C. Fiber Content: Post-Consumer Content Type 6,6 Nylon

D. Pile Characteristic: Tufted Textured Loop pile.

E. Density: 6541 oz./cu. yd.

F. Pile Thickness: .13 inch for finished carpet tile according to ASTM D6859.

G. Stitches: 9.8 per inch.

H. Gage: 1/12 inch.

I. Surface Pile Weight: 15 oz./sq. yd.

J. Primary Backing/Backcoating: Manufacturer's standard composite materials.

K. Secondary Backing: Manufacturer's standard material.

M. Applied Treatments:

2. Antimicrobial Treatment: Manufacturer's standard treatment that protects carpet tiles as follows:
 a. Antimicrobial Activity: Not less than 2-mm halo of inhibition for gram-positive bacteria, not less than 1-mm halo of inhibition for gram-negative bacteria, and no fungal growth, according to AATCC 174.

N. Sustainable Design Requirements:

1. Sustainable Product Certification: Gold level certification according to ANSI/NSF 140.

O. Performance Characteristics:

1. Appearance Retention Rating: Heavy traffic, 3.0 minimum according to ASTM D7330.
2. Dry Breaking Strength: Not less than 100 lbf according to ASTM D2646.
3. Dimensional Tolerance: Within 1/32 inch of specified size dimensions, as determined by physical measurement.
4. Dimensional Stability: 0.2 percent or less according to ISO 2551 (Aachen Test).
5. Colorfastness to Crocking: Not less than 4, wet and dry, according to AATCC 165.
6. Colorfastness to Light: Not less than 4 after 60 AFU (AATCC fading units) according to AATCC 16, Option E.

2.2 CARPET TILE <CT3>

A. Basis-of-Design Product: Subject to compliance with requirements, provide J&J Flooring group; Boucle Modular or a comparable product by one of the following:
 1. Interface.
 2. Shaw Contract Group; a Berkshire Hathaway company.

B. Color: As indicated on drawings.

C. Fiber Content: Post-Consumer Content Type 6,6 Nylon

D. Pile Characteristic: Tufted Textured Loop pile.

E. Density: 7795 oz./cu. yd.

F. Pile Thickness: .25 inch for finished carpet tile according to ASTM D6859.

G. Stitches: 9 per inch.

H. Gage: 1/10 inch.

I. Surface Pile Weight: 25 oz./sq. yd.

J. Primary Backing/Backcoating: Manufacturer's standard composite materials.

K. Secondary Backing: Manufacturer's standard material.

L. Size: 12 by 48 inches nominal.

M. Applied Treatments:
 2. Antimicrobial Treatment: Manufacturer's standard treatment that protects carpet tiles as follows:
 a. Antimicrobial Activity: Not less than 2-mm halo of inhibition for gram-positive bacteria, not less than 1-mm halo of inhibition for gram-negative bacteria, and no fungal growth, according to AATCC 174.

N. Sustainable Design Requirements:
1. Sustainable Product Certification: Gold level certification according to ANSI/NSF 140.

O. Performance Characteristics:

1. Appearance Retention Rating: Heavy traffic, 3.0 minimum according to ASTM D7330.
2. Dry Breaking Strength: Not less than 100 lbf according to ASTM D2646.
3. Dimensional Tolerance: Within 1/32 inch of specified size dimensions, as determined by physical measurement.
4. Dimensional Stability: 0.2 percent or less according to ISO 2551 (Aachen Test).
5. Colorfastness to Crocking: Not less than 4, wet and dry, according to AATCC 165.
6. Colorfastness to Light: Not less than 4 after 60 AFU (AATCC fading units) according to AATCC 16, Option E.

2.3 WALK OFF MAT CARPET TILE <CT4>

A. Basis-of-Design Product: Subject to compliance with requirements, provide J&J Flooring Group; Alter Ego Walk Off Modular 7070 or a comparable product by one of the following:

1. Interface.
2. Shaw Contract Group; a Berkshire Hathaway company.

B. Color: As selected by Architect from manufacturer's full range.

C. Construction: Textured Patterned Loop

D. Backing: Manufacturer's standard composite materials.

E. Dye Method: Solution Dyed

F. Face Weight: 29 oz./sq.

G. Pile Density: 8717 oz./yd3.

H. Gauge: 1/12

I. Stitches: 12 stitches/in

J. Standard Size: 24" x 24".

K. Applied Treatments:

2. Antimicrobial Treatment: Manufacturer's standard treatment that protects carpet tiles as follows:
a. Antimicrobial Activity: Not less than 2-mm halo of inhibition for gram-positive bacteria, not less than 1-mm halo of inhibition for gram-negative bacteria, and no fungal growth, according to AATCC 174.

L. Performance Characteristics:

1. Flooring radiant Panel: Class 1
2. Smoke Density: Less than 450 according to ASTM E662.
3. Dry Breaking Strength: Not less than 100 lbf according to ASTM D2646.
4. Dimensional Tolerance: Within 1/32 inch of specified size dimensions, as determined by physical measurement.
5. Dimensional Stability: 0.2 percent or less according to ISO 2551 (Aachen Test).
6. Colorfastness to Crocking: Not less than 4, wet and dry, according to AATCC 165.
7. Electrostatic Propensity: Less than 3.0 kV according to AATCC 134.

2.4 INSTALLATION ACCESSORIES

A. Trowelable Leveling and Patching Compounds: Latex-modified, hydraulic-cement-based formulation provided or recommended by carpet tile manufacturer.

B. Adhesives: Water-resistant, mildew-resistant, non-staining, pressure-sensitive type to suit products and subfloor conditions indicated, that comply with flammability requirements for installed carpet tile, and are recommended by carpet tile manufacturer for releasable installation.

C. Metal Edge/Transition Strips: Extruded aluminum with mill finish of profile and width shown, of height required to protect exposed edge of carpet, and of maximum lengths to minimize running joints.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for maximum moisture content, alkalinity range, installation tolerances, and other conditions affecting carpet tile performance.

B. Examine carpet tile for type, color, pattern, and potential defects.

C. Concrete Slabs: Verify that finishes comply with requirements specified in Section 033000 "Cast-in-Place Concrete" and that surfaces are free of cracks, ridges, depressions, scale, and foreign deposits.

1. Moisture Testing: Perform tests so that each test area does not exceed 1000 sq. ft., and perform no fewer than three tests in each installation area and with test areas evenly spaced in installation areas.
a. Anhydrous Calcium Chloride Test: ASTM F1869. Proceed with installation only after substrates have maximum moisture-vapor-emission rate of 3 lb of water/1000 sq. ft. in 24 hours.

b. The Carpet and Rug Institute's CRI 104 recommends a maximum 75 percent relative humidity, which is the maximum relative humidity generally recommended for adhered systems.

c. Relative Humidity Test: Using in situ probes, ASTM F2170. Proceed with installation only after substrates have a maximum 75 percent relative humidity level measurement.

d. Perform additional moisture tests recommended in writing by adhesive and carpet tile manufacturers. Proceed with installation only after substrates pass testing.

D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. General: Comply with the Carpet and Rug Institute's CRI 104 and with carpet tile manufacturer's written installation instructions for preparing substrates indicated to receive carpet tile.

B. Use trowelable leveling and patching compounds, according to manufacturer's written instructions, to fill cracks, holes, depressions, and protrusions in substrates. Fill or level cracks, holes and depressions 1/8 inch wide or wider, and protrusions more than 1/32 inch unless more stringent requirements are required by manufacturer's written instructions.

C. Concrete Substrates: Remove coatings, including curing compounds, and other substances that are incompatible with adhesives and that contain soap, wax, oil, or silicone, without using solvents. Use mechanical methods recommended in writing by adhesive and carpet tile manufacturers.

D. Broom and vacuum clean substrates to be covered immediately before installing carpet tile.

3.3 INSTALLATION

A. General: Comply with the Carpet and Rug Institute's CRI 104, Section 10, "Carpet Tile," and with carpet tile manufacturer's written installation instructions.

B. Installation Method: As recommended in writing by carpet tile manufacturer.

C. Maintain dye-lot integrity. Do not mix dye lots in same area.

D. Maintain pile-direction patterns recommended in writing by carpet tile manufacturer.

E. Cut and fit carpet tile to butt tightly to vertical surfaces, permanent fixtures, and built-in furniture including cabinets, pipes, outlets, edgings, thresholds, and nosings. Bind or seal cut edges as recommended by carpet tile manufacturer.
F. Extend carpet tile into toe spaces, door reveals, closets, open-bottomed obstructions, removable flanges, alcoves, and similar openings.

G. Maintain reference markers, holes, and openings that are in place or marked for future cutting by repeating on carpet tile as marked on subfloor. Use nonpermanent, nonstaining marking device.

H. Install pattern parallel to walls and borders.

3.4 CLEANING AND PROTECTION

A. Perform the following operations immediately after installing carpet tile:

1. Remove excess adhesive and other surface blemishes using cleaner recommended by carpet tile manufacturer.
2. Remove yarns that protrude from carpet tile surface.

B. Protect installed carpet tile to comply with the Carpet and Rug Institute's CRI 104, Section 13.7.

C. Protect carpet tile against damage from construction operations and placement of equipment and fixtures during the remainder of construction period. Use protection methods indicated or recommended in writing by carpet tile manufacturer.

END OF SECTION
SECTION 099113
EXTERIOR PAINTING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes surface preparation and the application of paint systems on the following exterior substrates:
 1. Fiber-cement board.
 2. Steel.

B. Related Requirements:
 1. Section 051200 "Structural Steel Framing” for shop priming of metal substrates.

1.3 DEFINITIONS

A. MPI Gloss Level 1: Not more than five units at 60 degrees and 10 units at 85 degrees, according to ASTM D523.

B. MPI Gloss Level 3: 10 to 25 units at 60 degrees and 10 to 35 units at 85 degrees, according to ASTM D523.

C. MPI Gloss Level 4: 20 to 35 units at 60 degrees and not less than 35 units at 85 degrees, according to ASTM D523.

D. MPI Gloss Level 5: 35 to 70 units at 60 degrees, according to ASTM D523.

E. MPI Gloss Level 6: 70 to 85 units at 60 degrees, according to ASTM D523.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product. Include preparation requirements and application instructions.

 1. Include printout of current "MPI Approved Products List” for each product category specified, with the proposed product highlighted.
2. Indicate VOC content.

B. Samples for Verification: For each type of paint system and each color and gloss of topcoat.
 1. Submit Samples on rigid backing, 8 inches square.
 2. Apply coats on Samples in steps to show each coat required for system.
 3. Label each coat of each Sample.
 4. Label each Sample for location and application area.

C. Product List: Cross-reference to paint system and locations of application areas. Use same designations indicated on Drawings and in schedules. Include color designations.

1.5 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials, from the same product run, that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Paint: 5 percent, but not less than 1 gal. of each material and color applied.

1.6 QUALITY ASSURANCE

A. Mockups: Apply mockups of each paint system indicated and each color and finish selected to verify preliminary selections made under Sample submittals and to demonstrate aesthetic effects and set quality standards for materials and execution.
 1. Architect will select one surface to represent surfaces and conditions for application of each paint system.
 a. Vertical and Horizontal Surfaces: Provide samples of at least 100 sq. ft..
 b. Other Items: Architect will designate items or areas required.
 2. Final approval of color selections will be based on mockups.
 a. If preliminary color selections are not approved, apply additional mockups of additional colors selected by Architect at no added cost to Owner.
 3. Approval of mockups does not constitute approval of deviations from the Contract Documents contained in mockups unless Architect specifically approves such deviations in writing.
 4. Subject to compliance with requirements, approved mockups may become part of the completed Work if undisturbed at time of Substantial Completion.

1.7 DELIVERY, STORAGE, AND HANDLING

A. Store materials not in use in tightly covered containers in well-ventilated areas with ambient temperatures continuously maintained at not less than 45 deg F.
1. Maintain containers in clean condition, free of foreign materials and residue.
2. Remove rags and waste from storage areas daily.

1.8 FIELD CONDITIONS

A. Apply paints only when temperature of surfaces to be painted and ambient air temperatures are between 50 and 95 deg F.

B. Do not apply paints in snow, rain, fog, or mist; when relative humidity exceeds 85 percent; at temperatures less than 5 deg F above the dew point; or to damp or wet surfaces.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Benjamin Moore & Co.
 2. PPG Paints.

B. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to products listed in the Interior Painting Schedule for the paint category indicated.

2.2 PAINT, GENERAL

A. MPI Standards: Products shall comply with MPI standards indicated and shall be listed in its "MPI Approved Products Lists."

B. Material Compatibility:
 1. Materials for use within each paint system shall be compatible with one another and substrates indicated, under conditions of service and application as demonstrated by manufacturer, based on testing and field experience.
 2. For each coat in a paint system, products shall be recommended in writing by topcoat manufacturers for use in paint system and on substrate indicated.

C. Colors: As indicated on drawings.

2.3 SOURCE QUALITY CONTROL

A. Testing of Paint Materials: Owner reserves the right to invoke the following procedure:
 1. Owner will engage the services of a qualified testing agency to sample paint materials. Contractor will be notified in advance and may be present when
samples are taken. If paint materials have already been delivered to Project site, samples may be taken at Project site. Samples will be identified, sealed, and certified by testing agency.

2. Testing agency will perform tests for compliance with product requirements.
3. Owner may direct Contractor to stop applying paints if test results show materials being used do not comply with product requirements. Contractor shall remove noncomplying paint materials from Project site, pay for testing, and repaint surfaces painted with rejected materials. Contractor will be required to remove rejected materials from previously painted surfaces if, on repainting with complying materials, the two paints are incompatible.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates and conditions, with Applicator present, for compliance with requirements for maximum moisture content and other conditions affecting performance of the Work.

B. Maximum Moisture Content of Substrates: When measured with an electronic moisture meter as follows:
 1. Concrete: 12 percent.
 2. Fiber-Cement Board: 12 percent.
 3. Masonry (Clay and CMUs): 12 percent.

C. Verify suitability of substrates, including surface conditions and compatibility, with existing finishes and primers.

D. Proceed with coating application only after unsatisfactory conditions have been corrected.
 1. Application of coating indicates acceptance of surfaces and conditions.

3.2 PREPARATION

A. Comply with manufacturer's written instructions and recommendations in "MPI Architectural Painting Specification Manual" applicable to substrates and paint systems indicated.

B. Remove hardware, covers, plates, and similar items already in place that are removable and are not to be painted. If removal is impractical or impossible because of size or weight of item, provide surface-applied protection before surface preparation and painting.
 1. After completing painting operations, use workers skilled in the trades involved to reinstall items that were removed. Remove surface-applied protection.
C. Clean substrates of substances that could impair bond of paints, including dust, dirt, oil, grease, and incompatible paints and encapsulants.

1. Remove incompatible primers and reprime substrate with compatible primers or apply tie coat as required to produce paint systems indicated.

D. Steel Substrates: Remove rust, loose mill scale, and shop primer if any. Clean using methods recommended in writing by paint manufacturer.

E. Shop-Primed Steel Substrates: Clean field welds, bolted connections, and areas where shop paint is abraded. Paint exposed areas with the same material as used for shop priming to comply with SSPC-PA 1 for touching up shop-primed surfaces.

F. Galvanized-Metal Substrates: Remove grease and oil residue from galvanized sheet metal by mechanical methods to produce clean, lightly etched surfaces that promote adhesion of subsequently applied paints.

G. Plastic Trim Fabrication Substrates: Remove dust, dirt, and other foreign material that might impair bond of paints to substrates.

3.3 APPLICATION

A. Apply paints according to manufacturer's written instructions and recommendations in "MPI Architectural Painting Specification Manual."

1. Use applicators and techniques suited for paint and substrate indicated.
2. Paint surfaces behind movable items same as similar exposed surfaces. Before final installation, paint surfaces behind permanently fixed items with prime coat only.
3. Paint both sides and edges of exterior doors and entire exposed surface of exterior door frames.
4. Paint entire exposed surface of window frames and sashes.
5. Do not paint over labels of independent testing agencies or equipment name, identification, performance rating, or nomenclature plates.
6. Primers specified in painting schedules may be omitted on items that are factory primed or factory finished if acceptable to topcoat manufacturers.

B. Tint undercoats same color as topcoat, but tint each undercoat a lighter shade to facilitate identification of each coat if multiple coats of same material are to be applied. Provide sufficient difference in shade of undercoats to distinguish each separate coat.

C. If undercoats or other conditions show through topcoat, apply additional coats until cured film has a uniform paint finish, color, and appearance.

D. Apply paints to produce surface films without cloudiness, spotting, holidays, laps, brush marks, roller tracking, runs, sags, ropiness, or other surface imperfections. Cut in sharp lines and color breaks.
3.4 FIELD QUALITY CONTROL

A. Dry Film Thickness Testing: Owner may engage the services of a qualified testing and inspecting agency to inspect and test paint for dry film thickness.

1. Contractor shall touch up and restore painted surfaces damaged by testing.
2. If test results show that dry film thickness of applied paint does not comply with paint manufacturer's written recommendations, Contractor shall pay for testing and apply additional coats as needed to provide dry film thickness that complies with paint manufacturer's written recommendations.

3.5 CLEANING AND PROTECTION

A. At end of each workday, remove rubbish, empty cans, rags, and other discarded materials from Project site.

B. After completing paint application, clean spattered surfaces. Remove spattered paints by washing, scraping, or other methods. Do not scratch or damage adjacent finished surfaces.

C. Protect work of other trades against damage from paint application. Correct damage to work of other trades by cleaning, repairing, replacing, and refinishing, as approved by Architect, and leave in an undamaged condition.

D. At completion of construction activities of other trades, touch up and restore damaged or defaced painted surfaces.

3.6 EXTERIOR PAINTING SCHEDULE

A. Fiber Cement Substrates:

1. High Performance Architectural Latex System MPI EXT 3.3K:

 a. Prime Coat: Primer, Alkali Resistant, Water Based, MPI #3.

 1) Benjamin Moore; Ultra Spec Int/Ext Acrylic High Build Primer
 2) PPG; Int/Ext Acrylic Universal Primer
 3) Sherwin Williams; Int/Ext Latex Primer

 c. Topcoat: Latex, exterior, high performance architectural (MPI Gloss Level 3-4), MPI #315.

 1) Benjamin Moore; Regal Select Exterior High Build Low Lustre Finish
 2) PPG; Weather King Exterior 100% Acrylic Latex Lo-Lustre Paint
 3) Sherwin Williams; Super Paint Exterior Acrylic Latex Satin
B. Steel Substrates:

1. Alkyd System MPI EXT 5.1D:
 a. Prime Coat: Primer, Alkyd, Anti-Corrosive for Metal, MPI #79 (if not shop primed).
 1) Benjamin Moore; Super Spec HP Alkyd Metal Primer
 2) PPG; 7-Line Int/Ext Rust Inhibitive Steel Primer
 3) Sherwin Williams; Steel Spec Universal Metal Primer
 1) Sherwin Williams; DTM Alkyd Semi-Gloss.
 2) Approved Equal.

C. Galvanized-Metal Substrates:

1. High-Performance Architectural Latex System MPI EXT 5.3M:
 a. Prime Coat: Primer, galvanized, water based, MPI #134.
 1) Benjamin Moore; Ultra Spec Acrylic Metal Primer
 2) PPG; Corrostop Ultra Metal Primer for Rust-Free Galvanized Metal
 3) Sherwin Williams; Pro Industrial DTM Acrylic Primer/Finish
 1) Benjamin Moore; Regal Select Exterior High Build Low Lustre Finish
 2) PPG; Weather King Exterior 100% Acrylic Latex Lo-Lustre Paint
 3) Sherwin Williams; Super Paint Exterior Acrylic Latex Satin
 d. Topcoat: Latex, Exterior, high performance architectural, semi-gloss (MPI Gloss Level 5), MPI #141.
 1) Benjamin Moore; Regal Select Exterior Semi-Gloss
 2) PPG; Timeless Exterior Semi-Gloss
 3) Sherwin Williams; Super Paint Exterior Acrylic Latex Semi-Gloss

D. Plastic Substrates:
1. High Performance Architectural Latex (over s.b. bonding primer)
 MPI EXT 6.8DD:

a. Prime Coat: Primer, Bonding, Solvent Based, MPI #69.
 1) Benjamin Moore; Prime Lock Plus
 2) PPG; Seal Grip Interior/Exterior Alkyd Universal Primer/Sealer
 3) Approved equal.

b. Intermediate Coat: Latex, Exterior, high performance architectural,
 matching topcoat.

c. Topcoat: Latex, Exterior, high performance architectural (MPI Gloss
 Level 3), MPI #315.
 1) Benjamin Moore; Regal Select Exterior High Build Low Lustre
 Finish
 2) PPG; Weather King Exterior 100% Acrylic Latex Lo-Lustre
 Paint
 3) Sherwin Williams; Super Paint Exterior Acrylic Latex Satin

d. Topcoat: Latex, Exterior, high performance architectural, semi-gloss
 (MPI Gloss Level 5), MPI #141.
 1) Benjamin Moore; Regal Select Exterior Semi-Gloss
 2) PPG; Timeless Exterior Semi-Gloss
 3) Sherwin Williams; Super Paint Exterior Acrylic Latex Semi-
 Gloss

END OF SECTION
SECTION 099123
INTERIOR PAINTING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes surface preparation and the application of paint systems on the following interior substrates:

1. Concrete masonry units (CMUs).
2. Steel and iron.

B. Related Requirements:

1. Section 051200 "Structural Steel Framing" for shop priming structural steel.
2. Section 055000 "Metal Fabrications" for shop priming metal fabrications.
3. Section 055113 "Metal Pan Stairs" for shop priming metal pan stairs.
4. Section 055213 "Pipe and Tube Railings" for shop priming pipe and tube railings.

1.3 DEFINITIONS

A. MPI Gloss Level 1: Not more than five units at 60 degrees and 10 units at 85 degrees, according to ASTM D523.

B. MPI Gloss Level 2: Not more than 10 units at 60 degrees and 10 to 35 units at 85 degrees, according to ASTM D523.

C. MPI Gloss Level 3: 10 to 25 units at 60 degrees and 10 to 35 units at 85 degrees, according to ASTM D523.

D. MPI Gloss Level 4: 20 to 35 units at 60 degrees and not less than 35 units at 85 degrees, according to ASTM D523.

E. MPI Gloss Level 5: 35 to 70 units at 60 degrees, according to ASTM D523.

F. MPI Gloss Level 6: 70 to 85 units at 60 degrees, according to ASTM D523.
1.4 ACTION SUBMITTALS

A. Product Data: For each type of product. Include preparation requirements and application instructions.
 1. Include Printout of current "MPI Approved Products List" for each product category specified, with the proposed product highlighted.
 2. Indicate VOC content.

B. Samples for Verification: For each type of paint system and in each color and gloss of topcoat.
 1. Submit Samples on rigid backing, 8 inches square.
 2. Apply coats on Samples in steps to show each coat required for system.
 3. Label each coat of each Sample.
 4. Label each Sample for location and application area.

C. Product List: Cross-reference to paint system and locations of application areas. Use same designations indicated on Drawings and in schedules. Include color designations.

1.5 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials, from the same product run, that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Paint: 5 percent, but not less than 1 gal. of each material and color applied.

1.6 QUALITY ASSURANCE

A. Mockups: Apply mockups of each paint system indicated and each color and finish selected to verify preliminary selections made under Sample submittals and to demonstrate aesthetic effects and set quality standards for materials and execution.
 1. Architect will select one surface to represent surfaces and conditions for application of each paint system.
 a. Vertical and Horizontal Surfaces: Provide samples of at least 100 sq. ft..
 b. Other Items: Architect will designate items or areas required.
 2. Final approval of color selections will be based on mockups.
 a. If preliminary color selections are not approved, apply additional mockups of additional colors selected by Architect at no added cost to Owner.
 3. Approval of mockups does not constitute approval of deviations from the Contract Documents contained in mockups unless Architect specifically approves such deviations in writing.
4. Subject to compliance with requirements, approved mockups may become part of the completed Work if undisturbed at time of Substantial Completion.

1.7 DELIVERY, STORAGE, AND HANDLING

A. Store materials not in use in tightly covered containers in well-ventilated areas with ambient temperatures continuously maintained at not less than 45 deg F.

1. Maintain containers in clean condition, free of foreign materials and residue.
2. Remove rags and waste from storage areas daily.

1.8 FIELD CONDITIONS

A. Apply paints only when temperature of surfaces to be painted and ambient air temperatures are between 50 and 95 deg F.

B. Do not apply paints when relative humidity exceeds 85 percent; at temperatures less than 5 deg F above the dew point; or to damp or wet surfaces.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Benjamin Moore & Co.
2. PPG Paints.

B. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to products listed in the Interior Painting Schedule for the paint category indicated.

2.2 PAINT, GENERAL

A. MPI Standards: Products shall comply with MPI standards indicated and shall be listed in its "MPI Approved Products Lists."

B. Material Compatibility:

1. Materials for use within each paint system shall be compatible with one another and substrates indicated, under conditions of service and application as demonstrated by manufacturer, based on testing and field experience.
2. For each coat in a paint system, products shall be recommended in writing by topcoat manufacturers for use in paint system and on substrate indicated.

C. Colors: As indicated on drawings.
2.3 SOURCE QUALITY CONTROL

A. Testing of Paint Materials: Owner reserves the right to invoke the following procedure:

1. Owner will engage the services of a qualified testing agency to sample paint materials. Contractor will be notified in advance and may be present when samples are taken. If paint materials have already been delivered to Project site, samples may be taken at Project site. Samples will be identified, sealed, and certified by testing agency.

2. Testing agency will perform tests for compliance with product requirements.

3. Owner may direct Contractor to stop applying paints if test results show materials being used do not comply with product requirements. Contractor shall remove noncomplying paint materials from Project site, pay for testing, and repaint surfaces painted with rejected materials. Contractor will be required to remove rejected materials from previously painted surfaces if, on repainting with complying materials, the two paints are incompatible.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates and conditions, with Applicator present, for compliance with requirements for maximum moisture content and other conditions affecting performance of the Work.

B. Maximum Moisture Content of Substrates: When measured with an electronic moisture meter as follows:

1. Masonry (Clay and CMUs): 12 percent.
2. Gypsum Board: 12 percent.

C. Gypsum Board Substrates: Verify that finishing compound is sanded smooth.

D. Verify suitability of substrates, including surface conditions and compatibility, with existing finishes and primers.

E. Proceed with coating application only after unsatisfactory conditions have been corrected.

1. Application of coating indicates acceptance of surfaces and conditions.

3.2 PREPARATION

A. Comply with manufacturer's written instructions and recommendations in "MPI Architectural Painting Specification Manual" applicable to substrates and paint systems indicated.
B. Remove hardware, covers, plates, and similar items already in place that are removable and are not to be painted. If removal is impractical or impossible because of size or weight of item, provide surface-applied protection before surface preparation and painting.

1. After completing painting operations, use workers skilled in the trades involved to reinstall items that were removed. Remove surface-applied protection if any.

C. Clean substrates of substances that could impair bond of paints, including dust, dirt, oil, grease, and incompatible paints and encapsulants.

1. Remove incompatible primers and reprime substrate with compatible primers or apply tie coat as required to produce paint systems indicated.

D. Masonry Substrates: Remove efflorescence and chalk. Do not paint surfaces if moisture content or alkalinity of surfaces or mortar joints exceeds that permitted in manufacturer's written instructions.

E. Steel Substrates: Remove rust, loose mill scale, and shop primer, if any. Clean using methods recommended in writing by paint manufacturer.

F. Shop-Primed Steel Substrates: Clean field welds, bolted connections, and areas where shop paint is abraded. Paint exposed areas with the same material as used for shop priming to comply with SSPC-PA 1 for touching up shop-primed surfaces.

G. Galvanized-Metal Substrates: Remove grease and oil residue from galvanized sheet metal by mechanical methods to produce clean, lightly etched surfaces that promote adhesion of subsequently applied paints.

3.3 APPLICATION

A. Apply paints according to manufacturer's written instructions and to recommendations in "MPI Manual."

1. Use applicators and techniques suited for paint and substrate indicated.
2. Paint surfaces behind movable equipment and furniture same as similar exposed surfaces. Before final installation, paint surfaces behind permanently fixed equipment or furniture with prime coat only.
3. Paint front and backsides of access panels, removable or hinged covers, and similar hinged items to match exposed surfaces.
4. Do not paint over labels of independent testing agencies or equipment name, identification, performance rating, or nomenclature plates.
5. Primers specified in painting schedules may be omitted on items that are factory primed or factory finished if acceptable to topcoat manufacturers.

B. Tint each undercoat a lighter shade to facilitate identification of each coat if multiple coats of same material are to be applied. Tint undercoats to match color of topcoat, but provide sufficient difference in shade of undercoats to distinguish each separate coat.
C. If undercoats or other conditions show through topcoat, apply additional coats until cured film has a uniform paint finish, color, and appearance.

D. Apply paints to produce surface films without cloudiness, spotting, holidays, laps, brush marks, roller tracking, runs, sags, ropiness, or other surface imperfections. Cut in sharp lines and color breaks.

E. Painting Fire Suppression, Plumbing, HVAC, Electrical, Communication, and Electronic Safety and Security Work:

1. Paint the following work where exposed in equipment rooms:
 a. Uninsulated metal piping.

2. Paint the following work where exposed in occupied spaces:
 a. Uninsulated metal piping.
 b. Other items as directed by Architect.

3. Paint portions of internal surfaces of metal ducts, without liner, behind air inlets and outlets that are visible from occupied spaces.

3.4 FIELD QUALITY CONTROL

A. Dry Film Thickness Testing: Owner may engage the services of a qualified testing and inspecting agency to inspect and test paint for dry film thickness.

1. Contractor shall touch up and restore painted surfaces damaged by testing.

2. If test results show that dry film thickness of applied paint does not comply with paint manufacturer's written recommendations, Contractor shall pay for testing and apply additional coats as needed to provide dry film thickness that complies with paint manufacturer's written recommendations.

3.5 CLEANING AND PROTECTION

A. At end of each workday, remove rubbish, empty cans, rags, and other discarded materials from Project site.

B. After completing paint application, clean spattered surfaces. Remove spattered paints by washing, scraping, or other methods. Do not scratch or damage adjacent finished surfaces.

C. Protect work of other trades against damage from paint application. Correct damage to work of other trades by cleaning, repairing, replacing, and refinishing, as approved by Architect, and leave in an undamaged condition.

D. At completion of construction activities of other trades, touch up and restore damaged or defaced painted surfaces.
3.6 INTERIOR PAINTING SCHEDULE

A. CMU Substrates:

1. High-Performance Architectural Latex System MPI INT 4.2P:

 1) Benjamin Moore; Ultra Spec Hi Build Masonry Block Filler
 2) PPG; Speedhide Int./Ext. Masonry Hi Fill Latex Block Filler.
 3) Sherwin-Williams; Pro Industrial Heavy Duty Block Filler.

c. Topcoat: Latex, interior, high performance architectural (MPI Gloss Level 3), MPI #139.
 1) Benjamin Moore; Ultra Spec Waterborne Interior Eggshell
 2) PPG; Diamond Interior Eggshell Paint + Primer
 3) Sherwin-Williams; Interior Acrylic Eggshell

d. Topcoat: Latex, interior, high performance architectural, semi-gloss (MPI Gloss Level 5), MPI #141.
 1) Benjamin Moore; Ultra Spec Waterborne Interior Semi-Gloss
 2) PPG; Diamond Interior Semi-Gloss Paint + Primer
 3) Sherwin-Williams; Interior Acrylic Semi-Gloss

2. Water-Based Light Industrial Coating System MPI INT 4.2K:

 1) Benjamin Moore; Ultra Spec Hi Build Masonry Block Filler
 2) PPG; Speedhide Int./Ext. Masonry Hi Fill Latex Block Filler.
 3) Sherwin-Williams; Pro Industrial Heavy Duty Block Filler.

c. Topcoat: Light industrial coating, interior, water based (MPI Gloss Level 3), MPI #151.
 1) Benjamin Moore; D.T.M. Acrylic Low Lustre Enamel
 2) PPG; Pitt-Glaze WB1 Int. Eggshell Pre-Catalyzed WB Acrylic Epoxy
 3) Sherwin-Williams; Pro Industrial Pre-Cat Epoxy Eggshell

d. Topcoat: Light industrial coating, interior, water based, semi-gloss (MPI Gloss Level 5), MPI #153.
1) Benjamin Moore; D.T.M. Acrylic Low Lustre Enamel
2) PPG; Pitt-Glaze WB1 Int. Semi-Gloss Pre-Catalyzed WB Acrylic Epoxy
3) Sherwin Williams; Pro Industrial Pre-Cat Epoxy Semi-Gloss

B. Steel Substrates:

1. High-Performance Architectural Latex System MPI INT 5.1RR:
 a. Prime Coat: Primer, alkyd, anti-corrosive, for metal, MPI #79.
 1) Benjamin Moore; D.T.M. Alkyd Low Lustre
 2) PPG; Multiprime 4160
 3) Sherwin Williams; Steel Spec Universal Metal Primer
 b. Prime Coat: Shop primer specified in Section where substrate is specified.
 d. Topcoat: Latex, interior, high performance architectural (MPI Gloss Level 3), MPI #139.
 1) Benjamin Moore; Ultra Spec Waterborne Interior Eggshell
 2) PPG; Diamond Interior Eggshell Paint + Primer
 3) Sherwin Williams; Interior Acrylic Egg-Shel
 e. Topcoat: Latex, interior, high performance architectural, semi-gloss (MPI Gloss Level 5), MPI #141.
 1) Benjamin Moore; Ultra Spec Waterborne Interior Semi-Gloss
 2) PPG; Diamond Interior Semi-Gloss Paint + Primer
 3) Sherwin Williams; Interior Acrylic Semi-Gloss

C. Galvanized-Metal Substrates:

1. High-Performance Architectural Latex System MPI INT 5.3M:
 a. Prime Coat: Primer, galvanized, water based, MPI #134.
 1) Benjamin Moore; Ultra Spec Acrylic Metal Primer
 2) PPG; Corrostop Ultra Metal Primer for Rust-Free Galvanized Metal
 3) Sherwin Williams; Pro Industrial DTM Acrylic Primer/Finish
 c. Topcoat: Latex, interior, high performance architectural (MPI Gloss Level 3), MPI #139.
1) Benjamin Moore: Ultra Spec Waterborne Interior Eggshell
2) PPG; Diamond Interior Eggshell Paint + Primer
3) Sherwin Williams; Interior Acrylic Eggshell

d. Topcoat: Latex, interior, high performance architectural, semi-gloss (MPI Gloss Level 5), MPI #141.

1) Benjamin Moore; Ultra Spec Waterborne Interior Semi-Gloss
2) PPG; Diamond Interior Semi-Gloss Paint + Primer
3) Sherwin Williams; Interior Acrylic Semi-Gloss

D. Gypsum Board Substrates:

1. Institutional Low-Odor/VOC Latex System MPI INT 9.2M:
 a. Prime Coat: Primer sealer, interior, institutional low odor/VOC, MPI #149.

 1) Benjamin Moore: UltraSpec 500 Interior Primer.
 2) PPG Architectural; Speedhide Zero Latex Sealer.
 3) Sherwin Williams; ProMar 200 Zero Interior Primer.

 c. Topcoat: Latex, interior, institutional low odor/VOC, flat (MPI Gloss Level 1), MPI #143.

 1) Benjamin Moore; UltraSpec 500 Interior Flat.
 2) PPG Architectural; Speedhide Zero Latex Flat.
 3) Sherwin Williams; ProMar 200 Zero Interior Latex Flat.

 d. Topcoat: Latex, interior, institutional low odor/VOC (MPI Gloss Level 3), MPI #145.

 1) Benjamin Moore; UltraSpec 500 Interior Low Sheen.
 2) PPG Architectural; Speedhide Zero Latex Eggshell.
 3) Sherwin Williams; ProMar 200 Zero Interior Low Gloss Eggshell.

 e. Topcoat: Latex, interior, institutional low odor/VOC, semi-gloss (MPI Gloss Level 5), MPI #147.

 1) Benjamin Moore; UltraSpec 500 Interior Semi-gloss.
 2) PPG Architectural; Speedhide Zero Latex Semi-gloss.
 3) Sherwin Williams; ProMar 200 Zero interior Latex Semi-gloss.

END OF SECTION
SECTION 101419

DIMENSIONAL LETTER SIGNAGE

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Fabricated channel dimensional characters.
2. Illuminated, fabricated channel dimensional characters.

1.3 DEFINITIONS

A. Illuminated: Illuminated by lighting source integrally constructed as part of the sign unit.

1.4 COORDINATION

A. Furnish templates for placement of electrical service embedded in permanent construction by other installers.

1.5 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. Shop Drawings: For signs.

1. Include fabrication and installation details and attachments to other work.
2. Show sign mounting heights, locations of supplementary supports to be provided by other installers, and accessories.
3. Show message list, typestyles, graphic elements, and layout for each sign at least half size.
4. Show locations of electrical service connections.
5. Include diagrams for power, signal, and control wiring.

C. Samples for Verification: For each type of sign assembly showing all components and with the required finish(es), in manufacturer's standard size unless otherwise indicated and as follows:

1. Dimensional Characters: Half-size Sample of dimensional character.
2. Exposed Accessories: Half-size Sample of each accessory type.
3. Full-size Samples, if approved, will be returned to Contractor for use in the Project.

D. Product Schedule: For dimensional letter signs. Use same designations indicated on Drawings or specified.

1. Include structural analysis calculations for signs indicated to comply with design loads; signed and sealed by the qualified professional engineer responsible for their preparation.

1.6 INFORMATIONAL SUBMITTALS

A. Qualification Data: For Installer.

B. Sample Warranty: For special warranty.

1.7 CLOSEOUT SUBMITTALS

A. Maintenance Data: For signs to include in maintenance manuals.

1.8 QUALITY ASSURANCE

A. Installer Qualifications: An entity that employs installers and supervisors who are trained and approved by manufacturer.

1.9 FIELD CONDITIONS

A. Field Measurements: Verify locations of electrical service embedded in permanent construction by other installers by field measurements before fabrication, and indicate measurements on Shop Drawings.

1.10 WARRANTY

A. Special Warranty: Manufacturer agrees to repair or replace components of signs that fail in materials or workmanship within specified warranty period.

1. Failures include, but are not limited to, the following:

 a. Deterioration of finishes beyond normal weathering.
 b. Separation or delamination of sheet materials and components.

2. Warranty Period: Five years from date of Substantial Completion.
PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Delegated Design: Engage a qualified professional engineer, as defined in Section 014000 "Quality Requirements," to design sign structure and anchorage of dimensional character sign type(s) according to structural performance requirements.

B. Structural Performance: Signs and supporting elements shall withstand the effects of gravity and other loads within limits and under conditions indicated.
 1. Uniform Wind Load: As indicated on Drawings.
 2. Concentrated Horizontal Load: As indicated on Drawings.
 3. Other Design Load: As indicated on Drawings.
 4. Uniform and concentrated loads need not be assumed to act concurrently.

C. Thermal Movements: For exterior fabricated channel dimensional characters, allow for thermal movements from ambient and surface temperature changes.
 1. Temperature Change: 120 deg F ambient; 180 deg F, material surfaces.

D. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

2.2 DIMENSIONAL CHARACTERS

A. Fabricated Channel Characters: Metal face and side returns, formed free from warp and distortion; with uniform faces, sharp corners, and precisely formed lines and profiles; internally braced for stability, to meet structural performance loading without oil-canning or other surface deformation, and for securing fasteners; and as follows.
 1. Illuminated Characters: [Backlighted] character construction with [LED] lighting, including transformers, insulators, and other accessories for operability, with provision for servicing and concealing connections to building electrical system. Use tight or sealed joint construction to prevent unintentional light leakage. Space lamps apart from each other and away from character surfaces as needed to illuminate evenly.
 a. Power: [As indicated on electrical Drawings] [120 V, 60 Hz, 1 phase, 15 A] <Insert requirement>.
 b. Weeps: Provide weep holes to drain water at lowest part of exterior characters. [Equip weeps with permanent baffles to block light leakage without inhibiting drainage.]
 2. Character Material: Sheet or plate aluminum.
 3. Material Thickness: 0.050 inch thick for face and 0.031 inch thick for returns.
 4. Character Height: 10 inch nominal.
 5. Character Depth: 1-1/2” nominal.
6. Finishes:
 a. Baked-Enamel or Powder-Coat Finish: Manufacturer's standard, in color as selected by Architect from manufacturer's full range.
 b. Overcoat: Manufacturer's standard baked-on clear coating.

7. Mounting: Manufacturer's standard concealed mounting for size and design of character.
 a. Hold characters at 2-inch distance from wall surface.

8. Typeface: Century Gothic.

2.3 DIMENSIONAL CHARACTER MATERIALS

A. Aluminum Castings: ASTM B26/B26M, alloy and temper recommended by sign manufacturer for casting process used and for type of use and finish indicated.

B. Aluminum Sheet and Plate: ASTM B209, alloy and temper recommended by aluminum producer and finisher for type of use and finish indicated.

C. Aluminum Extrusions: ASTM B221, alloy and temper recommended by aluminum producer and finisher for type of use and finish indicated.

D. Paints and Coatings for Sheet Materials: Inks, dyes, and paints that are recommended by manufacturer for optimum adherence to surface and are UV and water resistant for colors and exposure indicated.

2.4 ACCESSORIES

A. Fasteners and Anchors: Manufacturer's standard as required for secure anchorage of signs, noncorrosive and compatible with each material joined, and complying with the following:
 1. Use concealed fasteners and anchors unless indicated to be exposed.
 2. For exterior exposure, furnish nonferrous-metal, stainless-steel or hot-dip galvanized devices unless otherwise indicated.
 3. Exposed Metal-Fastener Components, General:
 a. Fabricated from same basic metal and finish of fastened metal unless otherwise indicated.
 b. Fastener Heads: For nonstructural connections, use flathead or oval countersunk screws and bolts with tamper-resistant Allen-head slots unless otherwise indicated.
 4. Sign Mounting Fasteners:
 a. Concealed Studs: Concealed (blind), threaded studs welded or brazed to back of sign material, screwed into back of sign assembly, or screwed
into tapped lugs cast integrally into back of cast sign material, unless otherwise indicated.

b. Projecting Studs: Threaded studs with sleeve spacer, welded or brazed to back of sign material, screwed into back of sign assembly, or screwed into tapped lugs cast integrally into back of cast sign material, unless otherwise indicated.

c. Through Fasteners: Exposed metal fasteners matching sign finish, with type of head indicated, installed in predrilled holes.

B. Adhesive: As recommended by sign manufacturer.

C. Two-Face Tape: Manufacturer's standard high-bond, foam-core tape, 0.045 inch thick, with adhesive on both sides.

D. Bituminous Paint: Cold-applied asphalt emulsion complying with ASTM D1187/D1187M.

2.5 FABRICATION

A. General: Provide manufacturer's standard sign assemblies according to requirements indicated.

1. Preassemble signs and assemblies in the shop to greatest extent possible. Disassemble signs and assemblies only as necessary for shipping and handling limitations. Clearly mark units for reassembly and installation; apply markings in locations concealed from view after final assembly.

2. Mill joints to a tight, hairline fit. Form assemblies and joints exposed to weather to resist water penetration and retention.

3. Comply with AWS for recommended practices in welding and brazing. Provide welds and brazes behind finished surfaces without distorting or discoloring exposed side. Clean exposed welded and brazed connections of flux, and dress exposed and contact surfaces.

4. Conceal connections if possible; otherwise, locate connections where they are inconspicuous.

5. Internally brace dimensional characters for stability, to meet structural performance loading without oil-canning or other surface deformation, and for securing fasteners.

6. Provide rabbets, lugs, and tabs necessary to assemble components and to attach to existing work. Drill and tap for required fasteners. Use concealed fasteners where possible; use exposed fasteners that match sign finish.

7. Castings: Fabricate castings free of warp, cracks, blowholes, pits, scale, sand holes, and other defects that impair appearance or strength. Grind, wire brush, sandblast, and buff castings to remove seams, gate marks, casting flash, and other casting marks before finishing.

B. Brackets: Fabricate brackets, fittings, and hardware for bracket-mounted signs to suit sign construction and mounting conditions indicated. Modify manufacturer's standard brackets as required.
1. Aluminum Brackets: Factory finish brackets with baked-enamel or powder-coat finish to match sign-background color unless otherwise indicated.

2.6 GENERAL FINISH REQUIREMENTS
 A. Protect mechanical finishes on exposed surfaces from damage by applying a strippable, temporary protective covering before shipping.
 B. Appearance of Finished Work: Noticeable variations in same piece are not acceptable. Variations in appearance of adjoining components are acceptable if they are within the range of approved Samples and are assembled or installed to minimize contrast.
 C. Directional Finishes: Run grain with long dimension of each piece and perpendicular to long dimension of finished trim or border surface unless otherwise indicated.

2.7 ALUMINUM FINISHES
 A. Baked-Enamel or Powder-Coat Finish: AAMA 2603 except with a minimum dry film thickness of 1.5 mils. Comply with coating manufacturer's written instructions for cleaning, conversion coating, and applying and baking finish.

PART 3 - EXECUTION

3.1 EXAMINATION
 A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance.
 B. Verify that sign-support surfaces are within tolerances to accommodate signs without gaps or irregularities between backs of signs and support surfaces unless otherwise indicated.
 C. Verify that electrical service is correctly sized and located to accommodate signs.
 D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION
 A. General: Install signs using mounting methods indicated and according to manufacturer's written instructions.
 1. Install signs level, plumb, true to line, and at locations and heights indicated, with sign surfaces free of distortion and other defects in appearance.
 2. Before installation, verify that sign surfaces are clean and free of materials or debris that would impair installation.
 3. Corrosion Protection: Coat concealed surfaces of exterior aluminum in contact with grout, concrete, masonry, wood, or dissimilar metals, with a heavy coat of bituminous paint.
B. Mounting Methods:

1. Concealed Studs: Using a template, drill holes in substrate aligning with studs on back of sign. Remove loose debris from hole and substrate surface.
 a. Thin or Hollow Surfaces: Place sign in position and flush to surface, install washers and nuts on studs projecting through opposite side of surface, and tighten.

2. Projecting Studs: Using a template, drill holes in substrate aligning with studs on back of sign. Remove loose debris from hole and substrate surface.
 a. Thin or Hollow Surfaces: Place spacers on studs, place sign in position with spacers pinched between sign and substrate, and install washers and nuts on stud ends projecting through opposite side of surface, and tighten.

3. Through Fasteners: Drill holes in substrate using predrilled holes in sign as template. Countersink holes in sign if required. Place sign in position and flush to surface. Install through fasteners and tighten.

4. Back Bar and Brackets: Remove loose debris from substrate surface and install backbar or bracket supports in position, so that signage is correctly located and aligned.

3.3 ADJUSTING AND CLEANING

A. Remove and replace damaged or deformed characters and signs that do not comply with specified requirements. Replace characters with damaged or deteriorated finishes or components that cannot be successfully repaired by finish touchup or similar minor repair procedures.

B. Remove temporary protective coverings and strippable films as signs are installed.

C. On completion of installation, clean exposed surfaces of signs according to manufacturer's written instructions, and touch up minor nicks and abrasions in finish. Maintain signs in a clean condition during construction and protect from damage until acceptance by Owner.

END OF SECTION
THIS PAGE INTENTIONALLY LEFT BLANK
SECTION 102113.14

STAINLESS-STEEL TOILET COMPARTMENTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes stainless-steel toilet compartments configured as toilet enclosures and urinal screens.

B. Related Requirements:

1. Section 102800 "Toilet, Bath, and Laundry Accessories" for toilet tissue dispensers, grab bars, purse shelves, and similar accessories mounted on toilet compartments.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for toilet compartments.

B. Shop Drawings: For toilet compartments.

1. Include plans, elevations, sections, details, and attachment details.
2. Show locations of cutouts for compartment-mounted toilet accessories.
3. Show locations of reinforcements for compartment-mounted grab bars and locations of blocking for surface-mounted toilet accessories.
4. Show locations of centerlines of toilet fixtures.
5. Show locations of floor drains.
6. Show ceiling grid, ceiling-mounted items, and overhead support or bracing locations.

C. Samples for Verification: For the following products, in manufacturer's standard sizes unless otherwise indicated:

1. Each type of material, color, and finish required for toilet compartments, prepared on 6-inch-square samples of same thickness and material indicated for Work.
2. Each type of hardware and accessory.
D. Product Schedule: For toilet compartments, prepared by or under the supervision of supplier, detailing location and selected colors for toilet compartment material.

1.4 CLOSEOUT SUBMITTALS
A. Maintenance Data: For toilet compartments to include in maintenance manuals.

1.5 MAINTENANCE MATERIAL SUBMITTALS
A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Door Hinges: Two hinge(s) with associated fasteners.
 2. Latch and Keeper: Two latch(es) and keeper(s) with associated fasteners.
 3. Door Bumper: Two door bumper(s) with associated fasteners.
 4. Door Pull: Two door pull(s) with associated fasteners.
 5. Fasteners: Ten fasteners of each size and type.

1.6 PROJECT CONDITIONS
A. Field Measurements: Verify actual locations of toilet fixtures, walls, columns, ceilings, and other construction contiguous with toilet compartments by field measurements before fabrication.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS
A. Regulatory Requirements: Comply with applicable provisions in the U.S. Architectural & Transportation Barriers Compliance Board's ADA-ABA Accessibility Guidelines for Buildings and Facilities and ICC A117.1 for toilet compartments designated as accessible.

2.2 STAINLESS-STEEL TOILET COMPARTMENTS
A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 2. Bradley Corporation.

B. Toilet-Enclosure Style: Overhead braced.

C. Urinal-Screen Style: Wall hung flat panel.
D. Door, Panel, and Pilaster Construction: Seamless, metal facing sheets pressure laminated to core material; with continuous, interlocking molding strip or lapped-and-formed edge closures; corners secured by welding or clips and exposed welds ground smooth. Exposed surfaces shall be free of pitting, seam marks, roller marks, stains, discolorations, telegraphing of core material, or other imperfections.

 1. Core Material: Manufacturer's standard sound-deadening honeycomb of resin-impregnated kraft paper in thickness required to provide finished thickness of 1 inch for doors and panels and 1-1/4 inches for pilasters.
 2. Grab-Bar Reinforcement: Provide concealed internal reinforcement for grab bars mounted on units of size and material adequate for panel to withstand applied downward load on grab bar of at least 250 lbf, when tested according to ASTM F446, without deformation of panel.
 3. Tapping Reinforcement: Provide concealed reinforcement for tapping (threading) at locations where machine screws are used for attaching items to units.

E. Urinal-Screen Construction:

1. Flat-Panel Urinal Screen: Matching panel construction.

F. Facing Sheets and Closures: Stainless-steel sheet of nominal thicknesses as follows:

1. Pilasters, Braced at Both Ends: Manufacturer's standard thickness, but not less than 0.038 inch.
2. Pilasters, Unbraced at One End: Manufacturer's standard thickness, but not less than 0.050 inch.
3. Panels: Manufacturer's standard thickness, but not less than 0.031 inch.
4. Doors: Manufacturer's standard thickness, but not less than 0.031 inch.
5. Flat-Panel Urinal Screens: Thickness matching the panels.

G. Pilaster Shoes and Sleeves (Caps): Stainless-steel sheet, not less than 0.031-inch nominal thickness and 3 inches high, finished to match hardware.

H. Brackets (Fittings):

1. Full-Height (Continuous) Type: Manufacturer's standard design; stainless steel.

I. Stainless-Steel Finish: No. 4 bright, directional polish on exposed faces. Protect exposed surfaces from damage by application of strippable, temporary protective covering before shipment.

2.3 HARDWARE AND ACCESSORIES

A. Hardware and Accessories: Manufacturer's heavy-duty operating hardware and accessories.
1. **Hinges**: Manufacturer's minimum 0.062-inch-thick stainless steel self-closing type that can be adjusted to hold doors open at any angle up to 90 degrees, allowing emergency access by lifting door. Mount with through-bolts.

2. **Latch and Keeper**: Manufacturer's heavy-duty surface-mounted cast-stainless-steel latch unit designed to resist damage due to slamming, with combination rubber-faced door strike and keeper, and with provision for emergency access. Provide units that comply with regulatory requirements for accessibility at compartments designated as accessible. Mount with through-bolts.

3. **Coat Hook**: Manufacturer's heavy-duty combination cast-stainless-steel hook and rubber-tipped bumper, sized to prevent in-swinging door from hitting compartment-mounted accessories. Mount with through-bolts. Provide quantity indicated on drawings.

5. **Door Pull**: Manufacturer's heavy-duty cast-stainless-steel pull at out-swinging doors that complies with regulatory requirements for accessibility. Provide units on both sides of doors at compartments designated as accessible. Mount with through-bolts.

B. **Overhead Bracing**: Manufacturer's standard continuous, extruded-aluminum head rail with anti-grip profile and in manufacturer's standard finish.

C. **Anchorages and Fasteners**: Manufacturer's standard exposed fasteners of stainless steel, finished to match the items they are securing, with theft-resistant-type heads. Provide sex-type bolts for through-bolt applications. For concealed anchors, use stainless-steel, hot-dip galvanized-steel, or other rust-resistant, protective-coated steel anchors compatible with related materials.

2.4 MATERIALS

A. **Aluminum Extrusions**: ASTM B221.

B. **Stainless-Steel Sheet**: ASTM A666, Type 304, stretcher-leveled standard of flatness.

C. **Stainless-Steel Castings**: ASTM A743/A743M.

D. **Zamac**: ASTM B86, commercial zinc-alloy die castings.

2.5 FABRICATION

A. **Fabrication, General**: Fabricate toilet compartment components to sizes indicated. Coordinate requirements and provide cutouts for through-partition toilet accessories and solid blocking within panel where required for attachment of toilet accessories.

B. **Overhead-Braced Units**: Provide manufacturer's standard corrosion-resistant supports, leveling mechanism, and anchors at pilasters to suit floor conditions. Provide shoes at pilasters to conceal supports and leveling mechanism.
C. Door Size and Swings: Unless otherwise indicated, provide 24-inch-wide in-swinging doors for standard toilet compartments and 36-inch-wide out-swinging doors with a minimum 32-inch-wide clear opening for compartments designated as accessible.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas and conditions, with Installer present, for compliance with requirements for fastening, support, alignment, operating clearances, and other conditions affecting performance of the Work.

1. Confirm location and adequacy of blocking and supports required for installation.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. General: Comply with manufacturer's written installation instructions. Install units rigid, straight, level, and plumb. Secure units in position with manufacturer's recommended anchoring devices.

1. Maximum Clearances:
 a. Pilasters and Panels: 1/2 inch.
 b. Panels and Walls: 1 inch.

2. Full-Height (Continuous) Brackets: Secure panels to walls and to pilasters with full-height brackets.
 a. Locate bracket fasteners so holes for wall anchors occur in masonry or tile joints.
 b. Align brackets at pilasters with brackets at walls.

B. Overhead-Braced Units: Secure pilasters to floor and level, plumb, and tighten. Set pilasters with anchors penetrating not less than 1-3/4 inches into structural floor unless otherwise indicated in manufacturer's written instructions. Secure continuous head rail to each pilaster with no fewer than two fasteners. Hang doors to align tops of doors with tops of panels, and adjust so tops of doors are parallel with overhead brace when doors are in closed position.

C. Urinal Screens: Attach with anchoring devices to suit supporting structure. Set units level and plumb, rigid, and secured to resist lateral impact.
3.3 ADJUSTING

A. Hardware Adjustment: Adjust and lubricate hardware according to hardware manufacturer's written instructions for proper operation. Set hinges on in-swinging doors to hold doors open approximately 30 degrees from closed position when unlatched. Set hinges on out-swinging doors to return doors to fully closed position.

END OF SECTION
SECTION 102239

FOLDING PANEL PARTITIONS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary
Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:

1. Manually operated, acoustical panel partitions.

B. Related Requirements:

1. Section 055000 "Metal Fabrications" for supports that attach supporting tracks to overhead structural system.

1.3 DEFINITIONS
A. NIC: Noise Isolation Class.
B. NRC: Noise Reduction Coefficient.
C. STC: Sound Transmission Class.

1.4 PREINSTALLATION MEETINGS
A. Preinstallation Conference: Conduct conference at Project site.

1.5 ACTION SUBMITTALS
A. Product Data: For each type of product.
B. Shop Drawings: For operable panel partitions.

1. Include plans, elevations, sections, attachment details, and numbered panel installation sequence.
2. Indicate stacking and operating clearances. Indicate location and installation requirements for hardware and track, blocking, and direction of travel.

C. Samples for Verification: For each type of exposed material, finish, covering, or facing, prepared on Samples of size indicated below:
1. Textile Facing Material: Full width by not less than 36-inch-long section of fabric from dye lot to be used for the Work, with specified treatments applied. Show complete pattern repeat.
2. Panel Edge Material: Not less than 3 inches long.
3. Hardware: One of each exposed door-operating device.

D. Delegated-Design Submittal: For operable panel partitions.
 1. Include design calculations for seismic restraints that brace tracks to structure above.

1.6 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Reflected ceiling plans, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 1. Partition track, track supports and bracing, switches, turning space, and storage layout.
 2. Suspended ceiling components.
 3. Structural members to which suspension systems will be attached.
 4. Size and location of initial access modules for acoustical tile.
 5. Items penetrating finished ceiling including the following:
 a. Lighting fixtures.
 b. HVAC ductwork, outlets, and inlets.
 c. Speakers.
 d. Sprinklers.
 e. Smoke detectors.
 f. Access panels.
 6. Plenum acoustical barriers.

B. Setting Drawings: For embedded items and cutouts required in other work, including support-beam, mounting-hole template.

C. Qualification Data: For Installer.

D. Seismic Qualification Certificates: For operable panel partitions, tracks, accessories, and components, from manufacturer. Include seismic capacity of partition assemblies to remain in vertical position during a seismic event and the following:
 1. Basis for Certification: Indicate whether certification is based on analysis, testing, or experience data, according to ASCE/SEI 7.
 2. Detailed description of partition anchorage devices on which the certification is based and their installation requirements.

E. Product Certificates: For each type of operable panel partition.
1. Include approval letter signed by manufacturer acknowledging Owner-
furnished panel facing material complies with requirements.

F. Product Test Reports: For each operable panel partition, for tests performed by a
qualified testing agency.

G. Field quality-control reports.

H. Sample Warranty: For manufacturer's special warranty.

1.7 CLOSEOUT SUBMITTALS
A. Operation and Maintenance Data: For operable panel partitions to include in
maintenance manuals.

1. In addition to items specified in Section 017823 "Operation and Maintenance
Data," include the following:

a. Panel finish facings and finishes for exposed trim and accessories.
Include precautions for cleaning materials and methods that could be
detrimental to finishes and performance.

b. Seals, hardware, track, track switches, carriers, and other operating
components.

1.8 MAINTENANCE MATERIAL SUBMITTALS
A. Furnish extra materials, from the same production run, that match products installed
and that are packaged with protective covering for storage and identified with labels
describing contents.

1. Panel Finish-Facing Material: Furnish full width in quantity to cover both sides
of two panels when installed.

1.9 QUALITY ASSURANCE
A. Installer Qualifications: An entity that employs installers and supervisors who are
trained and approved by manufacturer.

1.10 DELIVERY, STORAGE, AND HANDLING
A. Protectively package and sequence panels in order for installation. Clearly mark
packages and panels with numbering system used on Shop Drawings. Do not use
permanent markings on panels.

1.11 WARRANTY
A. Special Warranty: Manufacturer agrees to repair or replace components of operable
panel partitions that fail in materials or workmanship within specified warranty period.
1. Failures include, but are not limited to, the following:
 a. Faulty operation of operable panel partitions.
 b. Deterioration of metals, metal finishes, and other materials beyond normal use.

2. Warranty Period: Five years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Delegated Design: Engage a qualified professional engineer, as defined in Section 014000 "Quality Requirements," to design seismic bracing of tracks to structure above.

B. Seismic Performance: Operable panel partitions shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.

1. The term "withstand" means "the partition panels will remain in place without separation of any parts when subjected to the seismic forces specified."

C. Acoustical Performance: Provide operable panel partitions tested by a qualified testing agency for the following acoustical properties according to test methods indicated:

1. Sound-Transmission Requirements: Operable panel partition assembly tested for laboratory sound-transmission loss performance according to ASTM E90, determined by ASTM E413, and rated for not less than the STC indicated.

2. Noise-Reduction Requirements: Operable panel partition assembly, identical to partition tested for STC, tested for sound-absorption performance according to ASTM C423, and rated for not less than the NRC indicated.

3. Noise-Isolation Requirements: Installed operable panel partition assembly, identical to partition tested for STC, tested for NIC according to ASTM E336, determined by ASTM E413, and rated for 10 dB less than STC value indicated.

2.2 OPERABLE ACOUSTICAL PANELS

A. Operable Acoustical Panels: Partition system, including panels, seals, finish facing, suspension system, operators, and accessories.

1. Basis-of-Design Product: Subject to compliance with requirements, provide Modernfold, Inc; Acousti-Seal #932 or a comparable product by one of the following:

 a. Hufcor, Inc.
 b. Moderco Inc.

B. Panel Operation: Manually operated, paired panels.
C. Panel Construction: As required to support panel from suspension components and with reinforcement for hardware attachment. Fabricate panels with tight hairline joints and concealed fasteners. Fabricate panels so finished in-place partition is rigid; level; plumb; aligned, with tight joints and uniform appearance; and free of bow, warp, twist, deformation, and surface and finish irregularities.

D. Dimensions: Fabricate operable acoustical panel partitions to form an assembled system of dimensions indicated and verified by field measurements.

E. STC: Not less than 50.

F. Panel Weight: 8 lb/sq. ft. maximum.

G. Panel Thickness: Nominal dimension of 3 inches.

H. Panel Materials:

1. Steel Frame: Steel sheet, manufacturer's standard nominal minimum thickness for uncoated steel.
2. Gypsum Board: ASTM C1396/C1396M.

I. Panel Closure: Manufacturer's standard unless otherwise indicated.

1. Final Closure: Constant-force, lever-operated mechanical closure expanding from panel edge to create a constant-pressure acoustical seal.

J. Hardware: Manufacturer's standard as required to operate operable panel partition and accessories; with decorative, protective finish.

1. Hinges: Manufacturer's standard.

K. Finish Facing: Fabric wall covering.

2.3 SEALS

A. Description: Seals that produce operable panel partitions complying with performance requirements and the following:

1. Manufacturer's standard seals unless otherwise indicated.
2. Seals made from materials and in profiles that minimize sound leakage.
3. Seals fitting tight at contact surfaces and sealing continuously between adjacent panels and between operable panel partition perimeter and adjacent surfaces, when operable panel partition is extended and closed.

B. Vertical Seals: Deep-nesting, interlocking steel astragals mounted on each edge of panel, with continuous, resilient acoustical seal.
C. Horizontal Top Seals: Continuous-contact, resilient seal exerting uniform constant pressure on track.

D. Horizontal Bottom Seals: Resilient, mechanical, retractable, constant-force-contact seal exerting uniform constant pressure on floor when extended, ensuring horizontal and vertical sealing and resisting panel movement.

1. Automatically Operated for Acoustical Panels: Extension and retraction of bottom seal automatically operated by movement of partition, with operating range not less than 1-1/2 inches between retracted seal and floor finish.

2.4 PANEL FINISH FACINGS

A. Description: Finish facings for panels that comply with indicated fire-test-response characteristics and that are factory applied to operable panel partitions with appropriate backing, using mildew-resistant non-staining adhesive as recommended by facing manufacturer's written instructions.

1. Apply one-piece, seamless facings free of air bubbles, wrinkles, blisters, and other defects, with edges tightly butted, and with no gaps or overlaps. Horizontal butted edges are not permitted. Tightly secure and conceal raw and selvage edges of facing for finished appearance.

2. Where facings with directional or repeating patterns or directional weave are indicated, mark facing top and attach facing in same direction.

3. Match facing pattern 72 inches above finished floor.

B. Vinyl-Coated Fabric Wall Covering: Manufacturer's standard, mildew-resistant, washable, vinyl-coated fabric wall covering; complying with WA-101, Type II-Medium Duty; Class A.

1. Total Weight: 13 oz /linear yard.

2. Antimicrobial Treatment: Additives capable of inhibiting growth of bacteria, fungi, and yeasts.

3. Color/Pattern: As selected by Architect from manufacturer's full range.

C. Cap-Trimed Edges: Protective perimeter-edge trim with tight hairline joints concealing edges of panel and finish facing, finished as follows:

1. Aluminum: Finished with manufacturer's standard clear anodic finish.

D. Trimless Edges: Fabricate exposed panel edges so finish facing wraps uninterrupted around panel, covering edge and resulting in an installed partition with facing visible on vertical panel edges, without trim, for minimal sightlines at panel-to-panel joints.

2.5 SUSPENSION SYSTEMS

A. Tracks: Steel with adjustable steel hanger rods for overhead support, designed for operation, size, and weight of operable panel partition indicated. Size track to support partition operation and storage without damage to suspension system, operable panel
partitions, or adjacent construction. Limit track deflection to no more than 0.10 inch between bracket supports. Provide a continuous system of track sections and accessories to accommodate configuration and layout indicated for partition operation and storage.

1. **Panel Guide:** Aluminum guide on both sides of the track to facilitate straightening of the panels; finished with factory-applied, decorative, protective finish.

2. **Carriers:** Trolley system as required for configuration type, size, and weight of partition and for easy operation; with ball-bearing wheels.

 1. **Multidirectional Carriers:** Capable of negotiating intersections without track switches.

3. **Track Intersections, Switches, and Accessories:** As required for operation, storage, track configuration, and layout indicated for operable panel partitions, and compatible with partition assembly specified. Fabricate track intersections and switches from steel or aluminum.

 1. **Curve-and-Diverter Switches:** Allow radius turns to divert panels to an auxiliary track.
 2. **L Intersections:** Allow panels to change 90 degrees in direction of travel.
 3. **T Intersections:** Allow panels to pass through or change 90 degrees to another direction of travel.
 4. **X Intersections:** Allow panels to pass through or change travel direction full circle in 90-degree increments, and allow one partition to cross track of another.
 5. **Multidirectional Switches:** Adjustable switch configuring track into L, T, or X intersections and allowing panels to be moved in all pass-through, 90-degree change, and cross-over travel direction combinations.
 6. **Center carrier stop.**

4. **Aluminum Finish:** Mill finish or manufacturer's standard, factory-applied, decorative finish unless otherwise indicated.

5. **Steel Finish:** Manufacturer's standard, factory-applied, corrosion-resistant, protective coating unless otherwise indicated.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine flooring, floor levelness, structural support, and opening, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of operable panel partitions.

B. Proceed with installation only after unsatisfactory conditions have been corrected.
3.2 INSTALLATION

A. Install operable panel partitions and accessories after other finishing operations, including painting, have been completed in area of partition installation.

B. Install panels in numbered sequence indicated on Shop Drawings.

C. Broken, cracked, chipped, deformed, or unmatched panels are not acceptable.

D. Broken, cracked, deformed, or unmatched gasketing or gasketing with gaps at butted ends is not acceptable.

E. Light-Leakage Test: Illuminate one side of partition installation and observe vertical joints and top and bottom seals for voids. Adjust partitions for alignment and full closure of vertical joints and full closure along top and bottom seals.

3.3 ADJUSTING

A. Adjust operable panel partitions, hardware, and other moving parts to function smoothly, and lubricate as recommended by manufacturer.

B. Verify that safety devices are properly functioning.

3.4 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain operable panel partitions.

END OF SECTION
SECTION 102800

TOILET, BATH, AND LAUNDRY ACCESSORIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Public-use washroom accessories.
 2. Shower room accessories.
 3. Underlavatory guards.
 5. Childcare accessories.

1.3 COORDINATION

A. Coordinate accessory locations with other work to prevent interference with clearances required for access by people with disabilities, and for proper installation, adjustment, operation, cleaning, and servicing of accessories.

B. Deliver inserts and anchoring devices set into concrete or masonry as required to prevent delaying the Work.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product.
 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes.
 2. Include anchoring and mounting requirements, including requirements for cutouts in other work and substrate preparation.
 3. Include electrical characteristics.

B. Samples: Full size, for each exposed product and for each finish specified.
 1. Approved full-size Samples will be returned and may be used in the Work.

C. Product Schedule: Indicating types, quantities, sizes, and installation locations by room of each accessory required.
1. Identify locations using room designations indicated.
2. Identify accessories using designations indicated.

1.5 INFORMATIONAL SUBMITTALS
A. Sample Warranty: For manufacturer's special warranty.

1.6 CLOSEOUT SUBMITTALS
A. Maintenance Data: For accessories to include in maintenance manuals.

1.7 WARRANTY
A. Manufacturer's Special Warranty for Mirrors: Manufacturer agrees to repair or replace mirrors that fail in materials or workmanship within specified warranty period.

1. Failures include, but are not limited to, visible silver spoilage defects.
2. Warranty Period: 15 years from date of Substantial Completion.

PART 2 - PRODUCTS
2.1 PUBLIC-USE WASHROOM ACCESSORIES
A. Source Limitations: Obtain public-use washroom accessories from single source from single manufacturer.

B. Grab Bar <A>:

1. Basis-of-Design Product: Subject to compliance with requirements, provide Bobrick Washroom Equipment, Inc; B-6806 x 36 or a comparable product by one of the following:
 a. American Specialties, Inc.
 b. Bradley Corporation.
 c. Bobrick Washroom Equipment, Inc

3. Material: Stainless steel, 0.05 inch thick.
 a. Finish: Smooth, No. 4 finish (satin).
5. Configuration and Length: Straight, 36 inches long.

C. Grab Bar :
1. Basis-of-Design Product: Subject to compliance with requirements, provide Bobrick Washroom Equipment, Inc; B-6806 x 42 or a comparable product by one of the following:
 a. American Specialties, Inc.
 b. Bradley Corporation.
 c. Bobrick Washroom Equipment, Inc

3. Material: Stainless steel, 0.05 inch thick.
 a. Finish: Smooth, No. 4 finish (satin).

5. Configuration and Length: Straight, 42 inches long.

D. Toilet Tissue (Roll) Dispenser <D>:

1. Basis-of-Design Product: Subject to compliance with requirements, provide Bobrick Washroom Equipment, Inc; B-4288 or a comparable product by one of the following:
 a. American Specialties, Inc.
 b. Bradley Corporation.
 c. Bobrick Washroom Equipment, Inc

2. Description: Double-roll dispenser.
5. Capacity: Designed for 6-inch diameter tissue rolls.

E. Combination Towel (Roll) Dispenser/Waste Receptacle <E>:

1. Basis-of-Design Product: Subject to compliance with requirements, provide Bobrick Washroom Equipment, Inc; B-39747 or a comparable product by one of the following:
 a. American Specialties, Inc.
 b. Bradley Corporation.
 c. Bobrick Washroom Equipment, Inc

2. Description: Combination unit for dispensing preset length of roll paper towels, with removable waste receptacle.
7. Lockset: Tumbler type for towel-dispenser compartment and waste receptacle
F. Sanitary-Napkin Disposal Unit <F>:

1. Basis-of-Design Product: Subject to compliance with requirements, provide Bobrick Washroom Equipment, Inc; B-270 or a comparable product by one of the following:
 a. American Specialties, Inc.
 b. Bradley Corporation.
 c. Bobrick Washroom Equipment, Inc.

3. Door or Cover: Self-closing, disposal-opening cover.
5. Material and Finish: Stainless steel, No. 4 finish (satin).

G. Liquid-Soap Dispenser <G>:

1. Basis-of-Design Product: Subject to compliance with requirements, provide Bobrick Washroom Equipment, Inc; B-822 or a comparable product by one of the following:
 a. American Specialties, Inc.
 b. Bradley Corporation.
 c. Bobrick Washroom Equipment, Inc.

2. Description: Designed for dispensing antibacterial soap in liquid form.
5. Materials: Stainless steel, No. 4 finish (satin).

H. Clothes Hook Strip <K>:

1. Basis-of-Design Product: Subject to compliance with requirements, provide Bobrick Washroom Equipment, Inc; B-985 or a comparable product by one of the following:
 a. American Specialties, Inc.
 b. Bradley Corporation.
 c. Bobrick Washroom Equipment, Inc.

2. Description: Vandal resistant hook strip
4. Place in each shower room.

I. Vertical Grab Bar <L>:

1. Basis-of-Design Product: Subject to compliance with requirements, provide Bobrick Washroom Equipment, Inc; B-6806 x 18 or a comparable product by one of the following:
a. American Specialties, Inc.
b. Bradley Corporation.
c. Bobrick Washroom Equipment, Inc

3. Material: Stainless steel, 0.05 inch thick.

a. Finish: Smooth, No. 4 finish (satin).

5. Configuration and Length: Straight, 18 inches long.

J. Combination Towel (Roll) Dispenser/Waste Receptacle <N>:

1. Basis-of-Design Product: Subject to compliance with requirements, provide Bobrick Washroom Equipment, Inc; B-39747 or a comparable product by one of the following:

a. American Specialties, Inc.
b. Bradley Corporation.
c. Bobrick Washroom Equipment, Inc

2. Description: Combination unit for dispensing preset length of roll paper towels, with removable waste receptacle.
7. Lockset: Tumbler type for towel-dispenser compartment and waste receptacle

K. Mirror Unit <P>:

1. Basis-of-Design Product: Subject to compliance with requirements, provide Bobrick Washroom Equipment, Inc; B-165 or a comparable product by one of the following:

a. American Specialties, Inc.
b. Bradley Corporation.
c. Bobrick Washroom Equipment, Inc

2. Frame: Stainless steel angle, 0.05 inch.

a. Wall bracket of galvanized steel, equipped with concealed locking devices requiring a special tool to remove.

4. Size: As indicated on Drawings.
L. Liquid-Soap Dispenser <Q>:

1. Basis-of-Design Product: Subject to compliance with requirements, provide Bobrick Washroom Equipment, Inc; B-2111 or a comparable product by one of the following:
 a. American Specialties, Inc.
 b. Bradley Corporation.
 c. Bobrick Washroom Equipment, Inc

2. Description: Designed for dispensing antibacterial soap in liquid form.
5. Materials: Stainless steel, No. 4 finish (satin).

2.2 UNDERLAVATORY GUARDS

A. Underlavatory Guard:

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. Buckaroos, Inc.
 b. Plumberex Specialty Products, Inc.
 c. Truebro by IPS Corporation.

2. Description: Insulating pipe covering for supply and drain piping assemblies that prevents direct contact with and burns from piping; allow service access without removing coverings.

2.3 CUSTODIAL ACCESSORIES

A. Source Limitations: Obtain custodial accessories from single source from single manufacturer.

B. Mop and Broom Holder:

1. Basis-of-Design Product: Subject to compliance with requirements, provide Bobrick Washroom Equipment, Inc; B-239 or a comparable product by one of the following:
 a. American Specialties, Inc.
 b. Bradley Corporation.
 c. Bobrick Washroom Equipment, Inc

2. Description: Unit with shelf, hooks, holders.
3. Length: 36 inches.
5. Mop/Broom Holders: Three, spring-loaded, rubber hat, cam type.
 a. Shelf: Not less than nominal 0.05-inch-thick stainless steel.

2.4 CHILDCARE ACCESSORIES
A. Diaper-Changing Station <M>:
 1. Basis-of-Design Product: Subject to compliance with requirements, provide Koala Care Products; KB-110-SSWM or a comparable product by one of the following:
 a. American Specialties, Inc.
 b. Bradley Corporation.
 c. Koala Kare Products; a Division of Bobrick.
 2. Description: Horizontal unit that opens by folding down from stored position and with child-protection strap.
 a. Engineered to support minimum of 250-lb static load when opened.
 3. Mounting: Surface mounted, with unit projecting not more than 4 inches from wall when closed.
 5. Material and Finish: Stainless steel, ASTM A480/A480M No. 4 finish (satin), with replaceable insulated polystyrene tray liner and rounded plastic corners.

2.5 MATERIALS
A. Stainless Steel: ASTM A666, Type 304, 0.031-inch minimum nominal thickness unless otherwise indicated.
C. Fasteners: Screws, bolts, and other devices of same material as accessory unit and tamper-and-theft resistant where exposed, and of galvanized steel where concealed.
D. Chrome Plating: ASTM B456, Service Condition Number SC 2 (moderate service).
E. Mirrors: ASTM C1503, Mirror Glazing Quality, clear-glass mirrors, nominal 6.0 mm thick.
2.6 FABRICATION

A. General: Fabricate units with tight seams and joints, and exposed edges rolled. Hang doors and access panels with full-length, continuous hinges. Equip units for concealed anchorage and with corrosion-resistant backing plates.

B. Keys: Provide universal keys for internal access to accessories for servicing and resupplying. Provide minimum of six keys to Owner's representative.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install accessories according to manufacturers' written instructions, using fasteners appropriate to substrate indicated and recommended by unit manufacturer. Install units level, plumb, and firmly anchored in locations and at heights indicated.

B. Grab Bars: Install to withstand a downward load of at least 250 lbf, when tested according to ASTM F446.

3.2 ADJUSTING AND CLEANING

A. Adjust accessories for unencumbered, smooth operation. Replace damaged or defective items.

B. Remove temporary labels and protective coatings.

C. Clean and polish exposed surfaces according to manufacturer's written instructions.

END OF SECTION
SECTION 104413
FIRE PROTECTION CABINETS AND EXTINGUISHERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Fire-protection cabinets for portable fire extinguishers.
 2. Section includes portable, hand-carried fire extinguishers and mounting brackets for fire extinguishers.

1.3 ACTION SUBMITTALS
A. Product Data: For each type of product.
B. Shop Drawings: For fire-protection cabinets.
C. Samples: For each type of exposed finish required.

1.4 INFORMATIONAL SUBMITTALS
A. Warranty: Sample of special warranty.

1.5 CLOSEOUT SUBMITTALS
A. Maintenance data.

1.6 COORDINATION
A. Coordinate size of fire-protection cabinets to ensure that type and capacity of fire extinguishers indicated are accommodated.
B. Coordinate sizes and locations of fire-protection cabinets with wall depths.

1.7 WARRANTY
A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace fire extinguishers that fail in materials or workmanship within specified warranty period.
1. Warranty Period: Six years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Fire-Rated Fire-Protection Cabinets: Listed and labeled to comply with requirements in ASTM E814 for fire-resistance rating of walls where they are installed.

B. NFPA Compliance: Fabricate and label fire extinguishers to comply with NFPA 10, "Portable Fire Extinguishers."

C. Fire Extinguishers: Listed and labeled for type, rating, and classification by an independent testing agency acceptable to authorities having jurisdiction.

2.2 FIRE-PROTECTION CABINET <FEC>

A. Cabinet Type: Suitable for fire extinguisher.

1. Basis-of-Design Product: Subject to compliance with requirements, provide Babcock-Davis; Select Fire Extinguisher Cabinet (BFC-70) or a comparable product by one of the following:

 a. Guardian Fire Equipment, Inc.
 b. JL Industries, Inc.; a division of the Activar Construction Products Group.
 c. Larsens Manufacturing Company.

B. Cabinet Construction: Nonrated.

C. Cabinet Material: Cold-rolled steel sheet.

D. Semi-recessed Cabinet: One-piece combination trim and perimeter door frame overlapping surrounding wall surface, with exposed trim face and wall return at outer edge (backbend).

 1. Rolled-Edge Trim: 2-inch backbend depth.

E. Cabinet Trim Material: Same material and finish as door.

F. Door Material: Steel sheet.

G. Door Style: Full glass with tempered safety glass.

H. Door Hardware: Manufacturer's standard door-operating hardware of proper type for cabinet type, trim style, and door material and style indicated.

I. Accessories:
1. Mounting Bracket: Manufacturer's standard steel, designed to secure fire extinguisher to fire-protection cabinet, of sizes required for types and capacities of fire extinguishers indicated, with plated or baked-enamel finish.

2. Door Lock: Cam lock that allows door to be opened during emergency by pulling sharply on door handle.

3. Identification: Lettering complying with authorities having jurisdiction for letter style, size, spacing, and location. Locate as indicated.
 a. Identify fire extinguisher in fire-protection cabinet with the words "FIRE EXTINGUISHER."
 1) Lettering Color: White.
 2) Orientation: Vertical.

J. Materials:

1. Cold-Rolled Steel: ASTM A1008/A1008M, Commercial Steel (CS), Type B.
 a. Finish: Baked enamel, TGIC polyester powder coat, HAA polyester powder coat, epoxy powder coat, or polyester/epoxy hybrid powder coat, complying with AAMA 2603.
 b. Color: As selected by Architect from manufacturer's full range.

2.3 PORTABLE, HAND-CARRIED FIRE EXTINGUISHERS <FE>

A. Fire Extinguishers: Type, size, and capacity for each fire-protection cabinet and mounting bracket indicated.

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. Babcock-Davis.
 b. Guardian Fire Equipment, Inc.
 c. JL Industries, Inc.; a division of the Activar Construction Products Group.
 d. Larsens Manufacturing Company.

2. Instruction Labels: Include pictorial marking system complying with NFPA 10, Appendix B.

B. Multipurpose Dry-Chemical Type: UL-rated 10lb nominal capacity, with monoammonium phosphate-based dry chemical in manufacturer's standard enameled container.
2.4 MOUNTING BRACKETS

A. Mounting Brackets: Manufacturer's standard galvanized steel, designed to secure fire extinguisher to wall or structure, of sizes required for types and capacities of fire extinguishers indicated, with plated or red baked-enamel finish.

B. Identification: Lettering complying with authorities having jurisdiction for letter style, size, spacing, and location. Locate as indicated by Architect.
 1. Identify bracket-mounted fire extinguishers with the words "FIRE EXTINGUISHER" in red letter decals applied to mounting surface.
 a. Orientation: Horizontal.

2.5 FABRICATION

A. Fire-Protection Cabinets: Provide manufacturer's standard box (tub) with trim, frame, door, and hardware to suit cabinet type, trim style, and door style indicated.

PART 3 - EXECUTION

3.1 INSTALLATION, FIRE-PROTECTION CABINET

A. Prepare recesses for semi-recessed fire-protection cabinets as required by type and size of cabinet and trim style.

B. Install fire-protection cabinets in locations and at mounting heights indicated or, if not indicated, at heights acceptable to authorities having jurisdiction.

C. Fire-Protection Cabinets: Fasten cabinets to structure, square and plumb.

D. Identification: Apply vinyl lettering at locations indicated.

E. Adjust fire-protection cabinet doors to operate easily without binding. Verify that integral locking devices operate properly.

3.2 INSTALLATION, FIRE EXTINGUISHERS

A. Examine fire extinguishers for proper charging and tagging.
 1. Remove and replace damaged, defective, or undercharged fire extinguishers.

B. Install fire extinguishers and mounting brackets in locations indicated and in compliance with requirements of authorities having jurisdiction.
 1. Mounting Brackets: Top of fire extinguisher to be at 42 inches above finished floor.
C. Mounting Brackets: Fasten mounting brackets to surfaces, square and plumb, at locations indicated.

END OF SECTION
THIS PAGE INTENTIONALLY LEFT BLANK
SECTION 107516

FLAGPOLES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes flagpoles made from aluminum.

B. Owner-Furnished Material: Flags.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

1. Include construction details, material descriptions, dimensions of individual components and profiles, operating characteristics, fittings, accessories, and finishes for flagpoles.

B. Shop Drawings: For flagpoles.

1. Include plans, elevations, and attachment details. Show general arrangement, jointing, fittings, accessories, grounding, anchoring, and support.

2. Include section, and details of foundation system.

C. Samples for Verification: For each type of exposed finish, in manufacturer's standard sizes.

D. Delegated-Design Submittal: For flagpoles.

1.4 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For flagpoles to include in operation and maintenance manuals.

1.5 DELIVERY, STORAGE, AND HANDLING

A. Spiral wrap flagpoles with heavy paper and enclose in a hard fiber tube or other protective container.
PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Source Limitations: Obtain flagpoles as complete units, including fittings, accessories, bases, and anchorage devices, from single source from single manufacturer.

2.2 PERFORMANCE REQUIREMENTS

A. Delegated Design: Engage a qualified professional engineer, as defined in Section 014000 "Quality Requirements," to design flagpole assemblies.

B. Seismic Performance: Flagpole assemblies shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.

C. Structural Performance: Flagpole assemblies, including anchorages and supports, shall withstand design loads indicated within limits and under conditions indicated.

1. Wind Loads: Determine according to NAAMM FP 1001. Basic wind speed for Project location as indicated on drawings.

2.3 ALUMINUM FLAGPOLES

A. Aluminum Flagpoles: Cone-tapered flagpoles fabricated from seamless extruded tubing complying with ASTM B241/B241M, Alloy 6063, with a minimum wall thickness of 3/16 inch.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Acme/Lingo Flagpoles, LLC.
 b. Concord Industries, Inc.
 c. Ewing Flagpoles.
 d. Approved Equal

B. Exposed Height: 40 feet.

C. Construct flagpoles in one piece if possible. If more than one piece is necessary, comply with the following:

1. Fabricate shop and field joints without using fasteners, screw collars, or lead calking.

D. Metal Foundation Tube: Manufacturer's standard corrugated-steel foundation tube, 0.060-inch wall thickness with 3/16-inch steel bottom plate and support plate; 3/4-inch-diameter, steel ground spike; and steel centering wedges welded together. Galvanize foundation tube after assembly. Furnish loose hardwood wedges at top of foundation tube for plumbing pole.
1. Flashing Collar: Same material and finish as flagpole.

E. Finial Ball: Flush-seam ball, sized as indicated or, if not indicated, to match flagpole-butt diameter.
 1. 0.063-inch spun aluminum, finished to match flagpole.

F. Finial Eagle: Sized as standard with manufacturer for flagpole size indicated.
 1. Cast aluminum, finished to match flagpole.

G. Internal Halyard, Cam Cleat System: 5/16-inch-diameter, braided polypropylene halyard; cam cleat; and concealed revolving truck assembly with plastic-coated counterweight and sling. Furnish flush access door secured with cylinder lock. Finish truck assembly to match flagpole.
 1. Halyard Flag Snaps: Chromium-plated bronze swivel snap hooks. Furnish two per halyard.

2.4 MISCELLANEOUS MATERIALS

A. Drainage Material: Crushed stone, or crushed or uncrushed gravel; coarse aggregate.

B. Sand: ASTM C33/C33M, fine aggregate.

C. Elastomeric Joint Sealant: Single-component nonsag urethane joint sealant complying with requirements in Section 079200 "Joint Sealants."

D. Bituminous Paint: Cold-applied asphalt emulsion complying with ASTM D1187/D1187M.

2.5 ALUMINUM FINISHES

A. Baked-Enamel or Powder-Coat Finish: AAMA 2603 except with a minimum dry film thickness of 1.5 mils. Comply with coating manufacturer's written instructions for cleaning, conversion coating, and applying and baking finish.
 1. Color and Gloss: As selected by Architect from manufacturer's full range.

PART 3 - EXECUTION

3.1 PREPARATION

A. Foundation Excavation: Excavate to neat clean lines in undisturbed soil. Remove loose soil and foreign matter from excavation and moisten earth before placing concrete. Place and compact drainage material at excavation bottom.
B. Provide forms where required due to unstable soil conditions and for perimeter of flagpole base at grade. Secure and brace forms to prevent displacement during concreting.

C. Place concrete, as specified in Section 033000 "Cast-in-Place Concrete." Compact concrete in place by using vibrators. Moist-cure exposed concrete for no fewer than seven days or use nonstaining curing compound.

D. Trowel exposed concrete surfaces to a smooth, dense finish, free of trowel marks, and uniform in texture and appearance. Provide positive slope for water runoff to perimeter of concrete base.

3.2 FLAGPOLE INSTALLATION

A. General: Install flagpoles where indicated and according to Shop Drawings and manufacturer's written instructions.

B. Foundation Tube: Place flagpole in tube, seated on bottom plate between steel centering wedges, and install hardwood wedges to secure flagpole in place. Place and compact sand in foundation tube and remove hardwood wedges. Seal top of foundation tube with a 2-inch layer of elastomeric joint sealant and cover with flashing collar.

END OF SECTION
SECTION 122413
ROLLER WINDOW SHADES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Manually operated roller shades with single rollers.

B. Related Requirements:

1. Section 061053 "Miscellaneous Rough Carpentry" for wood blocking and grounds for mounting roller shades and accessories.
2. Section 079200 "Joint Sealants" for sealing the perimeters of installation accessories for light-blocking shades with a sealant.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

1. Include construction details, material descriptions, dimensions of individual components and profiles, features, finishes, and operating instructions for roller shades.

B. Shop Drawings: Show fabrication and installation details for roller shades, including shadeband materials, their orientation to rollers, and their seam and batten locations.

1. Motor-Operated Shades: Include details of installation and diagrams for power, signal, and control wiring.

C. Samples: For each exposed product and for each color and texture specified, 10 inches long.

D. Samples for Initial Selection: For each type and color of shadeband material.

1. Include Samples of accessories involving color selection.

E. Samples for Verification: For each type of roller shade.
1. Shadeband Material: Not less than 10 inches square. Mark interior face of material if applicable.
2. Roller Shade: Full-size operating unit, not less than 16 inches wide by 36 inches long for each type of roller shade indicated.
3. Installation Accessories: Full-size unit, not less than 10 inches long.

F. Product Schedule: For roller shades. Use same designations indicated on Drawings.

1.4 INFORMATIONAL SUBMITTALS

A. Qualification Data: For Installer.
B. Product Certificates: For each type of shadeband material.
C. Product Test Reports: For each type of shadeband material, for tests performed by manufacturer and witnessed by a qualified testing agency.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For roller shades to include in maintenance manuals.

1.6 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Roller Shades: Full-size units equal to 5 percent of quantity installed for each size, color, and shadeband material indicated, but no fewer than two units.

1.7 QUALITY ASSURANCE

A. Installer Qualifications: Fabricator of products.
B. Mockups: Build mockups to verify selections made under Sample submittals, to demonstrate aesthetic effects, and to set quality standards for fabrication and installation.
 1. Approval of mockups does not constitute approval of deviations from the Contract Documents contained in mockups unless Architect specifically approves such deviations in writing.
 2. Subject to compliance with requirements, approved mockups may become part of the completed Work if undisturbed at time of Substantial Completion.

1.8 DELIVERY, STORAGE, AND HANDLING

A. Deliver roller shades in factory packages, marked with manufacturer, product name, and location of installation using same designations indicated on Drawings.
1.9 FIELD CONDITIONS

A. Environmental Limitations: Do not install roller shades until construction and finish work in spaces, including painting, is complete and dry and ambient temperature and humidity conditions are maintained at the levels indicated for Project when occupied for its intended use.

B. Field Measurements: Where roller shades are indicated to fit to other construction, verify dimensions of other construction by field measurements before fabrication and indicate measurements on Shop Drawings. Allow clearances for operating hardware of operable glazed units through entire operating range. Notify Architect of installation conditions that vary from Drawings. Coordinate fabrication schedule with construction progress to avoid delaying the Work.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Source Limitations: Obtain roller shades from single source from single manufacturer.

2.2 MANUALLY OPERATED SHADES WITH SINGLE ROLLERS

A. Basis-of-Design Product: Subject to compliance with requirements, provide Draper Inc.; Clutch Operated FlexShade XD or a comparable product by one of the following:

2. MechoShade Systems, Inc.

B. Chain-and-Clutch Operating Mechanisms: With continuous-loop bead chain and clutch that stops shade movement when bead chain is released; permanently adjusted and lubricated.

 a. Loop Length: Full length of roller shade.
 b. Limit Stops: Provide upper and lower ball stops.
 c. Chain-Retainer Type: Clip, jamb mount.

2. Spring Lift-Assist Mechanisms: Manufacturer's standard for balancing roller shade weight and for lifting heavy roller shades.
 a. Provide for shadebands that weigh more than 10 lb or for shades as recommended by manufacturer, whichever criterion is more stringent.

C. Rollers: Corrosion-resistant steel or extruded-aluminum tubes of diameters and wall thicknesses required to accommodate operating mechanisms and weights and widths of shadebands indicated without deflection. Provide with permanently lubricated drive-end
assemblies and idle-end assemblies designed to facilitate removal of shadebands for service.

1. Roller Drive-End Location: Right side of interior face of shade.
2. Direction of Shadeband Roll: Regular, from back (exterior face) of roller.

D. Mounting Hardware: Brackets or endcaps, corrosion resistant and compatible with roller assembly, operating mechanism, installation accessories, and mounting location and conditions indicated.

E. Roller-Coupling Assemblies: Coordinated with operating mechanism and designed to join up to three inline rollers into a multiband shade that is operated by one roller drive-end assembly.

F. Shadebands:
 2. Shadeband Bottom (Hem) Bar: Steel or extruded aluminum.
 a. Type: Enclosed in sealed pocket of shadeband material.

G. Installation Accessories:
 1. Front Fascia: Aluminum extrusion that conceals front and underside of roller and operating mechanism and attaches to roller endcaps without exposed fasteners.
 a. Shape: L-shaped.
 b. Height: Manufacturer's standard height required to conceal roller and shadeband assembly when shade is fully open.
 2. Endcap Covers: To cover exposed endcaps.
 3. Installation Accessories Color and Finish: As selected from manufacturer's full range.

2.3 MOTOR-OPERATED, DOUBLE-ROLLER SHADES

A. Basis-of-Design Product: Subject to compliance with requirements, provide Draper Inc.; Motorized FlexShade AC or a comparable product by one of the following:
 2. MechoShade Systems, Inc.

B. Motorized Operating Systems: Provide factory-assembled, shade-operator systems of size and capacity and with features, characteristics, and accessories suitable for conditions indicated, complete with electric motor and factory-prewired motor controls, power disconnect switch, enclosures protecting controls and operating parts, and accessories required for reliable operation without malfunction. Include wiring from motor controls
to motors. Coordinate operator wiring requirements and electrical characteristics with building electrical system.

1. Electrical Components: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
2. Electric Motor: Manufacturer's standard tubular, enclosed in rollers.
 a. Electrical Characteristics: 120-V.
 b. Maximum Total Shade Width: As required to operate roller shades indicated.
 c. Maximum Shade Drop: As required to operate roller shades indicated.
 d. Maximum Weight Capacity: As required to operate roller shades indicated.

3. Remote Control: Electric controls with NEMA ICS 6, Type 1 enclosure for recessed or flush mounting. Provide the following for remote-control activation of shades:
 a. Individual/Group Control Station: Momentary-contact, three-position, rocker-style, wall-switch-operated control station with open, close, and center off functions for individual and group control.
 b. Color: As selected by Architect from manufacturer's full range.

4. Crank-Operator Override: Crank and gearbox operate shades in event of power outage or motor failure.
5. Limit Switches: Adjustable switches, interlocked with motor controls and set to stop shade movement automatically at fully raised and fully lowered positions.
6. Operating Features:
 a. Group switching with integrated switch control; single faceplate for multiple switch cutouts.
 b. Override switch.

C. Rollers: Corrosion-resistant steel or extruded-aluminum tubes of diameters and wall thicknesses required to accommodate operating mechanisms and weights and widths of shadebands indicated without deflection. Provide with permanently lubricated drive-end assemblies and idle-end assemblies designed to facilitate removal of shades for service.

1. Double-Roller Mounting Configuration: Offset, outside shade over and inside shade under.
2. Inside Roller:
 a. Drive-End Location: As indicated on Drawings.
 b. Direction of Shadeband Roll: Regular, from back (exterior face) of roller.
3. Outside Roller:
 a. Drive-End Location: As indicated on Drawings.
 b. Direction of Shadeband Roll: Regular, from back (exterior face) of roller.

D. Mounting Hardware: Brackets or endcaps, corrosion resistant and compatible with roller mounting configuration, roller assemblies, operating mechanisms, installation accessories, and installation locations and conditions indicated.

E. Inside Shadebands:
 2. Shadeband Bottom (Hem) Bar: Steel or extruded aluminum.
 a. Type: Enclosed in sealed pocket of shadeband material.
 b. Color and Finish: As selected by Architect from manufacturer's full range.

F. Outside Shadebands:
 2. Shadeband Bottom (Hem) Bar: Steel or extruded aluminum.
 a. Type: Enclosed in sealed pocket of shadeband material.
 b. Color and Finish: As selected by Architect from manufacturer's full range.

G. Installation Accessories:
 1. Front Fascia: Aluminum extrusion that conceals front and underside of roller and operating mechanism and attaches to roller endcaps without exposed fasteners.
 a. Shape: L-shaped.
 b. Height: Manufacturer's standard height required to conceal roller and shadeband assembly when shade is fully open.
 2. Endcap Covers: To cover exposed endcaps.
 3. Side Channels: With light seals and designed to eliminate light gaps at sides of shades as shades are drawn down. Provide side channels with shadeband guides or other means of aligning shadebands with channels at tops.
 4. Bottom (Sill) Channel or Angle: With light seals and designed to eliminate light gaps at bottoms of shades when shades are closed.
 5. Installation Accessories Color and Finish: As selected from manufacturer's full range.

2.4 SHADEBAND MATERIALS

A. Shadeband Material Flame-Resistance Rating: Comply with NFPA 701. Testing by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.

B. Light-Filtering Fabric: Woven fabric, stain and fade resistant.
1. Source: Roller shade manufacturer.
2. Type: PVC-coated polyester.
4. Thickness: .024 to .036 in.
5. Weight: 14.4 to 19.2 oz/sq yd.
6. Roll Width: 60 inches.
7. Openness Factor: 5 percent.
8. Color: As selected by Architect from manufacturer's full range.

 1. Source: Roller shade manufacturer.
 2. Type: Polyester with foamed-acrylic backing.
 3. Thickness: .014 to .20 in.
 4. Weight: 10 to 14.5 oz./sq. yd.
 5. Roll Width: 60 inches.
 6. Color: As selected by Architect from manufacturer's full range.

2.5 ROLLER SHADE FABRICATION

A. Product Safety Standard: Fabricate roller shades to comply with WCMA A 100.1, including requirements for flexible, chain-loop devices; lead content of components; and warning labels.

B. Unit Sizes: Fabricate units in sizes to fill window and other openings as follows, measured at 74 deg F:
 1. Between (Inside) Jamb Installation: Width equal to jamb-to-jamb dimension of opening in which shade is installed less 1/4 inch per side or 1/2-inch total, plus or minus 1/8 inch. Length equal to head-to-sill or -floor dimension of opening in which shade is installed less 1/4 inch, plus or minus 1/8 inch.
 2. Outside of Jamb Installation: Width and length as indicated, with terminations between shades of end-to-end installations at centerlines of mullion or other defined vertical separations between openings.

C. Shadeband Fabrication: Fabricate shadebands without battens or seams to extent possible, except as follows:
 1. Vertical Shades: Where width-to-length ratio of shadeband is equal to or greater than 1:4, provide battens and seams at uniform spacings along shadeband length to ensure shadeband tracking and alignment through its full range of movement without distortion of the material.
PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for installation tolerances, operational clearances, locations of connections to building electrical system, and other conditions affecting performance of the Work.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 ROLLER SHADE INSTALLATION

A. Install roller shades level, plumb, and aligned with adjacent units according to manufacturer's written instructions.

1. Opaque Shadebands: Located so shadeband is not closer than 2 inches to interior face of glass. Allow clearances for window operation hardware.

B. Electrical Connections: Connect motor-operated roller shades to building electrical system.

C. Roller Shade Locations: At exterior windows, as indicated on Drawings.

3.3 ADJUSTING

A. Adjust and balance roller shades to operate smoothly, easily, safely, and free from binding or malfunction throughout entire operational range.

3.4 CLEANING AND PROTECTION

A. Clean roller shade surfaces, after installation, according to manufacturer's written instructions.

B. Provide final protection and maintain conditions, in a manner acceptable to manufacturer and Installer, that ensure that roller shades are without damage or deterioration at time of Substantial Completion.

C. Replace damaged roller shades that cannot be repaired, in a manner approved by Architect, before time of Substantial Completion.

3.5 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain motor-operated roller shades.

END OF SECTION
SECTION 123623.13
PLASTIC-LAMINATE-CLAD COUNTERTOPS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes
 1. Plastic-laminate-clad countertops.

1.3 ACTION SUBMITTALS
 A. Product Data: For each type of product.
 1. Include data for fire-retardant treatment from chemical-treatment manufacturer and certification by treating plant that treated materials comply with requirements.
 B. Shop Drawings: For plastic-laminate-clad countertops.
 1. Include plans, sections, details, and attachments to other work. Detail fabrication and installation, including field joints.
 2. Show locations and sizes of cutouts and holes for items installed in plastic-laminate-clad countertops.
 C. Samples: Plastic laminates in each type, color, pattern, and surface finish required in manufacturer's standard size.

1.4 INFORMATIONAL SUBMITTALS
 A. Qualification Data: For Installer.

1.5 QUALITY ASSURANCE
 A. Fabricator Qualifications: Shop that employs skilled workers who custom fabricate products similar to those required for this Project and whose products have a record of successful in-service performance.
 B. Installer Qualifications: AWI's Quality Certification Program accredited participant.
1.6 DELIVERY, STORAGE, AND HANDLING

A. Deliver countertops only after casework and supports on which they will be installed have been completed in installation areas.

B. Store countertops in areas where environmental conditions comply with requirements specified in "Field Conditions" Article.

C. Keep surfaces of countertops covered with protective covering during handling and installation.

1.7 FIELD CONDITIONS

A. Environmental Limitations: Do not deliver or install countertops until building is enclosed, wet-work is complete, and HVAC system is operating and maintaining temperature and relative humidity at levels planned for building occupants during the remainder of the construction period.

B. Field Measurements: Where countertops are indicated to fit to other construction, verify dimensions of other construction by field measurements before fabrication and indicate measurements on Shop Drawings. Coordinate fabrication schedule with construction progress to avoid delaying the Work.

PART 2 - PRODUCTS

2.1 PLASTIC-LAMINATE-CLAD COUNTERTOPS

A. Quality Standard: Unless otherwise indicated, comply with the "Architectural Woodwork Standards" for grades of plastic-laminate-clad countertops indicated for construction, finishes, installation, and other requirements.

1. Provide inspections of fabrication and installation together with labels and certificates from AWI certification program indicating that countertops comply with requirements of grades specified.

2. The Contract Documents contain requirements that are more stringent than the referenced quality standard. Comply with requirements of Contract Documents in addition to those of the referenced quality standard.

B. Grade: Custom.

C. High-Pressure Decorative Laminate: NEMA LD 3, Grade HGS.

1. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:

a. Nevamar.

b. Pionite; a Panolam Industries International, Inc. brand.

c. Wilsonart.
D. Colors, Patterns, and Finishes: Provide materials and products that result in colors and textures of exposed laminate surfaces complying with the following requirements:

1. As indicated on drawings.

E. Edge Treatment: Same as laminate cladding on horizontal surfaces.

F. Core Material: MDF made with exterior glue or Exterior-grade plywood.

G. Core Material at Sinks: MDF made with exterior glue or exterior-grade plywood.

H. Core Thickness: 3/4 inch.

1. Build up countertop thickness to 1-1/2 inches at front, back, and ends with additional layers of core material laminated to top.

I. Backer Sheet: Provide plastic-laminate backer sheet, NEMA LD 3, Grade BKL, on underside of countertop substrate.

2.2 MISCELLANEOUS MATERIALS

A. Adhesive for Bonding Plastic Laminate: Unpigmented contact cement.

2.3 FABRICATION

A. Fabricate countertops to dimensions, profiles, and details indicated. Provide front and end overhang of 1 inch over base cabinets. Ease edges to radius indicated for the following:

1. Solid-Wood (Lumber) Members: 1/16 inch unless otherwise indicated.

B. Complete fabrication, including assembly, to maximum extent possible before shipment to Project site. Disassemble components only as necessary for shipment and installation. Where necessary for fitting at site, provide ample allowance for scribing, trimming, and fitting.

1. Notify Architect seven days in advance of the dates and times countertop fabrication will be complete.

2. Trial fit assemblies at fabrication shop that cannot be shipped completely assembled. Install dowels, screws, bolted connectors, and other fastening devices that can be removed after trial fitting. Verify that various parts fit as intended, and check measurements of assemblies against field measurements before disassembling for shipment.

C. Shop cut openings to maximum extent possible to receive appliances, plumbing fixtures, electrical work, and similar items. Locate openings accurately, and use templates or roughing-in diagrams to produce accurately sized and shaped openings. Sand edges of cutouts to remove splinters and burrs.
1. Seal edges of cutouts by saturating with varnish.

PART 3 - EXECUTION

3.1 PREPARATION

A. Before installation, condition countertops to average prevailing humidity conditions in installation areas.

B. Before installing countertops, examine shop-fabricated work for completion and complete work as required, including removal of packing.

3.2 INSTALLATION

A. Grade: Install countertops to comply with same grade as item to be installed.

B. Assemble countertops and complete fabrication at Project site to the extent that it was not completed in the shop.

1. Provide cutouts for appliances, plumbing fixtures, electrical work, and similar items. Locate openings accurately, and use templates or roughing-in diagrams to produce accurately sized and shaped openings. Sand edges of cutouts to remove splinters and burrs.

2. Seal edges of cutouts by saturating with varnish.

C. Field Jointing: Where possible, make in the same manner as shop jointing, using dowels, splines, adhesives, and fasteners recommended by manufacturer. Prepare edges to be joined in shop so Project-site processing of top and edge surfaces is not required. Locate field joints where shown on Shop Drawings.

1. Secure field joints in countertops with concealed clamping devices located within 6 inches of front and back edges and at intervals not exceeding 24 inches. Tighten according to manufacturer's written instructions to exert a constant, heavy-clamping pressure at joints.

D. Scribe and cut countertops to fit adjoining work, refinish cut surfaces, and repair damaged finish at cuts.

E. Countertop Installation: Anchor securely by screwing through corner blocks of base cabinets or other supports into underside of countertop.

1. Install countertops level and true in line. Use concealed shims as required to maintain not more than a 1/8-inch-in-96-inches variation from a straight, level plane.

2. Secure backsplashes to tops with concealed metal brackets at 16 inches o.c. and to walls with adhesive.

3. Seal joints between countertop and backsplash, if any, and joints where countertop and backsplash abut walls with mildew-resistant silicone sealant or
another permanently elastic sealing compound recommended by countertop material manufacturer.

3.3 ADJUSTING AND CLEANING

A. Repair damaged and defective countertops, where possible, to eliminate functional and visual defects. Where not possible to repair, replace countertops. Adjust joinery for uniform appearance.

B. Clean countertops on exposed and semiexposed surfaces.

C. Protection: Provide Kraft paper or other suitable covering over countertop surfaces, taped to underside of countertop at a minimum of 48 inches o.c. Remove protection at Substantial Completion.

END OF SECTION
SECTION 123661.16

SOLID SURFACING COUNTERTOPS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Solid surface material countertops.
2. Solid surface material backsplashes.
3. Solid surface material end splashes.

1.3 ACTION SUBMITTALS

A. Product Data: For countertop materials.

B. Shop Drawings: For countertops. Show materials, finishes, edge and backsplash profiles, methods of joining, and cutouts for plumbing fixtures.

1. Show locations and details of joints.
2. Show direction of directional pattern, if any.

C. Samples for Verification: For the following products:

1. Countertop material, 6 inches square.
2. One full-size solid surface material countertop, with front edge and backsplash, 8 by 10 inches, of construction and in configuration specified.

1.4 INFORMATIONAL SUBMITTALS

A. Qualification Data: For fabricator.

1.5 CLOSEOUT SUBMITTALS

A. Maintenance Data: For solid surface material countertops to include in maintenance manuals. Include Product Data for care products used or recommended by Installer and names, addresses, and telephone numbers of local sources for products.
1.6 QUALITY ASSURANCE

A. Fabricator Qualifications: Shop that employs skilled workers who custom-fabricate countertops similar to that required for this Project, and whose products have a record of successful in-service performance.

B. Installer Qualifications: Fabricator of countertops.

C. Mockups: Build mockups to demonstrate aesthetic effects and to set quality standards for fabrication and execution.

1. Build mockup of typical countertop as shown on Drawings.
2. Subject to compliance with requirements, approved mockups may become part of the completed Work if undisturbed at time of Substantial Completion.

1.7 FIELD CONDITIONS

A. Field Measurements: Verify dimensions of countertops by field measurements after base cabinets are installed but before countertop fabrication is complete.

1.8 COORDINATION

A. Coordinate locations of utilities that will penetrate countertops or backsplashes.

PART 2 - PRODUCTS

2.1 SOLID SURFACE COUNTERTOP MATERIALS <SS3>

A. Solid Surface Material: Homogeneous-filled plastic resin complying with ICPA SS-1.

1. Basis-of-Design Product: Subject to compliance with requirements, Hanex Solid Surfaces; or comparable product by one of the following:
 b. LG Chemical, Ltd.

2. Type: Provide Standard type unless Special Purpose type is indicated.
3. Colors and Patterns: As indicated on drawings.

B. Plywood: Exterior softwood plywood complying with DOC PS 1, Grade C-C Plugged, touch sanded.

2.2 COUNTERTOP FABRICATION

A. Fabricate countertops according to solid surface material manufacturer's written instructions and to the AWI/AWMAC/WT's "Architectural Woodwork Standards."

1. Grade: Custom.
B. Configuration:
 1. Front: Straight, slightly eased at top.
 2. Backsplash: Straight, slightly eased at corner.

C. Countertops: 3/4-inch- thick, solid surface material with front edge built up with same material.

D. Backsplashes: 3/4-inch- thick, solid surface material.

E. Fabricate tops with shop-applied edges and backsplashes unless otherwise indicated. Comply with solid surface material manufacturer's written instructions for adhesives, sealers, fabrication, and finishing.
 1. Fabricate with loose backsplashes for field assembly.
 2. Install integral sink bowls in countertops in the shop.

F. Joints: Fabricate countertops without joints. Where joints are unavoidable, fabricate countertops in sections for joining in field, with joints at locations indicated:
 1. Joint Locations: Not within 18 inches of a sink or cooktop and not where a countertop section less than 36 inches long would result, unless unavoidable.

G. Cutouts and Holes:
 1. Undercounter Plumbing Fixtures: Make cutouts for fixtures using template or pattern furnished by fixture manufacturer. Form cutouts to smooth, even curves.
 a. Provide vertical edges, slightly eased at juncture of cutout edges with top and bottom surfaces of countertop and projecting 3/16 inch into fixture opening.
 3. Fittings: Drill countertops in shop for plumbing fittings, undercounter soap dispensers, and similar items.

2.3 INSTALLATION MATERIALS

A. Adhesive: Product recommended by solid surface material manufacturer.

B. Sealant for Countertops: Comply with applicable requirements in Section 079200 "Joint Sealants."
PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates to receive solid surface material countertops and conditions under which countertops will be installed, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of countertops.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Install countertops level to a tolerance of 1/8 inch in 8 feet, 1/4 inch maximum. Do not exceed 1/64-inch difference between planes of adjacent units.

B. Fasten countertops by screwing through corner blocks of base units into underside of countertop. Predrill holes for screws as recommended by manufacturer. Align adjacent surfaces and, using adhesive in color to match countertop, form seams to comply with manufacturer's written instructions. Carefully dress joints smooth, remove surface scratches, and clean entire surface.

C. Fasten subtops to cabinets by screwing through subtops into cornerblocks of base cabinets. Shim as needed to align subtops in a level plane.

D. Secure countertops to subtops with adhesive according to solid surface material manufacturer's written instructions. Align adjacent surfaces and, using adhesive in color to match countertop, form seams to comply with manufacturer's written instructions. Carefully dress joints smooth, remove surface scratches, and clean entire surface.

E. Bond joints with adhesive and draw tight as countertops are set. Mask areas of countertops adjacent to joints to prevent adhesive smears.

1. Install metal splines in kerfs in countertop edges at joints. Fill kerfs with adhesive before inserting splines and remove excess immediately after adjoining units are drawn into position.

2. Clamp units to temporary bracing, supports, or each other to ensure that countertops are properly aligned and joints are of specified width.

F. Install backsplashes and end splashes by adhering to wall and countertops with adhesive. Mask areas of countertops and splashes adjacent to joints to prevent adhesive smears.

G. Complete cutouts not finished in shop. Mask areas of countertops adjacent to cutouts to prevent damage while cutting. Make cutouts to accurately fit items to be installed, and at right angles to finished surfaces unless beveling is required for clearance. Ease edges slightly to prevent snipping.

1. Seal edges of cutouts in particleboard subtops by saturating with varnish.
H. Apply sealant to gaps at walls; comply with Section 079200 "Joint Sealants."

END OF SECTION
SECTION 123661.19
QUARTZ AGGLOMERATE COUNTERTOPS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Quartz agglomerate countertops.
 2. Quartz agglomerate backsplashes.
 3. Quartz agglomerate end splashes.
 4. Quartz agglomerate apron fronts.

1.3 ACTION SUBMITTALS

A. Product Data: For countertop materials.

B. Shop Drawings: For countertops. Show materials, finishes, edge and backsplash profiles, methods of joining, and cutouts for plumbing fixtures.
 1. Show locations and details of joints.
 2. Show direction of directional pattern, if any.

C. Samples for Verification: For the following products:
 1. Countertop material, 6 inches square.

1.4 INFORMATIONAL SUBMITTALS

A. Qualification Data: For fabricator.

1.5 CLOSEOUT SUBMITTALS

A. Maintenance Data: For quartz agglomerate countertops to include in maintenance manuals. Include Product Data for care products used or recommended by Installer and names, addresses, and telephone numbers of local sources for products.
1.6 QUALITY ASSURANCE

A. Fabricator Qualifications: Shop that employs skilled workers who custom-fabricate countertops similar to that required for this Project, and whose products have a record of successful in-service performance.

B. Installer Qualifications: Fabricator of countertops.

1.7 FIELD CONDITIONS

A. Field Measurements: Verify dimensions of countertops by field measurements after base cabinets are installed but before countertop fabrication is complete.

1.8 COORDINATION

A. Coordinate locations of utilities that will penetrate countertops or backsplashes.

PART 2 - PRODUCTS

2.1 QUARTZ AGGLOMERATE COUNTERTOP MATERIALS

A. Quartz Agglomerate: Solid sheets consisting of quartz aggregates bound together with a matrix of filled plastic resin and complying with ICPA SS-1, except for composition.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. LG Chemical, Ltd.
 b. Silestone.
 c. Approved Equal

2. Colors and Patterns: As indicated on drawings.

2.2 COUNTERTOP FABRICATION

A. Fabricate countertops according to quartz agglomerate manufacturer’s written instructions and the AWI/AWMAC/WI's "Architectural Woodwork Standards."

1. Grade: Custom.

B. Configuration:

 1. Front: Straight, slightly eased at top.
 2. Backsplash: Straight, slightly eased at corner.

C. Countertops: 1-1/4” thick, quartz agglomerate.
D. Backsplashes: 1-1/4” thick, quartz agglomerate.

E. Joints: Fabricate countertops without joints to greatest extent possible. Where joints must be used, fabricate countertops in sections for joining in field, with joints at locations indicated.

1. Joint Locations: Not within 18 inches of a sink or cooktop and not where a countertop section less than 36 inches long would result, unless unavoidable.
2. Joint Type: Bonded, 1/32 inch or less in width.
3. Joint Type: Grouted, 1/16 inch in width.
4. Joint Type: Sealant filled, 1/16 inch in width.
5. Splined Joints: Accurately cut kerfs in edges at joints for insertion of metal splines to maintain alignment of surfaces at joints. Make width of cuts slightly more than thickness of splines to provide snug fit. Provide at least three splines in each joint.

F. Cutouts and Holes:

1. Undercounter Plumbing Fixtures: Make cutouts for fixtures in shop using template or pattern furnished by fixture manufacturer. Form cutouts to smooth, even curves.
 a. Provide vertical edges, slightly eased at juncture of cutout edges with top and bottom surfaces of countertop and projecting 3/16 inch into fixture opening.
2. Fittings: Drill countertops in shop for plumbing fittings, undercounter soap dispensers, and similar items.

2.3 INSTALLATION MATERIALS

A. Adhesive: Product recommended by quartz agglomerate manufacturer.

B. Sealant for Countertops: Comply with applicable requirements in Section 079200 "Joint Sealants."

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates to receive quartz agglomerate countertops and conditions under which countertops will be installed, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of countertops.

B. Proceed with installation only after unsatisfactory conditions have been corrected.
3.2 INSTALLATION

A. Install countertops level to a tolerance of 1/8 inch in 8 feet, 1/4 inch maximum. Do not exceed 1/64-inch difference between planes of adjacent units.

B. Fasten countertops by screwing through corner blocks of base units into underside of countertop. Predrill holes for screws as recommended by manufacturer. Align adjacent surfaces and, using adhesive in color to match countertop, form seams to comply with quartz agglomerate manufacturer's written instructions. Carefully dress joints smooth, remove surface scratches, and clean entire surface.

C. Bond joints with adhesive and draw tight as countertops are set. Mask areas of countertops adjacent to joints to prevent adhesive smears.

1. Install metal splines in kerfs in countertop edges at joints where indicated. Fill kerfs with adhesive before inserting splines and remove excess immediately after adjoining units are drawn into position.

2. Clamp units to temporary bracing, supports, or each other to ensure that countertops are properly aligned and joints are of specified width.

D. Install backsplashes and end splashes by adhering to wall and countertops with adhesive. Mask areas of countertops and splashes adjacent to joints to prevent adhesive smears.

E. Install aprons to backing and countertops with adhesive. Mask areas of countertops and splashes adjacent to joints to prevent adhesive smears. Fasten by screwing through backing. Predrill holes for screws as recommended by manufacturer.

F. Complete cutouts not finished in shop. Mask areas of countertops adjacent to cutouts to prevent damage while cutting. Make cutouts to accurately fit items to be installed, and at right angles to finished surfaces unless beveling is required for clearance. Ease edges slightly to prevent snipping.

1. Seal edges of cutouts in particleboard subtops by saturating with varnish.

G. Apply sealant to gaps at walls; comply with Section 079200 "Joint Sealants."

END OF SECTION
SECTION 142400

HYDRAULIC ELEVATORS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

B. Related Requirements:

1. Section 015000 "Temporary Facilities and Controls" for temporary use of elevators for construction purposes.
2. Section 033000 "Cast-in-Place Concrete" for setting sleeves, inserts, and anchoring devices in concrete.
3. Section 042000 "Unit Masonry" for setting sleeves, inserts, and anchoring devices in masonry and for grouting elevator entrance frames installed in masonry walls.
4. Section 055000 "Metal Fabrications" for the following:
 a. Attachment plates and angle brackets for supporting guide-rail brackets.
 b. Hoist beams.
 c. Structural-steel shapes for subsills.
 d. Pit ladders.
 e. Cant made from steel sheet in hoistways.
5. Section 284621.11 "Addressable Fire-Alarm Systems for smoke detectors in elevator lobbies to initiate emergency recall operation and heat detectors in shafts and machine rooms to disconnect power from elevator equipment before sprinkler activation and for connection to elevator controllers.

1.3 DEFINITIONS

A. Definitions in ASME A17.1/CSA B44 apply to work of this Section.
1.4 ACTION SUBMITTALS

A. Product Data: Include capacities, sizes, performances, operations, safety features, finishes, and similar information. Include product data for car enclosures; hoistway entrances; and operation, control, and signal systems.

B. Shop Drawings:
 1. Include plans, elevations, sections, and large-scale details indicating service at each landing; machine room layout; coordination with building structure; relationships with other construction; and locations of equipment.
 2. Include large-scale layout of car-control station.
 3. Indicate maximum dynamic and static loads imposed on building structure at points of support as well as maximum and average power demands.

C. Samples for Verification: For exposed car, hoistway door and frame, and signal equipment finishes, 3-inch-square Samples of sheet materials and 4-inch lengths of running trim members.

1.5 INFORMATIONAL SUBMITTALS

A. Qualification Data: For Installer.

B. Seismic Qualification Certificates: For elevator equipment, accessories, and components, from manufacturer.
 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

C. Manufacturer Certificates: Signed by elevator manufacturer, certifying that hoistway, pit, and machine room layout and dimensions, as shown on Drawings, and electrical service including standby-power generator, as shown and specified, are adequate for elevator system being provided.

D. Sample Warranty: For special warranty.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For elevators to include in emergency, operation, and maintenance manuals.
 1. Submit manufacturer's/installer's standard operation and maintenance manual, in accordance with ASME A17.1/CSA B44 including diagnostic and repair information available to manufacturer's and Installer's maintenance personnel.
B. Inspection and Acceptance Certificates and Operating Permits: As required by authorities having jurisdiction for normal, unrestricted elevator use.

C. Continuing Maintenance Proposal: Submit a continuing maintenance proposal from Installer to Owner, in the form of a standard [one-year] [two-year] [five-year] maintenance agreement, starting on date initial maintenance service is concluded. State services, obligations, conditions, and terms for agreement period and for future renewal options.

1.7 QUALITY ASSURANCE

A. Installer Qualifications: Elevator manufacturer or an authorized representative who is trained and approved by manufacturer.

1.8 DELIVERY, STORAGE, AND HANDLING

A. Deliver, store, and handle materials, components and equipment in manufacturer's protective packaging. Store materials, components, and equipment off of ground, under cover, and in a dry location.

1.9 COORDINATION

A. Coordinate installation of sleeves, block outs, elevator equipment with integral anchors, and other items that are embedded in concrete or masonry for elevator equipment. Furnish templates, sleeves, elevator equipment with integral anchors, and installation instructions and deliver to Project site in time for installation.

B. Furnish well casing and coordinate delivery with related excavation work.

C. Coordinate locations and dimensions of other work specified in other Sections that relates to hydraulic elevators, including pit ladders; sumps and floor drains in pits; entrance subsills; electrical service; and electrical outlets, lights, and switches in hoistways, pits, and machine rooms.

1.10 WARRANTY

A. Manufacturer's Special Warranty: Manufacturer agrees to repair, restore, or replace elevator work that fails in materials or workmanship within specified warranty period.

1. Failures include, but are not limited to, operation or control system failure, including excessive malfunctions; performances below specified ratings; excessive wear; unusual deterioration or aging of materials or finishes; unsafe conditions; need for excessive maintenance; abnormal noise or vibration; and similar unusual, unexpected, and unsatisfactory conditions.

2. Warranty Period: 1 year(s) from date of Substantial Completion.
PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Basis-of-Design Product: Subject to compliance with requirements, provide ThyssenKrupp Elevator; Endura or a comparable product by one of the following:

1. Otis Elevator Co.
2. Schindler Elevator Corp.

B. Source Limitations: Obtain elevators from single manufacturer.

1. Major elevator components, including pump-and-tank units, plunger-cylinder assemblies, controllers, signal fixtures, door operators, car frames, cars, and entrances, shall be manufactured by single manufacturer.

2.2 PERFORMANCE REQUIREMENTS

A. Regulatory Requirements: Comply with ASME A17.1/CSA B44.

C. Seismic Performance: Elevator system shall withstand the effects of earthquake motions determined according to ASCE/SEI 7 and shall comply with elevator seismic requirements in ASME A17.1/CSA B44.

1. The term "withstand" means "the system will remain in place without separation of any parts when subjected to the seismic forces specified."
2. Project Seismic Design Category: D.
3. Elevator Component Importance Factor: 1.0.
4. Design earthquake spectral response acceleration short period (Sds) for Project is .186g.
5. Provide earthquake equipment required by ASME A17.1/CSA B44.

2.3 ELEVATORS

A. Elevator System, General: Manufacturer's standard elevator systems. Unless otherwise indicated, manufacturers' standard components shall be used, as included in standard elevator systems and as required for complete system.

B. Elevator Description:

1. Type: Hydraulic
3. Rated Load: 4000 lb.
4. Rated Speed: 150 fpm.
6. Auxiliary Operations:
 a. Standby-powered lowering.
 b. Automatic operation of lights and ventilation fans.

8. Car Enclosures:
 a. Inside Width: Not less than 92 inches from side wall to side wall.
 b. Inside Depth: Not less than 65 inches from back wall to front wall (return panels).
 c. Inside Height: Not less than 93 inches to underside of ceiling.
 d. Front Walls (Return Panels): Satin stainless steel, ASTM A480/A480M, No. 4 finish with integral car door frames.
 e. Car Fixtures: Satin stainless steel, ASTM A480/A480M, No. 4 finish.
 f. Side and Rear Wall Panels: Satin stainless steel, ASTM A480/A480M, No. 4 finish.
 g. Reveals: Black.
 h. Door Faces (Interior): Satin stainless steel, ASTM A480/A480M, No. 4 finish.
 i. Door Sills: Aluminum.
 j. Ceiling: Suspended type, LED lighting with translucent diffuser mounted in a metal frame. Framework shall be finished with a stainless steel, no. 4 brushed finish.
 k. Handrails: 1/2 by 2 inches rectangular satin stainless steel, at sides and rear of car.
 l. Floor recessed and prepared to receive ceramic tile (specified in Section 093013 "Ceramic Tiling").

9. Hoistway Entrances:
 a. Width: 48 inches.
 b. Height: 84 inches.
 c. Type: Single-speed center opening.
 d. Frames: Satin stainless steel, ASTM A480/A480M, No. 4 finish.
 e. Doors: Satin stainless steel, ASTM A480/A480M, No. 4 finish.
 f. Sills: Aluminum.

11. Additional Requirements:
 a. Provide inspection certificate in each car, mounted under acrylic cover with frame made from satin stainless steel, ASTM A480/A480M, No. 4 finish.
 b. Provide hooks for protective pads in all cars and one complete set(s) of full-height protective pads.
A. Power Unit (Oil Pumping and Control Mechanism): A self-contained unit consisting of the following items:

1. An oil reservoir with tank cover.
2. An oil hydraulic pump.
3. An electric motor.
4. An oil control valve with the following components built into single housing; high pressure relief valve, check valve, automatic unloading up start valve, lowering and leveling valve, and electro-magnetic controlling solenoids.

B. Pump: Positive displacement type pump specifically manufactured for oil-hydraulic elevator service. Pump shall be designed for steady discharge with minimum pulsation to give smooth and quiet operation. Output of pump shall not vary more than 10 percent between no load and full load on the elevator car.

C. Motor: Standard manufacture motor specifically designed for oil-hydraulic elevator service. Duty rating shall be selected for specified speed and load.

D. Oil Control Unit: The following components shall be built into a single housing. Welded manifolds with separate valves to accomplish each function are not acceptable. Adjustments shall be accessible and be made without removing the assembly from the oil line.

1. Relief valve shall be adjustable and be capable of bypassing the total oil flow without increasing back pressure more than 10 percent above that required to barely open the valve.
2. Up start and stop valve shall be adjustable and designed to bypass oil flow during start and stop of motor pump assembly. Valve shall close slowly, gradually diverting oil to or from the jack unit, ensuring smooth up starts and up stops.
3. Check valve shall be designed to close quietly without permitting any perceptible reverse flow.
4. Lowering valve and leveling valve shall be adjustable for down start speed, lowering speed, leveling speed and stopping speed to ensure smooth "down" starts and stops. The leveling valve shall be designed to level the car to the floor in the direction the car is traveling after slowdown is initiated.
5. Provided with constant speed regulation in both up and down direction. Feature to compensate for load changes, oil temperature, and viscosity changes.
7. Oil Type: Provide a zinc free, inherently biodegradable lubricant formulated with premium base stocks to provide outstanding protection for demanding hydraulic systems, especially those operating in environmentally sensitive areas.

E. Hydraulic Silencers: System shall have hydraulic silencer containing pulsation-absorbing material in blowout-proof housing at pump unit.
F. Piping: Size, type, and weight of piping as recommended by elevator manufacturer, with flexible connectors to minimize sound and vibration transmissions from power unit.

 1. Cylinder units shall be connected with dielectric couplings.

G. Inserts: Furnish required concrete and masonry inserts and similar anchorage devices for installing guide rails, machinery, and other components of elevator work. Device installation is specified in another Section.

H. Car Frame and Platform: Welded steel units.

I. Guides: Provide guides at top and bottom of car frame.

2.5 OPERATION SYSTEMS

A. Provide manufacturer's standard microprocessor operation system as required to provide type of operation indicated.

B. Auxiliary Operations:

 1. Single-Car Standby-Powered Lowering:

 a. On activation of standby power, if car is at a floor, it remains at that floor, opens its doors, and shuts down. If car is between floors, it is lowered to a preselected floor, opens its doors, and shuts down. If car is below the preselected floor, it is lowered to the next lower floor, opens its doors, and shuts down.

 b. On activation of standby power, car is lowered to the lowest floor, opens its doors, and shuts down.

 2. Single-Car Battery-Powered Lowering:

 a. If power fails and car is at a floor, it remains at that floor, opens its doors, and shuts down. If car is between floors, it is lowered to a preselected floor, opens its doors, and shuts down. If car is below the preselected floor, it is lowered to the next lower floor, opens its doors, and shuts down. System includes rechargeable battery and automatic recharging system.

 b. When power fails, car is lowered to the lowest floor, opens its doors, and shuts down. System includes rechargeable battery and automatic recharging system.

 3. Automatic Operation of Lights and Fan: When elevator is stopped and unoccupied with doors closed, lighting, ventilation fan, and cab displays are de-energized after 5 minutes and are re-energized before car doors open.

C. Security Features: Security features shall not affect emergency firefighters' service.
1. Card-Reader Operation: System uses card readers at car-control stations to authorize calls. Security system determines which landings and at what times calls require authorization by card reader. Provide required conductors in traveling cable and panel in machine room for interconnecting card readers, other security access system equipment, and elevator controllers. Allow space for card reader in car.

2.6 DOOR-REOPENING DEVICES

A. Infrared Array: Provide door-reopening device with uniform array of 36 or more microprocessor-controlled, infrared light beams projecting across car entrance. Interruption of one or more light beams shall cause doors to stop and reopen.

B. Nudging Feature: After car doors are prevented from closing for predetermined adjustable time, through activating door-reopening device, a loud buzzer shall sound and doors shall begin to close at reduced kinetic energy.

2.7 CAR ENCLOSURES

A. Provide enameled- or powder-coated-steel car enclosures to receive removable wall panels, with removable car roof, access doors, power door operators, and ventilation.

1. Provide standard railings complying with ASME A17.1/CSA B44 on car tops where required by ASME A17.1/CSA B44.

B. Materials and Finishes: Manufacturer's standards, but not less than the following:

1. Subfloor:

 a. Exterior, underlayment-grade plywood, not less than 5/8-inch nominal thickness.

2. Floor Finish:

 a. Specified in Section 093013 "Ceramic Tiling."

4. Fabricate car with recesses and cutouts for signal equipment.

5. Fabricate car door frame integrally with front wall of car.

7. Sight Guards: Provide sight guards on car doors.

8. Sills: Extruded or machined metal, with grooved surface, 1/4 inch thick.

9. Metal Ceiling: Flush panels, with downlights in the center of each panel.

10. Light Fixture Efficiency: Not less than 35 lumens/W.

11. Ventilation Fan Efficiency: Not less than 3.0 cfm/W.
2.8 HOISTWAY ENTRANCES

A. Fire-Rated Hoistway Entrance Assemblies: Door-and-frame assemblies shall comply with NFPA 80 and be listed and labeled by a testing and inspecting agency acceptable to authorities having jurisdiction based on testing at as close-to-neutral pressure as possible according to NFPA 252 or UL 10B.

1. Fire-Protection Rating: 1 hour with 30-minute temperature rise of 450 deg F.

B. Materials and Fabrication: Manufacturer's standards, but not less than the following:

 1. Enameled- or Powder-Coated-Steel Frames: Formed from cold- or hot-rolled steel sheet. Provide with factory-applied enamel or powder-coat finish; colors as selected by Architect from manufacturer's full range.
 2. Star of Life Symbol: Identify emergency elevators with star of life symbol, not less than 3 inches high, on both jambs of hoistway door frames.
 5. Sills: Extruded or machined metal, with grooved surface, 1/4 inch thick.

2.9 SIGNAL EQUIPMENT

A. Provide hall-call and car-call buttons that light when activated and remain lit until call has been fulfilled. Provide vandal-resistant buttons and lighted elements illuminated with LEDs.

B. Car-Control Stations: Provide manufacturer's standard recessed car-control stations. Mount in return panel adjacent to car door unless otherwise indicated.

 1. Mark buttons and switches for required use or function. Use both tactile symbols and Braille.
 2. Provide "No Smoking" sign matching car-control station, either integral with car-control station or mounted adjacent to it, with text and graphics as required by authorities having jurisdiction.

C. Emergency Communication System: Two-way voice communication system, with visible signal, which dials preprogrammed number of monitoring station and does not require handset use. System is contained in flush-mounted cabinet, with identification, instructions for use, and battery backup power supply.

D. Car Position Indicator: Provide illuminated, digital-type car position indicator, located above car door or above car-control station. Also, provide audible signal to indicate to passengers that car is either stopping at or passing each of the floors served. Include travel direction arrows if not provided in car-control station.

E. Hall Push-Button Stations: Provide one hall push-button station at each landing.
F. Hall Lanterns: Units with illuminated arrows; however, provide single arrow at terminal landings. Provide one of the following:

1. Manufacturer's standard wall-mounted units, for mounting above entrance frames.
2. Units with flat faceplate for mounting with body of unit recessed in wall and with illuminated elements projecting from faceplate for ease of angular viewing.
3. Units mounted in both jambs of entrance frame.

G. Hall Annunciator: With each hall lantern, provide audible signals indicating car arrival and direction of travel. Signals sound once for up and twice for down.

1. At manufacturer's option, audible signals may be placed on cars.

H. Hall Position Indicators: Provide illuminated, digital-display-type position indicators, located above hoistway entrance at ground floor.

1. Provide units with flat faceplate for mounting and with body of unit recessed in wall.
2. Integrate ground-floor hall lanterns with hall position indicators.

I. Standby-Power Elevator Selector Switches: Provide switches, as required by ASME A17.1/CSA B44, where indicated. Adjacent to switches, provide illuminated signal that indicates when normal power supply has failed.

J. Fire-Command-Center Annunciator Panel: Provide panel containing illuminated position indicators for each elevator, clearly labeled with elevator designation; include illuminated signal that indicates when elevator is operational and when it is at the designated emergency return level with doors open. Provide standby-power elevator selector switch(es), as required by ASME A17.1/CSA B44, adjacent to position indicators. Provide illuminated signal that indicates when normal power supply has failed.

K. Emergency Pictorial Signs: Fabricate from materials matching hall push-button stations, with text and graphics as required by authorities having jurisdiction, indicating that in case of fire, elevators are out of service and exits should be used instead. Provide one sign at each hall push-button station unless otherwise indicated.

2.10 FINISH MATERIALS

A. Cold-Rolled Steel Sheet: ASTM A1008/A1008M, commercial steel, Type B, exposed, matte finish.

B. Stainless Steel Sheet: ASTM A240/A240M, Type 304.

C. Stainless Steel Bars: ASTM A276, Type 304.

D. Aluminum Extrusions: ASTM B221, Alloy 6063.
PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine elevator areas, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work. Verify critical dimensions and examine supporting structure and other conditions under which elevator work is to be installed.

B. Prepare written report, endorsed by Installer, listing conditions detrimental to performance of the Work.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Install cylinder plumb and accurately centered for elevator car position and travel. Anchor securely in place, supported at pit floor and braced at intervals as needed to maintain alignment. Anchor cylinder guides at spacing needed to maintain alignment and avoid overstressing guides.

B. Welded Construction: Provide welded connections for installing elevator work where bolted connections are not required for subsequent removal or for normal operation, adjustment, inspection, maintenance, and replacement of worn parts. Comply with AWS workmanship and welding operator qualification standards.

C. Sound Isolation: Mount rotating and vibrating equipment on vibration-isolating mounts to minimize vibration transmission to structure and structure-borne noise due to elevator system.

D. Install piping above the floor, where possible. Install underground piping in casing.

1. Excavate for piping and backfill encased piping according to applicable requirements in Section 312000 "Earth Moving."

E. Lubricate operating parts of systems as recommended by manufacturers.

F. Alignment: Coordinate installation of hoistway entrances with installation of elevator guide rails for accurate alignment of entrances with car. Where possible, delay installation of sills and frames until car is operable in shaft. Reduce clearances to minimum, safe, workable dimension at each landing.

G. Leveling Tolerance: 1/4 inch, up or down, regardless of load and travel direction.

H. Set sills flush with finished floor surface at landing. Fill space under sill solidly with nonshrink, nonmetallic grout.

I. Locate hall signal equipment for elevators as follows unless otherwise indicated:
1. Place hall lanterns either above or beside each hoistway entrance.
2. Mount hall lanterns at a minimum of 72 inches above finished floor.

3.3 FIELD QUALITY CONTROL

A. Acceptance Testing: On completion of elevator installation and before permitting elevator use (either temporary or permanent), perform acceptance tests as required and recommended by ASME A17.1/CSA B44 and by governing regulations and agencies.

B. Advise Owner, Architect, and authorities having jurisdiction in advance of dates and times that tests are to be performed on elevators.

3.4 PROTECTION

A. Temporary Use: Comply with the following requirements for elevator used for construction purposes:

1. Provide car with temporary enclosure, either within finished car or in place of finished car, to protect finishes from damage.
2. Provide strippable protective film on entrance and car doors and frames.
3. Provide padded wood bumpers on entrance door frames covering jambs and frame faces.
4. Provide other protective coverings, barriers, devices, signs, and procedures as needed to protect elevator and elevator equipment.
5. Do not load elevators beyond their rated weight capacity.
6. Engage elevator Installer to provide full maintenance service. Include preventive maintenance, repair or replacement of worn or defective components, lubrication, cleanup, and adjustment as necessary for proper elevator operation at rated speed and capacity. Provide parts and supplies same as those used in the manufacture and installation of original equipment.
7. Engage elevator Installer to restore damaged work, if any, so no evidence remains of correction. Return items that cannot be refinished in the field to the shop, make required repairs and refinish entire unit, or provide new units as required.

3.5 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to operate, adjust, and maintain elevator(s).

B. Check operation of elevator with Owner's personnel present before date of Substantial Completion and again not more than one month before end of warranty period. Determine that operation systems and devices are functioning properly.

END OF SECTION
SECTION 210517
SLEEVES AND SLEEVE SEALS FOR FIRE-SUPPRESSION PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary
 Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Sleeves.
 2. Grout.

1.3 SUBMITTALS
 A. Product Data: For each type of product indicated.
 B. The contractor shall provide listed system details for specific fire stopping systems per
 location to the OFM for review and approval.

PART 2 - PRODUCTS

2.1 SLEEVES
 A. Galvanized-Steel-Sheet Sleeves: 0.0239-inch (0.6-mm) minimum thickness; round
 tube closed with welded longitudinal joint.

2.2 GROUT
 A. Standard: ASTM C 1107/C 1107M, Grade B, post-hardening and volume-adjusting,
 dry, hydraulic-cement grout.
 B. Characteristics: Nonshrink; recommended for interior and exterior applications.
 C. Design Mix: 5000-psi (34.5-MPa), 28-day compressive strength.
 D. Packaging: Premixed and factory packaged.
PART 3 - EXECUTION

3.1 SLEEVE INSTALLATION

A. Install sleeves for piping passing through penetrations in partitions and walls.

B. For sleeves that will have sleeve-seal system installed, select sleeves of size large enough to provide 1-inch (25-mm) annular clear space between piping and concrete slabs and walls.
 1. Sleeves are not required for core-drilled holes.

C. Install sleeves in as new slabs and walls are constructed.
 1. Cut sleeves to length for mounting flush with both surfaces.
 2. Using grout, seal the space outside of sleeves in slabs and walls without sleeve-seal system.

D. Install sleeves for pipes passing through interior partitions.
 1. Cut sleeves to length for mounting flush with both surfaces.
 2. Install sleeves that are large enough to provide 1/4-inch (6.4-mm) annular clear space between sleeve and pipe.
 3. Seal annular space between sleeve and piping or piping insulation; use joint sealants appropriate for size, depth, and location of joint. Comply with requirements for sealants specified in Division 07 Section "Joint Sealants."

E. Fire-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials. Comply with requirements for firestopping specified in Division 07 Section "Penetration Firestopping."

3.2 SLEEVE AND SLEEVE-SEAL SCHEDULE

A. Use sleeves and sleeve seals for the following piping-penetration applications:
 1. Interior Partitions:
 a. Piping Smaller than NPS 6 (DN 150) Galvanized-steel-pipe sleeves.

END OF SECTION
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Escutcheons.

1.3 SUBMITTALS

A. Product Data: For each type of product indicated.

PART 2 - PRODUCTS

2.1 ESCUTCHEONS

A. One-Piece, Cast-Brass Type: With polished, chrome-plated finish and setscrew fastener.

B. One-Piece, Deep-Pattern Type: Deep-drawn, box-shaped brass with chrome-plated finish and spring-clip fasteners.

C. One-Piece, Stamped-Steel Type: With chrome-plated finish and spring-clip fasteners.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install escutcheons for piping penetrations of walls and ceilings.

B. Install escutcheons with ID to closely fit around pipe, tube, and insulation of piping and with OD that completely covers opening.

1. Escutcheons for New Piping:

a. Piping with Fitting or Sleeve Protruding from Wall: One-piece, deep-pattern type.
b. Chrome-Plated Piping: One-piece, cast-brass type with polished, chrome-plated finish.

c. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece, cast-brass type with polished, chrome-plated finish.

d. Bare Piping at Ceiling Penetrations in Finished Spaces: One-piece, cast-brass type with polished, chrome-plated finish.

e. Bare Piping in Unfinished Service Spaces: One-piece, cast-brass type with polished, chrome-plated finish.

f. Bare Piping in Equipment Rooms: One-piece, cast-brass type with polished, chrome-plated finish.

3.2 FIELD QUALITY CONTROL

A. Replace broken and damaged escutcheons and floor plates using new materials.

END OF SECTION
SECTION 211313
WET-PIPE SPRINKLER SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Pipes, fittings, and specialties.
2. Fire-protection valves.
5. Pressure gages.

1.3 SYSTEM DESCRIPTIONS

A. Wet-Pipe Sprinkler System: Automatic sprinklers are attached to piping containing water and that is connected to water supply through alarm valve. Water discharges immediately from sprinklers when they are opened. Sprinklers open when heat melts fusible link or destroys frangible device. Hose connections are included if indicated.

1.4 PERFORMANCE REQUIREMENTS

A. Standard-Pressure Piping System Component: Listed for 175-psig (1200-kPa) minimum working pressure.

B. Delegated Design: Design sprinkler system(s), including comprehensive engineering analysis by a qualified licensed professional engineer, using performance requirements and design criteria indicated.

C. Sprinkler system design shall be approved by authorities having jurisdiction.

1. Margin of Safety for Available Water Flow and Pressure: 10 percent, including losses through water-service piping, valves, and backflow preventers.
2. Sprinkler Occupancy Hazard Classifications:
 b. General Storage Areas: Light Hazard.
 c. Mechanical Equipment Rooms: Ordinary Hazard, Group 2.
 d. Office and Public Areas: Light Hazard.
3. Minimum Density for Automatic-Sprinkler Piping Design:
 a. Ordinary-Hazard, Group 2 Occupancy: 0.2 gpm per Square Foot.
 b. Light Hazard Occupancy: 0.1 gpm per Square Foot.

4. Maximum Protection Area per Sprinkler:
 a. Office Spaces: 130 sq. ft. (11.1 sq. m).
 b. Storage Areas, Mechanical Equipment Rooms and Electrical Equipment Rooms: 130 sq. ft. (12.1 sq. m).
 c. Other Areas: According to NFPA 13 recommendations unless otherwise indicated.

5. Total Combined Hose-Stream Demand Requirement: According to NFPA 13 unless otherwise indicated:
 a. Ordinary-Hazard Occupancies: 250 gpm (15.75 L/s) for 60 to 90 minutes.

1.5 SUBMITTALS

A. Product Data: For each type of product indicated.

B. Shop Drawings: For wet-pipe sprinkler systems. Include plans, elevations, sections, details, and attachments to other work. Drawings shall be in accordance to NFPA 13 requirements. Drawings and hydraulic calculations shall be prepared, signed and sealed by a Professional Engineer licensed in the state of Maryland. Submittal must include proposed zone names, coordinated with Fire Alarm System (Honeywell), which include a general description of area served.

1. Wiring Diagrams: For power, signal, and control wiring.

C. Qualification Data: For qualified Installer.

D. Approved Sprinkler Piping Drawings: Working plans, prepared according to NFPA 13, that have been approved by authorities having jurisdiction, including hydraulic calculations if applicable.

E. Field Test Reports and Certificates: Indicate and interpret test results for compliance with performance requirements and as described in NFPA 13. Include "Contractor's Material and Test Certificate for Aboveground Piping."

F. Field quality-control reports.

G. Operation and maintenance data.

1.6 QUALITY ASSURANCE

A. Installer Qualifications:
1. Installer's responsibilities include designing, fabricating, and installing sprinkler systems and providing professional engineering services needed to assume engineering responsibility. Base calculations on results of fire flow test.

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

C. Plastic Piping is not acceptable for use on this project. This applies to all applications and trades including but not limited to HVAC, Plumbing and Fire Protection piping.

D. NFPA Standards: Sprinkler system equipment, specialties, accessories, installation, and testing shall comply with the following:

1. NFPA 13, "Installation of Sprinkler Systems."

1.7 COORDINATION

A. Coordinate layout and installation of sprinklers with other construction that penetrates ceilings, including light fixtures, HVAC equipment, and partition assemblies.

B. Provide approved expansion fittings/loops in accordance with NFPA where sprinkler piping lines cross building expansions joints.

1.8 EXTRA MATERIALS

A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

B. Sprinkler Cabinets: Finished, wall-mounting, steel cabinet with hinged cover, with space for minimum of six spare sprinklers plus sprinkler wrench. Include number of cabinets and sprinklers with sprinkler wrench as required by NFPA 13 based on the final as built conditions of the delegated sprinkler system design. Include separate cabinet with sprinklers and wrench for each type of sprinkler on Project. Coordinate sprinkler cabinet locations with MAA.

PART 2 - PRODUCTS

2.1 PIPING MATERIALS

A. Comply with requirements in "Piping Schedule" Article for applications of pipe, tube, and fitting materials, and for joining methods for specific services, service locations, and pipe sizes.
2.2 STEEL PIPE AND FITTINGS

A. Threaded-End, Schedule 40 Steel Pipe: ASTM A53/A53M, ASTM A 135, or ASTM A 795, hot-dip galvanized where indicated and with factory or field-formed threaded ends.

2. Steel Threaded Couplings: ASTM A 865 hot-dip galvanized-steel pipe where indicated.

B. Grooved-End, Schedule 40 Steel Pipe: ASTM A53/A53M, ASTM A 135, or ASTM A 795, hot-dip galvanized where indicated and with factory-or field-formed, square-cut- grooved ends.

1. Grooved-Joint Piping Systems:
 a. Grooved-End Fittings: UL-listed, ASTM 536, ductile-iron casting with OD matching steel-pipe OD.
 b. Grooved-End-Pipe Couplings: UL 213 and AWWA C606, rigid pattern, unless other wise indicated; gasketed fitting matching steel-pipe OD. Include ductile-iron housing with keys matching steel-pipe and fitting grooves, rubber gasket listed for use with housing, and steel bolts and nuts.

2.3 SPRINKLER SPECIALTY PIPE FITTINGS

A. Branch Outlet Fittings:

1. Manufacturers: Subject to compliance with requirements available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. National Fittings, Inc.
 b. Tyco Fire & Building Products LP.

3. Pressure Rating: 175 psig (1200 kPa) minimum.

5. Type: Mechanical-T and -cross fittings.

6. Configurations: Snap-on and strapless, ductile-iron housing with branch outlets.

7. Size: Of dimension to fit onto sprinkler main and with outlet connections as required to match connected branch piping.

8. Branch Outlets: Grooved, plain-end pipe, or threaded.

B. Adjustable Drop Nipples:
1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. CECA, LLC.
 b. Corcoran Piping System Co.

3. Pressure Rating: 250 psig (1725 kPa) minimum.
5. Size: Same as connected piping.
7. Inlet and Outlet: Threaded.

2.4 SPRINKLERS

A. Manufacturers: Sprinkler heads shall be UL/FM approved. Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 2. Reliable Automatic Sprinkler Co., Inc.
 3. Tyco Fire & Building Products LP.
 4. Venus Fire Protection Ltd.
 5. Viking Corporation.

B. General Requirements:
 2. Pressure Rating for Residential Sprinklers: 175 psig (1200 kPa) maximum.
 3. Pressure Rating for Automatic Sprinklers: 175 psig (1200 kPa) minimum.

C. Automatic Sprinklers with Heat-Responsive Element:
 1. Nonresidential Applications: UL 199.
 2. Characteristics: Nominal 1/2-inch (12.7-mm) orifice with Discharge Coefficient K of 5.6, and for "Ordinary" temperature classification rating unless otherwise indicated or required by application.

D. Sprinkler Finishes:
 1. Chrome plated.

E. Sprinkler Escutcheons: Materials, types, and finishes for the following sprinkler mounting applications. Escutcheons for concealed, flush, and recessed-type sprinklers are specified with sprinklers.
1. Ceiling Mounting: Chrome-plated steel, two piece, with 1-inch (25-mm) vertical adjustment.
2. Sidewall Mounting: Chrome-plated steel, one piece, flat.

PART 3 - EXECUTION

3.1 PIPING INSTALLATION

A. Locations and Arrangements: Drawing plans, schematics, and diagrams indicate general location and arrangement of piping. Install piping as indicated, as far as practical.

1. Deviations from approved working plans for piping require written approval from authorities having jurisdiction. File written approval with Architect before deviating from approved working plans.

B. Piping Standard: Comply with requirements for installation of sprinkler piping in NFPA 13.

C. Install seismic restraints on piping. Comply with requirements for seismic-restraint device materials and installation in NFPA 13.

D. Use listed fittings to make changes in direction, branch takeoffs from mains, and reductions in pipe sizes.

E. Install unions adjacent to each valve in pipes NPS 2 (DN 50) and smaller.

F. Install flanges, flange adapters, or couplings for valves, apparatus, and equipment having NPS 2-1/2 (DN 65) and larger end connections.

G. Install "Inspector's Test Connections" in sprinkler system piping, complete with shutoff valve, and sized and located according to NFPA 13.

H. Install sprinkler piping with drains for complete system drainage.

I. Install hangers and supports for sprinkler system piping according to NFPA 13. Comply with requirements for hanger materials in NFPA 13.

J. Fill and flush sprinkler system piping with water.

K. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Division 21 Section "Sleeves and Sleeve Seals for Fire-Suppression Piping."

L. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Division 21 Section "Escutcheons for Fire-Suppression Piping."
3.2 JOINT CONSTRUCTION

A. Install couplings, unions, nipples, and transition and special fittings that have finish and pressure ratings same as or higher than system's pressure rating for aboveground applications unless otherwise indicated.

B. Install unions adjacent to each valve in pipes NPS 2 (DN 50) and smaller.

C. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.

D. Remove scale, slag, dirt, and debris from inside and outside of pipes, tubes, and fittings before assembly.

E. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 1. Apply appropriate tape or thread compound to external pipe threads.
 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged.

F. Steel-Piping, Cut-Grooved Joints: Cut square-edge groove in end of pipe according to AWWA C606. Assemble coupling with housing, gasket, lubricant, and bolts. Join steel pipe and grooved-end fittings according to AWWA C606 for steel-pipe joints.

3.3 SPRINKLER INSTALLATION

A. Sprinklers in suspended ceilings shall be installed in center of acoustical ceiling panels.

B. Concealed sprinkler heads shall not be permitted.

3.4 IDENTIFICATION

A. Install labeling and pipe markers and identification signs on equipment and piping and valves according to requirements in NFPA 13.

3.5 FIELD QUALITY CONTROL

A. Perform tests and inspections.

B. Tests and Inspections:
 1. Leak Test: After installation, charge systems and test for leaks. Repair leaks and retest until no leaks exist.
 2. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
 3. Flush, test, and inspect sprinkler systems according to NFPA 13, "Systems Acceptance" Chapter.
 4. Energize circuits to electrical equipment and devices.
5. Coordinate with fire-alarm tests. Operate as required.

C. Sprinkler piping system will be considered defective if it does not pass tests and inspections.

D. Prepare test and inspection reports.

3.6 CLEANING

A. Clean dirt and debris from sprinklers.

B. Remove and replace sprinklers with paint other than factory finish.

3.7 PIPING SCHEDULE

A. Wet-pipe sprinkler system, NPS 2 (DN 50) and smaller, shall be Standard-weight Schedule 40, black-steel pipe with threaded ends; threaded fittings; and threaded joints.

B. Standard-pressure, wet-pipe sprinkler system, NPS 2-1/2 to NPS 6 (DN 65 to DN 150), shall be Standard-weight Schedule 40, black-steel pipe.

3.8 SPRINKLER SCHEDULE

A. Use sprinkler types in subparagraphs below for the following applications:

1. Rooms without Ceilings: Upright sprinklers.
2. Rooms with Suspended Ceilings: Pendent sprinklers.

B. Provide sprinkler types in subparagraphs below with finishes indicated.

1. Upright Pendent and Sidewall Sprinklers: Chrome plated in finished spaces exposed to view; rough bronze in unfinished spaces not exposed to view.

END OF SECTION
SECTION 220500
COMMON WORK RESULTS FOR PLUMBING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes the following:

1. HVAC, Electrical, Plumbing and Architectural Coordination Drawings
2. Piping materials and installation instructions common to most piping systems.
3. Transition fittings.
4. Dielectric fittings.
5. Mechanical sleeve seals.
6. Flexible Connectors
7. Grout.
8. Equipment installation requirements common to equipment sections.
10. Concrete bases.
11. Supports and anchorages.

1.3 DEFINITIONS

A. Finished Spaces: Spaces other than mechanical and electrical equipment rooms, furred spaces, pipe and duct shafts, Bus Barn, Maintenance Shops, Service Bays, Bus Wash, and other common similar spaces, unheated spaces immediately below roof, and spaces above ceilings.

B. Exposed, Interior Installations: Exposed to view indoors. Examples include finished occupied spaces and mechanical equipment rooms.

C. Exposed, Exterior Installations: Exposed to view outdoors or subject to outdoor ambient temperatures and weather conditions. Examples include rooftop locations.

D. Concealed, Interior Installations: Concealed from view and protected from physical contact by building occupants. Examples include above ceilings and in duct shafts.

E. Concealed, Exterior Installations: Concealed from view and protected from weather conditions and physical contact by building occupants but subject to outdoor ambient temperatures. Examples include installations within unheated shelters.
F. The following are industry abbreviations for plastic materials:

2. CPVC: Chlorinated polyvinyl chloride plastic.
3. PE: Polyethylene plastic.
4. PVC: Polyvinyl chloride plastic.

G. The following are industry abbreviations for rubber materials:

1. EPDM: Ethylene-propylene-diene terpolymer rubber.
2. NBR: Acrylonitrile-butadiene rubber.

1.4 SUBMITTALS

A. Coordination Drawings: A coordination drawing set including plan and section views, showing piping and equipment layout, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:

1. Suspended ceiling components.
2. Other building services including but not limited to domestic water piping, cable tray, and electrical conduit.
3. Clearances between electrical panels, and grounded (equipment and walls) elements.
4. Structural members including building structural elements and concrete housekeeping pads.

B. Product Data: For the following:

1. Transition fittings.
2. Dielectric fittings.
3. Mechanical sleeve seals.

C. Welding certificates.

1.5 QUALITY ASSURANCE

A. Steel Support Welding: Qualify processes and operators according to AWS D1.1, "Structural Welding Code--Steel."

B. Steel Pipe Welding: Qualify processes and operators according to ASME Boiler and Pressure Vessel Code: Section IX, "Welding and Brazing Qualifications."

1. Comply with provisions in ASME B31 Series, "Code for Pressure Piping."
2. Certify that each welder has passed AWS qualification tests for welding processes involved and that certification is current.

C. Electrical Characteristics for Plumbing Equipment: Equipment of higher electrical characteristics may be furnished provided such proposed equipment is approved in writing and connecting electrical services, circuit breakers, and conduit sizes are
appropriately modified. If minimum energy ratings or efficiencies are specified, equipment shall comply with requirements.

1.6 DELIVERY, STORAGE, AND HANDLING

A. Deliver pipes and tubes with factory-applied end caps. Maintain end caps through shipping, storage, and handling to prevent pipe end damage and to prevent entrance of dirt, debris, and moisture.

B. Store plastic pipes protected from direct sunlight. Support to prevent sagging and bending.

1.7 COORDINATION

A. Arrange for pipe spaces, chases, slots, and openings in building structure during progress of construction, to allow for plumbing installations.

B. Coordinate installation of required supporting devices and set sleeves in poured-in-place concrete and other structural components as they are constructed.

C. Coordinate requirements for access panels and doors for plumbing items requiring access that are concealed behind finished surfaces.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. In other Part 2 articles where subparagraph titles below introduce lists, the following requirements apply for product selection:

1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the manufacturers specified.

2. Manufacturers: Subject to compliance with requirements, provide products by the manufacturers specified.

2.2 PIPE, TUBE, AND FITTINGS

A. Refer to individual Division 22 piping Sections for pipe, tube, and fitting materials and joining methods.

B. Pipe Threads: ASME B1.20.1 for factory-threaded pipe and pipe fittings.

2.3 JOINING MATERIALS

A. Refer to individual Division 22 Piping Sections for special joining materials not listed below.
B. Pipe-Flange Gasket Materials: Suitable for chemical and thermal conditions of piping system contents.

1. ASME B16.21, nonmetallic, flat, asbestos-free, 1/8-inch (3.2-mm) maximum thickness unless thickness or specific material is indicated.
 a. Full-Face Type: For flat-face, Class 125, cast-iron and cast-bronze flanges.
 b. Narrow-Face Type: For raised-face, Class 250, cast-iron and steel flanges.

2. AWWA C110, rubber, flat face, 1/8 inch (3.2 mm) thick, unless otherwise indicated; and full-face or ring type, unless otherwise indicated.

C. Flange Bolts and Nuts: ASME B18.2.1, carbon steel, unless otherwise indicated.

D. Solder Filler Metals: ASTM B 32, lead-free alloys. Include water-flushable flux according to ASTM B 813.

E. Brazing Filler Metals: AWS A5.8, BCuP Series, copper-phosphorus alloys for general-duty brazing, unless otherwise indicated; and AWS A5.8, BAg1, silver alloy for refrigerant piping, unless otherwise indicated.

F. Welding Filler Metals: Comply with AWS D10.12 for welding materials appropriate for wall thickness and chemical analysis of steel pipe being welded.

2.4 TRANSITION FITTINGS

A. AWWA Transition Couplings: Same size as, and with pressure rating at least equal to and with ends compatible with, piping to be joined.

1. Available Manufacturers:
 b. Dresser Industries, Inc.; DMD Div.
 c. JCM Industries.
 d. Smith-Blair, Inc.
 e. Viking Johnson.

2. Aboveground Pressure Piping: Pipe fitting.

2.5 DIELECTRIC FITTINGS

A. Description: Combination fitting of copper alloy and ferrous materials with threaded, solder-joint, plain, or weld-neck end connections that match piping system materials.

B. Insulating Material: Suitable for system fluid, pressure, and temperature.
C. Dielectric Unions: Factory-fabricated, union assembly, for 250-psig (1725-kPa) minimum working pressure at 180 deg F (82 deg C).

1. Available Manufacturers:
 a. Epco Sales, Inc.
 c. Zurn Industries, Inc.; Wilkins Div.

D. Dielectric Flanges: Factory-fabricated, companion-flange assembly, for 150- or 300-psig (1035- or 2070-kPa) minimum working pressure as required to suit system pressures.

1. Available Manufacturers:
 a. Epco Sales, Inc.

E. Dielectric-Flange Kits: Companion-flange assembly for field assembly. Include flanges, full-face- or ring-type neoprene or phenolic gasket, phenolic or polyethylene bolt sleeves, phenolic washers, and steel backing washers.

1. Available Manufacturers:
 a. Calpico, Inc.
 b. Pipeline Seal and Insulator, Inc.

 2. Separate companion flanges and steel bolts and nuts shall have 150- or 300-psig (1035- or 2070-kPa) minimum working pressure where required to suit system pressures.

F. Dielectric Nipples: Electroplated steel nipple with inert and noncorrosive, thermoplastic lining; plain, threaded, or grooved ends; and 300-psig (2070-kPa) minimum working pressure at 225 deg F (107 deg C).

1. Available Manufacturers:
 a. Perfection Corp.
 b. Precision Plumbing Products, Inc.
 c. Sioux Chief Manufacturing Co., Inc.
 d. Victaulic Co. of America.

2.6 FLEXIBLE CONNECTORS

A. General: Fabricated from materials suitable for system fluid and that will provide flexible pipe connections. Include 125-psig (860-kPa) minimum working-pressure rating, unless higher working pressure is indicated, and ends according to the following:

1. 2-Inch NPS (DN50) and Smaller: Threaded.
2. 2-1/2-Inch NPS (DN65) and Larger: Flanged.
B. Stainless-Steel-Hose/Steel Pipe, Flexible Connectors: Corrugated, stainless-steel, inner tubing covered with stainless-steel wire braid. Include steel nipples or flanges, welded to hose.

2.7 GROUT

A. Description: ASTM C 1107, Grade B, nonshrink and nonmetallic, dry hydraulic-cement grout.

2. Design Mix: 5000-psi (34.5-MPa), 28-day compressive strength.

PART 3 - EXECUTION

3.1 PIPING SYSTEMS - COMMON REQUIREMENTS

A. Install piping according to the following requirements and Division 22 Sections specifying piping systems.

B. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations.

C. Install piping in concealed locations, unless otherwise indicated and except in equipment rooms and service areas.

D. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.

E. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.

F. Install piping to permit valve servicing.

G. Install piping at minimum slope of ¼”/foot unless otherwise specifically noted on the drawings.

H. Install piping free of sags and bends.

I. Install fittings for changes in direction and branch connections.

J. Install piping to allow application of insulation.

K. Select system components with pressure rating equal to or greater than system operating pressure.
L. Fire-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal all pipe penetrations with firestop materials.

M. Verify final equipment locations for roughing-in.

N. Refer to equipment specifications in other Sections of these Specifications for roughing-in requirements.

3.2 PIPING JOINT CONSTRUCTION

A. Join pipe and fittings according to the following requirements and Division 22 Sections specifying piping systems.

B. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.

C. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.

D. Soldered Joints: Apply ASTM B 813, water-flushable flux, unless otherwise indicated, to tube end. Construct joints according to ASTM B 828 or CDA's "Copper Tube Handbook," using lead-free solder alloy complying with ASTM B 32.

F. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is specified.
 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.

G. Welded Joints: Construct joints according to AWS D10.12, using qualified processes and welding operators according to Part 1 "Quality Assurance" Article.

H. Flanged Joints: Select appropriate gasket material, size, type, and thickness for service application. Install gasket concentrically positioned. Use suitable lubricants on bolt threads.

3.3 PIPING CONNECTIONS

A. Make connections according to the following, unless otherwise indicated:
 1. Install unions, in piping NPS 2 and smaller, adjacent to each valve and at final connection to each piece of equipment.
 2. Install flanges, in piping NPS 2-1/2 and larger, adjacent to flanged valves and at final connection to each piece of equipment.
3. Install dielectric connections between copper and ferrous piping systems.

3.4 LABELING AND IDENTIFYING

A. Piping Systems: Install pipe markers on each system. Include arrows showing normal direction of flow.

 2. Plastic markers, with application systems. Install on insulation segment if required for hot, uninsulated piping.
 3. Locate pipe markers as follows if piping is exposed in finished spaces, machine rooms, and accessible maintenance spaces, such as shafts, tunnels, plenums, and exterior non-concealed locations:
 a. Near each valve and control device.
 b. Near each branch, excluding short takeoffs for fixtures and terminal units. Mark each pipe at branch, if flow pattern is not obvious.
 c. Near locations if pipes pass through walls, floors, ceilings, or enter non-accessible enclosures.
 d. At access doors, manholes, and similar access points that permit view of concealed piping.
 e. Near major equipment items and other points of origination and termination.
 f. Spaced at maximum of 50-foot (15-m) intervals along each run. Reduce intervals to 25 feet (7.5 m) in congested areas of piping and equipment.

B. Equipment: Install engraved plastic-laminate sign or equipment marker on or near each major item of mechanical equipment.

 1. Lettering Size: Minimum 1/4-inch- (6.4-mm-) high lettering for name of unit if viewing distance is less than 24 inches (610 mm), 1/2-inch- (12.7-mm-) high lettering for distances up to 72 inches (1800 mm), and proportionately larger lettering for greater distances. Provide secondary lettering two-thirds to three-fourths of size of principal lettering.
 2. Text of Signs: Provide name of identified unit. Include text to distinguish between multiple units, inform user of operational requirements, indicate safety and emergency precautions, and warn of hazards and improper operations.

C. Adjusting: Relocate identifying devices as necessary for unobstructed view in finished construction.

3.5 EQUIPMENT INSTALLATION - COMMON REQUIREMENTS

A. Install equipment to allow maximum possible headroom unless specific mounting heights are not indicated.

B. Install equipment level and plumb, parallel and perpendicular to other building systems and components in exposed interior spaces, unless otherwise indicated.
C. Install plumbing equipment to facilitate service, maintenance, and repair or replacement of components. Connect equipment for ease of disconnecting, with minimum interference to other installations. Extend grease fittings to accessible locations.

D. Install equipment to allow right of way for piping installed at required slope.

E. All floor mounted equipment within Mechanical Rooms shall be mounted on concrete bases.

3.6 PAINTING

A. Painting of plumbing systems, equipment, and components with one coat of primer and one coat of neutral color latex enamel.

B. Damage and Touchup: Repair marred and damaged factory-painted finishes with materials and procedures to match original factory finish.

3.7 CONCRETE BASES

A. Concrete Bases: Anchor equipment to concrete base according to equipment manufacturer's written instructions and according to seismic codes at Project.

1. Construct concrete bases of dimensions indicated, but not less than 4 inches larger in both directions than supported unit.
2. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch (450-mm) centers around the full perimeter of the base.
3. Install epoxy-coated anchor bolts for supported equipment that extend through concrete base, and anchor into structural concrete floor.
4. Place and secure anchorage devices. Use supported equipment manufacturer's setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
5. Install anchor bolts to elevations required for proper attachment to supported equipment.
6. Install anchor bolts according to anchor-bolt manufacturer's written instructions.
7. Use concrete strength and reinforcement as specified in Division 3 Section "Cast-in-Place Concrete."

3.8 ERECTION OF METAL SUPPORTS AND ANCHORAGES

A. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor plumbing materials and equipment.

B. Field Welding: Comply with AWS D1.1.

3.9 GROUTING

A. Mix and install grout for plumbing equipment base bearing surfaces, pump and other equipment base plates, and anchors.
B. Clean surfaces that will come into contact with grout.
C. Provide forms as required for placement of grout.
D. Avoid air entrapment during placement of grout.
E. Place grout, completely filling equipment bases.
F. Place grout on concrete bases and provide smooth bearing surface for equipment.
G. Place grout around anchors.
H. Cure placed grout.

END OF SECTION
SECTION 220513
COMMON MOTOR REQUIREMENTS FOR PLUMBING EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes general requirements for single-phase, general-purpose, horizontal, small and medium, squirrel-cage induction motors for use on ac power systems up to 600 V and installed at equipment manufacturer's factory or shipped separately by equipment manufacturer for field installation.

1.3 COORDINATION

A. Coordinate features of motors, installed units, and accessory devices to be compatible with the following:

1. Motor controllers.
2. Torque, speed, and horsepower requirements of the load.
3. Ratings and characteristics of supply circuit and required control sequence.
4. Ambient and environmental conditions of installation location.

PART 2 - PRODUCTS

2.1 GENERAL MOTOR REQUIREMENTS

A. Comply with NEMA MG 1 unless otherwise indicated.

B. Retain paragraph below if severe-duty motors are required.

C. Comply with IEEE 841 for severe-duty motors.

2.2 MOTOR CHARACTERISTICS

A. Duty: Continuous duty at ambient temperature of 40 deg C and at altitude of 3300 feet above sea level.

B. Capacity and Torque Characteristics: Sufficient to start, accelerate, and operate connected loads at designated speeds, at installed altitude and environment, with indicated operating sequence, and without exceeding nameplate ratings or considering service factor.
2.3 SINGLE-PHASE MOTORS

A. Motors larger than 1/20 hp shall be one of the following, to suit starting torque and requirements of specific motor application:

1. Permanent-split capacitor.
2. Split phase.
3. Capacitor start, inductor run.
4. Capacitor start, capacitor run.

B. Multispeed Motors: Variable-torque, permanent-split-capacitor type.

C. Bearings: Pre-lubricated, antifriction ball bearings or sleeve bearings suitable for radial and thrust loading.

D. Motors 1/20 HP and Smaller: Shaded-pole type.

E. Thermal Protection: Internal protection to automatically open power supply circuit to motor when winding temperature exceeds a safe value calibrated to temperature rating of motor insulation. Thermal-protection device shall automatically reset when motor temperature returns to normal range.

PART 3 - EXECUTION (Not Applicable)

END OF SECTION
SECTION 220517
SLEEVES AND SLEEVE SEALS FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Sleeves.
2. Stack-sleeve fittings.
3. Sleeve-seal systems.
4. Sleeve-seal fittings.
5. Grout.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

PART 2 - PRODUCTS

2.1 SLEEVES

A. Galvanized-Steel Wall Pipes: ASTM A 53/A 53M, Schedule 40, with plain ends and welded steel collar; zinc coated. Provide welded-on anchor lugs.

B. Galvanized-Steel-Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, zinc coated, with plain ends. Provide welded on anchor lugs.

2.2 STACK-SLEEVE FITTINGS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

2. Zurn Specification Drainage Operation; Zurn Plumbing Products Group.

B. Description: Manufactured, cast-iron sleeve with integral clamping flange. Include clamping ring, bolts, and nuts for membrane flashing.

1. Underdeck Clamp: Clamping ring with set screws.
2.3 SLEEVE-SEAL SYSTEMS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Advance Products & Systems, Inc.
2. Metraflex Company (The).
3. Pipeline Seal and Insulator, Inc.

B. Description: Modular sealing-element unit, designed for field assembly, for filling annular space between piping and sleeve.

1. Sealing Elements: EPDM-rubber interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.
2. Pressure Plates: Stainless steel.
3. Connecting Bolts and Nuts: Stainless steel of length required to secure pressure plates to sealing elements.

2.4 SLEEVE-SEAL FITTINGS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Presealed Systems.

B. Description: Manufactured plastic, sleeve-type, waterstop assembly made for imbedding in concrete slab or wall. Unit has plastic or rubber waterstop collar with center opening to match piping OD.

2.5 GROUT

B. Characteristics: Nonshrink; recommended for interior and exterior applications.

C. Design Mix: 5000-psi, 28-day compressive strength.

D. Packaging: Premixed and factory packaged.

PART 3 - EXECUTION

3.1 SLEEVE INSTALLATION

A. Install sleeves for piping passing through penetrations in floors, partitions, roofs, and walls.
B. For sleeves that will have sleeve-seal system installed, select sleeves of size large enough to provide 1-inch annular clear space between piping and concrete slabs and walls.

1. Sleeves are not required for core-drilled holes.

C. Install sleeves in concrete floors, concrete roof slabs, and concrete walls as new slabs and walls are constructed.

1. Cut sleeves to length for mounting flush with both surfaces.
 a. Exception: Extend sleeves installed in floors of mechanical equipment areas or other wet areas 2 inches above finished floor level.

2. Using grout, seal the space outside of sleeves in slabs and walls without sleeve-seal system.

D. Install sleeves for pipes passing through interior partitions.

1. Cut sleeves to length for mounting flush with both surfaces.

2. Install sleeves that are large enough to provide 1/4-inch annular clear space between sleeve and pipe or pipe insulation.

3. Seal annular space between sleeve and piping or piping insulation; use joint sealants appropriate for size, depth, and location of joint. Comply with requirements for sealants specified in Section 079200 "Joint Sealants."

3.2 STACK-SLEEVE-FITTING INSTALLATION

A. Install stack-sleeve fittings in new slabs as slabs are constructed.

1. Install fittings that are large enough to provide 1/4-inch annular clear space between sleeve and pipe or pipe insulation.

2. Install section of cast-iron soil pipe to extend sleeve to 2 inches above finished floor level.

3. Extend cast-iron sleeve fittings below floor slab as required to secure clamping ring if ring is specified.

4. Using grout, seal the space around outside of stack-sleeve fittings.

3.3 SLEEVE-SEAL-SYSTEM INSTALLATION

A. Install sleeve-seal systems in sleeves in exterior concrete walls and slabs-on-grade at service piping entries into building.

B. Select type, size, and number of sealing elements required for piping material and size and for sleeve ID or hole size. Position piping in center of sleeve. Center piping in penetration, assemble sleeve-seal system components, and install in annular space between piping and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make a watertight seal.
3.4 SLEEVE-SEAL-FITTING INSTALLATION

A. Install sleeve-seal fittings in new walls and slabs as they are constructed.

B. Assemble fitting components of length to be flush with both surfaces of concrete slabs and walls. Position waterstop flange to be centered in concrete slab or wall.

C. Secure nailing flanges to concrete forms.

D. Using grout, seal the space around outside of sleeve-seal fittings.

3.5 SLEEVE AND SLEEVE-SEAL SCHEDULE

A. Use sleeves and sleeve seals for the following piping-penetration applications:
 1. Exterior Concrete Walls above Grade:
 2. Concrete Slabs-on-Grade and Foundation Stem Wall:
 a. Piping Smaller Than NPS 6: Galvanized-steel wall sleeves with sleeve-seal system.
 1) Select sleeve size to allow for required annular clear space between piping and sleeve for installing sleeve-seal system.
 3. Concrete Slabs above Grade:
 4. Interior Partitions:

END OF SECTION
SECTION 220518

ESCUTCHEONS FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary
 Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

 1. Escutcheons.
 2. Floor plates.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

PART 2 - PRODUCTS

2.1 ESCUTCHEONS

A. One-Piece, Cast-Brass Type: With polished, chrome-plated finish and setscrew fastener.

B. One-Piece, Deep-Pattern Type: Deep-drawn, box-shaped brass with chrome-plated finish
 and spring-clip fasteners.

C. One-Piece, Stamped-Steel Type: With chrome-plated finish and spring-clip fasteners.

2.2 FLOOR PLATES

A. One-Piece Floor Plates: Cast-iron flange with holes for fasteners.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install polished chrome-plated finish escutcheons for piping penetrations of walls,
 ceilings, and finished floors.

B. Install escutcheons with ID to closely fit around pipe, tube, and insulation of insulated
 piping and with OD that completely covers opening.
1. Escutcheons for New Piping:
 a. Piping with Fitting or Sleeve Protruding from Wall: One-piece, deep-pattern type.
 b. Insulated Piping: One-piece, stamped-steel type or split-plate, stamped-steel type with concealed hinge.
 c. Bare Piping at Wall, Ceiling, and Floor Penetrations: One-piece, cast-brass or split-casting brass type.
 d. Bare Piping at Wall, Ceiling, and Floor Penetrations: One-piece, stamped-steel type or split-plate, stamped-steel type with concealed hinge.

C. Install floor plates for piping penetrations of equipment-room floors.

D. Install floor plates with ID to closely fit around pipe, tube, and insulation of piping and with OD that completely covers opening.

 1. New Piping: One-piece, floor-plate type.

3.2 FIELD QUALITY CONTROL

 A. Replace broken and damaged escutcheons and floor plates using new materials.

END OF SECTION
SECTION 220519

METERS AND GAGES FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Bimetallic-actuated thermometers.
 2. Dial-type pressure gages.

B. Related Sections:
 1. Section 221116 "Domestic Water Piping".

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

1.4 INFORMATIONAL SUBMITTALS

A. Product Certificates: For each type of meter and gage, from manufacturer.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For meters and gages to include in operation and maintenance manuals.

PART 2 - PRODUCTS

2.1 BIMETALLIC-ACTUATED THERMOMETERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Ashcroft Inc.
 2. Marsh Bellofram.
 3. Trerice, H. O. Co.
2.2 PRESSURE GAGES

A. Direct-Mounted, Metal-Case, Dial-Type Pressure Gages:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Ashcroft Inc.
 b. Marsh Bellofram.
 c. Trerice, H. O. Co.
 d. Watts Regulator Co.; a div. of Watts Water Technologies, Inc.
 e. Weiss Instruments, Inc.

3. Case: Sealed Solid-front, pressure relief type(s); cast aluminum or drawn steel; 4-1/2-inch nominal diameter.
4. Pressure-Element Assembly: Bourdon tube unless otherwise indicated.
5. Pressure Connection: Brass, with NPS 1/2, ASME B1.20.1 pipe threads and bottom-outlet type unless back-outlet type is indicated.
6. Movement: Mechanical, with link to pressure element and connection to pointer.
7. Dial: Nonreflective aluminum with permanently etched scale markings graduated in psi.
9. Window: Glass or plastic.
10. Ring: Metal.
11. Accuracy: Grade A, plus or minus 1 percent of middle half of scale range.

2.3 GAGE ATTACHMENTS

A. Snubbers: ASME B40.100, brass; with NPS 1/2, ASME B1.20.1 pipe threads and piston-type surge-dampening device. Include extension for use on insulated piping.

B. Valves: Brass or stainless-steel needle, with NPS 1/2, ASME B1.20.1 pipe threads.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install direct-mounted thermometers in thermowells and adjust vertical and tilted positions.

B. Install direct-mounted pressure gages in piping tees with pressure gage located on pipe at the most readable position.

C. Install valve and snubber in piping for each pressure gage for fluids.

D. Install test plugs in piping tees.

E. Install thermometers in the following locations:

1. Inlet and outlet of each water heater.
2. Inlet and outlet of each mixing valve assembly.
3. Building water service entrance into the building.
4. In other location as indicated on drawings.

F. Install pressure gages in the following locations:

1. Building water service entrance into the building.
2. Inlet and outlet of backflow preventers.
3. In other locations as indicated on drawings.

3.2 CONNECTIONS

A. Install meters and gages adjacent to machines and equipment to allow service and maintenance of meters, gages, machines, and equipment.
3.3 ADJUSTING

A. Adjust faces of meters and gages to proper angle for best visibility.

3.4 THERMOMETER SCHEDULE

A. Thermometers at inlet and outlet of each domestic water heater shall be the following:
 1. Sealed, bimetallic-actuated type.
 4. Test plug with EPDM self-sealing rubber inserts.

B. Thermometer stems shall be of length to match thermowell insertion length.

3.5 THERMOMETER SCALE-RANGE SCHEDULE

A. Scale Range for Domestic Cold-Water Piping: 0 to 150 deg F.

B. Scale Range for Domestic Hot-Water Piping: 0 to 250 deg F.

3.6 PRESSURE-GAGE SCHEDULE

A. Pressure gages at discharge of each water service into building shall be the following:
 2. Test plug with EPDM self-sealing rubber inserts.

3.7 PRESSURE-GAGE SCALE-RANGE SCHEDULE

A. Scale Range for Domestic Water Piping: 0 to 200 psi.

END OF SECTION
SECTION 220523
BALL VALVES FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Bronze ball valves.

1.3 DEFINITIONS
A. CWP: Cold working pressure.

1.4 ACTION SUBMITTALS
A. Product Data: For each type of valve.
 1. Certification that products comply with NSF 61 and NSF 372.

1.5 DELIVERY, STORAGE, AND HANDLING
A. Prepare valves for shipping as follows:
 1. Protect internal parts against rust and corrosion.
 2. Protect threads, flange faces, and soldered ends.

B. Use the following precautions during storage:
 1. Maintain valve end protection.
 2. Store valves indoors and maintain at higher-than-ambient-dew-point temperature. If outdoor storage is necessary, store valves off the ground in watertight enclosures.

C. Use sling to handle large valves; rig sling to avoid damage to exposed parts. Do not use operating handles or stems as lifting or rigging points.
PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR VALVES

A. Source Limitations for Valves: Obtain each type of valve from single source from single manufacturer.

B. ASME Compliance:
 1. ASME B1.20.1 for threads for threaded end valves.
 2. ASME B16.10 and ASME B16.34 for ferrous valve dimensions and design criteria.
 4. ASME B31.9 for building services piping valves.

C. NSF Compliance: NSF 61 and NSF 372 for valve materials for potable-water service.

D. Bronze valves shall be made with dezincification-resistant materials. Bronze valves made with copper alloy (brass) containing more than 15 percent zinc are not permitted.

E. The lead content of all valves shall comply with the Reduction of Lead in Drinking Water Act (RLDWA).

F. Valve Pressure-Temperature Ratings: Not less than indicated and as required for system pressures and temperatures.

G. Valve Sizes: Same as upstream piping unless otherwise indicated.

H. Valve Actuator Types:
 1. Hand-lever: For quarter-turn valves NPS 4 and smaller.

I. Valves in Insulated Piping:
 1. Include 2-inch stem extensions.
 2. Extended operating handles of nonthermal-conductive material and protective sleeves that allow operation of valves without breaking vapor seals or disturbing insulation.
 3. Memory stops that are fully adjustable after insulation is applied.

2.2 BRONZE BALL VALVES

A. Two-Piece, Bronze Ball Valves with Full Port, and Bronze Trim:
 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. Apollo Valves.
 b. Milwaukee Valve Company.
c. NIBCO INC.
d. Watts Regulator Co.; a division of Watts Water Technologies, Inc.

2. Description:
 b. CWP Rating: Working pressure of the installed system, minimum 600 psig.
 c. Body Design: Two piece.
 d. Body Material: Bronze.
 e. Ends: Threaded and soldered.
 f. Seats: PTFE.
 g. Stem: Bronze or brass.
 h. Ball: Chrome-plated brass.
 i. Port: Full.

PART 3 - EXECUTION

3.1 EXAMINATION
 A. Examine valve interior for cleanliness, freedom from foreign matter, and corrosion. Remove special packing materials, such as blocks, used to prevent disc movement during shipping and handling.
 B. Operate valves in positions from fully open to fully closed. Examine guides and seats made accessible by such operations.
 C. Examine threads on valve and mating pipe for form and cleanliness.
 D. Examine mating flange faces for conditions that might cause leakage. Check bolting for proper size, length, and material. Verify that gasket is of proper size, that its material composition is suitable for service, and that it is free from defects and damage.
 E. Do not attempt to repair defective valves; replace with new valves.

3.2 VALVE INSTALLATION
 A. Install valves with unions or flanges at each piece of equipment arranged to allow service, maintenance, and equipment removal without system shutdown.
 B. Locate valves for easy access and provide separate support where necessary.
 C. Install valves in horizontal piping with stem at or above center of pipe.
 D. Install valves in position to allow full stem movement.
 E. Install valve tags. Comply with requirements in Section 220553 "Identification for Plumbing Piping and Equipment" for valve tags and schedules.
3.3 GENERAL REQUIREMENTS FOR VALVE APPLICATIONS

A. If valves with specified CWP ratings are unavailable, the same types of valves with higher CWP ratings may be substituted.

B. Select valves with the following end connections:

 1. For Copper Tubing, 2” and Smaller: Threaded ends except where solder-joint valve-end option is indicated in valve schedules below.

3.4 DOMESTIC HOT- AND COLD-WATER VALVE SCHEDULE

A. Pipe 4” and Smaller:

 1. Bronze Valves: May be provided with solder-joint ends instead of threaded ends.
 2. Two-piece, bronze ball valves with full port and bronze trim.

END OF SECTION
SECTION 220524
CHECK VALVES FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary
 Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Bronze swing check valves.

1.3 DEFINITIONS
 A. CWP: Cold working pressure.
 B. EPDM: Ethylene propylene-diene terpolymer rubber.
 C. NBR: Acrylonitrile-butadiene, Buna-N, or nitrile rubber.

1.4 ACTION SUBMITTALS
 A. Product Data: For each type of valve.
 1. Certification that products comply with NSF 61 and NSF 372.

1.5 DELIVERY, STORAGE, AND HANDLING
 A. Prepare valves for shipping as follows:
 1. Protect internal parts against rust and corrosion.
 2. Protect threads, flange faces, grooves, and weld ends.
 3. Set check valves in either closed or open position.
 B. Use the following precautions during storage:
 1. Maintain valve end protection.
 2. Store valves indoors and maintain at higher-than-ambient-dew-point temperature.
 If outdoor storage is necessary, store valves off the ground in watertight enclosures.
C. Use sling to handle large valves; rig sling to avoid damage to exposed parts. Do not use handwheels or stems as lifting or rigging points.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR VALVES

A. Source Limitations for Valves: Obtain each type of valve from single source from single manufacturer.

B. ASME Compliance:
 1. ASME B1.20.1 for threads for threaded end valves.
 2. ASME B16.10 and ASME B16.34 for ferrous valve dimensions and design criteria.
 3. ASME B16.18 for solder joint.
 4. ASME B31.9 for building services piping valves.

C. AWWA Compliance: Comply with AWWA C606 for grooved-end connections.

D. NSF Compliance: NSF 61 and NSF 372 for valve materials for potable-water service.

E. Bronze valves shall be made with dezincification-resistant materials. Bronze valves made with copper alloy (brass) containing more than 15 percent zinc are not permitted.

F. Valve Pressure-Temperature Ratings: Not less than indicated and as required for system pressures and temperatures.

G. Valve Sizes: Same as upstream piping unless otherwise indicated.

H. Valve Bypass and Drain Connections: MSS SP-45.

I. The lead content of all valves shall comply with the Reduction of Lead in Drinking Water Act (RLDWA).

2.2 BRONZE SWING CHECK VALVES

A. Class 125, Bronze, Swing Check Valves with Bronze Disc:
 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. Crane Co.; Crane Valve Group; Stockham Valves.
 b. Milwaukee Valve Company.
 c. NIBCO INC.
 d. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
2. Description:
 a. Standard: MSS SP-80, Type 3.
 b. CWP Rating: working pressure of the installed system, 200 psig minimum.
 c. Body Design: Horizontal flow.
 e. Ends: Threaded or soldered. See valve schedule articles.
 f. Disc: Bronze.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine valve interior for cleanliness, freedom from foreign matter, and corrosion. Remove special packing materials, such as blocks, used to prevent disc movement during shipping and handling.

B. Operate valves in positions from fully open to fully closed. Examine guides and seats made accessible by such operations.

C. Examine threads on valve and mating pipe for form and cleanliness.

D. Examine mating flange faces for conditions that might cause leakage. Check bolting for proper size, length, and material. Verify that gasket is of proper size, that its material composition is suitable for service, and that it is free from defects and damage.

E. Do not attempt to repair defective valves; replace with new valves.

3.2 VALVE INSTALLATION

A. Install valves with unions or flanges at each piece of equipment arranged to allow service, maintenance, and equipment removal without system shutdown.

B. Locate valves for easy access and provide separate support where necessary.

C. Install valves in horizontal piping with stem at or above center of pipe.

D. Install valves in position to allow full stem movement.

E. Install check valves for proper direction of flow and as follows:
 1. Swing Check Valves: In horizontal position with hinge pin level.

F. Install valve tags. Comply with requirements in Section 220553 "Identification for Plumbing Piping and Equipment" for valve tags and schedules.
3.3 ADJUSTING

A. Adjust or replace valve packing after piping systems have been tested and put into service but before final adjusting and balancing. Replace valves if persistent leaking occurs.

3.4 GENERAL REQUIREMENTS FOR VALVE APPLICATIONS

A. If valve applications are not indicated, use the following:

1. Pump-Discharge Check Valves:
 a. 2” and Smaller: Bronze swing check valves with bronze disc.

B. If valves with specified CWP ratings are unavailable, the same types of valves with higher CWP ratings may be substituted.

C. End Connections:

1. For Copper Tubing, 2” and Smaller: Threaded or soldered.

3.5 DOMESTIC HOT- AND COLD-WATER VALVE SCHEDULE

A. Pipe 4” and Smaller: Bronze swing check valves, Class 125, bronze disc with soldered or threaded end connections.

END OF SECTION
SECTION 220529
HANGERS AND SUPPORTS FOR PLUMBING PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Metal pipe hangers and supports.
 2. Trapeze pipe hangers.
 3. Metal framing systems.
 4. Thermal-hanger shield inserts.
 5. Fastener systems.
 6. Pipe stands.
 7. Pipe positioning systems.
 8. Equipment supports.

B. Related Sections:
 1. Section 055000 "Metal Fabrications" for structural-steel shapes and plates for trapeze hangers for pipe and equipment supports.

1.3 DEFINITIONS

A. MSS: Manufacturers Standardization Society of the Valve and Fittings Industry, Inc.

1.4 PERFORMANCE REQUIREMENTS

A. Delegated Design: Design trapeze pipe hangers and equipment supports, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.

B. Structural Performance: Hangers and supports for plumbing piping and equipment shall withstand the effects of gravity loads and stresses within limits and under conditions indicated according to ASCE/SEI 7.

 1. Design supports for multiple pipes, including pipe stands, capable of supporting combined weight of supported systems, system contents, and test water.
 2. Design equipment supports capable of supporting combined operating weight of supported equipment and connected systems and components.
3. Design seismic-restraint hangers and supports for piping and equipment.

1.5 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

B. Shop Drawings: Show fabrication and installation details and include calculations for the following; include Product Data for components:
 1. Trapeze pipe hangers.
 2. Metal framing systems.
 3. Pipe stands.
 4. Equipment supports.

C. Delegated-Design Submittal: For trapeze hangers indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
 1. Detail fabrication and assembly of trapeze hangers.
 2. Design Calculations: Calculate requirements for designing trapeze hangers.

1.6 INFORMATIONAL SUBMITTALS

A. Welding certificates.

1.7 QUALITY ASSURANCE

A. Structural Steel Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."

B. Pipe Welding Qualifications: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code.

PART 2 - PRODUCTS

2.1 METAL PIPE HANGERS AND SUPPORTS

A. Copper Pipe Hangers:
 1. Description: MSS SP-58, Types 1 through 58, copper-coated-steel, factory-fabricated components.
2.2 TRAPEZE PIPE HANGERS

A. Description: MSS SP-69, Type 59, shop- or field-fabricated pipe-support assembly made from structural carbon-steel shapes with MSS SP-58 carbon-steel hanger rods, nuts, saddles, and U-bolts.

2.3 METAL FRAMING SYSTEMS

A. MFMA Manufacturer Metal Framing Systems:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Allied Tube & Conduit.
 b. Cooper B-Line, Inc.
 c. Flex-Strut Inc.
 d. Unistrut Corporation; Tyco International, Ltd.

2. Description: Shop- or field-fabricated pipe-support assembly for supporting multiple parallel pipes.

4. Channels: Continuous slotted steel channel with inturned lips.

5. Channel Nuts: Formed or stamped steel nuts or other devices designed to fit into channel slot and, when tightened, prevent slipping along channel.

2.4 THERMAL-HANGER SHIELD INSERTS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Carpenter & Paterson, Inc.
2. ERICO International Corporation.
4. Pipe Shields, Inc.; a subsidiary of Piping Technology & Products, Inc.
5. Piping Technology & Products, Inc.
6. Rilco Manufacturing Co., Inc.

B. Insulation-Insert Material for Cold Piping: ASTM C 552, Type II cellular glass with 100-psig or ASTM C 591, Type VI, Grade 1 polyisocyanurate with 125-psig minimum compressive strength and vapor barrier.

C. Insulation-Insert Material for Hot Piping: ASTM C 552, Type II cellular glass with 100-psig or ASTM C 591, Type VI, Grade 1 polyisocyanurate with 125-psig minimum compressive strength.

D. For Trapeze or Clamped Systems: Insert and shield shall cover entire circumference of pipe.
E. For Clevis or Band Hangers: Insert and shield shall cover lower 180 degrees of pipe.

F. Insert Length: Extend 2 inches beyond sheet metal shield for piping operating below ambient air temperature.

G. Metal shield shall be galvanized steel sheet metal.

2.5 FASTENER SYSTEMS

A. Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened portland cement concrete with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

B. Mechanical-Expansion Anchors: Insert-wedge-type, zinc-coated steel anchors, for use in hardened portland cement concrete; with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

2.6 PIPE POSITIONING SYSTEMS

A. Description: IAPMO PS 42, positioning system of metal brackets, clips, and straps for positioning piping in pipe spaces; for plumbing fixtures in commercial applications.

2.7 EQUIPMENT SUPPORTS

A. Description: Welded, shop- or field-fabricated equipment support made from structural carbon-steel shapes.

2.8 MISCELLANEOUS MATERIALS

A. Structural Steel: ASTM A 36/A 36M, carbon-steel plates, shapes, and bars; black and galvanized.

B. Grout: ASTM C 1107, factory-mixed and -packaged, dry, hydraulic-cement, nonshrink and nonmetallic grout; suitable for interior and exterior applications.

2. Design Mix: 5000-psi, 28-day compressive strength.

PART 3 - EXECUTION

3.1 HANGER AND SUPPORT INSTALLATION

A. Metal Pipe-Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Install hangers, supports, clamps, and attachments as required to properly support piping from the building structure.
B. Metal Trapeze Pipe-Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Arrange for grouping of parallel runs of horizontal piping, and support together on field-fabricated trapeze pipe hangers.

1. Pipes of Various Sizes: Support together and space trapezes for smallest pipe size or install intermediate supports for smaller diameter pipes as specified for individual pipe hangers.
2. Field fabricate from ASTM A 36/A 36M, carbon-steel shapes selected for loads being supported. Weld steel according to AWS D1.1/D1.1M.

C. Metal Framing System Installation: Arrange for grouping of parallel runs of piping, and support together on field-assembled metal framing systems.

D. Thermal-Hanger Shield Installation: Install in pipe hanger and shield for insulated piping.

E. Fastener System Installation:

1. Install powder-actuated fasteners for use in lightweight concrete or concrete slabs less than 4 inches thick in concrete after concrete is placed and completely cured. Use operators that are licensed by powder-actuated tool manufacturer. Install fasteners according to powder-actuated tool manufacturer's operating manual.
2. Install mechanical-expansion anchors in concrete after concrete is placed and completely cured. Install fasteners according to manufacturer's written instructions.

F. Pipe Positioning-System Installation: Install support devices to make rigid supply and waste piping connections to each plumbing fixture.

G. Install hangers and supports complete with necessary attachments, inserts, bolts, rods, nuts, washers, and other accessories.

I. Install hangers and supports to allow controlled thermal and seismic movement of piping systems, to permit freedom of movement between pipe anchors, and to facilitate action of expansion joints, expansion loops, expansion bends, and similar units.

J. Install lateral bracing with pipe hangers and supports to prevent swaying.

K. Install building attachments within concrete slabs or attach to structural steel. Install additional attachments at concentrated loads, including valves, flanges, and strainers, 2-1/2" and larger and at changes in direction of piping. Install concrete inserts before concrete is placed; fasten inserts to forms and install reinforcing bars through openings at top of inserts.

L. Load Distribution: Install hangers and supports so that piping live and dead loads and stresses from movement will not be transmitted to connected equipment.
M. Pipe Slopes: Install hangers and supports to provide indicated pipe slopes and to not exceed maximum pipe deflections allowed by ASME B31.9 for building services piping.

N. Insulated Piping:

1. Attach clamps and spacers to piping.
 a. Piping Operating above Ambient Air Temperature: Clamp may project through insulation.
 b. Piping Operating below Ambient Air Temperature: Use thermal-hanger shield insert with clamp sized to match OD of insert.
 c. Do not exceed pipe stress limits allowed by ASME B31.9 for building services piping.

2. Install MSS SP-58, Type 39, protection saddles if insulation without vapor barrier is indicated. Fill interior voids with insulation that matches adjoining insulation.
 a. Option: Thermal-hanger shield inserts may be used. Include steel weight-distribution plate for pipe 4” and larger if pipe is installed on rollers.

3. Install MSS SP-58, Type 40, protective shields on cold piping with vapor barrier. Shields shall span an arc of 180 degrees.
 a. Option: Thermal-hanger shield inserts may be used. Include steel weight-distribution plate for pipe 4” and larger if pipe is installed on rollers.

4. Shield Dimensions for Pipe: Not less than the following:
 a. ¼” to 3-1/2: 12 inches long and 0.048 inch thick.
 b. 4”: 12 inches long and 0.06 inch thick.

5. Thermal-Hanger Shields: Install with insulation same thickness as piping insulation.

3.2 EQUIPMENT SUPPORTS

A. Fabricate structural-steel stands to suspend equipment from structure overhead or to support equipment above floor.

B. Grouting: Place grout under supports for equipment and make bearing surface smooth.

C. Provide lateral bracing, to prevent swaying, for equipment supports.
3.3 METAL FABRICATIONS

A. Cut, drill, and fit miscellaneous metal fabrications for trapeze pipe hangers and equipment supports.

B. Fit exposed connections together to form hairline joints. Field weld connections that cannot be shop welded because of shipping size limitations.

C. Field Welding: Comply with AWS D1.1/D1.1M procedures for shielded, metal arc welding; appearance and quality of welds; and methods used in correcting welding work; and with the following:

1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
2. Obtain fusion without undercut or overlap.
3. Remove welding flux immediately.
4. Finish welds at exposed connections so no roughness shows after finishing and so contours of welded surfaces match adjacent contours.

3.4 ADJUSTING

A. Hanger Adjustments: Adjust hangers to distribute loads equally on attachments and to achieve indicated slope of pipe.

B. Trim excess length of continuous-thread hanger and support rods to 1-1/2 inches.

3.5 PAINTING

A. Touchup: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.

1. Apply paint by brush or spray to provide a minimum dry film thickness of 2.0 mils.

B. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.

3.6 HANGER AND SUPPORT SCHEDULE

A. Specific hanger and support requirements are in Sections specifying piping systems and equipment.

B. Comply with MSS SP-69 for pipe-hanger selections and applications that are not specified in piping system Sections.

C. Use hangers and supports with galvanized metallic coatings for piping and equipment that will not have field-applied finish.
D. Use nonmetallic coatings on attachments for electrolytic protection where attachments are in direct contact with copper tubing.

E. Use carbon-steel materials for pipe hangers and supports, metal trapeze pipe hangers, and metal framing systems and attachments for general service applications.

F. Use copper-plated pipe hangers and copper attachments for copper piping and tubing.

G. Use thermal-hanger saddle inserts for insulated piping and tubing.

H. Horizontal-Piping Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 1. Adjustable, Steel and stainless-steel Clevis Hangers (MSS Type 1): For suspension of noninsulated or insulated, stationary pipes NPS 1/2 to NPS 6.
 2. Steel and stainless-steel Pipe Clamps (MSS Type 4): For suspension of cold and hot pipes NPS 1/2 to NPS 24 if little or no insulation is required.
 3. Adjustable Pipe Saddle Supports (MSS Type 38): For stanchion-type support for pipes NPS 2-1/2 to NPS 36 if vertical adjustment is required, with steel-pipe base stanchion support and cast-iron floor flange.

I. Vertical-Piping Clamps: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 1. Extension Pipe or Riser Clamps (MSS Type 8): For support of pipe risers NPS 3/4 to NPS 6.
 2. Carbon- or Alloy-Steel Riser Clamps (MSS Type 42): For support of pipe risers NPS 3/4 to NPS 6 if longer ends are required for riser clamps.

J. Hanger-Rod Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 1. Steel Turnbuckles (MSS Type 13): For adjustment up to 6 inches for heavy loads.
 2. Steel Clevises (MSS Type 14):
 3. Steel Swivel Turnbuckles (MSS Type 15): For use with MSS Type 11, split pipe rings.

K. Building Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 1. Steel or Malleable Concrete Inserts (MSS Type 18): For upper attachment to suspend pipe hangers from concrete ceiling.
 2. C-Clamps (MSS Type 23): For structural shapes.
 3. Top-Beam Clamps (MSS Type 25): For top of beams if hanger rod is required tangent to flange edge.
 4. Side-Beam Clamps (MSS Type 27): For bottom of steel I-beams.
 5. Steel-Beam Clamps with Eye Nuts (MSS Type 28): For attaching to bottom of steel I-beams for heavy loads.
6. Linked-Steel Clamps with Eye Nuts (MSS Type 29): For attaching to bottom of steel I-beams for heavy loads, with link extensions.
7. Malleable-Beam Clamps with Extension Pieces (MSS Type 30): For attaching to structural steel.
8. Welded-Steel Brackets: For support of pipes from below or for suspending from above by using clip and rod. Use one of the following for indicated loads:
 a. Light (MSS Type 31): 750 lb.
 b. Medium (MSS Type 32): 1500 lb.
 c. Heavy (MSS Type 33): 3000 lb.
9. Side-Beam Brackets (MSS Type 34): For sides of steel or wooden beams.
10. Plate Lugs (MSS Type 57): For attaching to steel beams if flexibility at beam is required.
11. Horizontal Travelers (MSS Type 58): For supporting piping systems subject to linear horizontal movement where headroom is limited.

L. Saddles and Shields: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 1. Steel-Pipe-Covering Protection Saddles (MSS Type 39): To fill interior voids with insulation that matches adjoining insulation.
 2. Protection Shields (MSS Type 40): Of length recommended in writing by manufacturer to prevent crushing insulation. Shields shall be banded to pipe insulation by means of 2 stainless steel bands, one on each side of the hanger support.
 3. Thermal-Hanger Shield Inserts: For supporting insulated pipe.

M. Spring Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 1. Restraint-Control Devices (MSS Type 47): Where indicated to control piping movement.
 2. Spring Cushions (MSS Type 48): For light loads if vertical movement does not exceed 1-1/4 inches.
 3. Spring-Cushion Roll Hangers (MSS Type 49): For equipping Type 41, roll hanger with springs.
 4. Spring Sway Braces (MSS Type 50): To retard sway, shock, vibration, or thermal expansion in piping systems.
 5. Variable-Spring Hangers (MSS Type 51): Preset to indicated load and limit variability factor to 25 percent to allow expansion and contraction of piping system from hanger.
 6. Variable-Spring Base Supports (MSS Type 52): Preset to indicated load and limit variability factor to 25 percent to allow expansion and contraction of piping system from base support.
 7. Variable-Spring Trapeze Hangers (MSS Type 53): Preset to indicated load and limit variability factor to 25 percent to allow expansion and contraction of piping system from trapeze support.
8. Constant Supports: For critical piping stress and if necessary to avoid transfer of stress from one support to another support, critical terminal, or connected equipment. Include auxiliary stops for erection, hydrostatic test, and load-adjustment capability. These supports include the following types:

 a. Horizontal (MSS Type 54): Mounted horizontally.
 b. Vertical (MSS Type 55): Mounted vertically.
 c. Trapeze (MSS Type 56): Two vertical-type supports and one trapeze member.

N. Comply with MSS SP-69 for trapeze pipe-hanger selections and applications that are not specified in piping system Sections.

O. Comply with MFMA-103 for metal framing system selections and applications that are not specified in piping system Sections.

P. Use powder-actuated fasteners or mechanical-expansion anchors instead of building attachments where required in concrete construction.

Q. Use pipe positioning systems in pipe spaces behind plumbing fixtures to support supply and waste piping for plumbing fixtures.

END OF SECTION
SECTION 220553

IDENTIFICATION FOR PLUMBING PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

1. Equipment labels.
2. Warning signs and labels.
3. Pipe labels.
4. Valve Tags

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

1. Brady Corporation
2. Kolrabi Pipe Marker
3. Seton Identification Products

2.2 EQUIPMENT LABELS

A. Metal Labels for Equipment and valve tags:

1. Material and Thickness: Brass, 0.032-inch minimum thickness, and having predrilled or stamped holes for attachment hardware. Use Stainless Steel labels and tags in the Wash Bay.
3. Background Color: ANSI standard
4. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
5. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-quarters the size of principal lettering.
6. Fasteners: Stainless-steel rivets or stainless steel self-tapping screws. Valve tags may be attached with brass chain; use Stainless Steel Chain in the Wash Bay.

7. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

B. Plastic Labels for Equipment:

1. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/16-inch-thick, and having predrilled holes for attachment hardware.

2. Letter Color: ANSI standard

3. Background Color: ANSI Standard

4. Maximum Temperature: Able to withstand temperatures up to 160 deg. F.

5. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.

6. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-quarters the size of principal lettering.

7. Fasteners: Stainless-steel rivets or self-tapping screws.

8. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

C. Label Content: Include equipment's Drawing designation or unique equipment number, drawing numbers where equipment is indicated (plans, details, and schedules), and the Specification Section number and title where equipment is specified.

D. Equipment Label Schedule: For each item of equipment to be labeled, on 8-1/2-by-11-inch bond paper. Tabulate equipment identification number, and identify Drawing numbers where equipment is indicated (plans, details, and schedules) and the Specification Section number and title where equipment is specified. Equipment schedule shall be included in operation and maintenance data.

2.3 WARNING SIGNS AND LABELS

A. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/16-inch-thick, and having predrilled holes for attachment hardware.

C. Background Color: ANSI standard.

D. Maximum Temperature: Able to withstand temperatures up to 160 deg F.

E. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.

F. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches 1/2 inch for viewing distances up to 72 inches and proportionately larger lettering
for greater viewing distances. Include secondary lettering two-thirds to three-quarters the size of principal lettering.

G. Fasteners: Stainless-steel rivets or self-tapping screws.

H. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

I. Label Content: Include caution and warning information plus emergency notification instructions.

2.4 PIPE LABELS

A. General Requirements for Manufactured Pipe Labels: Preprinted, color-coded, with lettering indicating service, and showing flow direction.

B. Pre-tensioned Pipe Labels: Pre-coiled, semi-rigid plastic formed to cover full circumference of pipe and to attach to pipe without fasteners or adhesive.

C. Pipe Label Contents: Include identification of piping service using same designations or abbreviations as used on Drawings; also include pipe size and an arrow indicating flow direction.

1. Flow-Direction Arrows: Integral with piping-system service lettering to accommodate both directions or as separate unit on each pipe label to indicate flow direction.

2. Lettering Size: Size letters according to ASME A13.1 for piping. At least 1/2 inch for viewing distances up to 72 inches and proportionately larger lettering for greater viewing distances.

2.5 VALVE TAGS

A. Valve Tags: Stamped or engraved with 1/4-inch letters for piping system abbreviation and 1/2-inch numbers.

1. Tag Material: anodized aluminum, 0.032-inch minimum thickness, and having predrilled or stamped holes for attachment hardware.

2. Fasteners: Brass wire-link chain or beaded chain or S-hook.

B. Valve Schedules: For each piping system, on 8-1/2-by-11-inch (A4) bond paper. Tabulate valve number, piping system, system abbreviation (as shown on valve tag), location of valve (room or space), normal-operating position (open, closed, or modulating), and variations for identification. Mark valves for emergency shutoff and similar special uses.

1. Valve-tag schedule shall be included in operation and maintenance data.

2. Provide a valve tag schedule framed under glass and mounted at a location as directed by the owner prior to commencing startup of any equipment.
PART 3 - EXECUTION

3.1 PREPARATION
 A. Clean piping and equipment surfaces of substances that could impair bond of identification devices, including dirt, oil, grease, release agents, and incompatible primers, paints, and encapsulants.

3.2 GENERAL INSTALLATION REQUIREMENTS
 A. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be applied.
 B. Coordinate installation of identifying devices with locations of access panels and doors.

3.3 EQUIPMENT LABEL INSTALLATION
 A. Install or permanently fasten labels on each major item of mechanical equipment.
 B. Locate equipment labels where accessible and visible.

3.4 WARNING TAG INSTALLATION
 A. Write required message on, and attach warning tags to, equipment and other items where required.

3.5 PIPE LABEL INSTALLATION
 A. Piping Color Coding: Painting of piping is specified in Section 099123 "Interior Painting."
 B. Pipe Label Locations: Locate pipe labels where piping is exposed; machine rooms; accessible maintenance spaces such as shafts, tunnels, and plenums; and exterior exposed locations as follows:
 1. Near each valve and control device.
 2. Near each branch connection, excluding short takeoffs for fixtures and terminal units. Where flow pattern is not obvious, mark each pipe at branch.
 3. Near penetrations and on both sides of through walls, floors, ceilings, and inaccessible enclosures.
 4. At access doors, manholes, and similar access points that permit view of concealed piping.
 5. Near major equipment items and other points of origination and termination.
 6. Spaced at maximum intervals of 25 along each run, including piping above suspended ceilings or in concealed areas.
C. Pipe Label Color Schedule:

1. Natural Gas Piping:
 a. Use ANSI color coding.

2. Domestic Water Piping
 a. Use ANSI color coding.

3. Sanitary and Vent Piping
 a. Use ANSI color coding.

3.6 VALVE-TAG INSTALLATION

A. Install tags on valves and control devices in piping systems, except check valves, valves within factory-fabricated equipment units, shutoff valves, faucets, convenience and lawn-watering hose connections, and similar roughing-in connections of end-use fixtures and units. List tagged valves in a valve schedule.

B. Valve-Tag Application Schedule: Tag valves according to size, shape, and color scheme and with captions similar to those indicated in the following subparagraphs:

1. Valve-Tag Size and Shape:
 c. Natural Gas: 1-1/2 inches, round.

2. Valve-Tag Colors:
 c. Natural Gas: Safety green.

3. Letter Colors:
 c. Natural Gas: White.

END OF SECTION
SECTION 220719
PLUMBING PIPING INSULATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes insulating the following plumbing piping services:

1. Domestic cold-water piping.
2. Domestic hot-water piping.
3. Domestic hot-water recirculation piping
4. Supplies and drains for handicap-accessible lavatories and sinks.

B. Related Sections:

1. Section 221116 Domestic Water Piping
2. Section 221119 Domestic Water Piping Specialties

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated. Include thermal conductivity, water-vapor permeance thickness, and jackets (both factory- and field-applied, if any).

1.4 INFORMATIONAL SUBMITTALS

A. Qualification Data: For qualified Installer.

B. Material Test Reports: From a qualified testing agency acceptable to authorities having jurisdiction indicating, interpreting, and certifying test results for compliance of insulation materials, sealers, attachments, cements, and jackets, with requirements indicated. Include dates of tests and test methods employed.

C. Field quality-control reports.

1.5 QUALITY ASSURANCE

A. Installer Qualifications: Skilled mechanics who have successfully completed an apprenticeship program or another craft training program certified by the Department of Labor, Bureau of Apprenticeship and Training.
B. Surface-Burning Characteristics: For insulation and related materials, as determined by testing identical products according to ASTM E 84 by a testing agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing agency.

1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.
2. Insulation Installed Outdoors: Flame-spread index of 75 or less, and smoke-developed index of 150 or less.

C. Comply with the following applicable standards and other requirements specified for miscellaneous components:

1.6 DELIVERY, STORAGE, AND HANDLING

A. Packaging: Insulation material containers shall be marked by manufacturer with appropriate ASTM standard designation, type and grade, and maximum use temperature.

1.7 COORDINATION

A. Coordinate sizes and locations of supports, hangers, and insulation shields specified in Section 220529 "Hangers and Supports for Plumbing Piping and Equipment."

B. Coordinate clearance requirements with piping Installer for piping insulation application. Before preparing piping Shop Drawings, establish and maintain clearance requirements for installation of insulation and field-applied jackets and finishes and for space required for maintenance.

1.8 SCHEDULING

A. Schedule insulation application after pressure testing systems and, where required, after installing and testing heat tracing. Insulation application may begin on segments that have satisfactory test results.

B. Complete installation and concealment of plastic materials as rapidly as possible in each area of construction.

PART 2 - PRODUCTS

2.1 INSULATION MATERIALS

A. Comply with requirements in section 3.9 thru 3.11 for where insulating materials shall be applied.

B. Products shall not contain asbestos, lead, mercury, or mercury compounds.
C. Products that come in contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested according to ASTM C 871.

D. Insulation materials for use on austenitic stainless steel shall be qualified as acceptable according to ASTM C 795.

E. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process.

F. Mineral-Fiber, Preformed Pipe Insulation:
 1. Products: Subject to compliance with requirements, provide one of the following:
 a. Johns Manville; Micro-Lok.
 b. Knauf Insulation; 1000-Degree Pipe Insulation.
 c. Owens Corning; Fiberglas Pipe Insulation.
 2. Type I, 850 Deg F (454 Deg C) Materials: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 547, Type I, Grade A, with factory-applied ASJ-SSL. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.

2.2 ADHESIVES

A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated, unless otherwise indicated.

B. Mineral-Fiber Adhesive: Comply with MIL-A-3316C, Class 2, Grade A.
 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 b. Eagle Bridges - Marathon Industries; 225.
 d. Mon-Eco Industries, Inc.; 22-25.
 2. For indoor applications, adhesive shall have a VOC content of 80 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 3. Adhesive shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

1. **Products:** Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:

b. Eagle Bridges - Marathon Industries; 225.

d. Mon-Eco Industries, Inc.; 22-25.

2. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

3. Adhesive shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

D. PVC Jacket Adhesive: Compatible with PVC jacket.

1. **Products:** Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:

a. Dow Corning Corporation; 739, Dow Silicone.

d. Speedline Corporation; Polyco VP Adhesive.

2. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

3. Adhesive shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

2.3 **MASTICS**

A. Materials shall be compatible with insulation materials, jackets, and substrates; comply with MIL-PRF-19565C, Type II.

1. For indoor applications, use mastics that have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

B. Vapor-Barrier Mastic: Water based; suitable for indoor use on below-ambient services.

1. **Products:** Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
b. Vimasco Corporation; 749.

2. Water-Vapor Permeance: ASTM E 96/E 96M, Procedure B, 0.013 perm (0.009 metric perm) at 43-mil (1.09-mm) dry film thickness.
3. Service Temperature Range: Minus 20 to plus 180 deg F (Minus 29 to plus 82 deg C).
4. Solids Content: ASTM D 1644, 58 percent by volume and 70 percent by weight.

C. Vapor-Barrier Mastic: Solvent based; suitable for indoor use on below-ambient services.
1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 b. Eagle Bridges - Marathon Industries; 501.
 d. Mon-Eco Industries, Inc.; 55-10.

2. Water-Vapor Permeance: ASTM F 1249, 0.05 perm (0.03 metric perm) at 35-mil (0.9-mm) dry film thickness.
3. Service Temperature Range: 0 to 180 deg F (Minus 18 to plus 82 deg C).

2.4 SEALANTS

A. ASJ Flashing Sealants, and Vinyl, PVDC, and PVC Jacket Flashing Sealants:

1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:

2. Materials shall be compatible with insulation materials, jackets, and substrates.
3. Fire- and water-resistant, flexible, elastomeric sealant.
4. Service Temperature Range: Minus 40 to plus 250 deg F (Minus 40 to plus 121 deg C).
6. For indoor applications, sealants shall have a VOC content of 420 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
7. Sealants shall comply with the testing and product requirements of the California Department of Health Services’ "Standard Practice for the Testing of Volatile
Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

2.5 FIELD-APPLIED JACKETS

A. Field-applied jackets shall comply with ASTM C 921, Type I, unless otherwise indicated.

B. PVC Jacket: High-impact-resistant, UV-resistant PVC complying with ASTM D 1784, Class 16354-C; thickness as scheduled; roll stock ready for shop or field cutting and forming. Thickness is indicated in field-applied jacket schedules.

1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 a. Johns Manville; Zeston.
 b. Proto Corporation; LoSmoke.
 c. Speedline Corporation; SmokeSafe.

2. Adhesive: As recommended by jacket material manufacturer.

4. Factory-fabricated fitting covers to match jacket if available; otherwise, field fabricate.
 a. Shapes: 45- and 90-degree, short- and long-radius elbows, tees, valves, flanges, unions, reducers, end caps, soil-pipe hubs, traps, mechanical joints, and P-trap and supply covers for lavatories.

2.6 TAPES

A. ASJ Tape: White vapor-retarder tape matching factory-applied jacket with acrylic adhesive, complying with ASTM C 1136.

1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 a. ABI, Ideal Tape Division; 428 AWF ASJ.
 b. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0836.
 c. Venture Tape; 1540 CW Plus, 1542 CW Plus, and 1542 CW Plus/SQ.

2. Width: 3 inches (75 mm).

3. Thickness: 11.5 mils (0.29 mm).

4. Adhesion: 90 ounces force/inch (1.0 N/mm) in width.

5. Elongation: 2 percent.

6. Tensile Strength: 40 lbf/inch (7.2 N/mm) in width.

7. ASJ Tape Disks and Squares: Precut disks or squares of ASJ tape.

B. FSK Tape: Foil-face, vapor-retarder tape matching factory-applied jacket with acrylic adhesive; complying with ASTM C 1136.
1. **Products**: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:

 a. ABI, Ideal Tape Division; 491 AWF FSK.
 b. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0827.
 c. Venture Tape; 1525 CW NT, 1528 CW, and 1528 CW/SQ.

2. **Width**: 3 inches (75 mm).
3. **Thickness**: 6.5 mils (0.16 mm).
4. **Adhesion**: 90 ounces force/inch (1.0 N/mm) in width.
5. **Elongation**: 2 percent.
6. **Tensile Strength**: 40 lbf/inch (7.2 N/mm) in width.
7. **FSK Tape Disks and Squares**: Precut disks or squares of FSK tape.

C. **PVC Tape**: White vapor-retarder tape matching field-applied PVC jacket with acrylic adhesive; suitable for indoor and outdoor applications.

 1. **Products**: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:

 a. ABI, Ideal Tape Division; 370 White PVC tape.
 b. Compac Corporation; 130.
 c. Venture Tape; 1506 CW NS.

2. **Width**: 2 inches (50 mm).
3. **Thickness**: 6 mils (0.15 mm).
4. **Adhesion**: 64 ounces force/inch (0.7 N/mm) in width.
5. **Elongation**: 500 percent.
6. **Tensile Strength**: 18 lbf/inch (3.3 N/mm) in width.

D. **Aluminum-Foil Tape**: Vapor-retarder tape with acrylic adhesive.

 1. **Products**: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:

 a. ABI, Ideal Tape Division; 488 AWF.
 b. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0800.
 c. Compac Corporation; 120.
 d. Venture Tape; 3520 CW.

2. **Width**: 2 inches (50 mm).
3. **Thickness**: 3.7 mils (0.093 mm).
4. **Adhesion**: 100 ounces force/inch (1.1 N/mm) in width.
5. **Elongation**: 5 percent.
6. **Tensile Strength**: 34 lbf/inch (6.2 N/mm) in width.

2.7 **SECUREMENTS**

A. **Bands**:

220719-7
1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 a. ITW Insulation Systems; Gerrard Strapping and Seals.
 b. RPR Products, Inc.; Insul-Mate Strapping and Seals.

2. Stainless Steel: ASTM A 167 or ASTM A 240/A 240M, Type 304); 0.015 inch (0.38 mm) thick, 1/2 inch (13 mm) wide with wing seal

3. Aluminum: ASTM B 209 (ASTM B 209M), Alloy 3003, 3005, 3105, or 5005; Temper H-14, 0.020 inch (0.51 mm) thick, 1/2 inch (13 mm) wide with closed seal.

B. Staples: Outward-clinching insulation staples, nominal 3/4-inch- (19-mm-) wide, stainless steel or Monel.

C. Wire: 0.062-inch (1.6-mm) soft-annealed, galvanized steel.

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

2.8 PROTECTIVE SHIELDING GUARDS

A. Protective Shielding Pipe Covers

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Engineered Brass Company.
 b. Truebro; a brand of IPS Corporation.
 c. Zurn Industries, LLC; Tubular Brass Plumbing Products Operation.

2. Description: Manufactured plastic wraps for covering plumbing fixture hot- and cold-water supplies and trap and drain piping. Comply with Americans with Disabilities Act (ADA) requirements.

B. Protective Shielding Piping Enclosures:

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Truebro; a brand of IPS Corporation.
 b. Zurn Industries, LLC; Tubular Brass Plumbing Products Operation.
2. Description: Manufactured plastic enclosure for covering plumbing fixture hot- and cold-water supplies and trap and drain piping. Comply with ADA requirements.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates and conditions for compliance with requirements for installation tolerances and other conditions affecting performance of insulation application.
 1. Verify that systems to be insulated have been tested and are free of defects.
 2. Verify that surfaces to be insulated are clean and dry.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.

B. Mix insulating cements with clean potable water; if insulating cements are to be in contact with stainless-steel surfaces, use demineralized water.

3.3 GENERAL INSTALLATION REQUIREMENTS

A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of piping including fittings, valves, and specialties.

B. Install insulation materials, forms, vapor barriers or retarders, jackets, and thicknesses required for each item of pipe system as specified in insulation system schedules.

C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.

D. Install insulation with longitudinal seams at top and bottom of horizontal runs.

E. Install multiple layers of insulation with longitudinal and end seams staggered.

F. Do not weld brackets, clips, or other attachment devices to piping, fittings, and specialties.

G. Keep insulation materials dry during application and finishing.

H. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.
I. Install insulation with least number of joints practical.

J. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.
 1. Install insulation continuously through hangers and around anchor attachments.
 2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.
 3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.
 4. Cover inserts with jacket material matching adjacent pipe insulation. Install shields over jacket, arranged to protect jacket from tear or puncture by hanger, support, and shield.

K. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.

L. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness.

M. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.

N. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches (100 mm) beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.

O. For above-ambient services, do not install insulation to the following:
 1. Vibration-control devices.
 2. Testing agency labels and stamps.
 3. Nameplates and data plates.

3.4 PENETRATIONS

A. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.

3.5 GENERAL PIPE INSULATION INSTALLATION

A. Requirements in this article generally apply to all insulation materials except where more specific requirements are specified in various pipe insulation material installation articles.

B. Insulation Installation on Fittings, Valves, Strainers, Flanges, and Unions:
1. Install insulation over fittings, valves, strainers, flanges, unions, and other specialties with continuous thermal and vapor-retarder integrity unless otherwise indicated.

2. Insulate pipe elbows using preformed fitting insulation or mitered fittings made from same material and density as adjacent pipe insulation. Each piece shall be butted tightly against adjoining piece and bonded with adhesive. Fill joints, seams, voids, and irregular surfaces with insulating cement finished to a smooth, hard, and uniform contour that is uniform with adjoining pipe insulation.

3. Insulate tee fittings with preformed fitting insulation or sectional pipe insulation of same material and thickness as used for adjacent pipe. Cut sectional pipe insulation to fit. Butt each section closely to the next and hold in place with tie wire. Bond pieces with adhesive.

4. Insulate valves using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. For valves, insulate up to and including the bonnets, valve stuffing-box studs, bolts, and nuts. Fill joints, seams, and irregular surfaces with insulating cement.

5. Insulate strainers using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. Fill joints, seams, and irregular surfaces with insulating cement. Insulate strainers so strainer basket flange or plug can be easily removed and replaced without damaging the insulation and jacket. Provide a removable reusable insulation cover. For below-ambient services, provide a design that maintains vapor barrier.

6. Insulate flanges and unions using a section of oversized preformed pipe insulation. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker.

7. Cover segmented insulated surfaces with a layer of finishing cement and coat with a mastic. Install vapor-barrier mastic for below-ambient services and a breather mastic for above-ambient services. Reinforce the mastic with fabric-reinforcing mesh. Trowel the mastic to a smooth and well-shaped contour.

8. For services not specified to receive a field-applied jacket except for flexible elastomeric and polyolefin, install fitted PVC cover over elbows, tees, strainers, valves, flanges, and unions. Terminate ends with PVC end caps. Tape PVC covers to adjoining insulation facing using PVC tape.

9. Stencil or label the outside insulation jacket of each union with the word "union." Match size and color of pipe labels.

C. Insulate instrument connections for thermometers, pressure gages, pressure temperature taps, test connections, flow meters, sensors, switches, and transmitters on insulated pipes. Shape insulation at these connections by tapering it to and around the connection with insulating cement and finish with finishing cement, mastic, and flashing sealant.

D. Install removable insulation covers at locations indicated. Installation shall conform to the following:
1. Make removable flange and union insulation from sectional pipe insulation of same thickness as that on adjoining pipe. Install same insulation jacket as adjoining pipe insulation.

2. When flange and union covers are made from sectional pipe insulation, extend insulation from flanges or union long at least two times the insulation thickness over adjacent pipe insulation on each side of flange or union. Secure flange cover in place with stainless-steel or aluminum bands. Select band material compatible with insulation and jacket.

3. Construct removable valve insulation covers in same manner as for flanges, except divide the two-part section on the vertical center line of valve body.

4. When covers are made from block insulation, make two halves, each consisting of mitered blocks wired to stainless-steel fabric. Secure this wire frame, with its attached insulation, to flanges with tie wire. Extend insulation at least 2 inches (50 mm) over adjacent pipe insulation on each side of valve. Finish cover assembly with insulating cement applied in two coats. After first coat is dry, apply and trowel second coat to a smooth finish.

5. Unless a PVC jacket is indicated in field-applied jacket schedules, finish exposed surfaces with a metal jacket.

3.6 INSTALLATION OF MINERAL-FIBER INSULATION

A. Insulation Installation on Straight Pipes and Tubes:

1. Secure each layer of preformed pipe insulation to pipe with wire or bands and tighten bands without deforming insulation materials.

2. Where vapor barriers are indicated, seal longitudinal seams, end joints, and protrusions with vapor-barrier mastic and joint sealant.

3. For insulation with factory-applied jackets on above-ambient surfaces, secure laps with outward clinched staples at 6 inches (150 mm) o.c.

4. For insulation with factory-applied jackets on below-ambient surfaces, do not staple longitudinal tabs. Instead, secure tabs with additional adhesive as recommended by insulation material manufacturer and seal with vapor-barrier mastic and flashing sealant.

B. Insulation Installation on Pipe Flanges:

1. Install preformed pipe insulation to outer diameter of pipe flange.

2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.

3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with mineral-fiber blanket insulation.

4. Install jacket material with manufacturer's recommended adhesive, overlap seams at least 1 inch (25 mm), and seal joints with flashing sealant.

C. Insulation Installation on Pipe Fittings and Elbows:
1. Install preformed sections of same material as straight segments of pipe insulation when available.
2. When preformed insulation elbows and fittings are not available, install mitered sections of pipe insulation, to a thickness equal to adjoining pipe insulation. Secure insulation materials with wire or bands.

D. Insulation Installation on Valves and Pipe Specialties:
1. Install preformed sections of same material as straight segments of pipe insulation when available.
2. When preformed sections are not available, install mitered sections of pipe insulation to valve body.
3. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
4. Install insulation to flanges as specified for flange insulation application.

3.7 FINISHES

A. Insulation with ASJ, Glass-Cloth, or Other Paintable Jacket Material: Paint jacket with paint system identified below and as specified in Section 09912 "Interior Painting."

1. Flat Acrylic Finish: Two finish coats over a primer that is compatible with jacket material and finish coat paint. Add fungicidal agent to render fabric mildew proof.

B. Flexible Elastomeric Thermal Insulation: After adhesive has fully cured, apply two coats of insulation manufacturer's recommended protective coating.

C. Color: Final color as selected by Architect. Vary first and second coats to allow visual inspection of the completed Work.

D. Do not field paint aluminum or stainless-steel jackets.

3.8 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

B. Perform tests and inspections.

C. Tests and Inspections:

1. Inspect pipe, fittings, strainers, and valves, randomly selected by Architect, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to three locations of straight pipe, three locations of threaded fittings, three locations of welded fittings, two locations of threaded strainers, two locations of welded strainers, three locations
of threaded valves, and three locations of flanged valves for each pipe service defined in the "Piping Insulation Schedule, General" Article.

D. All insulation applications will be considered defective Work if sample inspection reveals noncompliance with requirements.

3.9 PIPING INSULATION SCHEDULE, GENERAL

A. Acceptable preformed pipe and tubular insulation materials and thicknesses are identified for each piping system and pipe size range. If more than one material is listed for a piping system, selection from materials listed is Contractor's option.

B. Items Not Insulated: Unless otherwise indicated, do not install insulation on the following:
 1. Underground piping.
 2. Chrome-plated pipes and fittings unless there is a potential for personnel injury.

3.10 INDOOR PIPING INSULATION SCHEDULE

A. Domestic Cold Water:
 1. Insulation shall be the following:
 a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1 inch (25 mm) think.

B. Domestic Hot and Recirculated Hot Water:
 1. Insulation shall be the following:
 a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1 inch (25 mm) think.

C. Exposed Sanitary Drains, Domestic Water, Domestic Hot Water, and Stops for Plumbing Fixtures for People with Disabilities:
 1. All Pipe Sizes: Insulation shall be the following:
 a. Protective shielding guards per Section 2.8.

3.11 INDOOR, FIELD-APPLIED JACKET SCHEDULE

A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket.

B. If more than one material is listed, selection from materials listed is Contractor's option.

C. Piping, Concealed:
 1. None.
D. Piping, Exposed:

1. Domestic Cold and Hot Water: PVC, 20 mils (0.5 mm) thick.
2. Exposed Sanitary Drains, Domestic Water, Domestic Hot Water, and Stops for Plumbing Fixtures for People with Disabilities: PVC, 20 mils (0.5 mm) thick.

END OF SECTION
SECTION 221116

DOMESTIC WATER PIPING

PART 1 – GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Under-building slab and aboveground domestic water pipes, tubes, fittings, and specialties inside the building.
 2. Encasement for piping.

B. Related Sections:
 1. Division 22 Section “Identification for Plumbing Piping and Equipment”.
 2. Division 22 Section “Hangers and Supports for Plumbing Piping and Equipment”.
 3. Division 22 Section “Plumbing Piping Insulation”.

1.2 REFERENCES

A. American National Standards Institute:

B. American Society of Mechanical Engineers:
 1. ASME B16.18 - Cast Copper Alloy Solder Joint Pressure Fittings.
 2. ASME B16.22 - Wrought Copper and Copper Alloy Solder Joint Pressure Fittings.
 3. ASME B16.26 - Cast Copper Alloy Fittings for Flared Copper Tubes.

C. American Society of Sanitary Engineering:
 1. ASSE 1010 - Performance Requirements for Water Hammer Arresters.
 2. ASSE 1011 - Performance Requirements for Hose Connection Vacuum Breakers.
 3. ASSE 1012 - Performance Requirements for Backflow Preventer with Intermediate Atmospheric Vent.
 4. ASSE 1013 - Performance Requirements for Reduced Pressure Principle Backflow Preventers.
 5. ASSE 1015 - Performance Requirements for Double Check Backflow Prevention Assemblies.
 6. ASSE 1017 - Performance Requirements for Temperature Actuated Mixing Valves for Hot Water Distribution Systems.
7. ASSE 1019 - Performance Requirements for Wall Hydrants, Freezeless, Automatic Draining, Anti-Backflow Types.
8. ASSE 1024 - Performance Requirements for Dual Check Backflow Preventers.
9. ASSE 1070 - Performance Requirements for Water Temperature Limiting Devices.

D. ASTM International:

E. Manufacturers Standardization Society of the Valve and Fittings Industry:
 1. MSS SP 58 - Pipe Hangers and Supports - Materials, Design and Manufacturer.
 2. MSS SP 69 - Pipe Hangers and Supports - Selection and Application.
 3. MSS SP 89 - Pipe Hangers and Supports - Fabrication and Installation Practices.

1.3 SUBMITTALS

A. Section 013300 - Submittal Procedures: Submittal procedures.

B. Product Data:
 1. Piping: Submit data on pipe materials, fittings, and accessories. Submit manufacturer's catalog information.
 2. Valves: Submit manufacturers catalog information with valve data and ratings for each service.
 3. Hangers and Supports: Submit manufacturers catalog information including load capacity.
 4. Domestic Water Specialties: Submit manufacturers catalog information, component sizes, rough-in requirements, service sizes, and finishes.

C. Manufacturer's Installation Instructions: Submit installation instructions for pumps, valves and accessories.

D. Manufacturer's Certificate: Certify products meet or exceed specified requirements.

1.4 CLOSEOUT SUBMITTALS

A. Section 017300 - Execution: Closeout procedures.

B. Project Record Documents: Record actual locations of valves and equipment.

C. Operation and Maintenance Data: Submit spare parts list, exploded assembly views and recommended maintenance intervals.

1.5 QUALIFICATIONS
A. Manufacturer: Company specializing in manufacturing products specified in this section with minimum three years documented experience.

1.6 DELIVERY, STORAGE, AND HANDLING

A. Accept valves and equipment on site in shipping containers with labeling in place. Inspect for damage.

B. Provide temporary protective coating on cast iron and steel valves.

C. Provide temporary end caps and closures on piping and fittings. Maintain in place until installation.

D. Protect piping systems from entry of foreign materials by temporary covers, completing sections of the Work, and isolating parts of completed system.

1.7 ENVIRONMENTAL REQUIREMENTS

A. Do not install underground piping when bedding is wet or frozen.

1.8 FIELD MEASUREMENTS

A. Verify field measurements prior to fabrication.

1.9 WARRANTY

A. Section 017300 - Execution: Product warranties and product bonds.

B. Furnish one-year manufacturer warranty for domestic water piping.

PART 2 - PRODUCTS

2.1 DOMESTIC WATER PIPING

A. Copper Tubing: ASTM B88 (ASTM B88M), Type K for below ground and Type L for above ground, for piping 2 ½ inches NPS and smaller.

1. Fittings: ASME B16.18, cast copper alloy or ASME B16.22, wrought copper and bronze.

2. Joints: Solder, lead free, ASTM B32, 95-5 tin-antimony, or tin and silver, with melting range 430 to 535 degrees F (220 to 280 degrees C).

3. Unions:

 a. Copper Piping: Class 150, bronze unions with soldered
 b. Dielectric Connections: Union with galvanized or plated steel threaded end, copper solder end, water impervious isolation barrier.
B. Galvanized Steel Pipe: ASTM A 53/A 53M, Type E, Grade B, Standard Weight for Above ground 3 inch and larger.

1. Flanges: ASME B16.1, Class 125, cast iron
2. Fittings for Grooved-End, Galvanized-Steel Pipe: Galvanized, ASTM A 47/A 47M, malleable-iron casting; ASTM A 106/A 106M, steel pipe; or ASTM A 536, ductile-iron casting; with dimensions matching steel pipe.
3. Fittings for Grooved-End, Galvanized-Steel Pipe:
 a. AWWA C606 for steel-pipe dimensions.
 b. Ferrous housing sections.
 c. EPDM-rubber gaskets suitable for hot and cold water.
 d. Bolts and nuts.
 e. Minimum Pressure Rating 600 psig

C. Ductile Iron Pipe: Below ground 3 inches and larger:

1. Mechanical Joints:
 a. AWWA C151/A21.51, with mechanical-joint bell and plain spigot end unless grooved or flanged ends are indicated.
 b. Glands, Gaskets, and Bolts: AWWA C111/A21.11, ductile- or gray-iron glands, rubber gaskets, and steel bolts.

2. Grooved-End Pipe:

4. Mechanical Couplings for Grooved-End, Ductile-Iron-Piping:
 a. AWWA C606 for ductile-iron-pipe dimensions.
 b. Ferrous housing sections.
 c. EPDM-rubber gaskets suitable for hot and cold water.
 d. Bolts and nuts.
 e. Minimum Pressure Rating 250 psig

PART 3 - EXECUTION

3.1 EXAMINATION
 A. Section 013100 - Administrative Requirements: Coordination and project conditions.

3.2 PREPARATION
 A. Ream pipe and tube ends. Remove burrs. Bevel plain end ferrous pipe.
 B. Remove scale and dirt, on inside and outside, before assembly.

3.3 INSTALLATION - HANGERS AND SUPPORTS
A. Inserts:

1. Provide inserts for placement in concrete forms.
2. Provide inserts for suspending hangers from reinforced concrete slabs and sides of reinforced concrete beams.
3. Where concrete slabs form finished ceiling, locate inserts flush with slab surface.
4. Where inserts are omitted, drill through concrete slab from below and provide through-bolt with recessed square steel plate and nut above recessed into and grouted flush with slab.

B. Pipe Hangers and Supports:

1. Install in accordance with ASME B31.9, ASTM F708 and MSS SP 89 as specified in 15060.
2. Support horizontal piping as schedule.
3. Install hangers to provide minimum 1/2-inch (15 mm) space between finished covering and adjacent work.
4. Place hangers within 12 inches (300 mm) of each horizontal elbow.
5. Use hangers with 1-1/2 inch (40 mm) minimum vertical adjustment. Design hangers for pipe movement without disengagement of supported pipe.
7. Where piping is installed in parallel and at same elevation, provide multiple pipe or trapeze hangers.

3.4 INSTALLATION – BELOW GROUND PIPING

A. Install copper and ductile-iron piping under building slab with restrained joints according to AWWA C600 and AWWA M41.

B. Install underground copper and ductile-iron pipe in PE encasement according to ASTM A 674 or AWWA C105/A21.5.

3.5 INSTALLATION - ABOVE GROUND PIPING

A. Install non-conducting dielectric connections wherever jointing dissimilar metals.

B. Route piping in orderly manner and maintain gradient. Route parallel and perpendicular to walls.

C. Install piping to maintain headroom without interfering with use of space or taking more space than necessary.

D. Group piping whenever practical at common elevations.

E. Slope piping and arrange systems to drain at low points.

F. Install piping to allow for expansion and contraction without stressing pipe, joints, or connected equipment.
G. Provide clearance in hangers and from structure and other equipment for installation of insulation and access to valves and fittings.

H. Provide access where valves and fittings are not accessible.

I. Where pipe support members are welded to structural building framing, scrape, brush clean, and apply one coat of zinc rich primer to welding.

J. Install domestic water piping in accordance with ASME B31.9.

K. Sleeve pipes passing through partitions, walls and floors.

L. Install unions downstream of valves and at equipment or apparatus connections.

M. Install valves with stems upright or horizontal, not inverted.

N. Install brass male adapters each side of valves in copper piped system. Solder adapters to pipe.

O. Install valves for shut-off and to isolate equipment, part of systems, or vertical risers.

P. Install valves for throttling, bypass, or manual flow control services.

Q. Install potable water protection devices on plumbing lines where contamination of domestic water may occur; on boiler feed water lines, janitor rooms, fire sprinkler systems, premise isolation, irrigation systems, flush valves, interior and exterior hose bibs.

R. Pipe relief from valves, back-flow preventers and drains to nearest floor drain.

3.6 FIELD QUALITY CONTROL

A. 017300 - Execution: Field inspecting, testing, adjusting, and balancing.

3.7 PRESSURE TESTING

A. The entire piping system shall be subjected to a pressure test. Testing is allowed to be broken up into sections, but the entire system must be tested.

B. The system shall be provided tight by an air test of not less than 50 psig. The pressure shall be held for a period of not less than 15 minutes.

C. The testing shall be witnessed by an independent third party.

D. The contractor shall submit testing forms to document testing.

E. This procedure shall be repeated if the system does not pass.
F. Results of pipe pressure tests shall be submitted to Engineer, Owner, and Owner’s Representative for review prior to closing in walls, floors, or ceilings that will prevent access to piping for repairs.

3.8 CLEANING

A. Clean and disinfect potable domestic water piping as follows:

1. Purge new piping and parts of existing piping that have been altered, extended, or repaired before using.
2. Use purging and disinfecting procedures prescribed by authorities having jurisdiction; if methods are not prescribed, use the procedures described below:

 a. Flush piping system with clean, potable water until dirty water does not appear at outlets.
 b. Fill and isolate system according to either of the following:

 1) Fill system or part thereof with water/chlorine solution with at least 50 ppm (50 mg/L) of chlorine. Isolate with valves and allow to stand for 24 hours.
 2) Fill system or part thereof with water/chlorine solution with at least 200 ppm (200 mg/L) of chlorine. Isolate and allow to stand for three hours.

 c. Following the required standing time, the system shall be flushed with clean, potable water until no chlorine is in water coming from system after the standing time.
 d. Repeat procedures if biological examination shows contamination.
 e. Submit water samples in sterile bottles to authorities having jurisdiction.

END OF SECTION
SECTION 221119

DOMESTIC WATER PIPING SPECIALTIES

PART 1 - DESCRIPTION

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes the following domestic water piping specialties:
 1. Vacuum breakers.
 2. Backflow preventers.
 4. Temperature-actuated water mixing valves.
 5. Strainers.
 6. Electronic Trap Primer Systems
 7. Hose bibbs.
 8. Wall hydrants.
 10. Water hammer arresters.
 11. Air vents.

B. Related Sections include the following:
 1. Division 22 Section "Domestic Water Piping".

1.3 PERFORMANCE REQUIREMENTS

A. Minimum Working Pressure for Domestic Water Piping Specialties: 150 psig, unless otherwise indicated.

1.4 SUBMITTALS

A. Product Data: For each type of product indicated.

B. Shop Drawings: Diagram power, signal, and control wiring.

C. Field quality-control test reports.

D. Operation and Maintenance Data: For domestic water piping specialties to include in emergency, operation, and maintenance manuals.
1.5 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

B. NSF Compliance:
 2. Comply with NSF 61, "Drinking Water System Components - Health Effects; Sections 1 through 9."

PART 2 - PRODUCTS

2.1 VACUUM BREAKERS

A. Pipe-Applied, Atmospheric-Type Vacuum Breakers:
 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Conbraco Industries, Inc.
 c. Zurn Plumbing Products Group; Wilkins Div.
 3. Size: NPS 1/4 to NPS 3, as required to match connected piping.
 5. Inlet and Outlet Connections: Threaded.

B. Hose-Connection Vacuum Breakers:
 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Conbraco Industries, Inc.
 b. MIFAB, Inc.
 d. Zurn Plumbing Products Group; Wilkins Div.
 5. Finish: Chrome or nickel plated.
2.2 BACKFLOW PREVENTERS

A. Reduced-Pressure-Principle Backflow Preventers:

1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. FEBCO; SPX Valves & Controls.
 c. Zurn Plumbing Products Group; Wilkins Div.

3. Operation: Continuous-pressure applications.
4. Pressure Loss: 12 psig maximum, through middle 1/3 of flow range.
5. Body: Bronze for NPS 2 and smaller; cast iron with interior lining complying with AWWA C550 or that is FDA approved for NPS 2-1/2 and larger.
6. End Connections: Threaded for NPS 2 and smaller; flanged for NPS 2-1/2 and larger.
7. Configuration: Designed for horizontal, straight through flow.
8. Accessories:
 a. Valves: Ball type with threaded ends on inlet and outlet of NPS 2 and smaller; outside screw and yoke gate-type with flanged ends on inlet and outlet of NPS 2-1/2 and larger.

9. Provide for:
 a. Incoming water service
 b. Make-up water for the heating water system

B. Double Check Detector Assembly:

1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. FEBCO; SPX Valves & Controls.
 c. Zurn Plumbing Products Group; Wilkins Div.

3. Operation: Continuous-pressure applications.
4. Pressure Loss: 12 psig maximum, through middle 1/3 of flow range.
5. Body: Bronze for NPS 2 and smaller; cast iron with interior lining complying with AWWA C550 or that is FDA approved for NPS 2-1/2 and larger.
6. End Connections: Threaded for NPS 2 and smaller; flanged for NPS 2-1/2 and larger.

7. Configuration: Designed for horizontal, straight through flow.

8. Accessories:
 a. Valves: Ball type with threaded ends on inlet and outlet of NPS 2 and smaller; outside screw and yoke gate-type with flanged ends on inlet and outlet of NPS 2-1/2 and larger.

9. Provide for: Fire protection water service

2.3 BALANCING VALVES

A. Balancing Valves:
 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Apollo Valves, Inc.
 b. Crane Co.; Crane Valve Group; Crane Valves.
 c. Milwaukee Valve Company.
 d. NIBCO INC.
 2. Standard: MSS SP-110 for two-piece, copper-alloy ball valves.
 3. Pressure Rating: 400-psig minimum CWP.
 4. Minimum Flow: 0.50 GPM
 5. Size: NPS 2 or smaller.
 7. Port: Standard or full port.
 8. Ball: Chrome-plated brass.
 10. End Connections: Solder joint or threaded.
 11. Handle: Vinyl-covered steel with memory-setting device.

2.4 TEMPERATURE-ACTUATED WATER MIXING VALVES

A. Thermostatic, Water Mixing Valve Assemblies (TMV-1):
 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 b. Lawler Manufacturing Company, Inc.
 c. Powers; a Watts Industries Co.
 d. Symmons Industries, Inc.
4. Type: Exposed-mounting, thermostatically controlled water mixing valve.
5. Material: Bronze body with corrosion-resistant interior components.
6. Connections: Threaded union inlets and outlet.
7. Accessories: Manual temperature control, check stops on hot- and cold-water supplies, and adjustable, temperature-control handle.
8. Valve Pressure Rating: 125 psig minimum, unless otherwise indicated.

B. Water Temperature Limiting Devices (TMV-2):

1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 b. Lawler Manufacturing Company, Inc.
 c. Powers; a Watts Industries Co.
 d. Symmons Industries, Inc.
4. Type: Exposed-mounting, thermostatically controlled water mixing valve.
5. Material: Bronze body with corrosion-resistant interior components.
6. Connections: Threaded union inlets and outlet.
7. Accessories: Manual temperature control, check stops on hot- and cold-water supplies, and adjustable, temperature-control handle.
8. Valve Pressure Rating: 125 psig minimum, unless otherwise indicated.

2.5 STRAINERS FOR DOMESTIC WATER PIPING

A. Y-Pattern Strainers:

1. Pressure Rating: 125 psig minimum, unless otherwise indicated.
2. Body: Bronze for NPS 2 and smaller; cast iron with interior lining complying with AWWA C550 or FDA-approved, epoxy coating for NPS 2-1/2 and larger.
3. End Connections: Threaded for NPS 2 and smaller; flanged for NPS 2-1/2 and larger.
4. Screen: Stainless steel with round perforations, unless otherwise indicated.
5. Perforation Size:
 a. Strainers NPS 2 and Smaller: 0.020 inch.
 b. Strainers NPS 2-1/2 and larger: 0.045 inch.
2.6 ELECTRONIC TRAP PRIMER STATIONS

A. Electronic Trap-Seal Primer Stations:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Sioux Chief Manufacturing Co.
 b. MIFAB, Inc.
 c. PPP Inc.

2. Standard: ASSE 1044.

3. Pressure Rating: 100 psig minimum.

5. Inlet and Outlet Connections: NPS 3/4 threaded, union, or solder joint.

8. 120V/1 phase.

2.7 WALL HYDRANTS

A. Nonfreezing Wall Hydrants:

1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 c. Watts Drainage Products Inc.
 d. Woodford Manufacturing Company.
 e. Zurn Plumbing Products Group; Specification Drainage Operation.

5. Casing and Operating Rod: Of length required to match wall thickness. Include wall clamp.

6. Inlet: NPS 3/4 or NPS 1.

8. Nozzle and Wall-Plate Finish: Chrome plated.

9. Basis of Design: Zurn z1321XL

2.8 DRAIN VALVES

A. Ball-Valve-Type, Hose-End Drain Valves:
2. Pressure Rating: 400-psig minimum CWP.
4. Body: Copper alloy.
5. Ball: Chrome-plated brass.
8. Inlet: Threaded or solder joint.

2.9 WATER HAMMER ARRESTERS

A. Water Hammer Arresters:

1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

 b. MIFAB, Inc.
 c. PPP Inc.
 e. Zurn Plumbing Products Group; Specification Drainage Operation.

3. Type: Metal bellows.
4. Size: ASSE 1010, Sizes AA and A through F or PDI-WH 201, Sizes A through F.

2.10 AIR VENTS

A. Bolted-Construction Automatic Air Vents:

1. Body: Bronze.
2. Pressure Rating: 125-psig minimum pressure rating at 140 deg F.
3. Float: Replaceable, corrosion-resistant metal.
5. Size: NPS 1/2 minimum inlet.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Refer to Division 22 Section "Common Work Results for Plumbing" for piping joining materials, joint construction, and basic installation requirements.
B. Install backflow preventers in each water supply to mechanical equipment and systems and to other equipment and water systems that may be sources of contamination. Comply with authorities having jurisdiction.

1. Locate backflow preventers in same room as connected equipment or system.
2. Install drain for backflow preventers with atmospheric-vent drain connection with air-gap fitting, fixed air-gap fitting, or equivalent positive pipe separation of at least two pipe diameters in drain piping and pipe to floor drain. Locate air-gap device attached to or under backflow preventer. Simple air breaks are not acceptable for this application.
3. Do not install bypass piping around backflow preventers.

C. Install water regulators with inlet and outlet shutoff valves and bypass with memory-stop balancing valve. Install pressure gages on inlet and outlet.

D. Install water control valves with inlet and outlet shutoff valves. Install pressure gages on inlet and outlet.

E. Install balancing valves in locations where they can easily be adjusted.

F. Install temperature-actuated water mixing valves with check stops or shutoff valves on inlets and with shutoff valve on outlet.

1. Install thermometers and water regulators if specified.
2. Install cabinet-type units recessed in or surface mounted on wall as specified.

G. Install Y-pattern strainers for water on supply side of each thermostatic mixing valve, balancing valve, and pump.

H. Install water hammer arresters in water piping according to PDI-WH 201.

I. Install air vents at high points of water piping.

J. Install trap-seal primer systems with outlet piping pitched down toward drain trap a minimum of 1 percent, and connect to floor-drain body, trap, or inlet fitting. Adjust system for proper flow.

3.2 CONNECTIONS

A. Piping installation requirements are specified in other Division 22 Sections. Drawings indicate general arrangement of piping and specialties.

B. Ground equipment according to Division 26 Section for Grounding and Bonding for Electrical Systems.

C. Connect wiring according to Division 26 Section for Low-Voltage Electrical Power Conductors and Cables.
3.3 LABELING AND IDENTIFYING

A. Equipment Nameplates and Signs: Install engraved plastic-laminate equipment nameplate or sign on or near each of the following:
 1. Pressure vacuum breakers.
 2. Reduced-pressure-principle backflow preventers.
 3. Thermostatic, water mixing valves.
 4. Trap-seal primer systems.

B. Distinguish among multiple units, inform operator of operational requirements, indicate safety and emergency precautions, and warn of hazards and improper operations, in addition to identifying unit. Nameplates and signs are specified in Division 23 Section "Identification for Mechanical Piping and Equipment."

3.4 FIELD QUALITY CONTROL

A. Perform the following tests and prepare test reports:
 1. Test each vacuum breaker, reduced-pressure-principle backflow preventer, and double check valve assembly according to authorities having jurisdiction and the device's reference standard.

B. Remove and replace malfunctioning domestic water piping specialties and retest as specified above.

C. Domestic water piping specialties will be considered defective if they do not pass tests and inspections.

D. Prepare test and inspection reports.

3.5 ADJUSTING

A. Set field-adjustable flow set points of balancing valves.

B. Set field-adjustable temperature set points of temperature-actuated water mixing valves.

END OF SECTION
SECTION 221316
SANITARY WASTE AND VENT PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary
 Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Pipe, tube, and fittings.
 2. Specialty pipe fittings.
 3. Encasement for underground metal piping.

1.3 PERFORMANCE REQUIREMENTS
 A. Components and installation shall be capable of withstanding the following minimum
 working pressure unless otherwise indicated:

1.4 SUBMITTALS
 A. Product Data: For each type of product indicated.
 B. Field quality-control reports.

1.5 QUALITY ASSURANCE
 A. Piping materials shall bear label, stamp, or other markings of specified testing agency.

1.6 PROJECT CONDITIONS
 A. Interruption of Existing Sanitary Waste Service: Do not interrupt service to facilities
 occupied by Owner or others unless permitted under the following conditions and then
 only after arranging to provide temporary service according to requirements indicated:
 1. Notify Owner no fewer than two days in advance of proposed interruption of
 sanitary waste service.
 2. Do not proceed with interruption of sanitary waste service without Owner's
 written permission.
PART 2 - PRODUCTS

2.1 PIPING MATERIALS

A. Comply with requirements in "Piping Schedule" Article for applications of pipe, tube, fitting materials, and joining methods for specific services, service locations, and pipe sizes.

B. Comply with requirements in "Piping Schedule" Article for applications of pipe, tube, fitting materials, and joining methods for specific services, service locations, and pipe sizes.

2.2 HUB-AND-SPIGOT, CAST-IRON SOIL PIPE AND FITTINGS

A. Pipe and Fittings: ASTM A 74, Service class.

B. Gaskets: ASTM C 564, rubber.

C. Calking Materials: ASTM B 29, pure lead and oakum or hemp fiber.

2.3 HUBLESS, CAST-IRON SOIL PIPE AND FITTINGS

A. Pipe and Fittings: ASTM A 888 or CISPI 301.

B. Stack Fittings: ASME B16.45 or ASSE 1043, hubless, cast-iron aerator and deaerator drainage fittings.

C. Hubless-Piping Couplings:

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

 a. ANACO-Husky.
 c. Fernco Inc.
 d. MIFAB, Inc.
 e. Tyler Pipe.

3. Description: Stainless-steel corrugated shield with stainless-steel bands and tightening devices; and ASTM C 564, rubber sleeve with integral, center pipe stop.

2.4 COPPER TUBE AND FITTINGS

A. Copper DWV Tube: ASTM B 306, drainage tube, drawn temper.
B. Copper Drainage Fittings: ASME B16.23, cast copper or ASME B16.29, wrought copper, solder-joint fittings.

C. Hard Copper Tube: ASTM B 88, Type L, water tube, drawn temper.

D. Soft Copper Tube: ASTM B 88, Type L, water tube, annealed temper.

E. Copper Pressure Fittings:
 2. Copper Unions: MSS SP-123, copper-alloy, hexagonal-stock body with ball-and-socket, metal-to-metal seating surfaces, and solder-joint or threaded ends.

F. Copper Flanges: ASME B16.24, Class 150, cast copper with solder-joint end.
 1. Flange Gasket Materials: ASME B16.21, full-face, flat, nonmetallic, asbestos-free, 1/8-inch maximum thickness unless thickness or specific material is indicated.
 2. Flange Bolts and Nuts: ASME B18.2.1, carbon steel unless otherwise indicated.

G. Solder: ASTM B 32, lead free with ASTM B 813, water-flushable flux.

2.5 SPECIALTY PIPE FITTINGS

A. Transition Couplings:
 1. General Requirements: Fitting or device for joining piping with small differences in OD's or of different materials. Include end connections same size as and compatible with pipes to be joined.
 2. Fitting-Type Transition Couplings: Manufactured piping coupling or specified piping system fitting.
 3. Unshielded, Nonpressure Transition Couplings:
 a. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 2) Fernco Inc.
 3) Mission Rubber Company; a division of MCP Industries, Inc.
 4) Plastic Oddities; a division of Diverse Corporate Technologies, Inc.
 c. Description: Elastomeric, sleeve-type, reducing or transition pattern. Include shear ring and corrosion-resistant-metal tension band and tightening mechanism on each end.
 d. Sleeve Materials:
2) For Plastic Pipes: ASTM F 477, elastomeric seal or ASTM D 5926, PVC.
3) For Dissimilar Pipes: ASTM D 5926, PVC or other material compatible with pipe materials being joined.

2.6 ENCASEMENT FOR UNDERGROUND METAL PIPING

A. Standard: ASTM A 674 or AWWA C105/A 21.5.

B. Material: Linear low-density polyethylene film of 0.008-inch or high-density, cross-laminated polyethylene film of 0.004-inch minimum thickness.

C. Form: Sheet or tube.

PART 3 - EXECUTION

3.1 EARTH MOVING

A. Refer to site plans and associated DelDOT specifications for earth moving requirements.

3.2 PIPING INSTALLATION

A. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems.

1. Indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations.
2. Install piping as indicated unless deviations to layout are approved on coordination drawings.

B. Install piping in concealed locations unless otherwise indicated and except in equipment rooms and service areas.

C. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.

D. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.

E. Install piping to permit valve servicing.

F. Install piping at indicated slopes.

G. Install piping free of sags and bends.

H. Install fittings for changes in direction and branch connections.
I. Install piping to allow application of insulation.

J. Make changes in direction for soil and waste drainage and vent piping using appropriate branches, bends, and long-sweep bends. Sanitary tees and short-sweep 1/4 bends may be used on vertical stacks if change in direction of flow is from horizontal to vertical. Use long-turn, double Y-branch and 1/8-bend fittings if two fixtures are installed back to back or side by side with common drain pipe. Straight tees, elbows, and crosses may be used on vent lines. Do not change direction of flow more than 90 degrees. Use proper size of standard increasers and reducers if pipes of different sizes are connected. Reducing size of drainage piping in direction of flow is prohibited.

K. Lay buried building drainage piping beginning at low point of each system. Install true to grades and alignment indicated, with unbroken continuity of invert. Place hub ends of piping upstream. Install required gaskets according to manufacturer's written instructions for use of lubricants, cements, and other installation requirements. Maintain swab in piping and pull past each joint as completed.

L. Install soil and waste drainage and vent piping at the following minimum slopes unless otherwise indicated:

1. Horizontal Sanitary Drain: 2 percent minimum downward in direction of flow for piping NPS 3 and smaller; 1 percent minimum downward in direction of flow for piping NPS 4 and larger.
2. Vent Piping: 1 percent down toward vertical fixture vent or toward vent stack.

M. Install cast-iron soil piping according to CISPI's "Cast Iron Soil Pipe and Fittings Handbook," Chapter IV, "Installation of Cast Iron Soil Pipe and Fittings."

1. Install encasement on underground piping according to ASTM A 674 or AWWA C105/A 21.5.

N. Install aboveground copper tubing according to CDA's "Copper Tube Handbook."

O. Plumbing Specialties:

1. Install cleanouts at grade and extend to where building sanitary drains connect to building sanitary sewers in sanitary drainage gravity-flow piping. Install cleanout fitting with closure plug inside the building in sanitary drainage force-main piping. Comply with requirements for cleanouts specified in Division 22 Section "Sanitary Waste Piping Specialties."
2. Install drains in sanitary drainage gravity-flow piping. Comply with requirements for drains specified in Division 22 Section "Sanitary Waste Piping Specialties."

P. Do not enclose, cover, or put piping into operation until it is inspected and approved by authorities having jurisdiction.

Q. Install sleeves for piping penetrations of walls, ceilings, and floors.
R. Install sleeve seals for piping penetrations of concrete walls and slabs.
S. Install escutcheons for piping penetrations of walls, ceilings, and floors.

3.3 JOINT CONSTRUCTION

B. Join hubless, cast-iron soil piping according to CISPI 310 and CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for hubless-piping coupling joints.
C. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is specified.
 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.
D. Join copper tube and fittings with soldered joints according to ASTM B 828. Use ASTM B 813, water-flushable, lead-free flux and ASTM B 32, lead-free-alloy solder.

3.4 SPECIALTY PIPE FITTING INSTALLATION

A. Transition Couplings:
 1. Install transition couplings at joints of piping with small differences in OD's.
 2. In Drainage Piping: Shielded, nonpressure transition couplings.

3.5 VALVE INSTALLATION

A. General valve installation requirements are specified in Division 22 Section "Sanitary Waste Piping Specialties."
B. Check Valves: Install swing check valve, between pump and shutoff valve, on each sewage pump discharge.
C. Backwater Valves: Install backwater valves in piping subject to backflow.
 1. Horizontal Piping: Horizontal backwater valves
 2. Floor Drains: Drain outlet backwater valves unless drain has integral backwater valve.
 3. Install backwater valves in accessible locations.
 4. Comply with requirements for backwater valve specified in Division 22 Section "Sanitary Waste Piping Specialties."
3.6 HANGER AND SUPPORT INSTALLATION

A. Comply with requirements for pipe hanger and support devices and installation specified in Division 23 Section "Hangers and Supports for Piping and Equipment."

1. Install carbon-steel pipe hangers for horizontal piping.
2. Install carbon-steel pipe support clamps for vertical piping.
3. Vertical Piping: MSS Type 8 or Type 42, clamps.
4. Install individual, straight, horizontal piping runs:
 a. MSS Type 1, adjustable, steel clevis hangers.

B. Support horizontal piping and tubing within 12 inches of each fitting and coupling.

C. Support vertical piping and tubing at base and at floor.

D. Rod diameter may be reduced one size for double-rod hangers, with 3/8-inch minimum rods.

E. Install hangers for cast-iron soil piping with the following maximum horizontal spacing and minimum rod diameters:

 1. NPS 1-1/2 and NPS 2: 60 inches with 3/8-inch rod.
 2. NPS 3: 60 inches with 1/2-inch rod.
 3. NPS 4 to NPS 6: 60 inches with 5/8-inch rod.

F. Install supports for vertical cast-iron soil piping every 15 feet.

G. Install hangers for copper tubing with the following maximum horizontal spacing and minimum rod diameters:

 1. NPS 1-1/4: 72 inches with 3/8-inch rod.
 2. NPS 1-1/2 and NPS 2: 96 inches with 3/8-inch rod.
 3. NPS 2-1/2: 108 inches with 1/2-inch rod.
 4. NPS 3 to NPS 6: 10 feet with 5/8-inch rod.

H. Install supports for vertical copper tubing every 10 feet.

I. Support piping and tubing not listed above according to MSS SP-69 and manufacturer's written instructions.

3.7 CONNECTIONS

A. Drawings indicate general arrangement of piping, fittings, and specialties.

B. Connect soil and waste piping to exterior sanitary sewerage piping. Use transition fitting to join dissimilar piping materials.

C. Connect drainage and vent piping to the following:
1. Plumbing Fixtures: Connect drainage piping in sizes indicated, but not smaller than required by plumbing code.
2. Plumbing Fixtures and Equipment: Connect atmospheric vent piping in sizes indicated, but not smaller than required by authorities having jurisdiction.
3. Plumbing Specialties: Connect drainage and vent piping in sizes indicated, but not smaller than required by plumbing code.
4. Install test tees (wall cleanouts) in conductors near floor and floor cleanouts with cover flush with floor.
5. Install horizontal backwater valves with cleanout cover flush with floor.
6. Comply with requirements for backwater valves, cleanouts, and drains specified in Division 22 Section "Sanitary Waste Piping Specialties."
7. Equipment: Connect drainage piping as indicated. Provide shutoff valve if indicated and union for each connection. Use flanges instead of unions for connections NPS 2-1/2, and larger.

D. Where installing piping adjacent to equipment, allow space for service and maintenance of equipment.

E. Make connections according to the following unless otherwise indicated:

1. Install unions, in piping NPS 2 and smaller at final connection to each piece of equipment.
2. Install flanges, in piping NPS 2-1/2 and larger at final connection to each piece of equipment.

3.8 IDENTIFICATION

A. Identify exposed sanitary waste and vent piping. Comply with requirements for identification specified in Division 22 Section "Identification for Plumbing Piping and Equipment."

3.9 FIELD QUALITY CONTROL

A. During installation, notify authorities having jurisdiction at least 24 hours before inspection must be made. Perform tests specified below in presence of authorities having jurisdiction.

1. Roughing-in Inspection: Arrange for inspection of piping before concealing or closing-in after roughing-in and before setting fixtures.
2. Final Inspection: Arrange for final inspection by authorities having jurisdiction to observe tests specified below and to ensure compliance with requirements.

B. Reinspection: If authorities having jurisdiction find that piping will not pass test or inspection, make required corrections and arrange for reinspection.

C. Reports: Prepare inspection reports and have them signed by authorities having jurisdiction.
D. Test sanitary drainage and vent piping according to procedures of authorities having jurisdiction or, in absence of published procedures, as follows:

1. Test for leaks and defects in new piping and parts of existing piping that have been altered, extended, or repaired. If testing is performed in segments, submit separate report for each test, complete with diagram of portion of piping tested.
2. Leave uncovered and unenclosed new, altered, extended, or replaced drainage and vent piping until it has been tested and approved. Expose work that was covered or concealed before it was tested.
3. Roughing-in Plumbing Test Procedure: Test drainage and vent piping except outside leaders on completion of roughing-in. Close openings in piping system and fill with water to point of overflow, but not less than 10-foot head of water. From 15 minutes before inspection starts to completion of inspection, water level must not drop. Inspect joints for leaks.
4. Finished Plumbing Test Procedure: After plumbing fixtures have been set and traps filled with water, test connections and prove they are gastight and watertight. Plug vent-stack openings on roof and building drains where they leave building. Introduce air into piping system equal to pressure of 1-inch wg. Use U-tube or manometer inserted in trap of water closet to measure this pressure. Air pressure must remain constant without introducing additional air throughout period of inspection. Inspect plumbing fixture connections for gas and water leaks.
5. Repair leaks and defects with new materials and retest piping, or portion thereof, until satisfactory results are obtained.
6. Prepare reports for tests and required corrective action.
7. Results of pipe pressure tests shall be submitted to Engineer, Owner, and Owner’s Representative for review prior to closing in walls, floors, or ceilings that will prevent access to piping for repairs.

3.10 CLEANING AND PROTECTION

A. Clean interior of piping. Remove dirt and debris as work progresses.
B. Protect drains during remainder of construction period to avoid clogging with dirt and debris and to prevent damage from traffic and construction work.
C. Place plugs in ends of uncompleted piping at end of day and when work stops.
D. Following the installation of the sanitary piping system and overall construction, the sanitary piping system shall be jet cleaned to remove debris from the piping system.
E. Repair damage to adjacent materials caused by waste and vent piping installation.

3.11 PIPING SCHEDULE

A. Flanges and unions may be used on aboveground pressure piping unless otherwise indicated.
B. Aboveground, soil and waste piping shall be any of the following:
 1. Service class, cast-iron soil pipe and fittings; gaskets; and gasketed joints.
2. Hubless, cast-iron soil pipe and fittings; hubless-piping couplings; and coupled joints.
3. Copper DWV tube, copper drainage fittings, and soldered joints.

C. Aboveground, vent piping shall be any of the following:

1. Service class, cast-iron soil pipe and fittings; gaskets; and gasketed joints.
2. Hubless, cast-iron soil pipe and fittings; hubless-piping couplings; and coupled joints.
3. Copper DWV tube, copper drainage fittings, and soldered joints.

D. Underground, soil, waste, and vent piping shall be any of the following:

1. Extra Heavy class, cast-iron soil piping; gaskets joints.

END OF SECTION
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Cleanouts.
2. Floor drains.

1.3 DEFINITIONS

B. FOG: Fats, oils, and greases.
C. FRP: Fiberglass-reinforced plastic.
D. HDPE: High-density polyethylene plastic.
E. PE: Polyethylene plastic.
F. PP: Polypropylene plastic.
G. PVC: Polyvinyl chloride plastic.

1.4 SUBMITTALS

A. Product Data: For each type of product indicated.

1.5 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For drainage piping specialties to include in emergency, operation, and maintenance manuals.
1.7 QUALITY ASSURANCE

A. Drainage piping specialties shall bear label, stamp, or other markings of specified testing agency.

PART 2 - PRODUCTS

2.1 CLEANOUTS

A. Exposed Metal Cleanouts:

1. ASME A112.36.2M, Cast-Iron Cleanouts:

 a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 1) Josam Company.
 3) Zurn Plumbing Products Group.

B. Metal Floor Cleanouts:

1. ASME A112.36.2M, Cast-Iron Cleanouts:

 a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 1) Josam Company.
 3) Zurn Plumbing Products Group.

C. Cast-Iron Wall Cleanouts:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 c. Zurn Plumbing Products Group;

2. Standard: ASME A112.36.2M. Include wall access.
3. Size: Same as connected drainage piping.
4. Body: Hub-and-spigot, cast-iron soil pipe T-branch or hubless, cast-iron soil pipe test tee as required to match connected piping.
5. Closure: Countersunk plug.
6. Closure Plug Size: Same as or not more than one size smaller than cleanout size.
D. Plastic Floor Cleanouts

1. Size: Same as connected branch.
2. Body: PVC.
3. Closure Plug: PVC.
4. Riser: Drainage pipe fitting and riser to cleanout of same material as drainage piping.

2.2 FLOOR DRAINS

A. Cast-Iron Floor Drains:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Zurn Plumbing Products Group.
 c. Watts

 a. Standard: ASME A112.6.3.
 b. Pattern: Floor drain.
 c. Body Material: Cast Iron
 d. Outlet: Bottom.
 e. Backwater Valve: None
 f. Coating on Interior and Exposed Exterior Surfaces: None
 g. Sediment Bucket: Not required.
 h. Top or Strainer Material: Polished Nickel Bronze, vandal resistant.
 i. Top Shape: Round.
 j. Dimensions of Top or Strainer: 6” Round.
 k. Trap Material: Cast iron
 l. Provide with trap primer connection.

2.3 MISCELLANEOUS SANITARY DRAINAGE PIPING SPECIALTIES

A. Air-Gap Fittings:

1. Standard: ASME A112.1.2, for fitting designed to ensure fixed, positive air gap between installed inlet and outlet piping.
2. Body: Bronze or cast iron.
3. Inlet: Opening in top of body.
4. Outlet: Larger than inlet.
5. Size: Same as connected waste piping and with inlet large enough for associated indirect waste piping.
PART 3 - EXECUTION

3.1 INSTALLATION

A. Install cleanouts in aboveground piping and building drain piping according to the following, unless otherwise indicated:

1. Size same as drainage piping up to NPS 4 (DN 100). Use NPS 4 (DN 100) for larger drainage piping unless larger cleanout is indicated.
2. Locate at each change in direction of piping greater than 45 degrees.
3. Locate at minimum intervals of 50 feet (15 m) for piping NPS 4 (DN 100) and smaller and 100 feet (30 m) for larger piping.
4. Locate at base of each vertical soil and waste stack.

B. For floor cleanouts for piping below floors, install cleanout deck plates with top flush with finished floor.

C. For cleanouts located in concealed piping, install cleanout wall access covers, of types indicated, with frame and cover flush with finished wall.

D. Install floor drains at low points of surface areas to be drained. Set grates of drains flush with finished floor, unless otherwise indicated.

1. Position floor drains for easy access and maintenance.
2. Set floor drains below elevation of surrounding finished floor to allow floor drainage. Set with grates depressed according to the following drainage area radii:

 a. Radius, 30 Inches (750 mm) or Less: Equivalent to 1 percent slope, but not less than 1/4-inch (6.35-mm) total depression.
 b. Radius, 30 to 60 Inches (750 to 1500 mm): Equivalent to 1 percent slope.
 c. Radius, 60 Inches (1500 mm) or Larger: Equivalent to 1 percent slope, but not greater than 1-inch (25-mm) total depression.

3. Install floor-drain flashing collar or flange so no leakage occurs between drain and adjoining flooring. Maintain integrity of waterproof membranes where penetrated.
4. Install individual traps for floor drains connected to sanitary building drain, unless otherwise indicated.

E. Install deep-seal traps on floor drains and other waste outlets, if indicated.

F. Install floor-drain, trap-seal primer fittings on inlet to floor drains that require trap-seal primer connection.

1. Exception: Fitting may be omitted if trap has trap-seal primer connection.
2. Size: Same as floor drain inlet.
G. Install air-gap fittings on draining-type backflow preventers and on indirect-waste piping discharge into sanitary drainage system.

3.2 CONNECTIONS

A. Comply with requirements in Section 221316 "Sanitary Waste and Vent Piping" for piping installation requirements. Drawings indicate general arrangement of piping, fittings, and specialties.

B. Install piping adjacent to equipment to allow service and maintenance.

3.3 FLASHING INSTALLATION

A. Install sheet flashing on pipes, sleeves, and specialties passing through or embedded in floors and roofs with waterproof membrane.
 1. Pipe Flashing: Sleeve type, matching pipe size, with minimum length of 10 inches (250 mm), and skirt or flange extending at least 8 inches (200 mm) around pipe.
 2. Sleeve Flashing: Flat sheet, with skirt or flange extending at least 8 inches (200 mm) around sleeve.
 3. Embedded Specialty Flashing: Flat sheet, with skirt or flange extending at least 8 inches (200 mm) around specialty.

B. Set flashing on floors and roofs in solid coating of bituminous cement.

C. Secure flashing into sleeve and specialty clamping ring or device.

3.4 FIELD QUALITY CONTROL

A. Tests and Inspections:
 1. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.
 2. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

3.5 PROTECTION

A. Protect drains during remainder of construction period to avoid clogging with dirt or debris and to prevent damage from traffic or construction work.

B. Place plugs in ends of uncompleted piping at end of each day or when work stops.

END OF SECTION
SECTION 221413
STORM DRAINAGE PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes the following storm drainage piping inside the building:

1. Pipe, tube, and fittings.
2. Special pipe fittings.
3. Encasement for underground metal piping.
4. Roof Drains
5. Down Spout Nozzles
6. Cleanouts
7. Overflow Drains

B. Related Sections:

1. Division 22 Section “Identification for Plumbing Piping and Equipment”.
2. Division 22 Section “Hangers and Supports for Plumbing Piping and Equipment”.
3. Division 22 Section “Plumbing Piping Insulation” for horizontal storm water pipe.

1.3 DEFINITIONS

A. TPE: Thermoplastic elastomer.

1.4 PERFORMANCE REQUIREMENTS

A. Components and installation shall be capable of withstanding the following minimum working-pressure, unless otherwise indicated:

1. Storm Drainage Piping: 10-foot head of water (30 kPa).

1.5 SUBMITTALS

A. Product Data: For pipe, tube, fittings, and couplings.
B. Field quality-control inspection and test reports.

1.6 QUALITY ASSURANCE

A. Piping materials shall bear label, stamp, or other markings of specified testing agency.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection:

1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, manufacturers specified.

2. Manufacturers: Subject to compliance with requirements, provide products by one of the manufacturers specified.

2.2 PIPING MATERIALS

A. Refer to Part 3 "Piping Applications" Article for applications of pipe, tube, fitting, and joining materials.

2.3 HUB-AND-SPIGOT, CAST-IRON SOIL PIPE AND FITTINGS

A. Pipe and Fittings: ASTM A 74, Service and Extra-Heavy class(es).

B. Gaskets: ASTM C 564, rubber.

C. Calking Materials: ASTM B 29, pure lead and oakum or hemp fiber.

2.4 HUBLESS CAST-IRON SOIL PIPE AND FITTINGS

A. Pipe and Fittings: ASTM A 888 or CISPI 301.

B. Shielded Couplings: ASTM C 1277 assembly of metal shield or housing, corrosion-resistant fasteners, and rubber sleeve with integral, center pipe stop.

1. Standard, Shielded, Stainless-Steel Couplings: CISPI 310, with stainless-steel corrugated shield; stainless-steel bands and tightening devices; and ASTM C 564, rubber sleeve.

 a. Available Manufacturers:

 1) ANACO.
 2) Fernco, Inc.
 3) Ideal Div.; Stant Corp.

a. Manufacturers:
 1) ANACO.
 2) Clamp-All Corp.
 3) Ideal Div.; Stant Corp.
 4) Mission Rubber Co.
 5) Tyler Pipe; Soil Pipe Div.

2.5 STEEL PIPE AND FITTINGS

A. Steel Pipe: ASTM A 53/A 53M, Type E or S, Grade A or B, Standard Weight or Schedule 40, galvanized. Include ends matching joining method.

B. Drainage Fittings: ASME B16.12, threaded, cast-iron drainage pattern.

2.6 SPECIAL PIPE FITTINGS

A. Flexible, Nonpressure Pipe Couplings: Comply with ASTM C 1173, elastomeric, sleeve-type, reducing or transition pattern. Include shear ring, ends of same sizes as piping to be joined, and corrosion-resistant-metal tension band and tightening mechanism on each end.

1. Manufacturers:
 b. Fernco, Inc.
 c. Mission Rubber Co.
 d. NDS, Inc.
 e. Plastic Oddities, Inc.

2. Sleeve Materials:

2.7 ROOF DRAINS

A. Metal Roof Drains:

1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
c. Watts Drainage Products Inc.
d. Zurn Plumbing Products Group; Specification Drainage Operation.

2. Roof Drain (RD): Basis of Design – Josam Series 1010

a. Standard: ASME A112.21.2M.
b. Pattern: Roof drain.
c. Body Material: Cast Iron
d. Outlet: Bottom.
e. Backwater Valve: None
f. Coating on Interior and Exposed Exterior Surfaces: None
g. Sediment Bucket: Not required.
h. Top or Strainer Material: Cast iron
i. Top Shape: Round, beehive.
j. Dimensions of Top or Strainer: 12” Round.
k. Trap Material: Cast iron

2.8 OVERFLOW ROOF DRAINS

A. Metal Roof Drains:

1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

c. Watts Drainage Products Inc.
d. Zurn Plumbing Products Group; Specification Drainage Operation.

2. Overflow Roof Drain (OD): Basis of Design – Josam Series 1070

a. Standard: ASME A112.21.2M.
b. Pattern: Roof drain.
c. Body Material: Cast Iron
d. Outlet: Bottom.
e. Backwater Valve: None
f. Coating on Interior and Exposed Exterior Surfaces: None
g. Sediment Bucket: Not required.
h. Top or Strainer Material: Cast iron
i. Top Shape: Round, beehive.
j. Dimensions of Top or Strainer: 12” Round.
k. Trap Material: Cast iron
l. Complete with Standpipe.

2.9 DOWN SPOUT NOZZLE

A. Downspout Nozzle:
1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

 b. Josam Company; Josam Div.
 c. Watts Drainage Products Inc.
 d. Zurn Plumbing Products Group; Specification Drainage Operation.

 a. Standard: ASME A112.21.2M.
 b. Body Material: 304 stainless steel
 c. Coating on Interior and Exposed Exterior Surfaces: None
 d. Provide with hinged perforated cover.
 e. Provide with vandal proof fastener option.

2.10 CLEANOUTS

 A. Exposed Metal Cleanouts:

 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

 b. MIFAB, Inc.
 c. Smith, Jay R. Mfg Co.; Division of Smith Industries, Inc.
 d. Tyler Pipe; Wade Div.
 e. Watts Drainage Products Inc.
 f. Zurn Plumbing Products Group; Specification Drainage Operation.

 2. Standard: ASME A112.36.2M for cast iron for cleanout test tee.
 3. Size: Same as connected drainage piping
 4. Body Material: Hubless, cast-iron soil pipe test tee as required to match connected piping.
 5. Closure: Countersunk or raised-head brass, cast-iron or plastic plug.
 6. Closure Plug Size: Same as or not more than one size smaller than cleanout size.
 7. Standard: ASME A112.36.2M for cast-iron soil pipe with cast-iron ferrule, threaded, adjustable housing cleanout.
 8. Size: Same as connected branch.
PART 3 - EXECUTION

3.1 PIPING APPLICATIONS

A. Flanges and unions may be used on aboveground pressure piping, unless otherwise indicated.

B. Aboveground storm drainage piping NPS 6 (DN 150) and smaller shall be any of the following:
 1. Service class, cast-iron soil pipe and fittings; gaskets; and gasketed joints.
 2. Hubless cast-iron soil pipe and fittings; standard, and heavy-duty shielded, stainless-steel couplings; and coupled joints.
 3. Dissimilar Pipe-Material Couplings: Flexible nonpressure pipe couplings for joining dissimilar pipe materials with small difference in OD.

C. Underground storm drainage piping NPS 6 (DN 150) and smaller shall be any of the following:
 1. Service class, cast-iron soil pipe and fittings; gaskets; and gasketed or calking materials; and calked joints.
 2. Hubless cast-iron soil pipe and fittings; heavy-duty shielded, stainless-steel couplings; and coupled joints.

3.2 PIPING INSTALLATION

A. Basic piping installation requirements are specified in Division 22 Section "Common Work Results for Plumbing."

B. Install cleanouts at grade and extend to where building storm drains connect to building storm sewers. Cleanouts are specified in Division 22 Section "Storm Water Piping Specialties."

C. Install cleanout fitting with closure plug inside the building in storm drainage force-main piping.

D. Install cast-iron soil piping according to CISPI's "Cast Iron Soil Pipe and Fittings Handbook," Chapter IV, "Installation of Cast Iron Soil Pipe and Fittings."
 1. Install encasement on underground piping according to ASTM A 674 or AWWA C105.

E. Make changes in direction for storm drainage piping using appropriate branches, bends, and long-sweep bends. Do not change direction of flow more than 90 degrees. Use proper size of standard increasers and reducers if pipes of different sizes are connected. Reducing size of drainage piping in direction of flow is prohibited.

F. Lay buried building storm drainage piping beginning at low point of each system. Install true to grades and alignment indicated, with unbroken continuity of invert.
Place hub ends of piping upstream. Install required gaskets according to manufacturer's written instructions for use of lubricants, cements, and other installation requirements. Maintain swab in piping and pull past each joint as completed.

G. Install storm drainage piping at the following minimum slopes, unless otherwise indicated:

1. Building Storm Drain: 1 percent downward in direction of flow for piping NPS 3 (DN 80) and smaller; 1 percent downward in direction of flow for piping NPS 4 (DN 100) and larger.
2. Horizontal Storm-Drainage Piping: 2 percent downward in direction of flow.

H. Sleeves are not required for cast-iron soil piping passing through concrete slabs-on-grade if slab is without membrane waterproofing.

I. Do not enclose, cover, or put piping into operation until it is inspected and approved by authorities having jurisdiction.

3.3 JOINT CONSTRUCTION

A. Basic piping joint construction requirements are specified in Division 22 Section "Common Work Results for Plumbing."

3.4 VALVE INSTALLATION

A. Backwater Valves: Install backwater valves in piping locations subject to backflow. Backwater valves in piping locations shown on the drawings.

1. Horizontal Piping: Horizontal backwater valves. Use normally closed type, unless otherwise indicated.
2. Install backwater valves in accessible locations.
3. Backwater valve are specified in Division 22 Section "Domestic Water Piping Specialties."

3.5 HANGER AND SUPPORT INSTALLATION

A. Pipe hangers and supports are specified in Division 23 Section "Hangers and Supports for Mechanical Piping and Equipment." Install the following:
1. Vertical Piping: MSS Type 8 or Type 42, clamps.
2. Individual, Straight, Horizontal Piping Runs: According to the following:
 a. 100 Feet (30 m) and Less: MSS Type 1, adjustable, steel clevis hangers.
 b. Longer Than 100 Feet (30 m): MSS Type 43, adjustable roller hangers.
 c. Longer Than 100 Feet (30 m), if Indicated: MSS Type 49, spring cushion rolls.
3. Multiple, Straight, Horizontal Piping Runs 100 Feet (30 m) or Longer: MSS Type 44, pipe rolls. Support pipe rolls on trapeze.
4. Base of Vertical Piping: MSS Type 52, spring hangers.

B. Support vertical piping and tubing at base and at each floor.
C. Rod diameter may be reduced 1 size for double-rod hangers, with 3/8-inch (10-mm) minimum rods.
D. Install hangers for cast-iron soil piping with the following maximum horizontal spacing and minimum rod diameters:
 1. NPS 1-1/2 and NPS 2 (DN 40 and DN 50): 60 inches (1500 mm) with 3/8-inch (10-mm) rod.
 2. NPS 3 (DN 80): 60 inches (1500 mm) with 1/2-inch (13-mm) rod.
 3. NPS 4 and NPS 5 (DN 100 and DN 125): 60 inches (1500 mm) with 5/8-inch (16-mm) rod.
 4. Spacing for 10-foot (3-m) lengths may be increased to 10 feet (3 m). Spacing for fittings is limited to 60 inches (1500 mm).
E. Install supports for vertical cast-iron soil piping every 15 feet (4.5 m).
F. Install supports for vertical copper tubing every 10 feet (3 m).
G. Support piping and tubing not listed above according to MSS SP-69 and manufacturer's written instructions.

3.6 CONNECTIONS
A. Drawings indicate general arrangement of piping, fittings, and specialties.
B. Connect interior storm drainage piping to exterior storm drainage piping. Use transition fitting to join dissimilar piping materials.
C. Connect storm drainage piping to roof drains and storm drainage specialties.
3.7 FIELD QUALITY CONTROL

A. During installation, notify authorities having jurisdiction at least 24 hours before inspection must be made. Perform tests specified below in presence of authorities having jurisdiction.

1. Roughing-in Inspection: Arrange for inspection of piping before concealing or closing-in after roughing-in.
2. Final Inspection: Arrange for final inspection by authorities having jurisdiction to observe tests specified below and to ensure compliance with requirements.

B. Reinspection: If authorities having jurisdiction find that piping will not pass test or inspection, make required corrections and arrange for reinspection.

C. Reports: Prepare inspection reports and have them signed by authorities having jurisdiction.

D. Test storm drainage piping according to procedures of authorities having jurisdiction or, in absence of published procedures, as follows:

1. Test for leaks and defects in new piping and parts of existing piping that have been altered, extended, or repaired. If testing is performed in segments, submit separate report for each test, complete with diagram of portion of piping tested.
2. Leave uncovered and unconcealed new, altered, extended, or replaced storm drainage piping until it has been tested and approved. Expose work that was covered or concealed before it was tested.
3. Test Procedure: Test storm drainage piping on completion of roughing-in. Close openings in piping system and fill with water to point of overflow, but not less than 10-foot head of water (30 kPa). From 15 minutes before inspection starts to completion of inspection, water level must not drop. Inspect joints for leaks.
4. Repair leaks and defects with new materials and retest piping, or portion thereof, until satisfactory results are obtained.
5. Prepare reports for tests and required corrective action.

3.8 CLEANING

A. Clean interior of piping. Remove dirt and debris as work progresses.

B. Protect drains during remainder of construction period to avoid clogging with dirt and debris and to prevent damage from traffic and construction work.

C. Place plugs in ends of uncompleted piping at end of day and when work stops.

END OF SECTION
THIS PAGE INTENTIONALLY LEFT BLANK
SECTION 221429
PLUMBING PUMPS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 REFERENCE STANDARDS
 A. HI 1.4-2000: Hydraulic Institute Centrifugal Pumps for Installation, Operation and Maintenance.

1.3 SUMMARY
 A. Section Includes:
 1. Domestic water recirculation pumps.
 2. Submersible sump pumps.
 B. Related Section:
 1. Division 22 Section “Common Motor Requirements for Plumbing Equipment”.
 2. Division 22 Section “Identification for Plumbing Piping and Equipment”.
 3. Division 22 Section “Hangers and Supports for Plumbing Piping and Equipment”.

1.4 SUBMITTALS
 A. Product Data: For each type of product indicated. Include construction details, material descriptions, dimensions of individual components and profiles. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.
 B. Wiring Diagrams: For power, signal, and control wiring.
 C. Operation and Maintenance Data: For pumps and controls, to include in operation and maintenance manuals.

1.5 QUALITY ASSURANCE
 A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
B. UL Compliance: Comply with UL 778 for motor-operated water pumps.

1.6 DELIVERY, STORAGE, AND HANDLING

A. Retain shipping flange protective covers and protective coatings during storage.
B. Protect bearings and couplings against damage.
C. Comply with pump manufacturer's written rigging instructions for handling.

PART 2 - PRODUCTS

2.1 DOMESTIC WATER RECIRCULATION - CLOSE-COUPLED, IN-LINE CENTRIFUGAL PUMPS

A. Subject to compliance with requirements, provide comparable product by one of the following:
 1. TACO Incorporated.
 2. Armstrong Pumps Inc.
 3. ITT Corporation; Bell & Gossett

B. Description: Factory-assembled and -tested, centrifugal, overhung-impeller, close-coupled, in-line pump as defined in HI 1.1-1.2 and HI 1.3; designed for installation with pump and motor shafts mounted horizontally or vertically.

C. Pump Construction:
 1. Casing: Radially split, cast bronze, with threaded gage tappings at inlet and outlet, replaceable bronze wear rings, and threaded companion-flange or union-end connections to match piping connections.
 2. Impeller: ASTM B 584, cast bronze; statically and dynamically balanced, keyed to shaft, and secured with a locking cap screw. For constant-speed pumps, trim impeller to match specified performance.
 4. Seal: Mechanical seal consisting of carbon rotating ring against a ceramic seat held by a stainless-steel spring, and Buna-N bellows and gasket. Include water slinger on shaft between motor and seal.
 5. Pump Bearings: Permanently lubricated ball bearings.

D. Motor: Single speed and rigidly mounted to pump casing with integral pump support.
 1. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 2. Comply with NEMA designation, temperature rating, service factor, and efficiency requirements for motors specified in Section 230513 "Common Motor Requirements for Mechanical Equipment." Motor shall be inverter duty rated.
2.2 SUBMERSIBLE SUMP PUMPS

A. Subject to compliance with requirements, provide comparable product by one of the following:

1. Stancor Pumps.
2. Armstrong Pumps Inc.
3. Liberty Pumps

B. Submersible, Fixed-Position, Single-Seal Sump Pumps:

1. Description: Factory-assembled and -tested sump-pump unit.
2. Pump Type: Submersible, end-suction, single-stage, close-coupled, overhung-impeller, centrifugal sump pump as defined in HI 1.1-1.2 and HI 1.3.
3. Pump Casing: Cast iron, with strainer inlet, legs that elevate pump to permit flow into impeller, and vertical discharge for piping connection.
5. Pump and Motor Shaft: Stainless steel, with factory-sealed, grease-lubricated ball bearings.
7. Controls:
 a. Enclosure: NEMA 250, Type 4X.
 b. Switch Type: Pedestal-mounted float switch with float rods and rod buttons.
 c. Automatic Alternator: Start pumps on successive cycles and start multiple pumps if one cannot handle load.
 d. Float Guides: Pipe or other restraint for floats and rods in basins of depth greater than 60 inches (1500 mm).
 e. High-Water Alarm: Cover-mounted, compression-probe alarm, with electric bell; 120 V ac, with transformer and contacts for remote alarm bell.
8. Control-Interface Features:
 b. Building Automation System Interface: Auxiliary contacts in pump controls for interface to building automation system and capable of providing the following:

 1) On-off status of pump.
 2) Alarm status.
2.3 MOTORS

A. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements for motors specified in Division 23 Section "Common Motor Requirements for Mechanical Equipment."

1. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.
2. Controllers, Electrical Devices, and Wiring: Comply with requirements for electrical devices and connections specified in Division 26 Sections.

B. Motors for submersible pumps shall be hermetically sealed.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine roughing-in for plumbing piping to verify actual locations of piping connections before pump installation.

3.2 INSTALLATION

A. Pump Installation Standards: Comply with HI 1.4 for installation of pumps.

3.3 CONNECTIONS

A. Comply with requirements for piping specified in Division 22 Section Drawings indicate general arrangement of piping, fittings, and specialties.

B. Install piping adjacent to equipment to allow service and maintenance.

3.4 FIELD QUALITY CONTROL

A. Perform tests and inspections.

1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

B. Tests and Inspections:

1. Perform each visual and mechanical inspection.
2. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.
3. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
4. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
C. Pumps and controls will be considered defective if they do not pass tests and inspections.
D. Prepare test and inspection reports.

3.5 ADJUSTING

A. Adjust pumps to function smoothly, and lubricate as recommended by manufacturer.
B. Adjust control set points.

END OF SECTION
PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Pipes, tubes, and fittings.
 2. Piping specialties.
 3. Piping and tubing joining materials.
 4. Valves.
 5. Pressure regulators.

B. The gas piping system operates at a system pressure of 14 inches WC downstream of the utility pressure regulator.

1.2 PERFORMANCE REQUIREMENTS

A. Minimum Operating-Pressure Ratings:
 1. Piping and Valves: 100 psig minimum unless otherwise indicated.
 2. Service Regulators: 100 psig minimum unless otherwise indicated.

B. Natural-Gas System Pressure within Buildings: 0.5 psig.

C. Natural gas pressure underground: Confirm with utility.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

B. Shop Drawings: For facility natural-gas piping layout. Include plans, piping layout and elevations, sections, and details for fabrication of pipe hangers, supports for multiple pipes, and attachments of the same to building structure.

1.4 INFORMATIONAL SUBMITTALS

A. Welding certificates.

B. Field quality-control reports.

1.5 CLOSEOUT SUBMITTALS

A. Operation and maintenance data.
1.6 QUALITY ASSURANCE

A. Steel Support Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."

B. Pipe Welding Qualifications: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code.

C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

PART 2 - PRODUCTS

2.1 PIPES, TUBES, AND FITTINGS

A. Pipe inside of building:
 1. Pipe: ASTM A 53/A 53M, black steel, Schedule 40, Type E or S, Grade B.

2.2 PIPING SPECIALTIES

A. Y-Pattern Strainers:
 1. Body: ASTM A 126, Class B, cast iron with bolted cover and bottom drain connection.
 2. End Connections: Threaded ends for NPS 2 and smaller.
 3. Strainer Screen: 60-mesh startup strainer, and perforated stainless-steel basket with 50 percent free area.

B. Weatherproof Vent Cap: Cast- or malleable-iron increaser fitting with corrosion-resistant wire screen, with free area at least equal to cross-sectional area of connecting pipe and threaded-end connection.

2.3 JOINING MATERIALS

A. Joint Compound and Tape: Suitable for natural gas.

2.4 MANUAL GAS SHUTOFF VALVES

A. See "Aboveground Manual Gas Shutoff Valve Schedule" Articles for where each valve type is applied in various services.

B. Provide type 304 stainless steel valves where valves are connected to stainless steel pipe.

C. General Requirements for Metallic Valves, NPS 2 and Smaller: Comply with ASME B16.33.

1. CWP Rating: 125 psig.
3. Dryseal Threads on Flare Ends: Comply with ASME B1.20.3.
5. Listing: Listed and labeled by an NRTL acceptable to authorities having jurisdiction for valves 1 inch and smaller.
6. Service Mark: Valves shall have initials "WOG" permanently marked on valve body.

D. One-Piece, Bronze Ball Valve with Bronze Trim: MSS SP-110.

2. Ball: Chrome-plated brass.
3. Stem: Bronze; blowout proof.
4. Seats: Reinforced TFE; blowout proof.
5. Packing: Separate packnut with adjustable-stem packing threaded ends.
7. CWP Rating: 600 psig
8. Listing: Valves NPS 1 and smaller shall be listed and labeled by an NRTL acceptable to authorities having jurisdiction.

E. Two-Piece, Full-Port, Bronze Ball Valves with Bronze Trim: MSS SP-110.

2. Ball: Chrome-plated bronze.
3. Stem: Bronze; blowout proof.
4. Seats: Reinforced TFE; blowout proof.
5. Packing: Separate packnut design with adjustable-stem packing.
7. CWP Rating: 600 psig
8. Listing: Valves NPS 1 and smaller shall be listed and labeled by an NRTL acceptable to authorities having jurisdiction.

F. Bronze Plug Valves: MSS SP-78.
2. Plug: Bronze.
4. Operator: Square head or lug type with tamperproof feature where indicated.
5. Pressure Class: 125 psig.
6. Listing: Valves NPS 1 and smaller shall be listed and labeled by an NRTL acceptable to authorities having jurisdiction.
7. Service: Suitable for natural-gas service with "WOG" indicated on valve body.

2.5 DIELECTRIC UNIONS

A. Dielectric Unions:

1. Description:

PART 3 - EXECUTION

3.1 PIPING INSTALLATION

A. Comply with NFPA 54 the International Fuel Gas Code for installation and purging of natural-gas piping.

B. NFPA 54 requires a minimum of 18 inches (450 mm) of cover over buried natural-gas piping, or 12 inches (300 mm) with shielding. Pipe with less than 12 inches (300 mm) of cover must be installed in a containment conduit.

C. CSA B149.1 requires protective coating for Type G and Type L (Type B) copper pipe and tube installed underground.

D. Install fittings for changes in direction and branch connections.

E. Install pressure gage upstream and downstream from each service regulator.

F. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicated locations and arrangements are used to size pipe and calculate friction loss, expansion, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.

G. Arrange for pipe spaces, chases, slots, sleeves, and openings in building structure during progress of construction, to allow for mechanical installations.

H. Install piping in concealed locations unless otherwise indicated and except in equipment rooms and service areas.
I. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.

J. Locate valves for easy access.

K. Install natural-gas piping at uniform grade of 2 percent down toward drip and sediment traps.

L. Install piping free of sags and bends.

M. Install fittings for changes in direction and branch connections.

N. Verify final equipment locations for roughing-in.

O. Comply with requirements in Sections specifying gas-fired appliances and equipment for roughing-in requirements.

P. Drips and Sediment Traps: Install drips at points where condensate may collect, including service-meter outlets. Locate where accessible to permit cleaning and emptying. Do not install where condensate is subject to freezing.

1. Construct drips and sediment traps using tee fitting with bottom outlet plugged or capped. Use nipple a minimum length of 3 pipe diameters, but not less than 3 inches long and same size as connected pipe. Install with space below bottom of drip to remove plug or cap.

Q. Extend relief vent connections for service regulators, line regulators, and overpressure protection devices to outdoors and terminate with weatherproof vent cap.

R. Conceal pipe installations in walls, pipe spaces, utility spaces, above ceilings, below grade or floors, and in floor channels unless indicated to be exposed to view.

S. Use eccentric reducer fittings to make reductions in pipe sizes. Install fittings with level side down.

T. Connect branch piping from top or side of horizontal piping.

U. Install unions in pipes NPS 2 and smaller, adjacent to each valve, at final connection to each piece of equipment.

V. Do not use natural-gas piping as grounding electrode.

W. Install strainer on inlet of each line-pressure regulator and automatic or electrically operated valve.

X. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Section 220517 "Sleeves and Sleeve Seals for Plumbing Piping."
Y. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Section 220517 "Sleeves and Sleeve Seals for Plumbing Piping."

Z. Install escutcheons for piping penetrations of walls, ceilings, and floors.

AA. All exposed piping and pipe supports (except stainless steel) shall be painted. Color shall be yellow. Use semi-gloss acrylic-enamel finish. Machine wire brush clean pipe and prime pipe. Brush apply two coats minimum 3 mil thick each total of 6 mil.

BB. Provide valve tags and pipe labeling in accordance with Section 220553-Identification for Plumbing Piping and Equipment.

3.2 VALVE INSTALLATION

A. Install lockable manual gas shutoff valve for each gas appliance.

B. Install regulators and overpressure protection devices with maintenance access space adequate for servicing and testing.

3.3 PIPING JOINT CONSTRUCTION

A. Ream ends of pipes and tubes and remove burrs.

B. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.

C. Welded Joints:

2. Bevel plain ends of steel pipe.
3. Patch factory-applied protective coating as recommended by manufacturer at field welds and where damage to coating occurs during construction.

3.4 HANGER AND SUPPORT INSTALLATION

A. Comply with requirements for pipe hangers and supports.

B. Install hangers for horizontal steel piping with the following maximum spacing and minimum rod sizes:

1. NPS 1 and Smaller: Maximum span, 96 inches; minimum rod size, 3/8 inch
2. NPS 1-1/4 Maximum span, 108 inches); minimum rod size, 3/8 inch.
3. NPS 1-1/2 and NPS 2: Maximum span, 108 inches; minimum rod size, 3/8 inch.
3.5 CONNECTIONS

A. Install natural-gas piping electrically continuous, and bonded to gas appliance equipment grounding conductor of the circuit powering the appliance according to NFPA 70.

B. Install piping adjacent to appliances to allow service and maintenance of appliances.

C. Connect piping to appliances using manual gas shutoff valves and unions. Install valve within 72 inches of each gas-fired appliance and equipment. Install union between valve and appliances or equipment.

D. Sediment Traps: Install tee fitting with capped nipple in bottom to form drip, as close as practical to inlet of each appliance.

3.6 LABELING AND IDENTIFYING

A. Comply with requirements in Section 220553 “Identification for Plumbing Piping and Equipment” for piping and valve identification.

3.7 FIELD QUALITY CONTROL

A. Test, inspect, and purge natural gas according to NFPA 54 the International Fuel Gas Code and authorities having jurisdiction.

B. Natural-gas piping will be considered defective if it does not pass tests and inspections.

C. Prepare test and inspection reports.

3.8 INDOOR PIPING SCHEDULE

A. Aboveground, piping inside of the building shall be:

B. Containment Conduit: Steel pipe with wrought-steel fittings and welded joints. Coat pipe and fittings with protective coating for steel piping. Use stainless steel pipe for piping within the Wash Bay.

C. Containment Conduit Vent Piping: Steel pipe with malleable-iron fittings and threaded or wrought-steel fittings with welded joints. Use stainless Steel pipe for piping within the Wash Bay.

3.9 ABOVEGROUND MANUAL GAS SHUTOFF VALVE SCHEDULE

A. Valve at service meter shall be:
 1. Two-piece, full-port, bronze ball valves with bronze trim.
 2. Bronze plug valve.
 3. Lockable.
B. Distribution piping valves shall be one of the following:

1. One-piece, bronze ball valve with bronze trim.
2. Two-piece, full-port, bronze ball valves with bronze trim.
4. Lockable.

C. Valves in branch piping for single appliance shall be one of the following:

1. One-piece, bronze ball valve with bronze trim.
2. Two-piece, full-port, bronze ball valves with bronze trim.
4. Lockable.

D. Valves in stainless steel piping shall be stainless steel valves.

END OF SECTION
SECTION 223400
DOMESTIC WATER HEATERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes the following for domestic water systems:
 1. Commercial, gas fire water heaters.
 2. Compression tanks.
 3. Accessories.

B. Related Sections:
 1. Division 22 Section “Identification for Plumbing Piping and Equipment”.
 2. Division 22 Section “Hangers and Supports for Plumbing Piping and Equipment”.

1.3 SUBMITTALS

A. Product Data: For each type and size of water heater. Include rated capacities; shipping, installed, and operating weights; furnished specialties; and accessories.

B. Shop Drawings: Detail water heater assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.

C. Product Certificates: Signed by manufacturers of water heaters certifying that products furnished comply with requirements.

D. Maintenance Data: For water heaters to include in maintenance manuals specified in Division 1.

E. Warranties: Special warranties specified in this Section.
1.4 QUALITY ASSURANCE

A. Source Limitations: Obtain same type of water heaters through one source from a single manufacturer.

B. Product Options: Drawings indicate size, profiles, and dimensional requirements of water heaters and are based on specific units indicated. Other manufacturers' products complying with requirements may be considered. Refer to Division 1 Section "Substitutions."

C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by testing agency acceptable to authorities having jurisdiction, and marked for intended use.

D. ASME Compliance: Fabricate and label water heater to comply with ASME Boiler and Pressure Vessel Code: Section VIII, "Pressure Vessels, Division 1."

E. ASHRAE Standards: Comply with performance efficiencies prescribed for the following:

1.5 WARRANTY

A. General Warranty: Special warranty specified in this Article shall not deprive Owner of other rights Owner may have under other provisions of the Contract Documents and shall be in addition to, and run concurrently with, other warranties made by Contractor under requirements of the Contract Documents.

B. Special Warranty: Written warranty, executed by manufacturer agreeing to repair or replace components of water heaters that fail in materials or workmanship within specified warranty period.

 1. Failures include heating elements and storage tanks.
 2. Warranty Period: From date of Substantial Completion:

 b. Storage Tanks: Ten years non pro-rated.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 1. Commercial, Storage, Gas Fired Water Heaters:
a. Hubbell Heater Company. (Basis of Design)
b. A.O. Smith Water Products Co.
c. Rheem.

2. Compression Tanks:
 a. Bell and Gossett.
 b. Amtrol, Inc.
 c. Wessels Company

2.2 COMMERCIAL, GAS FIRED WATER HEATERS

A. CONSTRUCTION

1. Heater shall be internally lined and gas-fired, equipped to burn natural gas, and design-certified to the latest ANSI standard by the CSA International.
 a. Lining shall comply with NSF 61 Annex G barrier materials for potable-water tank linings, including extending finish into and through tank fittings and outlets.

2. Water heaters must be certified for power venting applications using standard PVC, class 160, schedule 40, ABS, of CPVC vent piping.
3. Water heater shall include a 6’ plug-in cord and provision for direct connection to standard electrical conduit.
4. Blower shall include pressure switches which will shut down power to the burner in the case of vent system failure due to down drafts or vent blockage.
5. Heater shall have a maximum working pressure of 150 psi with a ¾” relief valve operating.
6. Heaters shall be equipped with an automatic shut-off device in event of excessive water temperature.
7. Outer jacket shall have a baked enamel finish.

B. PERFORMANCE

1. When tested to the ANSI Z21.10.3 standard, the water heater shall operate at 94% thermal efficiency.
2. Water heater will meet the thermal efficiency and standby heat loss requirements of ASHRAE 90.1 – 2010.

C. Water Heater Trim

1. As a minimum, the heater will be equipped with the following:
 a. Electronic flame monitoring
 b. Two immersion operating thermostats
 c. An immersion temperature limiting device
 d. An ASME- or AGA-rated temperature and pressure relief valve
e. Operating and safety controls shall meet the requirements of UL 795 and FM.

2.3 COMPRESSION TANKS (PET-1)

A. Description: Steel, pressure-rated tank constructed with welded joints and factory-installed, butyl-rubber diaphragm. Include air pre-charge to minimum system-operating pressure at tank.

B. Construction: 150-psi (1035-kPa) working-pressure rating.

C. Tappings: Factory-fabricated steel, welded to tank before testing and labeling. Include ASME B1.20.1, pipe thread.

D. Tank Interior Finish: Materials and thicknesses complying with NSF 61, barrier materials for potable-water tank linings. Extend finish into and through tank fittings and outlets.

E. Tank Exterior Finish: Manufacturer's standard, unless finish is indicated.

F. Air-Charging Valve: Factory installed.

2.4 WATER HEATER ACCESSORIES

A. Combination Temperature and Pressure Relief Valves: ASME rated and stamped and complying with ASME PTC 25.3. Include relieving capacity at least as great as heat input and include pressure setting less than water heater working-pressure rating. Select relief valve with sensing element that extends into tank.

1. Option: Separate temperature and pressure relief valves are acceptable instead of combination relief valve.

B. Pressure Relief Valves: ASME rated and stamped and complying with ASME PTC 25.3. Include pressure setting less than heat-exchanger working-pressure rating.

C. Vacuum Relief Valves: Comply with ASME PTC 25.3. Furnish for installation in piping.

1. Exception: Omit if water heater has integral vacuum-relieving device.

D. Water Regulators: ASSE 1003, water-pressure reducing valve. Set at 25-psi (172.5-kPa) maximum outlet pressure.

E. Shock Absorbers: ASSE 1010 or PDI WH 201, Size A water hammer arrester.

F. Drain Pans: Corrosion-resistant metal with raised edge. Include dimensions not less than base of water heater and include drain outlet not less than NPS 3/4 (DN20).
G. Piping-Type Heat Traps: Field-fabricated piping arrangement according to ASHRAE 90.1 or ASHRAE 90.2.

PART 3 - EXECUTION

3.1 WATER HEATER INSTALLATION

A. Install commercial water heaters on concrete bases.

B. Install water heaters, level and plumb, according to layout drawings, original design, and referenced standards. Maintain manufacturer's recommended clearances. Arrange units so controls and devices needing service are accessible.

C. Anchor water heaters to substrate.

D. Install seismic restraints for water heaters. Anchor to substrate.

E. Install temperature and pressure relief valves in top portion of storage tanks. Use relief valves with sensing elements that extend into tanks. Extend relief valve outlet with water piping in continuous downward pitch and discharge onto closest floor drain.

F. Install water heater drain piping as indirect waste to spill into open drains or over floor drains. Install hose-end drain valves at low points in water piping for water heaters that do not have tank drains.

G. Install pressure gages on water heater piping. Refer to Division 22 Section "Meters and Gages for Plumbing" for pressure gages.

H. Install water regulator, with integral bypass relief valve, in booster-heater inlet piping and water hammer arrester in booster-heater outlet piping.

I. Install piping-type heat traps on inlet and outlet piping of water heater storage tanks without integral or fitting-type heat traps.

J. Fill water heaters with water.

K. Charge compression tanks with air.

3.2 CONNECTIONS

A. Piping installation requirements are specified in other Division 22 Sections. Drawings indicate general arrangement of piping, fittings, and specialties.

B. Install piping adjacent to machine to allow service and maintenance.

C. Connect hot- and cold-water piping with shutoff valves and unions. Connect hot-water-circulating piping with shutoff valve, check valve, and union.
D. Make connections with dielectric fittings where piping is made of dissimilar metal.

E. Electrical Connections: Power wiring and disconnect switches are specified in Division 26 Sections. Arrange wiring to allow unit service.

F. Ground equipment.

1. Tighten electrical connectors and terminals according to manufacturer's published torque-tightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A and UL 486B.

3.3 FIELD QUALITY CONTROL

A. In addition to manufacturer's written installation and startup checks, perform the following:

1. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
2. Verify that piping system tests are complete.
3. Check for piping connection leaks.
4. Check for clear relief valve inlets, outlets, and drain piping.
5. Check operation of circulators.
6. Test operation of safety controls, relief valves, and devices.
7. Energize electric circuits.
8. Adjust operating controls.
9. Adjust hot-water-outlet temperature settings. Do not set above 140 deg F (60 deg C) unless piping system application requires higher temperature.

3.4 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain water heaters.

1. Train Owner's maintenance personnel on procedures for starting and stopping, troubleshooting, servicing, and maintaining equipment.
2. Review data in maintenance manuals. Refer to Division 1 Section "Closeout Procedures."
3. Review data in maintenance manuals. Refer to Division 1 Section "Operation and Maintenance Data."
4. Schedule training with Owner, through Architect, with at least seven days' advance notice.

END OF SECTION
SECTION 224000
PLUMBING FIXTURES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY
A. This Section includes the following conventional plumbing fixtures and related components:

1. Water Closets
2. Urinals
3. Lavatories
4. Sinks
5. Showers
6. Water Coolers
7. Fixture supports.

1.3 DEFINITIONS

B. Accessible Fixture: Plumbing fixture that can be approached, entered, and used by people with disabilities.

C. Cast Polymer: Cast-filled-polymer-plastic material. This material includes cultured-marble and solid-surface materials.

D. Fitting: Device that controls the flow of water into or out of the plumbing fixture. Fittings specified in this Section include supplies and stops, faucets and spouts, shower heads and tub spouts, drains and tailpieces, and traps and waste pipes. Piping and general-duty valves are included where indicated.

E. FRP: Fiberglass-reinforced plastic.

F. PMMA: Polymethyl methacrylate (acrylic) plastic.

G. PVC: Polyvinyl chloride plastic.

1.4 SUBMITTALS

A. Product Data: For each type of plumbing fixture indicated. Include selected fixture and trim, fittings, accessories, appliances, appurtenances, equipment, and supports. Indicate materials and finishes, dimensions, construction details, and flow-control rates.

B. Shop Drawings: Diagram power, signal, and control wiring.

C. Operation and Maintenance Data: For plumbing fixtures to include in emergency, operation, and maintenance manuals.

D. Warranty: Special warranty specified in this Section.

1.5 QUALITY ASSURANCE

A. Source Limitations: Obtain plumbing fixtures, faucets, and other components of each category through one source from a single manufacturer.

 1. Exception: If fixtures, faucets, or other components are not available from a single manufacturer, obtain similar products from other manufacturers specified for that category.

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

E. NSF Standard: Comply with NSF 61, "Drinking Water System Components--Health Effects," for fixture materials that will be in contact with potable water.

F. Select combinations of fixtures and trim, faucets, fittings, and other components that are compatible.

G. Comply with the following applicable standards and other requirements specified for plumbing fixtures:

 1. Enameled, Cast-Iron Fixtures: ASME A112.19.1M.
 2. Porcelain-Enameled, Formed-Steel Fixtures: ASME A112.19.4M.
 6. Vitreous-China Fixtures: ASME A112.19.2M.
8. ANSI Standard: Comply with ANSI Z358.1, "Emergency Eyewash and Shower Equipment

H. Comply with the following applicable standards and other requirements specified for lavatory and sink faucets:

1. Faucets: ASME A112.18.1.

I. Comply with the following applicable standards and other requirements specified for miscellaneous fittings:

2. Brass and Copper Supplies: ASME A112.18.1.

J. Comply with the following applicable standards and other requirements specified for miscellaneous components:

2. Floor Drains: ASME A112.6.3.
4. Off-Floor Fixture Supports: ASME A112.6.1M.

1.6 EXTRA MATERIALS

A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Faucet Washers and O-Rings: Equal to 10 percent of amount of each type and size installed.
2. Faucet Cartridges and O-Rings: Equal to 5 percent of amount of each type and size installed.
3. Flushometer Valve, Repair Kits: Equal to 10 percent of amount of each type installed, but no fewer than 2 of each type.
4. Provide hinged-top wood or metal box, or individual metal boxes, with separate compartments for each type and size of extra materials listed above.
5. Toilet Seats: Equal to 1 of each type installed.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. The following sections list basis of design. Equals by the below listed manufacturers may be submitted for review:

1. American Standard
2. Kohler
3. Sloan
4. Zurn
5. Delaney
6. Chicago
7. Fiat
8. Speakman
9. Elkay

2.2 ADA WATER CLOSET (P-1)

A. Water Closet: Sloan ST-2459, vitreous china, elongated bowl, High Efficiency (1.28 gpf) and seat (Bemis 2155CT).

B. Flush Valve: Sloan G2 model 8111-1.28, complete with vacuum breaker, NPS 1.5” top spud connection and flanges, 1.28 gallon (4.8 L) per flushing cycle. Include cast escutcheon, vandal-resistant stop cap and ADA-compliant handle operation.

2.3 WATER CLOSET (P-1A)

A. Water Closet: Sloan model ST-2459, vitreous china, elongated bowl, High Efficiency (1.28 gpf) and seat (Bemis 2155CT).

B. Flush Valve: Sloan G2 model 8111-1.28, complete with vacuum breaker, NPS 1.5” top spud connection and flanges, 1.28 gallon (4.8 L) per flushing cycle. Include cast escutcheon, vandal-resistant stop cap and ADA-compliant handle operation.

2.4 URINAL (P-2)

A. Urinal: Sloan model SU-7009, ADA Compliant, High Efficiency (0.125 gpf) wall-mounting, back-outlet, vitreous-china fixture washdown. Mounting height as indicated on architectural drawings.

B. Flush Valve: Sloan model 8186-0.125, complete with vacuum breaker, ¾” top spud connection and flanges, 0.125 gallon (0.5 L) per flushing cycle. Include cast escutcheon, vandal-resistant stop cap and ADA-compliant handle operation.
2.5 ADA LAVATORY SINK (P-3)
A. Lavatory Sink: Kohler Ladena K-2215, ADA Compliant, vitreous china, under-mount fixture, with front overflow. Mounting height as indicated on architectural drawings.
B. Faucet: Sloan Optima Model EAF-250-BAT sensor lavatory faucet. Faucet will be deck mounted, brass construction, two inlets, and grid strainer. Separate hot and cold water supply, flow rate of 0.5 GPM aerating spray. ADA Compliant.

2.6 ADA LAVATORY SINK (P-3A)
A. Lavatory Sink: Kohler Ladena K-2215, ADA Compliant, vitreous china, wall mount fixture, with front overflow. Mounting height as indicated on architectural drawings.
B. Faucet: Sloan Optima Model EAF-250-BAT sensor lavatory faucet. Faucet will be sink mounted one (1) hole, brass construction, two inlets, and grid strainer. Separate hot and cold water supply, flow rate of 0.5 GPM aerating spray. ADA Compliant.

2.7 WATER COOLER (P-4)
A. Electric Water Cooler: Elkay Model LRPBGRNM28K, bi-level stations, barrier free, vandal-resistant, filtered, 14-gauge stainless steel construction, ADA Compliant, 5 Year warranty on compressor.

2.8 COUNTERTOP SINK (P-5)
A. Countertop Sink: Elkay model ELUHAD211550, 23-1/2”x18-1/4”x4-7/8” single bowl undermount, 18 gauge self rimming type 304 stainless steel sink fixture, ADA Compliant.
B. Faucet: Elkay model LKD2443C 8” centerset kitchen faucet. Faucet will be deck mounted with vandal resistant 2-5/8” lever handles, arc spout, brass construction, two inlets, and grid strainer. Separate hot and cold water supply, flow rate of 1.5 GPM non-aerating spray with retractable spray and hose. ADA Compliant.

2.9 SERVICE SINK (P-6)
A. Service Sink: Fiat model MSBID2424, molded-stone, single compartment, floor mount fixture. Unit shall have 10” high walls, not less than 1” wide. Provide with a combination dome strainer and lint basket made from stainless steel. Provide with optional vinyl hose and hose bracket.
B. Faucet: Zurn model Z843J6-XL service sink faucet. Faucet will be wall mounted with vandal resistant 6” lever handles with color-coded indexes, swings spout, brass construction, chrome plated finish, and separate hot and cold water supply, flow rate of 2.2 GPM.
2.10 ADA SHOWER (P-7)

A. Lavatory Sink: Florestone Model 40-40H, ADA Compliant, barrier-free shower. Shower stall shall be one-piece gel coated and will conform to ANSI-Z-124.2 and ANSI-A117.1. Color as selected by architect.

B. Accessories:
 1. Stainless steel curtain rod
 2. Symmons pressure balance mixing valve with concealed check stops
 3. Moen hand held shower head with hose and stainless steel slide bar/grab bar.
 4. Stainless steel corner grab bar.
 5. Stainless steel recessed soap dish.
 6. 2” brass drain.
 7. White naugahyde folding wheelchair transfer seat.

2.11 COUNTERTOP SINK (P-8)

A. Countertop Sink: Elkay model ELUHAD211550, 23-1/2”x18-1/4”x4-7/8” single bowl undermount, 18 gauge self rimming type 304 stainless steel sink fixture, ADA Compliant.

B. Faucet: Elkay model LKD2443C 8” centerset kitchen faucet. Faucet will be deck mounted with vandal resistant 2-5/8” lever handles, arc spout, brass construction, two inlets, and grid strainer. Separate hot and cold water supply, flow rate of 1.5 GPM non-aerating spray with retractable spray and hose. ADA Compliant.

2.12 FIXTURE SUPPORTS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Josam Company.
 2. MIFAB Manufacturing Inc.

B. Supports:
 1. Description: carrier with fixture support plates and coupling with seal and fixture bolts and hardware matching fixture for wall-mounting fixture. Include steel uprights with feet.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine roughing-in of water supply and sanitary drainage and vent piping systems to verify actual locations of piping connections before plumbing fixture installation.
3.2 INSTALLATION

A. Assemble plumbing fixtures, trim, fittings, and other components according to manufacturers' written instructions.

B. Fixture mounting heights shall be ADA compliant as required. Coordinate with architectural plans for individual fixture heights.

C. Install wall-mounting fixtures with tubular waste piping attached to supports.

D. Install fixtures level and plumb according to roughing-in drawings.

E. Install water-supply piping with stop on each supply to each fixture to be connected to water distribution piping. Attach supplies to supports or substrate within pipe spaces behind fixtures. Install stops in locations where they can be easily reached for operation.
 1. Exception: Use ball valves if supply stops are not specified with fixture. Valves are specified in Division 22 Section "Ball Valves for Plumbing Piping."

F. Install trap and tubular waste piping on drain outlet of each fixture to be directly connected to sanitary drainage system.

G. Install tubular waste piping on drain outlet of each fixture to be indirectly connected to drainage system.

H. Install water-supply flow-control fittings with specified flow rates in fixture supplies at stop valves.

I. Install faucet flow-control fittings with specified flow rates and patterns in faucet spouts if faucets are not available with required rates and patterns. Include adapters if required.

J. Install traps on fixture outlets.
 1. Exception: Omit trap on fixtures with integral traps.
 2. Exception: Omit trap on indirect wastes, unless otherwise indicated.

K. Install escutcheons at piping wall ceiling penetrations in exposed, finished locations and within cabinets and millwork. Use deep-pattern escutcheons if required to conceal protruding fittings. Escutcheons are specified in Division 22 Section "Common Work Results for Plumbing."

L. Seal joints between fixtures and walls, floors, and countertops using sanitary-type, one-part, mildew-resistant silicone sealant. Match sealant color to fixture color.

3.3 CONNECTIONS

A. Piping installation requirements are specified in other Division 22 Sections. Drawings indicate general arrangement of piping, fittings, and specialties.
B. Connect fixtures with water supplies, stops, and risers, and with traps, soil, waste, and vent piping. Use size fittings required to match fixtures.

3.4 FIELD QUALITY CONTROL

A. Verify that installed plumbing fixtures are categories and types specified for locations where installed.

B. Check that plumbing fixtures are complete with trim, faucets, fittings, and other specified components.

C. Inspect installed plumbing fixtures for damage. Replace damaged fixtures and components.

D. Test installed fixtures after water systems are pressurized for proper operation. Replace malfunctioning fixtures and components, then retest. Repeat procedure until units operate properly.

3.5 ADJUSTING

A. Operate and adjust faucets and controls. Replace damaged and malfunctioning fixtures, fittings, and controls.

B. Adjust water pressure at faucets and flushometer valves to produce proper flow and stream.

C. Replace washers and seals of leaking and dripping faucets and stops.

D. Install fresh batteries in sensor-operated mechanisms.

3.6 CLEANING

A. Clean fixtures, faucets, and other fittings with manufacturers' recommended cleaning methods and materials. Do the following:
 1. Remove faucet spouts and strainers, remove sediment and debris, and reinstall strainers and spouts.
 2. Remove sediment and debris from drains.

B. After completing installation of exposed, factory-finished fixtures, faucets, and fittings, inspect exposed finishes and repair damaged finishes.

3.7 PROTECTION

A. Provide protective covering for installed fixtures and fittings.

B. Do not allow use of plumbing fixtures for temporary facilities unless approved in writing by Owner.

END OF SECTION
SECTION 230000

BASIC MECHANICAL MATERIALS AND METHODS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes the following:

1. Piping materials and installation instructions common to most piping systems.
2. Dielectric fittings.
3. Equipment installation requirements common to equipment sections.
4. Supports and anchorages.

1.3 DEFINITIONS

A. Finished Spaces: Spaces other than mechanical and electrical equipment rooms, furred spaces, pipe and duct chases, unheated spaces immediately below roof, spaces above ceilings, unexcavated spaces, crawlspace, and tunnels.

B. Exposed, Interior Installations: Exposed to view indoors. Examples include finished occupied spaces and mechanical equipment rooms.

C. Exposed, Exterior Installations: Exposed to view outdoors or subject to outdoor ambient temperatures and weather conditions. Examples include rooftop locations.

D. Concealed, Interior Installations: Concealed from view and protected from physical contact by building occupants. Examples include above ceilings and chases.

E. Concealed, Exterior Installations: Concealed from view and protected from weather conditions and physical contact by building occupants but subject to outdoor ambient temperatures. Examples include installations within unheated shelters.

1.4 SUBMITTALS

A. Welding certificates.

1.5 QUALITY ASSURANCE

A. Steel Support Welding: Qualify processes and operators according to AWS D1.1, "Structural Welding Code--Steel."
B. Steel Pipe Welding: Qualify processes and operators according to ASME Boiler and Pressure Vessel Code: Section IX, "Welding and Brazing Qualifications."

1. Comply with provisions in ASME B31 Series, "Code for Pressure Piping."
2. Certify that each welder has passed AWS qualification tests for welding processes involved and that certification is current.

PART 2 - PRODUCTS

2.1 PIPE, TUBE, AND FITTINGS

A. Refer to individual Division 23 piping Sections for pipe, tube, and fitting materials and joining methods.

B. Pipe Threads: ASME B1.20.1 for factory-threaded pipe and pipe fittings.

2.2 JOINING MATERIALS

A. Refer to individual Division 23 piping Sections for special joining materials not listed below.

B. Pipe-Flange Gasket Materials: Suitable for chemical and thermal conditions of piping system contents.

1. ASME B16.21, nonmetallic, flat, asbestos-free, 1/8-inch maximum thickness unless thickness or specific material is indicated.

C. Solder Filler Metals: ASTM B 32, lead-free alloys. Include water-flushable flux according to ASTM B 813.

D. Brazing Filler Metals: AWS A5.8, BCuP Series, copper-phosphorus alloys for general-duty brazing, unless otherwise indicated; and AWS A5.8, BAg1, silver alloy for refrigerant piping, unless otherwise indicated.

E. Welding Filler Metals: Comply with AWS D10.12.

2.3 DIELECTRIC FITTINGS

A. Description: Combination fitting of copper alloy and ferrous materials with threaded, solder-joint, plain, or weld-neck end connections that match piping system materials.

B. Insulating Material: Suitable for system fluid, pressure, and temperature.

C. Dielectric Unions: Factory-fabricated, union assembly, for 250-psig minimum working pressure at 180 deg F.

D. Dielectric Flanges: Factory-fabricated, companion-flange assembly, for 150- or 300-psig minimum working pressure as required to suit system pressures.
E. Dielectric Couplings: Galvanized-steel coupling with inert and noncorrosive, thermoplastic lining; threaded ends; and 300-psig minimum working pressure at 225 deg F.

F. Dielectric Nipples: Electroplated steel nipple with inert and noncorrosive, thermoplastic lining; plain, threaded, or grooved ends; and 300-psig minimum working pressure at 225 deg F

2.4 SLEEVES

A. Galvanized-Steel Sheet: 0.0239-inch minimum thickness; round tube closed with welded longitudinal joint.

B. Steel Pipe: ASTM A 53, Type E, Grade B, Schedule 40, galvanized, plain ends.

C. Cast Iron: Cast or fabricated "wall pipe" equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop, unless otherwise indicated.

PART 3 - EXECUTION

3.1 PIPING SYSTEMS - COMMON REQUIREMENTS

A. Install piping according to the following requirements and Division 23 Sections specifying piping systems.

B. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.

C. Install piping in concealed locations, unless otherwise indicated and except in equipment rooms and service areas.

D. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.

E. Install piping to permit valve servicing.

F. Install piping at indicated slopes.

G. Install piping free of sags and bends.

H. Install fittings for changes in direction and branch connections.

I. Install piping to allow application of insulation.

J. Select system components with pressure rating equal to or greater than system operating pressure.
3.2 PIPING JOINT CONSTRUCTION

A. Join pipe and fittings according to the following requirements and Division 23 Sections specifying piping systems.

B. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.

C. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.

D. Soldered Joints: Apply ASTM B 813, water-flushable flux, unless otherwise indicated, to tube end. Construct joints according to ASTM B 828 or CDA's "Copper Tube Handbook," using lead-free solder alloy complying with ASTM B 32.

F. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:

G. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is specified.

H. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.

I. Welded Joints: Construct joints according to AWS D10.12, using qualified processes and welding operators according to Part 1 "Quality Assurance" Article.

J. Flanged Joints: Select appropriate gasket material, size, type, and thickness for service application. Install gasket concentrically positioned. Use suitable lubricants on bolt threads.

3.3 PIPING CONNECTIONS

A. Make connections according to the following, unless otherwise indicated:

1. Install unions, in piping NPS 2 and smaller, adjacent to each valve and at final connection to each piece of equipment.
2. Install flanges, in piping NPS 2-1/2 (DN 65) and larger, adjacent to flanged valves and at final connection to each piece of equipment.
3. Piping Systems: Install dielectric coupling and nipple fittings to connect piping materials of dissimilar metals.
3.4 EQUIPMENT INSTALLATION - COMMON REQUIREMENTS

A. Install equipment to allow maximum possible headroom unless specific mounting heights are not indicated.

B. Install equipment according to approved submittal data. Portions of the Work are shown only in diagrammatic form.

C. Install equipment level and plumb, parallel and perpendicular to other building systems and components in exposed interior spaces, unless otherwise indicated.

D. Install Mechanical equipment to facilitate service, maintenance, and repair or replacement of components. Connect equipment for ease of disconnecting, with minimum interference to other installations. Extend grease fittings to accessible locations.

E. Install equipment to allow right of way for piping installed at required slope.

F. Install flexible connectors on equipment side of shutoff valves, horizontally and parallel to equipment shafts if possible.

3.5 ERECTION OF METAL SUPPORTS AND ANCHORAGES

A. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor HVAC materials and equipment.

B. Field Welding: Comply with AWS D1.1.

3.6 LABELING AND IDENTIFYING

A. Piping Systems: Install pipe markers on each system. Include arrows showing normal direction of flow.

2. Plastic markers, with application systems. Install on insulation segment if required for hot, uninsulated piping.

3. Locate pipe markers as follows if piping is exposed in finished spaces, machine rooms, and accessible maintenance spaces, such as shafts, tunnels, plenums, and exterior non-concealed locations:

 a. Near each valve and control device.

 b. Near each branch, excluding short takeoffs for fixtures and terminal units. Mark each pipe at branch, if flow pattern is not obvious.

 c. Near locations if pipes pass through walls, floors, ceilings, or enter non-accessible enclosures.

 d. At access doors, manholes, and similar access points that permit view of concealed piping.

 e. Near major equipment items and other points of origination and termination.

 f. Spaced at maximum of 50-foot (15-m) intervals along each run. Reduce intervals to 25 feet (7.5 m) in congested areas of piping and equipment.
g. On piping above removable acoustical ceilings, except omit intermediately spaced markers.

B. Equipment: Install engraved plastic-laminate sign or equipment marker on or near each major item of mechanical equipment.

 1. Lettering Size: Minimum 1/4-inch- (6.4-mm-) high lettering for name of unit if viewing distance is less than 24 inches (610 mm), 1/2-inch- (12.7-mm-) high lettering for distances up to 72 inches (1800 mm), and proportionately larger lettering for greater distances. Provide secondary lettering two-thirds to three-fourths of size of principal lettering.

 2. Text of Signs: Provide name of identified unit. Include text to distinguish between multiple units, inform user of operational requirements, indicate safety and emergency precautions, and warn of hazards and improper operations.

C. Adjusting: Relocate identifying devices as necessary for unobstructed view in finished construction.

3.7 PAINTING AND FINISHING

A. Apply paint to exposed piping according to the following, unless otherwise indicated:

 1. Interior, Ferrous Supports: Use semi-gloss, acrylic-enamel finish. Include finish coat over enamel undercoat and primer.

B. Do not paint piping specialties with factory-applied finish.

C. Damage and Touchup: Repair marred and damaged factory-painted finishes with materials and procedures to match original factory finish.

3.8 ERECTION OF METAL SUPPORTS AND ANCHORAGES

A. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor HVAC materials and equipment.

B. Field Welding: Comply with AWS D1.1.

3.9 CUTTING AND PATCHING

A. Cut, channel, chase, and drill floors, walls, partitions, ceilings, and other surfaces necessary for mechanical installations. Perform cutting by skilled mechanics of trades involved.

B. Repair cut surfaces to match adjacent surfaces.

END OF SECTION
SECTION 230519
METERS AND GAGES FOR MECHANICAL PIPING

PART 1 - DESCRIPTION

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Thermometers.
 2. Pressure gages.
 4. Test plugs.

1.3 SUBMITTALS
A. Product Data: For each type of product indicated.
B. Product Certificates: For each type of meter and gage, from manufacturer.
C. Operation and Maintenance Data: For meters and gages to include in operation and maintenance manuals.

PART 2 - PRODUCTS

2.1 LIQUID-IN-GLASS THERMOMETERS
A. Metal-Case, Compact-Style, Liquid-in-Glass Thermometers:
 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Tridge, H. O. Co.
 b. Miljoco
 c. Dwyer Instruments
 3. Case: Cast aluminum; 6-inch nominal size.
 4. Case Form: Back angle unless otherwise indicated.
5. Tube: Glass with magnifying lens and blue or red organic liquid.
6. Tube Background: Nonreflective aluminum with permanently etched scale markings graduated in deg F.
7. Window: Glass or plastic.
8. Stem: Aluminum or brass and of length to suit installation.
 b. Design for thermowell installation: Bare stem.
10. Accuracy: Plus or minus 1 percent of scale range or one scale division, to a maximum of 1.5 percent of scale range.

2.2 THERMOWELLS

A. Thermowells:
 2. Description: Pressure-tight, socket-type fitting made for insertion into piping tee fitting.
 3. Material for Use with Copper Tubing: CNR or CUNI.
 4. Material for Use with Steel Piping: CRES.
 5. Type: Stepped shank unless straight or tapered shank is indicated.
 6. Bore: Diameter required to match thermometer bulb or stem.
 7. Insertion Length: Length required to match thermometer bulb or stem.
 8. Lagging Extension: Include on thermowells for insulated piping and tubing.
 9. Bushings: For converting size of thermowell's internal screw thread to size of thermometer connection.

B. Heat-Transfer Medium: Mixture of graphite and glycerin.

2.3 PRESSURE GAGES

A. Direct-Mounted, Metal-Case, Dial-Type Pressure Gages:
 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Trerice, H. O. Co.
 b. Miljoco
 c. Dwyer Instruments
 3. Case: Sealed cast aluminum or drawn steel; 4-1/2-inch nominal diameter.
 4. Pressure-Element Assembly: Bourdon tube unless otherwise indicated.
 5. Pressure Connection: Brass, with NPS 1/4, ASME B1.20.1 pipe threads and bottom-outlet type unless back-outlet type is indicated.
 6. Movement: Mechanical, with link to pressure element and connection to pointer.
7. Dial: Nonreflective aluminum with permanently etched scale markings graduated in psi.
9. Window: Glass or plastic.
10. Ring: Metal.
11. Accuracy: plus or minus 1 percent of middle half of scale range.

2.4 GAGE ATTACHMENTS

A. Valves: Brass or stainless-steel needle, with NPS 1/4, ASME B1.20.1 pipe threads.

2.5 TEST PLUGS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

 1. Trerice, H. O. Co.
 2. Miljoco
 3. Dwyer Instruments

B. Description: Test-station fitting made for insertion into piping tee fitting.

C. Body: Brass or stainless steel with core inserts and gasketed and threaded cap. Include extended stem on units to be installed in insulated piping.

D. Thread Size: NPS 1/4, ASME B1.20.1 pipe thread.

E. Minimum Pressure and Temperature Rating: 500 psig at 200 deg F.

F. Core Inserts: Chlorosulfonated polyethylene synthetic and EPDM self-sealing rubber.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install thermowells with socket extending one-third of pipe diameter and in vertical position in piping tees.

B. Install thermowells of sizes required to match thermometer connectors. Include bushings if required to match sizes.

C. Install thermowells with extension on insulated piping.

D. Fill thermowells with heat-transfer medium.

E. Install direct-mounted thermometers in thermowells and adjust vertical and tilted positions.
F. Install remote-mounted thermometer bulbs in thermowells and install cases on panels; connect cases with tubing and support tubing to prevent kinks. Use minimum tubing length.

G. Install direct-mounted pressure gages in piping tees with pressure gage located on pipe at the most readable position.

H. Install valve in piping for each pressure gage.

I. Install test plugs in piping tees.

J. Install connection fittings in accessible locations for attachment to portable indicators.

K. Install thermometers in the following locations:
 1. Inlet and outlet of each hydronic air handling unit.
 2. Inlet to pumps.
 3. Inlet and outlet of boilers
 4. As indicated on the drawings.

L. Install pressure gages in the following locations:
 1. Suction and discharge of each pump.
 2. Inlet and outlet of boilers
 3. As indicated on the drawings.

3.2 CONNECTIONS
A. Install meters and gages adjacent to machines and equipment to allow service and maintenance of meters, gages, machines, and equipment.

3.3 ADJUSTING
A. After installation, calibrate meters according to manufacturer's written instructions.

B. Adjust faces of meters and gages to proper angle for best visibility.

3.4 THERMOMETER SCALE-RANGE SCHEDULE
A. Scale Range for Heating Water Piping: 0 to 200 deg F.

3.5 PRESSURE-GAGE SCALE-RANGE SCHEDULE
A. Scale Range for Heating Water Piping: 0 to 150 psi.

END OF SECTION
SECTION 230523
VALVES

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 2. Ball valves.
 3. Check valves.

B. Related Sections:
 1. Section 230529 – Hangers and Supports.
 2. Section 230719 – Mechanical Insulation.
 3. Section 232113 – Mechanical Piping.
 4. Section 232116 – Mechanical Piping Specialties.

1.2 REFERENCES

A. ASTM International:

B. Manufacturers Standardization Society of the Valve and Fittings Industry:
 1. MSS SP 67 - Butterfly Valves.
 2. MSS SP 80 - Bronze Gate, Globe, Angle and Check Valves.
 3. MSS SP 110 - Ball Valves Threaded, Socket-Welding, Solder Joint, Grooved and Flared Ends.

1.3 SUBMITTALS

A. Section 013300 - Submittal Procedures: Requirements for submittals.

B. Product Data: Submit manufacturers catalog information with valve data and ratings for each service.

C. Manufacturer's Installation Instructions: Submit hanging and support methods, joining procedures.
D. Manufacturer’s Certificate: Certify products meet or exceed specified requirements.

E. Grooved joint couplings and fittings, where used, shall be shown on drawings and product submittals and shall be specifically identified with the applicable Victaulic style or series designation.

1.4 CLOSEOUT SUBMITTALS

A. Section 017300 - Execution: Requirements for submittals.

B. Project Record Documents: As-Built Record Drawings indicating actual locations of valves.

C. Operation and Maintenance Data: Submit installation instructions, spare parts lists, exploded assembly views.

1.5 QUALIFICATIONS

A. Manufacturer: Company specializing in manufacturing Products specified in this section with minimum three years documented experience.

B. Installer: Company specializing in performing work of this section with minimum three years documented experience.

C. All grooved joint valves shall be the products of the same manufacturer as the adjoining couplings.

1.6 DELIVERY, STORAGE, AND HANDLING

A. Section 016000 - Product Requirements: Requirements for transporting, handling, storing, and protecting products.

B. Accept valves on site in shipping containers with labeling in place. Inspect for damage.

C. Provide temporary protective coating on cast iron and steel valves.

1.7 ENVIRONMENTAL REQUIREMENTS

A. Section 016000 - Product Requirements: Environmental conditions affecting products on site.

B. Do not install valves underground when bedding is wet or frozen.

1.8 WARRANTY

A. Section 017300 - Execution: Requirements for warranties.

B. Furnish five-year manufacturer warranty for valves excluding packing.
1.9 EXTRA MATERIALS

A. Section 017300 - Execution: Requirements for extra materials.

PART 2 - PRODUCTS

2.1 BALANCING VALVES

A. Manufacturers:

1. Flow Design ,Inc.
3. Crane Valve, North America.

B. Manual balancing valve 2 inches and less shall include a venturi element and a bronze or brass body and stainless-steel ball valve which shall provide both shut-off and manual throttling venturi service with large diameter plated ball and Teflon seats. Valve stem shall be blowout proof with EPDM O-ring, Teflon packing with packing nut and union end connection. Micro handle shall utilize a standard adjustable memory stop for shut-off and resetting and vinyl coated grip. Dual pressure / temperature ports with air vent shall be provided on each side of the venturi. Balancing valve shall have an accuracy of +/- 3% across the full range of readings. Circuit balancing valve shall be Flowset Accusetter Model U, by Flow Design, Inc or approved equal.

2.2 BALL VALVES

A. Manufacturers:

1. Flow Design ,Inc.
3. Crane Valve, North America.

B. 2 inches (50 mm) and Smaller:

1. MSS SP 110, Class 150, bronze, three-piece body, type 316 stainless steel ball, full port, teflon seats, blow-out proof stem, solder or threaded ends, locking lever handle with balancing stops.

2.3 CHECK VALVES

A. Horizontal Swing Check Valves:

1. Manufacturers:

 b. Victaulic Co. of America
c. Crane Valve, North America

d. Milwaukee Valve Company

2. 2 inches (50 mm) and Smaller: MSS SP 80, Class 150, bronze body and cap, bronze seat, bronze disc, solder or threaded ends.

B. Spring Loaded Check Valves:

1. Manufacturers:
 a. Victaulic Co. of America.
 b. Crane Valve, North America.
 c. Milwaukee Valve Company.

2. 2 inches (50 mm) and Smaller: MSS SP 80, Class 150, bronze body, in-line spring lift check, silent closing, Buna-N teflon disc, integral seat, push-to-connect, solder or threaded ends.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Verification of existing conditions before starting work.

B. Verify piping system is ready for valve installation.

3.2 INSTALLATION

A. Install balancing valves with appropriate upstream and downstream dimensions from elbows and pumps as required by the manufacturers.

B. Install service valves prior to all specialties for pipe connections to all equipment. For equipment with both supply and return water piping provide service valves on return piping connections after all other specialties.

C. Install valves with stems upright or horizontal, not inverted.

D. Install brass male adapters each side of valves in copper piped system. Solder adapters to pipe.

E. Install 3/4-inch (20 mm) gate ball valves with cap for drains at main shut-off valves, low points of piping, bases of vertical risers, and at equipment.

F. Install valves with clearance for installation of insulation and allowing access.

G. Provide access where valves and fittings are not accessible.

H. Refer to Section 230529 for pipe hangers.
I. Refer to Section 230719 for insulation requirements for valves.

3.3 VALVE APPLICATIONS

A. Install shutoff and drain valves at locations indicated on Drawings and in accordance with this Section.

B. Install ball valves for shut-off and to isolate equipment, part of systems, or vertical risers.

C. Install ball valves for throttling, bypass, or manual flow control services.

D. Install spring loaded check valves on discharge of pumps.

E. Install grooved or lug end butterfly valves adjacent to equipment when functioning to isolate equipment.

END OF SECTION
SECTION 230529
HANGERS AND SUPPORTS FOR MECHANICAL PIPING AND EQUIPMENT

PART 1 - DESCRIPTION

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Metal pipe hangers and supports.
2. Trapeze pipe hangers.
3. Metal framing systems.
4. Thermal-hanger shield inserts.
5. Fastener systems.
6. Pipe stands.
7. Equipment supports.

B. Related Sections:

1. Division 05 Section for Metal Fabrication for structural-steel shapes and plates for trapeze hangers for pipe and equipment supports.
2. Division 23 Section "Vibration Controls for Mechanical Piping and Equipment" for vibration isolation devices.
3. Division 23 Section "Metal Ducts" for duct hangers and supports.

1.3 DEFINITIONS

A. MSS: Manufacturers Standardization Society of the Valve and Fittings Industry Inc.

1.4 PERFORMANCE REQUIREMENTS

A. Delegated Design: Design pipe hangers and equipment supports, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.

B. Structural Performance: Hangers and supports for piping and equipment shall withstand the effects of gravity loads and stresses within limits and under conditions indicated according to ASCE/SEI 7.

1. Design supports for multiple pipes, including pipe stands, capable of supporting combined weight of supported systems, system contents, and test water.
2. Design equipment supports capable of supporting combined operating weight of supported equipment and connected systems and components.

1.5 SUBMITTALS

A. Product Data: For each type of product indicated.

B. Shop Drawings: Show fabrication and installation details for the following; include Product Data for components:

1. Trapeze pipe hangers.
2. Metal framing systems.
3. Fiberglass strut systems.
4. Pipe stands.
5. Equipment supports.

C. Welding certificates.

1.6 QUALITY ASSURANCE

A. Structural Steel Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."

B. Pipe Welding Qualifications: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code.

PART 2 - PRODUCTS

2.1 METAL PIPE HANGERS AND SUPPORTS

A. Copper Pipe Hangers:

1. Description: MSS SP-58, Types 1 through 58, copper-coated-steel, factory-fabricated components.

2.2 TRAPEZE PIPE HANGERS

A. Description: MSS SP-69, Type 59, shop- or field-fabricated pipe-support assembly made from structural carbon-steel shapes with MSS SP-58 carbon-steel hanger rods, nuts, saddles, and U-bolts.

2.3 METAL FRAMING SYSTEMS

A. Manufacturer Metal Framing Systems:
1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Allied Tube & Conduit.
 b. Cooper B-Line, Inc.
 c. Flex-Strut Inc.
 d. Unistrut Corporation; Tyco International, Ltd.
 e. Wesanco, Inc.

2. Description: Shop- or field-fabricated pipe-support assembly for supporting multiple parallel pipes.

4. Channels: Continuous slotted steel channel with inturned lips.

5. Channel Nuts: Formed or stamped steel nuts or other devices designed to fit into channel slot and, when tightened, prevent slipping along channel.

7. Split Ring Clamps: Provide nuts, and washer made of carbon steel. Provide elastomeric clamp rings for applications requiring compliance with Division 23 Section "Vibration and Seismic Controls for Mechanical Piping and Equipment" for vibration isolation devices.

2.4 THERMAL-HANGER SHIELD INSERTS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

 1. ERICO International Corporation.
 2. Pipe Shields, Inc.; a subsidiary of Piping Technology & Products, Inc.
 3. Piping Technology & Products, Inc.
 4. Rilco Manufacturing Co., Inc.
 5. Value Engineered Products, Inc.

B. Insulation-Insert Material for Cold Piping: ASTM C 552, Type II cellular glass with 100-psig minimum compressive strength and vapor barrier.

C. Insulation-Insert Material for Hot Piping: ASTM C 552, Type II cellular glass with 100-psig minimum compressive strength.

D. For Trapeze or Clamped Systems: Insert and shield shall cover entire circumference of pipe.

E. For Clevis or Band Hangers: Insert and shield shall cover lower 180 degrees of pipe.

F. Insert Length: Extend 2 inches beyond sheet metal shield for piping operating below ambient air temperature.
2.5 FASTENER SYSTEMS

A. Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened portland cement concrete with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

B. Mechanical-Expansion Anchors: Insert-wedge-type, zinc-coated steel anchors, for use in hardened portland cement concrete; with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

2.6 EQUIPMENT SUPPORTS

A. Description: Welded, shop- or field-fabricated equipment support made from structural carbon-steel shapes.

2.7 MISCELLANEOUS MATERIALS

A. Structural Steel: ASTM A 36/A 36M, carbon-steel plates, shapes, and bars; black and galvanized.

B. Grout: ASTM C 1107, factory-mixed and -packaged, dry, hydraulic-cement, non-shrink and nonmetallic grout; suitable for interior and exterior applications.

2. Design Mix: 5000-psi, 28-day compressive strength.

PART 3 - EXECUTION

3.1 HANGER AND SUPPORT INSTALLATION

A. Metal Pipe-Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Install hangers, supports, clamps, and attachments as required to properly support piping from the building structure.

B. Metal Trapeze Pipe-Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Arrange for grouping of parallel runs of horizontal piping, and support together on field-fabricated trapeze pipe hangers.

1. Pipes of Various Sizes: Support together and space trapezes for smallest pipe size or install intermediate supports for smaller diameter pipes as specified for individual pipe hangers.
2. Field fabricate from ASTM A 36/A 36M, carbon-steel shapes selected for loads being supported. Weld steel according to AWS D1.1/D1.1M.

C. Fiberglass Pipe-Hanger Installation: Comply with applicable portions of MSS SP-69 and MSS SP-89. Install hangers and attachments as required to properly support piping from building structure.
D. Metal Framing System Installation: Arrange for grouping of parallel runs of piping, and support together on field-assembled metal framing systems.

E. Fiberglass Strut System Installation: Arrange for grouping of parallel runs of piping, and support together on field-assembled fiberglass struts.

F. Thermal-Hanger Shield Installation: Install in pipe hanger or shield for insulated piping.

G. Fastener System Installation:
 1. Install powder-actuated fasteners for use in lightweight concrete or concrete slabs less than 4 inches thick in concrete after concrete is placed and completely cured. Use operators that are licensed by powder-actuated tool manufacturer. Install fasteners according to powder-actuated tool manufacturer's operating manual.
 2. Install mechanical-expansion anchors in concrete after concrete is placed and completely cured. Install fasteners according to manufacturer's written instructions.

H. Install hangers and supports complete with necessary attachments, inserts, bolts, rods, nuts, washers, and other accessories.

J. Install hangers and supports to allow controlled thermal and seismic movement of piping systems, to permit freedom of movement between pipe anchors, and to facilitate action of expansion joints, expansion loops, expansion bends, and similar units.

K. Install lateral bracing with pipe hangers and supports to prevent swaying.

L. Install building attachments within concrete slabs or attach to structural steel. Install additional attachments at concentrated loads, including valves, flanges, and strainers, NPS 2-1/2 and larger and at changes in direction of piping. Install concrete inserts before concrete is placed; fasten inserts to forms and install reinforcing bars through openings at top of inserts.

M. Load Distribution: Install hangers and supports so that piping live and dead loads and stresses from movement will not be transmitted to connected equipment.

N. Pipe Slopes: Install hangers and supports to provide indicated pipe slopes and to not exceed maximum pipe deflections allowed by ASME B31.9 for building services piping.

O. Insulated Piping:
 1. Attach clamps and spacers to piping.
 a. Piping Operating above Ambient Air Temperature: Clamp may project through insulation.
 b. Piping Operating below Ambient Air Temperature: Use thermal-hanger shield insert with clamp sized to match OD of insert.
c. Do not exceed pipe stress limits allowed by ASME B31.9 for building services piping.

2. Install MSS SP-58, Type 39, protection saddles if insulation without vapor barrier is indicated. Fill interior voids with insulation that matches adjoining insulation.

3. Install MSS SP-58, Type 40, protective shields on cold piping with vapor barrier. Shields shall span an arc of 180 degrees. Option: Thermal-hanger shield inserts may be used.

4. Shield Dimensions for Pipe: Not less than the following:
 a. NPS 1/4 to NPS 3-1/2: 12 inches long and 0.048 inch thick.

5. Thermal-Hanger Shields: Install with insulation same thickness as piping insulation.

3.2 EQUIPMENT SUPPORTS

A. Fabricate structural-steel stands to suspend equipment from structure overhead or to support equipment above floor.

B. Grouting: Place grout under supports for equipment and make bearing surface smooth.

C. Provide lateral bracing, to prevent swaying, for equipment supports.

3.3 METAL FABRICATIONS

A. Cut, drill, and fit miscellaneous metal fabrications for trapeze pipe hangers and equipment supports.

B. Fit exposed connections together to form hairline joints. Field weld connections that cannot be shop welded because of shipping size limitations.

C. Field Welding: Comply with AWS D1.1/D1.1M procedures for shielded, metal arc welding; appearance and quality of welds; and methods used in correcting welding work; and with the following:
 1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
 2. Obtain fusion without undercut or overlap.
 3. Remove welding flux immediately.
 4. Finish welds at exposed connections so no roughness shows after finishing and so contours of welded surfaces match adjacent contours.

3.4 ADJUSTING

A. Hanger Adjustments: Adjust hangers to distribute loads equally on attachments and to achieve indicated slope of pipe.
B. Trim excess length of continuous-thread hanger and support rods to 1-1/2 inches.

3.5 PAINTING

A. Touchup: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.

1. Apply paint by brush or spray to provide a minimum dry film thickness of 2.0 mils.

B. Touchup: Cleaning and touchup painting of field welds, bolted connections, and abraded areas of shop paint on miscellaneous metal are specified in Division 09.

C. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.

3.6 HANGER AND SUPPORT SCHEDULE

A. Specific hanger and support requirements are in Sections specifying piping systems and equipment.

B. Comply with MSS SP-69 for pipe-hanger selections and applications that are not specified in piping system Sections.

C. Use hangers and supports with galvanized metallic coatings for piping and equipment that will not have field-applied finish.

D. Use nonmetallic coatings on attachments for electrolytic protection where attachments are in direct contact with copper tubing.

E. Use carbon-steel and attachments for general service applications.

F. Use copper-plated pipe hangers and copper attachments for uninsulated copper piping and tubing where hanger is in direct contact with pipe.

G. Use thermal-hanger shield inserts for insulated piping and tubing.

H. Horizontal-Piping Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Adjustable, Steel Clevis Hangers (MSS Type 1): For suspension of non-insulated or insulated, stationary pipes.
2. Steel Pipe Clamps (MSS Type 4): For suspension of cold and hot pipes if no insulation is required.
4. Clips (MSS Type 26): For support of insulated pipes not subject to expansion or contraction.
5. Adjustable Pipe Saddle Supports (MSS Type 38): For stanchion-type support for pipes if vertical adjustment is required.

I. Vertical-Piping Clamps: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Extension Pipe or Riser Clamps (MSS Type 8): For support of pipe risers.

J. Hanger-Rod Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Steel Clevises (MSS Type 14): For domestic hot water piping installations.
2. Swivel Turnbuckles (MSS Type 15): For use with MSS Type 11, split pipe rings.
3. Malleable-Iron Sockets (MSS Type 16): For attaching hanger rods to various types of building attachments.

K. Building Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Top-Beam C-Clamps (MSS Type 19): For use under roof installations with bar-joint construction, to attach to top flange of structural shape.
2. Side-Beam Clamps (MSS Type 27): For bottom of steel I-beams.
3. Malleable-Beam Clamps with Extension Pieces (MSS Type 30): For attaching to any other structural steel.
4. Side-Beam Brackets (MSS Type 34): For sides of steel or wooden beams.

L. Saddles and Shields: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Protection Shields (MSS Type 40): Of length recommended in writing by manufacturer to prevent crushing insulation.
2. Thermal-Hanger Shield Inserts: For supporting insulated pipe.

M. Comply with MSS SP-69 for trapeze pipe-hanger selections and applications that are not specified in piping system Sections.

N. Comply with MFMA-103 for metal framing system selections and applications that are not specified in piping system Sections.

END OF SECTION
SECTION 230553
IDENTIFICATION FOR MECHANICAL PIPING AND EQUIPMENT

PART 1 - DESCRIPTION

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Equipment labels.
 2. Duct labels.
 3. Pipe labels.
 4. Stencils.
 5. Valve tags.

1.3 SUBMITTALS

A. Product Data: For each type of product indicated.

B. Samples: For color, letter style, and graphic representation required for each identification material and device.

C. Equipment Label Schedule: Include a listing of all equipment to be labeled with the proposed content for each label.

D. Valve numbering scheme.

E. Valve Schedules: For each piping system to include in maintenance manuals.

1.4 COORDINATION

A. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be applied.

B. Coordinate installation of identifying devices with locations of access panels and doors.

C. Install identifying devices before installing acoustical ceilings and similar concealment.
PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

1. Brady Corporation
2. Kolrabi Pipe Marker
3. Seton Identification Products

2.2 EQUIPMENT LABELS

A. Metal Labels for Equipment:

1. Material and Thickness: Aluminum, 0.032-inch or anodized aluminum, 0.032-inch minimum thickness, and having predrilled or stamped holes for attachment hardware.
2. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
5. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

B. Label Content: Include equipment's Drawing designation or unique equipment number, drawing numbers where equipment is indicated (plans, details, and schedules), plus the Specification Section number and title where equipment is specified.

C. Equipment Label Schedule: For each item of equipment to be labeled, on 8-1/2-by-11-inch bond paper. Tabulate equipment identification number and identify Drawing numbers where equipment is indicated (plans, details, and schedules), plus the Specification Section number and title where equipment is specified. Equipment schedule shall be included in operation and maintenance data.

2.3 DUCT LABELS

A. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/16-inch-thick, and having predrilled holes for attachment hardware.

B. Letter Color: Black

C. Background Color: Yellow

D. Maximum Temperature: Able to withstand temperatures up to 160 deg F.

E. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch (64 by 19 mm).
F. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-quarters the size of principal lettering.

G. Fasteners: Stainless-steel rivets or self-tapping screws.

H. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

I. Duct Label Contents: Include identification of duct service using same designations or abbreviations as used on Drawings; also include duct size and an arrow indicating flow direction.

1. Flow-Direction Arrows: Integral with duct system service lettering to accommodate both directions or as separate unit on each duct label to indicate flow direction.

2.4 PIPE LABELS

A. General Requirements for Manufactured Pipe Labels: Preprinted, color-coded, with lettering indicating service, and showing flow direction.

B. Pre-tensioned Pipe Labels: Pre-coiled, semi-rigid plastic formed to cover full circumference of pipe and to attach to pipe without fasteners or adhesive.

C. Self-Adhesive Pipe Labels: Printed plastic with contact-type, permanent-adhesive backing.

D. Pipe Label Contents: Include identification of piping service using same designations or abbreviations as used on Drawings, pipe size, and an arrow indicating flow direction.

1. Flow-Direction Arrows: Integral with piping system service lettering to accommodate both directions, or as separate unit on each pipe label to indicate flow direction.

2. Lettering Size: At least 1-1/2 inches (38 mm) high.

2.5 STENCILS

A. Stencils: Prepared with letter sizes according to ASME A13.1 for piping; minimum letter height of 1-1/4 inches for ducts; and minimum letter height of 3/4 inch for access panel and door labels, equipment labels, and similar operational instructions.

1. Stencil Paint: Exterior, gloss, black unless otherwise indicated. Paint may be in pressurized spray-can form.

2. Identification Paint: Exterior, [in colors according to ASME A13.1 unless otherwise indicated.

2.6 VALVE TAGS
A. Valve Tags: Stamped or engraved with 1/4-inch letters for piping system abbreviation and 1/2-inch numbers.

1. Tag Material: Aluminum, 0.032-inch or anodized aluminum, 0.032-inch minimum thickness, and having predrilled or stamped holes for attachment hardware.
2. Fasteners: Brass wire-link or beaded chain; or S-hook.

B. Valve Schedules: For each piping system, on 8-1/2-by-11-inch bond paper. Tabulate valve number, piping system, system abbreviation (as shown on valve tag), location of valve (room or space), normal-operating position (open, closed, or modulating), and variations for identification. Mark valves for emergency shutoff and similar special uses.

1. Valve-tag schedule shall be included in operation and maintenance data.

PART 3 - EXECUTION

3.1 PREPARATION

A. Clean piping and equipment surfaces of substances that could impair bond of identification devices, including dirt, oil, grease, release agents, and incompatible primers, paints, and encapsulates.

3.2 GENERAL INSTALLATION REQUIREMENTS

A. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be applied.
B. Coordinate installation of identifying devices with locations of access panels and doors.
C. Install identifying devices before installing acoustical ceilings and similar concealment.

3.3 EQUIPMENT LABEL INSTALLATION

A. Install or permanently fasten labels on each major item of mechanical equipment.
B. Locate equipment labels where accessible and visible.

3.4 DUCT LABEL INSTALLATION

A. Locate labels near points where ducts enter into and exit from concealed spaces and at maximum intervals of 25 feet in each space where ducts are exposed or concealed by removable ceiling system.

3.5 PIPE LABEL INSTALLATION

A. Piping Color-Coding: Painting of piping is specified in Division 09 Section."
B. Stenciled Pipe Label Option: Stenciled labels may be provided instead of manufactured pipe labels, at Installer's option. Install stenciled pipe labels on each piping system.

1. Identification Paint: Use for contrasting background.

C. Locate pipe labels where piping is exposed or above accessible ceilings in finished spaces; machine rooms; accessible maintenance spaces such as shafts, tunnels, and plenums; and exterior exposed locations as follows:

1. Near each valve and control device.
2. Near each branch connection, excluding short takeoffs for fixtures and terminal units. Where flow pattern is not obvious, mark each pipe at branch.
3. Near penetrations through walls, floors, ceilings, and inaccessible enclosures.
4. At access doors, manholes, and similar access points that permit view of concealed piping.
5. Near major equipment items and other points of origination and termination.
6. Spaced at maximum intervals of 50 feet along each run. Reduce intervals to 25 feet in areas of congested piping and equipment.

D. Pipe Label Color Schedule:

2. Refrigerant Piping: Green

3.6 VALVE-TAG INSTALLATION

A. Install tags on valves and control devices in piping systems, except check valves; valves within factory-fabricated equipment units; shutoff valves; faucets; convenience and lawn-watering hose connections; and HVAC terminal devices and similar roughing-in connections of end-use fixtures and units. List tagged valves in a valve schedule.

B. Valve-Tag Application Schedule: Tag valves according to size, shape, and color scheme and with captions similar to those indicated in the following subparagraphs:

1. Valve-Tag Size and Shape:

3.7 WARNING-TAG INSTALLATION

A. Write required message on, and attach warning tags to, equipment and other items where required.

END OF SECTION
SECTION 230580
COMMON MOTOR REQUIREMENTS FOR MECHANICAL EQUIPMENT

PART 1 - DESCRIPTION

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section includes general requirements for single-phase and polyphase, general-purpose, horizontal, small and medium, squirrel-cage induction motors for use on ac power systems up to 600 V and installed at equipment manufacturer's factory or shipped separately by equipment manufacturer for field installation.

1.3 COORDINATION
A. Coordinate features of motors, installed units, and accessory devices to be compatible with the following:
 1. Motor controllers.
 2. Torque, speed, and horsepower requirements of the load.
 3. Ratings and characteristics of supply circuit and required control sequence.
 4. Ambient and environmental conditions of installation location.

PART 2 - PRODUCTS

2.1 GENERAL MOTOR REQUIREMENTS
A. Comply with requirements in this Section except when stricter requirements are specified in HVAC equipment schedules or Sections.

B. Comply with NEMA MG 1 unless otherwise indicated.

C. Comply with IEEE 841 for severe-duty motors.

2.2 MOTOR CHARACTERISTICS
A. Duty: Continuous duty at ambient temperature of 40 deg C and at altitude of 2500 feet above sea level.

B. Capacity and Torque Characteristics: Sufficient to start, accelerate, and operate connected loads at designated speeds, at installed altitude and environment, with
indicated operating sequence, and without exceeding nameplate ratings or considering service factor.

2.3 POLYPHASE MOTORS

A. Description: NEMA MG 1, Design B, medium induction motor.

B. Efficiency: Energy efficient, as defined in NEMA MG 1.

C. Service Factor: 1.15.

D. Multispeed Motors: Variable torque.

E. For motors with 2:1 speed ratio, consequent pole, single winding.

F. For motors with other than 2:1 speed ratio, separate winding for each speed.

G. Multispeed Motors: Separate winding for each speed.

H. Rotor: Random-wound, squirrel cage.

I. Bearings: Regreasable, shielded, antifriction ball bearings suitable for radial and thrust loading.

J. Temperature Rise: Match insulation rating.

K. Insulation: Class F.

L. Code Letter Designation:
 1. Motors 15HP and Larger: NEMA starting Code F or Code G.
 2. Motors Smaller than 15HP: Manufacturer's standard starting characteristic.

M. Enclosure Material: Cast iron for motor frame sizes 324T and larger; rolled steel for motor frame sizes smaller than 324T.

2.4 POLYPHASE MOTORS WITH ADDITIONAL REQUIREMENTS

A. Motors Used with Reduced-Voltage and Multispeed Controllers: Match wiring connection requirements for controller with required motor leads. Provide terminals in motor terminal box, suited to control method.

B. Motors Used with Variable Frequency Controllers: Ratings, characteristics, and features coordinated with and approved by controller manufacturer.

 1. Windings: Copper magnet wire with moisture-resistant insulation varnish, designed and tested to resist transient spikes, high frequencies, and short time rise pulses produced by pulse-width modulated inverters.
2. Energy- and Premium-Efficient Motors: Class B temperature rise; Class F insulation.
3. Inverter-Duty Motors: Class F temperature rise; Class H insulation.
4. Thermal Protection: Comply with NEMA MG 1 requirements for thermally protected motors.

C. Severe-Duty Motors: Comply with IEEE 841, with 1.15 minimum service factor.

2.5 ELECTRONICALLY COMMUTATED MOTORS

A. The fan motor shall be an ECM variable speed ball bearing type motor. The ECM fan motor shall provide soft starting, maintain constant flow rate over its static operating range and provide airflow adjustment on its control board. The fan motor shall be isolated from the housing by rubber grommets. The motor shall be permanently lubricated and have thermal overload protection.

2.6 SINGLE-PHASE MOTORS

A. Motors larger than 1/20 hp shall be one of the following, to suit starting torque and requirements of specific motor application:
 1. Permanent-split capacitor.
 2. Split phase.
 3. Capacitor start, inductor run.
 4. Capacitor start, capacitor run.

B. Multispeed Motors: Variable-torque, permanent-split-capacitor type.

C. Bearings: Pre-lubricated, antifriction ball bearings or sleeve bearings suitable for radial and thrust loading.

D. Motors 1/20 HP and Smaller: Shaded-pole type.

E. Thermal Protection: Internal protection to automatically open power supply circuit to motor when winding temperature exceeds a safe value calibrated to temperature rating of motor insulation. Thermal-protection device shall automatically reset when motor temperature returns to normal range.

PART 3 - EXECUTION (Not Applicable)

END OF SECTION
THIS PAGE INTENTIONALLY LEFT BLANK
SECTION 230593

TESTING, ADJUSTING, AND BALANCING FOR MECHANICAL

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

B. Related Sections include the following:

1. Section 233113 – Ducts
2. Section 233300 – Duct Accessories
3. Section 233423 – HVAC Power Ventilators
4. Section 233600 – Air Terminal Units
5. Section 233713 – Diffusers, Registers and Grilles
6. Section 235216 – Condensing Boilers
7. Section 237416 – Rooftop Air-Handling Units
8. Section 238129 – Split System Air Conditioners

1.2 SUMMARY

A. Section Includes:

1. Balancing Air Systems:
 a. Constant-volume air systems.
 b. Variable-volume air systems
 c. Split System Air Conditioners

B. The TAB Contractor shall work closely with the Commissioning Authority (Section 230800 – HVAC Commissioning Requirements) and the BAS Contractor (230950 thru 230958) to provide an operable system in accordance with the Contract Documents and the Design Intent of the project.

1.3 DEFINITIONS

B. TAB: Testing, adjusting, and balancing.

C. TABB: Testing, Adjusting, and Balancing Bureau.

D. TAB Specialist: An entity engaged to perform TAB Work.
1.4 SUBMITTALS

A. Qualification Data: Within 30 days of Contractor's Notice to Proceed, submit documentation that the TAB contractor and this Project's TAB team members meet the qualifications specified in "Quality Assurance" Article.

C. Strategies and Procedures Plan: Within 60 days of Contractor's Notice to Proceed, submit TAB strategies and step-by-step procedures as specified in "Preparation" Article. The plan shall also include the following:

2. The TAB plan.
3. Coordination and cooperation of trades and subcontractors.
4. Coordination of documentation and communication flow.

D. Certified TAB reports.

E. Sample report forms.

F. Instrument calibration reports, to include the following:

1. Instrument type and make.
2. Serial number.
3. Application.
4. Dates of use.
5. Dates of calibration.

1.5 QUALITY ASSURANCE

A. TAB Contractor Qualifications: Engage a TAB entity certified by AABC.

B. NEBB qualifications or other certification agencies for TAB will not be accepted.

1. TAB Field Supervisor: Employee of the TAB contractor and certified by AABC.

C. Certify TAB field data reports and perform the following:

1. Review field data reports to validate accuracy of data and to prepare certified TAB reports.
2. Certify that the TAB team complied with the approved TAB plan and the procedures specified and referenced in this Specification.

E. Instrumentation Type, Quantity, Accuracy, and Calibration: As described in ASHRAE 111, Section 5, "Instrumentation."

F. Phased TAB Conferences: Meet with Commissioning Authority and Owner's construction management and engineering design representatives on approval of TAB strategies and procedures plan to develop a mutual understanding of the details. Ensure the participation of TAB team members, equipment manufacturers' authorized service representatives, HVAC controls installers, and other support personnel. Provide seven days' advance notice of scheduled meeting time and location.

 1. Agenda Items: Include at least the following:

 a. Submittal distribution requirements.
 c. TAB plan.
 d. Work schedule and Project-site access requirements.
 e. Coordination and cooperation of trades and subcontractors.
 f. Coordination of documentation and communication flow.

G. Certification of TAB Reports: Certify TAB field data reports. This certification includes the following:

 1. Review field data reports to validate accuracy of data and to prepare certified TAB reports.
 2. Certify that TAB team complied with approved TAB plan and the procedures specified and referenced in this Specification.

1.6 PROJECT CONDITIONS

 A. Partial Owner Occupancy: Owner may occupy completed areas of building before Substantial Completion. Cooperate with Owner during TAB operations to minimize conflicts with Owner's operations.

1.7 COORDINATION

 A. Notice: Provide seven days' advance notice for each test. Include scheduled test dates and times.

1.8 PERFORM TAB AFTER LEAKAGE AND PRESSURE TESTS ON AIR DISTRIBUTION SYSTEMS HAVE BEEN SATISFACTORILY COMPLETED.

PART 2 - PRODUCTS (Not Applicable)
PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine the Contract Documents to become familiar with Project requirements and to discover conditions in systems' designs that may preclude proper TAB of systems and equipment.

B. Examine systems for installed balancing devices, such as test ports, gage cocks, thermometer wells, flow-control devices, balancing valves and fittings, and manual volume dampers. Verify that locations of these balancing devices are accessible.

C. Examine the approved submittals for HVAC systems and equipment.

D. Examine design data including HVAC system descriptions, statements of design assumptions for environmental conditions and systems' output, and statements of philosophies and assumptions about HVAC system and equipment controls.

E. Examine ceiling plenums used for supply, return, or relief air to verify that they meet the leakage class of connected ducts as specified in Division 233113 Section "Ducts" and are properly separated from adjacent areas. Verify that penetrations in plenum walls are sealed and fire-stopped if required.

F. Examine equipment performance data including fan and pump curves.

 1. Relate performance data to Project conditions and requirements, including system effects that can create undesired or unpredicted conditions that cause reduced capacities in all or part of a system.

 2. Calculate system-effect factors to reduce performance ratings of HVAC equipment when installed under conditions different from the conditions used to rate equipment performance. To calculate system effects for air systems, use tables and charts found in AMCA 201, "Fans and Systems," or in SMACNA's "HVAC Systems - Duct Design." Compare results with the design data and installed conditions.

G. Examine system and equipment installations and verify that field quality-control testing, cleaning, and adjusting specified in individual Sections have been performed.

H. Examine test reports specified in individual system and equipment Sections.

I. Examine HVAC equipment and filters and verify that bearings are greased, belts are aligned and tight, and equipment with functioning controls is ready for operation.

J. Examine strainers. Verify that startup screens are replaced by permanent screens with indicated perforations.

K. Examine control valves for proper installation for their intended function of diverting or mixing fluid flows as well as proper flow direction.
L. Examine heat-transfer coils for correct piping connections and for clean and straight fins.
M. Examine system pumps to ensure absence of entrained air in the suction piping.
N. Examine operating safety interlocks and controls on HVAC equipment.
O. Report deficiencies discovered before and during performance of TAB procedures. Observe and record system reactions to changes in conditions. Record default set points if different from indicated values.

3.2 PREPARATION

A. Prepare a TAB plan that includes strategies and step-by-step procedures.
B. Complete system-readiness checks and prepare reports. Verify the following:
 1. Permanent electrical-power wiring is complete.
 2. Hydronic systems are filled, clean, and free of air.
 3. Automatic temperature-control systems are operational.
 4. Equipment and duct access doors are securely closed.
 5. Balance and fire dampers are open.
 6. Isolating and balancing valves are open and control valves are operational.
 7. Ceilings are installed in critical areas where air-pattern adjustments are required and access to balancing devices is provided.
 8. Windows and doors can be closed so indicated conditions for system operations can be met.

3.3 GENERAL PROCEDURES FOR TESTING AND BALANCING

A. Perform testing and balancing procedures on each system according to the procedures contained in AABC's "National Standards for Total System Balance and in this Section.
B. Cut insulation, ducts, pipes, and equipment cabinets for installation of test probes to the minimum extent necessary for TAB procedures.
 1. After testing and balancing, patch probe holes in ducts with same material and thickness as used to construct ducts.
 2. After testing and balancing, install test ports and duct access doors that comply with requirements in Division 233000 Section "Duct Accessories."
 3. Install and join new insulation that matches removed materials. Restore insulation, coverings, vapor barrier, and finish according to Division 23 Section "HVAC Insulation."
C. Mark equipment and balancing devices, including damper-control positions, valve position indicators, fan-speed-control levers, and similar controls and devices, with paint or other suitable, permanent identification material to show final settings.
D. Take and report testing and balancing measurements in inch-pound (IP) units.

3.4 GENERAL PROCEDURES FOR BALANCING AIR SYSTEMS

A. Prepare test reports for both fans and outlets. Obtain manufacturer’s outlet factors and recommended testing procedures. Crosscheck the summation of required outlet volumes with required fan volumes.

B. Prepare schematic diagrams of systems' "as-built" duct layouts.

C. For variable-air volume systems, develop a plan to simulate diversity.

D. Determine the best locations in main and branch ducts for accurate duct-airflow measurements.

E. Check airflow patterns from the outdoor-air louvers and dampers and the return- and exhaust-air dampers through the supply-fan discharge and mixing dampers.

F. Locate start-stop and disconnect switches, electrical interlocks, and motor starters.

G. Verify that motor starters are equipped with properly sized thermal protection.

H. Check dampers for proper position to achieve desired airflow path.

I. Check for airflow blockages.

J. Check condensate drains for proper connections and functioning.

K. Check for proper sealing of air-handling-unit components.

L. Verify that air duct system is sealed as specified in Division 233113 Section "Ducts."

3.5 PROCEDURES FOR CONSTANT-VOLUME AND VARIABLE-VOLUME AIR SYSTEMS

A. Adjust fans to deliver total indicated airflows within the maximum allowable fan speed listed by fan manufacturer.

1. Measure fan static pressures to determine actual static pressure as follows:

 a. Measure outlet static pressure as far downstream from the fan as practicable and upstream from restrictions in ducts such as elbows and transitions.

 b. Measure static pressure directly at the fan outlet or through the flexible connection.

 c. Measure inlet static pressure of single-inlet fans in the inlet duct as near the fan as possible, upstream from flexible connection and downstream from duct restrictions.
d. Measure inlet static pressure of double-inlet fans through the wall of the plenum that houses the fan.

2. For systems requiring fan sheave adjustment, the TAB Contractor shall provide appropriate fan sheave to match actual requirements of the system to meet either airflow or noise requirements of the space.

3. Measure an adjust airflow and variable air terminal box and establish flow between VAV box and BAS system.

4. Measure static pressure across each component that makes up an air-handling unit, and other air-handling and -treating equipment.

 a. Simulate dirty filter operation and record the point at which maintenance personnel must change filters.

5. Measure static pressures entering and leaving other devices such as sound traps, under final balanced conditions.

6. Compare design data with installed conditions to determine variations in design static pressures versus actual static pressures. Compare actual system effect factors with calculated system effect factors to identify where variations occur. Recommend corrective action to align design and actual conditions.

7. Obtain approval from Architect for adjustment of fan speed higher or lower than indicated speed. Make required adjustments to pulley sizes, motor sizes, and electrical connections to accommodate fan-speed changes.

8. Do not make fan-speed adjustments that result in motor overload. Consult equipment manufacturers about fan-speed safety factors. Modulate dampers and measure fan-motor amperage to ensure that no overload will occur. Measure amperage in full cooling, full heating, economizer, and any other operating modes to determine the maximum required brake horsepower.

B. Adjust volume dampers for main duct, submain ducts, and major branch ducts to indicated airflows within specified tolerances.

 1. Measure static pressure at a point downstream from the balancing damper and adjust volume dampers until the proper static pressure is achieved.

 a. Where sufficient space in submain and branch ducts is unavailable for Pitot-tube traverse measurements, measure airflow at terminal outlets and inlets and calculate the total airflow for that zone.

 2. Remeasure each submain and branch duct after all have been adjusted. Continue to adjust submain and branch ducts to indicated airflows within specified tolerances.

C. Measure terminal outlets and inlets without making adjustments.

 1. Measure terminal outlets using a direct-reading hood or outlet manufacturer's written instructions and calculating factors.
D. Adjust terminal outlets and inlets for each space to indicated airflows within specified tolerances of indicated values. Make adjustments using volume dampers rather than extractors and the dampers at air terminals.

1. Adjust each outlet in same room or space to within specified tolerances of indicated quantities without generating noise levels above the limitations prescribed by the Contract Documents.
2. Adjust patterns of adjustable outlets for proper distribution without drafts.

3.6 PROCEDURES FOR VARIABLE FLOW HYDRONIC SYSTEMS

A. Measure water flow at pumps. Use the following procedures, except for positive-displacement pumps:

1. Verify impeller size by operating the pump with the discharge valve closed. Read pressure differential across the pump. Convert pressure to head and correct for differences in gage heights. Note the point on manufacturer's pump curve at zero flow and verify that the pump has the intended impeller size.
2. Check system resistance. With all valves open, read pressure differential across the pump and mark pump manufacturer's head-capacity curve. Adjust pump discharge valve until indicated water flow is achieved.
3. Verify pump-motor brake horsepower. Calculate the intended brake horsepower for the system based on pump manufacturer's performance data. Compare calculated brake horsepower with nameplate data on the pump motor. Report conditions where actual amperage exceeds motor nameplate amperage.
4. Report flow rates that are not within plus or minus 5 percent of design.

B. Set calibrated balancing valves, if installed, at calculated presettings.

C. Measure flow at all stations and adjust, where necessary, to obtain first balance.

1. System components that have Cv rating or an accurately cataloged flow-pressure-drop relationship may be used as a flow-indicating device.

D. Measure flow at main balancing station and set main balancing device to achieve flow that is 5 percent greater than indicated flow.

E. Adjust balancing stations to within specified tolerances of indicated flow rate as follows:

1. Determine the balancing station with the highest percentage over indicated flow.
2. Adjust each station in turn, beginning with the station with the highest percentage over indicated flow and proceeding to the station with the lowest percentage over indicated flow.
3. Record settings and mark balancing devices.

F. Measure pump flow rate and make final measurements of pump amperage, voltage, rpm, pump heads, and systems' pressures and temperatures including outdoor-air temperature.
G. Balance systems with automatic two- and three-way control valves by setting systems at maximum flow through heat-exchange terminals and proceed as specified above for hydronic systems.

3.7 PROCEDURES FOR MOTORS

A. Motors: Test at final balanced conditions and record the following data:

1. Manufacturer's name, model number, and serial number.
4. Efficiency rating.
5. Nameplate and measured voltage, each phase.
6. Nameplate and measured amperage, each phase.
7. Starter thermal-protection-element rating.

3.8 PROCEDURES FOR VARIABLE REFRIGERANT FLOW SYSTEMS

A. Measure air flow rate at each terminal unit with the unit at the high fan speed setting.
B. Measure entering- and leaving-air temperatures at each terminal unit.
C. Record compressor data for compressorized units.

3.9 TOLERANCES

A. Set HVAC system's air flow rates and water flow rates within the following tolerances:

1. Supply, Return, and Exhaust Fans and Equipment with Fans: Plus or minus 10 percent.
2. Air Outlets and Inlets: Plus or minus 10 percent.

3.10 REPORTING

A. Initial Construction-Phase Report: Based on examination of the Contract Documents as specified in "Examination" Article, prepare a report on the adequacy of design for systems' balancing devices. Recommend changes and additions to systems' balancing devices to facilitate proper performance measuring and balancing. Recommend changes and additions to HVAC systems and general construction to allow access for performance measuring and balancing devices.

3.11 PRELIMINARY REPORT

A. A Preliminary hand-written copy of the field balancing shall be provided to the Owner within 2-business days of the field testing.

B. The preliminary report shall provide, as a minimum, the technical test results of the field testing and balancing.
3.12 FINAL REPORT

A. General: Prepare a certified written report; tabulate and divide the report into separate sections for tested systems and balanced systems.
 1. Include a certification sheet at the front of the report's binder, signed and sealed by the certified testing and balancing engineer.
 2. Include a list of instruments used for procedures, along with proof of calibration.

B. Final Report Contents: In addition to certified field-report data, include the following:
 1. Pump curves.
 2. Fan curves.
 3. Manufacturers' test data.
 4. Field test reports prepared by system and equipment installers.
 5. Other information relative to equipment performance; do not include Shop Drawings and product data.

C. General Report Data: In addition to form titles and entries, include the following data:
 1. Title page.
 2. Name and address of the TAB contractor.
 3. Project name.
 4. Project location.
 5. Architect's name and address.
 6. Contractor's name and address.
 7. Report date.
 8. Signature of TAB supervisor who certifies the report.
 9. Table of Contents with the total number of pages defined for each section of the report. Number each page in the report.
 10. Summary of contents including the following:
 a. Indicated versus final performance.
 b. Notable characteristics of systems.
 c. Description of system operation sequence if it varies from the Contract Documents.
 11. Nomenclature sheets for each item of equipment.
 12. Data for terminal units, including manufacturer's name, type, size, and fittings.
 13. Notes to explain why certain final data in the body of reports vary from indicated values.
 14. Test conditions for fans and pump performance forms including the following:
 a. Settings for outdoor-, return-, and exhaust-air dampers.
 b. Conditions of filters.
 c. Fan drive settings including settings and percentage of maximum pitch diameter.
 d. Other system operating conditions that affect performance.
D. System Diagrams: Include schematic layouts of air distribution systems. Present each system with single-line diagram and include the following:

1. Quantities of outdoor, supply, return, and exhaust airflows.
2. Duct, outlet, and inlet sizes.

E. Rooftop Conditioning Unit (RTU) Test Reports: include the following:

1. Unit Data:
 a. Unit identification.
 b. Location.
 c. Make and type.
 d. Model number and unit size.
 e. Manufacturer's serial number.
 f. Unit arrangement and class.
 g. Discharge arrangement.
 h. Sheave make, size in inches, and bore.
 i. Center-to-center dimensions of sheave, and amount of adjustments in inches.
 j. Number, make, and size of belts.
 k. Number, type, and size of filters.

2. Motor Data:
 a. Motor make, and frame type and size.
 b. Horsepower and rpm.
 c. Volts, phase, and hertz.
 d. Full-load amperage and service factor.
 e. Sheave make, size in inches, and bore.
 f. Center-to-center dimensions of sheave, and amount of adjustments in inches.

3. Test Data (Indicated and Actual Values):
 a. Total air flow rate in cfm.
 b. Total system static pressure in inches wg.
 c. Fan rpm.
 d. Discharge static pressure in inches wg.
 e. Filter static-pressure differential in inches wg.
 f. Air-coil static-pressure differential in inches wg.
 g. Outdoor airflow in cfm.
 h. Return airflow in cfm.
 i. Outdoor-air damper position.
 j. Return-air damper position.

F. Gas-Fired Heat Apparatus Test Reports: In addition to manufacturer's factory startup equipment reports, include the following:
1. Unit Data:
 a. System identification.
 b. Location.
 c. Make and type.
 d. Model number and unit size.
 e. Manufacturer's serial number.
 f. Fuel type in input data.
 g. Output capacity in Btu/h.
 h. Ignition type.
 i. Burner-control types.
 j. Motor horsepower and rpm.
 k. Motor volts, phase, and hertz.
 l. Motor full-load amperage and service factor.
 m. Sheave make, size in inches, and bore.
 n. Center-to-center dimensions of sheave, and amount of adjustments in inches.

2. Test Data (Indicated and Actual Values):
 a. Total air flow rate in cfm.
 b. Entering-air temperature in deg F.
 c. Leaving-air temperature in deg F.
 d. Air temperature differential in deg F.
 e. Entering-air static pressure in inches wg.
 f. Leaving-air static pressure in inches wg.
 g. Air static-pressure differential in inches wg.
 h. Low-fire fuel input in Btu/h.
 i. High-fire fuel input in Btu/h.
 j. Manifold pressure in psig.
 k. High-temperature-limit setting in deg F.
 l. Operating set point in Btu/h.
 m. Motor voltage at each connection.
 n. Motor amperage for each phase.

G. Fan Test Reports: For supply, return, and exhaust fans, include the following:

1. Fan Data:
 a. System identification.
 b. Location.
 c. Make and type.
 d. Model number and size.
 e. Manufacturer's serial number.
 f. Arrangement and class.
 g. Sheave make, size in inches, and bore.
 h. Center-to-center dimensions of sheave, and amount of adjustments in inches.
2. **Motor Data:**
 a. Motor make, and frame type and size.
 b. Horsepower and rpm.
 c. Volts, phase, and hertz.
 d. Full-load amperage and service factor.
 e. Sheave make, size in inches, and bore.
 f. Center-to-center dimensions of sheave, and amount of adjustments in inches.
 g. Number, make, and size of belts.

3. **Test Data (Indicated and Actual Values):**
 a. Total airflow rate in cfm.
 b. Total system static pressure in inches wg.
 c. Fan rpm.
 d. Discharge static pressure in inches wg.
 e. Suction static pressure in inches wg.

H. **Duct Traverse Reports:** Include a diagram with a grid representing the duct cross-section and record the following:

1. **Report Data:**
 a. System and air-handling unit number.
 b. Location and zone.
 c. Traverse air temperature in deg F (deg C).
 d. Duct static pressure in inches wg (Pa).
 e. Duct size in inches (mm).
 f. Duct area in sq. ft. (sq. m).
 g. Indicated airflow rate in cfm (L/s).
 h. Indicated velocity in fpm (m/s).
 i. Actual airflow rate in cfm (L/s).
 j. Actual average velocity in fpm (m/s).
 k. Barometric pressure in psig (Pa).

I. **Air-Terminal-Device Reports:**

1. **Unit Data:**
 a. System and air-handling unit identification.
 b. Location and zone.
 c. Test apparatus used.
 d. Area served.
 e. Air-terminal-device make.
 f. Air-terminal-device number from system diagram.
 g. Air-terminal-device type and model number.
 h. Air-terminal-device size.
 i. Air-terminal-device effective area in sq. ft. (sq. m).
2. Test Data (Indicated and Actual Values):

a. Airflow rate in cfm (L/s).
b. Air velocity in fpm (m/s).
c. Preliminary airflow rate as needed in cfm (L/s).
d. Preliminary velocity as needed in fpm (m/s).
e. Final airflow rate in cfm (L/s).
f. Final velocity in fpm (m/s).
g. Space temperature in deg F (deg C).

J. System-Coil Reports: For reheat coils of terminal units, include the following:

1. Unit Data:

a. System and air-handling unit identification.
b. Location and zone.
c. Room or riser served.
d. Coil make and size.
e. Flowmeter type.

2. Test Data (Indicated and Actual Values):

a. Airflow rate in cfm (L/s).
b. Entering-water temperature in deg F (deg C).
c. Leaving-water temperature in deg F (deg C).
d. Water pressure drop in feet of head or psig (kPa).
e. Entering-air temperature in deg F (deg C).
f. Leaving-air temperature in deg F (deg C).

K. Instrument Calibration Reports:

1. Report Data:

a. Instrument type and make.
b. Serial number.
c. Application.
d. Dates of use.
e. Dates of calibration.

3.13 CONDITIONAL ACCEPTANCE INSPECTION

A. After testing and balancing are complete, operate each system. The test and balance engineer, in the presence of the Commissioning Authority shall randomly check measurements to verify that the system is operating according to the final test and balance readings documented in the Final Report.

1. Randomly check the following for each system, in locations as identified by the Commissioning Authority:
a. Measure airflow and temperature at 10 air terminals per floor.
b. Measure discharge air temperature at 25 percent of coils.
c. Measure duct air temperature at 25 percent of duct temperature sensor locations.
d. Measure supply fan discharge airflow from RTU’s and DOAS.
e. Measure duct static pressure and air flow at 25 percent of duct static pressure sensor locations.

B. If the rechecks yield measurements that differ from the measurements documented in the final report by more than the tolerances allowed, the measurements shall be noted as "FAILED."

C. If the number of "FAILED" measurements is greater than 10 percent of the total measurements checked during the final inspection, the testing and balancing shall be considered incomplete and shall be rejected.

D. TAB firm shall recheck all measurements and make adjustments. Revise the final report and balancing device settings to include all changes and resubmit the final report.

E. Request a second inspection. If the second inspection also fails, Owner shall contract the services of another TAB firm to complete the testing and balancing in accordance with the Contract Documents and deduct the cost of the services from the final payment.

END OF SECTION
SECTION 230719
MECHANICAL INSULATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes insulating the following systems and equipment:
 1. Heating Water Piping
 2. Refrigerant piping.
 3. Condensate piping, indoors.
 4. Ductwork.
 5. Insulation Jacket.

B. This Section includes the following:
 1. Insulation Materials:
 a. Flexible elastomeric.
 b. Mineral fiber.
 2. Insulating cements.
 3. Adhesives.
 5. Lagging adhesives.
 7. Factory-applied jackets.
 8. Field-applied jackets.
 10. Securements.
 11. Corner angles.

C. Related Sections include the following
 1. Division 23 Section "Metal Ducts" for duct liners.

1.3 DEFINITIONS

A. ASJ: All-service jacket.
B. FSK: Foil, scrim, kraft paper.

C. FSP: Foil, scrim, polyethylene.

D. PVDC: Polyvinylidene chloride.

E. SSL: Self-sealing lap.

1.4 SUBMITTALS

A. Product Data: For each type of product indicated, identify thermal conductivity, thickness, and jackets (both factory and field applied, if any).

B. Shop Drawings: Show details for the following:
 1. Application of protective shields, saddles, and inserts at hangers for each type of insulation and hanger.
 2. Insulation application at pipe expansion joints for each type of insulation.
 3. Insulation application at elbows, fittings, flanges, valves, and specialties for each type of insulation.
 4. Removable insulation at piping specialties, equipment connections, and access panels.
 5. Application of field-applied jackets.
 6. Application at linkages of control devices.
 7. Field application for each equipment type.

C. Installer Certificates: Signed by Contractor certifying that installers comply with requirements.

D. Material Test Reports: From a qualified testing agency acceptable to authorities having jurisdiction indicating, interpreting, and certifying test results for compliance of insulation materials, sealers, attachments, cements, and jackets, with requirements indicated. Include dates of tests and test methods employed.

E. Field quality-control reports

1.5 QUALITY ASSURANCE

A. Fire-Test-Response Characteristics: Insulation and related materials shall have fire-test-response characteristics indicated, as determined by testing identical products per ASTM E 84, by a testing and inspecting agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, and cement material containers, with appropriate markings of applicable testing and inspecting agency.

 1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.
1.6 DELIVERY, STORAGE, AND HANDLING

A. Packaging: Insulation material containers shall be marked by manufacturer with appropriate ASTM standard designation, type and grade, and maximum use temperature.

1.7 COORDINATION

A. Coordinate size and location of supports, hangers, and insulation shields specified in Division 23 Section "Hangers and Supports."

B. Coordinate clearance requirements with piping Installer for piping insulation application, duct Installer for duct insulation application, and equipment Installer for equipment insulation application. Before preparing piping and ductwork Shop Drawings, establish and maintain clearance requirements for installation of insulation and field-applied jackets and finishes and for space required for maintenance.

1.8 SCHEDULING

A. Schedule insulation application after pressure testing systems. Insulation application may begin on segments that have satisfactory test results.

B. Complete installation and concealment of plastic materials as rapidly as possible in each area of construction.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the manufacturers specified.

2.2 INSULATION MATERIALS

A. Refer to Part 3 schedule articles for requirements about where insulating materials shall be applied.

B. Products shall not contain asbestos, lead, mercury, or mercury compounds.

C. Products that come in contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested according to ASTM C 871.

D. Insulation materials for use on austenitic stainless steel shall be qualified as acceptable according to ASTM C 795.
E. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process.

F. Flexible Elastomeric: Closed-cell, sponge- or expanded-rubber materials. Comply with ASTM C 534, Type I for tubular materials and Type II for sheet materials.

1. Products:
 a. Aeroflex USA Inc.; Aerocel.
 b. Armacell LLC; AP Armaflex.
 c. RBX Corporation; Insul-Sheet 1800 and Insul-Tube 180.

G. Mineral-Fiber, Preformed Pipe Insulation:

1. Products:
 a. Johns Manville; Micro-Lok.
 b. Knauf Insulation; 1000 Pipe Insulation.
 c. Owens Corning; Fiberglas Pipe Insulation

2. Type I, 850 deg F (454 deg C) Materials: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 547, Type I, Grade A, with factory-applied ASJ-SSL. Factory-applied jacket requirements are specified in Part 2 "Factory-Applied Jackets" Article.

H. Mineral-Fiber, Pipe, Round Duct and Tank Insulation: Mineral or glass fibers bonded with a thermosetting resin. Semi rigid board material with factory-applied ASJ complying with ASTM C 1393, Type II or Type IIIA Category 2, or with properties similar to ASTM C 612, Type IB. Nominal density is 2.5 lb/cu. ft. (40 kg/cu. m) or more. Thermal conductivity (k-value) at 100 deg F (55 deg C) is 0.29 Btu x in./h x sq. ft. x deg F (0.042 W/m x K) or less. Factory-applied jacket requirements are specified in Part 2 "Factory-Applied Jackets" Article.

1. Products:
 a. CertainTeed Corp.; CrimpWrap.
 b. Johns Manville; MicroFlex.
 c. Knauf Insulation; Pipe and Tank Insulation.
 d. Owens Corning; Fiberglas Pipe and Tank Insulation.

2.3 INSULATING CEMENTS

1. Available Products:
 a. Insulco, Division of MFS, Inc.; Triple I.
B. Mineral-Fiber, Hydraulic-Setting Insulating and Finishing Cement: Comply with ASTM C 449/C 449M.
 1. Products:
 a. Insulco, Division of MFS, Inc.; SmoothKote.
 c. Rock Wool Manufacturing Company; Delta One Shot.

2.4 ADHESIVES
 A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated, unless otherwise indicated.
 B. For indoor applications, use adhesive that has a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 C. Use adhesive that complies with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers," including 2004 Addenda.
 D. Flexible Elastomeric Adhesive: Comply with MIL-A-24179A, Type II, Class I.
 1. Products:
 a. Aeroflex USA Inc.; Aeros;eal.
 b. Armacell LCC; 520 Adhesive.
 c. Foster Products Corporation, H. B. Fuller Company; 85-75.
 d. RBX Corporation; Rubatex Contact Adhesive.
 E. Mineral-Fiber Adhesive: Comply with MIL-A-3316C, Class 2, Grade A.
 1. Products:
 a. Childers Products, Division of ITW; CP-82.
 c. Marathon Industries, Inc.; 225.
 d. Mon-Eco Industries, Inc.; 22-25.
 F. ASJ Adhesive, and FSK and PVDC Jacket Adhesive: Comply with MIL-A-3316C, Class 2, Grade A for bonding insulation jacket lap seams and joints.
 1. Products:
 a. Childers Products, Division of ITW; CP-82.
 c. Marathon Industries, Inc.; 225.
 d. Mon-Eco Industries, Inc.; 22-25.
2.5 MASTICS

A. Materials shall be compatible with insulation materials, jackets, and substrates; comply with MIL-C-19565C, Type II.
 1. For indoor applications, use mastics that have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

B. Vapor-Barrier Mastic: Solvent based; suitable for indoor use on below ambient services.
 1. Products:
 a. Childers Products, Division of ITW; CP-30.
 b. Foster Products Corporation, H. B. Fuller Company; 30-35.
 d. Mon-Eco Industries, Inc.; 55-10.
 2. Water-Vapor Permeance: ASTM F 1249, 0.05 perm (0.03 metric perm) at 35-mil (0.9-mm) dry film thickness.
 3. Service Temperature Range: 0 to 180 deg F (Minus 18 to plus 82 deg C).

C. Breather Mastic: Water based; suitable for indoor and outdoor use on above ambient services.
 1. Products:
 a. Childers Products, Division of ITW; CP-10.
 b. Foster Products Corporation, H. B. Fuller Company; 35-00.
 2. Water-Vapor Permeance: ASTM F 1249, 3 perms (2 metric perms) at 0.0625-inch (1.6-mm) dry film thickness.
 3. Service Temperature Range: Minus 20 to plus 200 deg F (Minus 29 to plus 93 deg C).
 4. Solids Content: 63 percent by volume and 73 percent by weight.

2.6 LAGGING ADHESIVES

A. Description: Comply with MIL-A-3316C Class I, Grade A and shall be compatible with insulation materials, jackets, and substrates.
 1. Products:
 a. Childers Products, Division of ITW; CP-52.
 b. Foster Products Corporation, H. B. Fuller Company; 81-42.
c. Marathon Industries, Inc.; 130.
d. Mon-Eco Industries, Inc.; 11-30.

2. Fire-resistant, water-based lagging adhesive and coating for use indoors to adhere fire-resistant lagging cloths over duct, equipment, and pipe insulation.
3. Service Temperature Range: Minus 50 to plus 180 deg F (Minus 46 to plus 82 deg C).

2.7 SEALANTS

A. Joint Sealants:

1. Joint Sealants for Polystyrene Products:
 a. Childers Products, Division of ITW; CP-70.
 c. Marathon Industries, Inc.; 405.
 d. Mon-Eco Industries, Inc.; 44-05.

2. Materials shall be compatible with insulation materials, jackets, and substrates.
3. Permanently flexible, elastomeric sealant.
4. Service Temperature Range: Minus 100 to plus 300 deg F (Minus 73 to plus 149 deg C).
5. Color: White or gray.

B. FSK and Metal Jacket Flashing Sealants:

1. Products:
 a. Childers Products, Division of ITW; CP-76-8.
 b. Foster Products Corporation, H. B. Fuller Company; 95-44.
 c. Marathon Industries, Inc.; 405.
 d. Mon-Eco Industries, Inc.; 44-05.

2. Materials shall be compatible with insulation materials, jackets, and substrates.
3. Fire- and water-resistant, flexible, elastomeric sealant.
4. Service Temperature Range: Minus 40 to plus 250 deg F (Minus 40 to plus 121 deg C).
5. Color: Aluminum.

2.8 FACTORY-APPLIED JACKETS

A. Insulation system schedules indicate factory-applied jackets on various applications. When factory-applied jackets are indicated, comply with the following:

1. ASJ: White, kraft-paper, fiberglass-reinforced scrim with aluminum-foil backing; complying with ASTM C 1136, Type I.
2. ASJ-SSL: ASJ with self-sealing, pressure-sensitive, acrylic-based adhesive covered by a removable protective strip; complying with ASTM C 1136, Type I.
3. FSK Jacket: Aluminum-foil, fiberglass-reinforced scrim with kraft-paper backing; complying with ASTM C 1136, Type II.
4. FSP Jacket: Aluminum-foil, fiberglass-reinforced scrim with polyethylene backing; complying with ASTM C 1136, Type II.
5. Vinyl Jacket: UL-rated white vinyl with a permeance of 1.3 perms (0.86 metric perms) when tested according to ASTM E 96, Procedure A, and complying with NFPA 90A and NFPA 90B.

2.9 FIELD-APPLIED JACKETS

A. Field-applied jackets shall comply with ASTM C 921, Type I, unless otherwise indicated.

B. PVC Jacket: High-impact-resistant, UV-resistant PVC complying with ASTM D 1784, Class 16354-C; thickness as scheduled; roll stock ready for shop or field cutting and forming. Thickness is indicated in field-applied jacket schedules.

1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 a. Johns Manville; Zeston.
 b. Speedline Corporation; SmokeSafe.

2. Adhesive: As recommended by jacket material manufacturer.

3. Color: Custom Color as selected by the Architect

4. Factory-fabricated fitting covers to match jacket if available; otherwise, field fabricate.
 a. Shapes: 45- and 90-degree, short- and long-radius elbows, tees, valves, flanges, unions, reducers, end caps, soil-pipe hubs, traps, mechanical joints, and P-trap and supply covers for lavatories.

C. Metal Jacket:

1. Products:
 a. Childers Products, Division of ITW; Metal Jacketing Systems.
 b. PABCO Metals Corporation; Surefit.
 c. RPR Products, Inc.; Insul-Mate.
 e. Factory cut and rolled to size.
 f. Finish and thickness are indicated in field-applied jacket schedules.
 g. Moisture Barrier for Indoor Applications: 1-mil- (0.025-mm-) thick, heat-bonded polyethylene and kraft paper.
 h. Moisture Barrier for Outdoor Applications: 3-mil- (0.075-mm-) thick, heat-bonded polyethylene and kraft paper.
 i. Factory-Fabricated Fitting Covers:
1) Same material, finish, and thickness as jacket.
2) Preformed 2-piece or gore, 45- and 90-degree, short- and long-radius elbows.
3) Tee covers.
4) Flange and union covers.
5) End caps.
6) Beveled collars.
7) Valve covers.
8) Field fabricate fitting covers only if factory-fabricated fitting covers are not available.

2.10 TAPES

A. ASJ Tape: White vapor-retarder tape matching factory-applied jacket with acrylic adhesive, complying with ASTM C 1136 and UL listed.
 1. Available Products:
 a. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0835.
 b. Compac Corp.; 104 and 105.
 c. Ideal Tape Co., Inc., an American Biltrite Company; 428 AWF ASJ.
 d. Venture Tape; 1540 CW Plus, 1542 CW Plus, and 1542 CW Plus/SQ.
 2. Width: 3 inches (75 mm).
 3. Thickness: 11.5 mils (0.29 mm).
 4. Adhesion: 90 ounces force/inch (1.0 N/mm) in width.
 5. Elongation: 2 percent.
 6. Tensile Strength: 40 lbf/inch (7.2 N/mm) in width.
 7. ASJ Tape Disks and Squares: Precut disks or squares of ASJ tape.

B. FSK Tape: Foil-face, vapor-retarder tape matching factory-applied jacket with acrylic adhesive; complying with ASTM C 1136 and UL listed.
 1. Available Products:
 a. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0827.
 b. Compac Corp.; 110 and 111.
 c. Ideal Tape Co., Inc., an American Biltrite Company; 491 AWF FSK.
 d. Venture Tape; 1525 CW, 1528 CW, and 1528 CW/SQ.
 2. Width: 3 inches (75 mm).
 3. Thickness: 6.5 mils (0.16 mm).
 4. Adhesion: 90 ounces force/inch (1.0 N/mm) in width.
 5. Elongation: 2 percent.
 6. Tensile Strength: 40 lbf/inch (7.2 N/mm) in width.
 7. FSK Tape Disks and Squares: Precut disks or squares of FSK tape.

C. PVC Tape: White vapor-retarder tape matching field-applied PVC jacket with acrylic adhesive. Suitable for indoor and outdoor applications.
1. Available Products:
 a. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0555.
 b. Compac Corp.; 130.
 c. Ideal Tape Co., Inc., an American Biltrite Company; 370 White PVC tape.
 d. Venture Tape; 1506 CW NS.

2. Width: 2 inches (50 mm).
3. Thickness: 6 mils (0.15 mm).
4. Adhesion: 64 ounces force/inch (0.7 N/mm) in width.
5. Elongation: 500 percent.
6. Tensile Strength: 18 lbf/inch (3.3 N/mm) in width.

D. Aluminum-Foil Tape: Vapor-retarder tape with acrylic adhesive and UL listed.

1. Available Products:
 a. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0800.
 b. Compac Corp.; 120.
 c. Ideal Tape Co., Inc., an American Biltrite Company; 488 AWF.
 d. Venture Tape; 3520 CW.

2. Width: 2 inches (50 mm).
3. Thickness: 3.7 mils (0.093 mm).
4. Adhesion: 100 ounces force/inch (1.1 N/mm) in width.
5. Elongation: 5 percent.
6. Tensile Strength: 34 lbf/inch (6.2 N/mm) in width.

2.11 SECUREMENTS

A. Bands:

1. Available Products:
 a. Childers Products; Bands.
 b. PABCO Metals Corporation; Bands.
 c. RPR Products, Inc.; Bands.

2. Stainless Steel: ASTM A 167 or ASTM A 240/A 240M, Type 304 or Type 316; 0.015 inch (0.38 mm) thick, 3/4 inch (19 mm) wide with wing or closed seal.
3. Aluminum: ASTM B 209 (ASTM B 209M), Alloy 3003, 3005, 3105, or 5005; Temper H-14, 0.020 inch (0.51 mm) thick, 3/4 inch (19 mm) wide with wing or closed seal.

B. Insulation Pins and Hangers:
1. **Metal, Adhesively Attached, Perforated-Base Insulation Hangers:** Baseplate welded to projecting spindle that is capable of holding insulation, of thickness indicated, securely in position indicated when self-locking washer is in place. Comply with the following requirements:

 a. **Available Products:**
 1) AGM Industries, Inc.; Tactoo Insul-Hangers, Series T.
 2) GEMCO; Perforated Base.
 3) Midwest Fasteners, Inc.; Spindle.

 b. **Baseplate:** Perforated, galvanized carbon-steel sheet, 0.030 inch (0.76 mm) thick by 2 inches (50 mm) square.

 c. **Spindle:** Aluminum, fully annealed, 0.106-inch- (2.6-mm-) diameter shank, length to suit depth of insulation indicated.

 d. **Adhesive:** Recommended by hanger manufacturer. Product with demonstrated capability to bond insulation hanger securely to substrates indicated without damaging insulation, hangers, and substrates.

2. **Nonmetal, Adhesively Attached, Perforated-Base Insulation Hangers:** Baseplate fastened to projecting spindle that is capable of holding insulation, of thickness indicated, securely in position indicated when self-locking washer is in place. Comply with the following requirements:

 a. **Available Products:**
 1) GEMCO; Nylon Hangers.
 2) Midwest Fasteners, Inc.; Nylon Insulation Hangers.

 b. **Baseplate:** Perforated, nylon sheet, 0.030 inch (0.76 mm) thick by 1-1/2 inches (38 mm) in diameter.

 c. **Spindle:** Nylon, 0.106-inch- (2.6-mm-) diameter shank, length to suit depth of insulation indicated, up to 2-1/2 inches (63 mm).

 d. **Adhesive:** Recommended by hanger manufacturer. Product with demonstrated capability to bond insulation hanger securely to substrates indicated without damaging insulation, hangers, and substrates.

3. **Self-Sticking-Base Insulation Hangers:** Baseplate welded to projecting spindle that is capable of holding insulation, of thickness indicated, securely in position indicated when self-locking washer is in place. Comply with the following requirements:

 a. **Available Products:**
 1) AGM Industries, Inc.; Tactoo Insul-Hangers, Series TSA.
 2) GEMCO; Press and Peel.
 3) Midwest Fasteners, Inc.; Self Stick.
b. Baseplate: Galvanized carbon-steel sheet, 0.030 inch (0.76 mm) thick by 2 inches (50 mm) square.

c. Spindle: [Copper- or zinc-coated, low carbon steel] [Aluminum] [Stainless steel], fully annealed, 0.106-inch- (2.6-mm-) diameter shank, length to suit depth of insulation indicated.

d. Adhesive-backed base with a peel-off protective cover.

4. Insulation-Retaining Washers: Self-locking washers formed from 0.016-inch- (0.41-mm-) thick, aluminum sheet, with beveled edge sized as required to hold insulation securely in place but not less than 1-1/2 inches (38 mm) in diameter.

a. Available Products:

 1) AGM Industries, Inc.; RC-150.
 2) GEMCO; R-150.
 3) Midwest Fasteners, Inc.; WA-150.
 4) Nelson Stud Welding; Speed Clips.

b. Protect ends with capped self-locking washers incorporating a spring steel insert to ensure permanent retention of cap in exposed locations.

5. Nonmetal Insulation-Retaining Washers: Self-locking washers formed from 0.016-inch- (0.41-mm-) thick nylon sheet, with beveled edge sized as required to hold insulation securely in place but not less than 1-1/2 inches (38 mm) in diameter.

a. Available Manufacturers:

 1) GEMCO.
 2) Midwest Fasteners, Inc.

C. Staples: Outward-clinching insulation staples, nominal 3/4-inch- (19-mm-) wide, stainless steel or Monel.

D. Wire: 0.062-inch (1.6-mm) soft-annealed, stainless steel.

1. Available Manufacturers:

 a. ACS Industries, Inc.
 b. C & F Wire.
 c. Childers Products.
 d. PABCO Metals Corporation.
 e. RPR Products, Inc.

2.12 CORNER ANGLES

A. Aluminum Corner Angles: 0.040 inch (1.0 mm) thick, minimum 1 by 1 inch (25 by 25 mm), aluminum according to ASTM B 209 (ASTM B 209M), Alloy 3003, 3005, 3105 or 5005; Temper H-14.
PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates and conditions for compliance with requirements for installation and other conditions affecting performance of insulation application.
 1. Verify that systems and equipment to be insulated have been tested and are free of defects.
 2. Verify that surfaces to be insulated are clean and dry.
 3. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.

B. Mix insulating cements with clean potable water; if insulating cements are to be in contact with stainless-steel surfaces, use demineralized water.

3.3 COMMON INSTALLATION REQUIREMENTS

A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of equipment, ducts and fittings, and piping including fittings, valves, and specialties.

B. Install insulation materials, forms, vapor barriers or retarders, jackets, and thicknesses required for each item of equipment, duct system, and pipe system as specified in insulation system schedules.

C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.

D. Install insulation with longitudinal seams at top and bottom of horizontal runs.

E. Install multiple layers of insulation with longitudinal and end seams staggered.

F. Do not weld brackets, clips, or other attachment devices to piping, fittings, and specialties.

G. Keep insulation materials dry during application and finishing.

H. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.

I. Install insulation with least number of joints practical.
J. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.
 1. Install insulation continuously through hangers and around anchor attachments.
 2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.
 3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.
 4. Cover inserts with jacket material matching adjacent pipe insulation. Install shields over jacket, arranged to protect jacket from tear or puncture by hanger, support, and shield.

K. Apply adhesives, mastics, and sealants at manufacturer’s recommended coverage rate and wet and dry film thicknesses.

L. Install insulation with factory-applied jackets as follows:
 1. Draw jacket tight and smooth.
 2. Cover circumferential joints with 3-inch- (75-mm-) wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip, spaced 4 inches (100 mm) o.c.
 3. Overlap jacket longitudinal seams at least 1-1/2 inches (38 mm). Install insulation with longitudinal seams at bottom of pipe. Clean and dry surface to receive self-sealing lap. Staple laps with outward clinching staples along edge at 4 inches o.c.
 a. For below ambient services, apply vapor-barrier mastic over staples.
 4. Cover joints and seams with tape as recommended by insulation material manufacturer to maintain vapor seal.
 5. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints and at ends adjacent to duct and pipe flanges and fittings.

M. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness.

N. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.

O. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches (100 mm) beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.

P. For above ambient services, do not install insulation to the following:
 1. Vibration-control devices.
2. Testing agency labels and stamps.
3. Nameplates and data plates.
4. Handholes.
5. Cleanouts.

3.4 PENETRATIONS

A. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.

B. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Install insulation continuously through penetrations of fire-rated walls and partitions. Terminate insulation at fire damper sleeves for fire-rated wall and partition penetrations. Externally insulate damper sleeves to match adjacent insulation and overlap duct insulation at least 2 inches (50 mm).

1. Firestopping and fire-resistive joint sealers are specified in Division 7 Section “Through-Penetration Firestop Systems.”

3.5 GENERAL PIPE INSULATION INSTALLATION

A. Requirements in this Article generally apply to all insulation materials except where more specific requirements are specified in various pipe insulation material installation articles.

B. Insulation Installation on Fittings, Valves, Strainers, Flanges, and Unions:

1. Install insulation over fittings, valves, strainers, flanges, unions, and other specialties with continuous thermal and vapor-retarder integrity, unless otherwise indicated.

2. Insulate pipe elbows using preformed fitting insulation or mitered fittings made from same material and density as adjacent pipe insulation. Each piece shall be butted tightly against adjoining piece and bonded with adhesive. Fill joints, seams, voids, and irregular surfaces with insulating cement finished to a smooth, hard, and uniform contour that is uniform with adjoining pipe insulation.

3. Insulate tee fittings with preformed fitting insulation or sectional pipe insulation of same material and thickness as used for adjacent pipe. Cut sectional pipe insulation to fit. Butt each section closely to the next and hold in place with tie wire. Bond pieces with adhesive.

4. Insulate valves using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. For valves, insulate up to and including the bonnets, valve stuffing-box studs, bolts, and nuts. Fill joints, seams, and irregular surfaces with insulating cement.

5. Insulate strainers using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. Fill joints, seams, and irregular surfaces with insulating cement. Insulate strainers so strainer basket
flange or plug can be easily removed and replaced without damaging the insulation and jacket. Provide a removable reusable insulation cover. For below ambient services, provide a design that maintains vapor barrier.

6. Insulate flanges and unions using a section of oversized preformed pipe insulation. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker.

7. Cover segmented insulated surfaces with a layer of finishing cement and coat with a mastic. Install vapor-barrier mastic for below ambient services and a breather mastic for above ambient services. Reinforce the mastic with fabric-reinforcing mesh. Trowel the mastic to a smooth and well-shaped contour.

8. For services not specified to receive a field-applied jacket except for flexible elastomeric and polyolefin, install fitted PVC cover over elbows, tees, strainers, valves, flanges, and unions. Terminate ends with PVC end caps. Tape PVC covers to adjoining insulation facing using PVC tape.

9. Stencil or label the outside insulation jacket of each union with the word "UNION." Match size and color of pipe labels.

C. Insulate instrument connections for thermometers, pressure gages, pressure temperature taps, test connections, flow meters, sensors, switches, and transmitters on insulated pipes, vessels, and equipment. Shape insulation at these connections by tapering it to and around the connection with insulating cement and finish with finishing cement, mastic, and flashing sealant.

D. Install removable insulation covers at locations indicated. Installation shall conform to the following:

1. Make removable flange and union insulation from sectional pipe insulation of same thickness as that on adjoining pipe. Install same insulation jacket as adjoining pipe insulation.

2. When flange and union covers are made from sectional pipe insulation, extend insulation from flanges or union long at least two times the insulation thickness over adjacent pipe insulation on each side of flange or union. Secure flange cover in place with stainless-steel or aluminum bands. Select band material compatible with insulation and jacket.

3. Construct removable valve insulation covers in same manner as for flanges except divide the two-part section on the vertical center line of valve body.

4. When covers are made from block insulation, make two halves, each consisting of mitered blocks wired to stainless-steel fabric. Secure this wire frame, with its attached insulation, to flanges with tie wire. Extend insulation at least 2 inches (50 mm) over adjacent pipe insulation on each side of valve. Fill space between flange or union cover and pipe insulation with insulating cement. Finish cover assembly with insulating cement applied in two coats. After first coat is dry, apply and trowel second coat to a smooth finish.

5. Unless a PVC jacket is indicated in field-applied jacket schedules, finish exposed surfaces with a metal jacket.
3.6 FLEXIBLE ELASTOMERIC INSULATION INSTALLATION

A. Seal longitudinal seams and end joints with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

B. Insulation Installation on Pipe Flanges:
 1. Install pipe insulation to outer diameter of pipe flange.
 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of sheet insulation of same thickness as pipe insulation.
 4. Secure insulation to flanges and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

C. Insulation Installation on Pipe Fittings and Elbows:
 1. Install mitered sections of pipe insulation.
 2. Secure insulation materials and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

D. Insulation Installation on Valves and Pipe Specialties:
 1. Install preformed valve covers manufactured of same material as pipe insulation when available.
 2. When preformed valve covers are not available, install cut sections of pipe and sheet insulation to valve body. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
 3. Install insulation to flanges as specified for flange insulation application.
 4. Secure insulation to valves and specialties and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

3.7 MINERAL-FIBER INSULATION INSTALLATION

A. Insulation Installation on Straight Pipes and Tubes:
 1. Secure each layer of preformed pipe insulation to pipe with wire or bands and tighten bands without deforming insulation materials.
 2. Where vapor barriers are indicated, seal longitudinal seams, end joints, and protrusions with vapor-barrier mastic and joint sealant.
 3. For insulation with factory-applied jackets on above ambient surfaces, secure laps with outward clinched staples at 6 inches (150 mm) o.c.
 4. For insulation with factory-applied jackets on below ambient surfaces, do not staple longitudinal tabs but secure tabs with additional adhesive as recommended.
by insulation material manufacturer and seal with vapor-barrier mastic and flashing sealant.

B. Insulation Installation on Pipe Flanges:
1. Install preformed pipe insulation to outer diameter of pipe flange.
2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with mineral-fiber blanket insulation.
4. Install jacket material with manufacturer's recommended adhesive, overlap seams at least 1 inch (25 mm), and seal joints with flashing sealant.

C. Insulation Installation on Pipe Fittings and Elbows:
1. Install preformed sections of same material as straight segments of pipe insulation when available.
2. When preformed insulation elbows and fittings are not available, install mitered sections of pipe insulation, to a thickness equal to adjoining pipe insulation. Secure insulation materials with wire or bands.

D. Insulation Installation on Valves and Pipe Specialties:
1. Install preformed sections of same material as straight segments of pipe insulation when available.
2. When preformed sections are not available, install mitered sections of pipe insulation to valve body.
3. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
4. Install insulation to flanges as specified for flange insulation application.

3.8 FIELD-APPLIED JACKET INSTALLATION

A. Install PVC jackets on all above grade pipe and equipment to 7'-0" above grade, install with 1-inch overlap at longitudinal seams and end joints; for horizontal applications. Seal with manufacturer's recommended adhesive.
1. Apply two continuous beads of adhesive to seams and joints, one bead under lap and the finish bead along seam and joint edge.

B. Where metal jackets are indicated, install with 2-inch (50-mm) overlap at longitudinal seams and end joints. Overlap longitudinal seams arranged to shed water. Seal end joints with weatherproof sealant recommended by insulation manufacturer. Secure jacket with stainless-steel bands 12 inches (300 mm) o.c. and at end joints.
3.9 FINISHES

A. Flexible Elastomeric Thermal Insulation: After adhesive has fully cured, apply two coats of insulation manufacturer’s recommended protective coating.

B. Do not field paint aluminum or stainless-steel jackets.

3.10 FIELD QUALITY CONTROL

A. All insulation applications will be considered defective Work if sample inspection reveals noncompliance with requirements. Remove defective Work.

B. Install new insulation and jackets to replace insulation and jackets removed for inspection. Repeat inspection procedures after new materials are installed.

3.11 DUCT INSULATION SCHEDULE, GENERAL

A. Plenums and Ducts Requiring Insulation:
 1. Indoor, concealed supply and outdoor air.
 2. Indoor, exposed supply and outdoor air.
 3. Indoor, concealed return.
 4. Indoor, exposed return.
 5. Indoor, concealed exhaust between isolation damper and penetration of building exterior.
 6. Indoor, exposed exhaust between isolation damper and penetration of building exterior.

B. Items Not Insulated:
 1. Fibrous-glass ducts.
 2. Factory-insulated flexible ducts.
 3. Factory-insulated plenums and casings.
 4. Flexible connectors.
 5. Vibration-control devices.
 6. Factory-insulated access panels and doors.

3.12 INDOOR DUCT AND PLENUM INSULATION SCHEDULE

A. Concealed, rectangular, round and air plenums, supply-air duct insulation shall be any of the following:
 1. Flexible Elastomeric: 1-1/2 inches thick.
 2. Mineral-Fiber Blanket: 1-1/2 inches 1.5-lb/cu. ft. (24-kg/cu. m) nominal density.

B. Concealed, rectangular, round and air plenums, return-air duct in non-conditioned spaces (non-return air plenums, mechanical rooms, unconditioned spaces) insulation shall be any of the following:
1. Flexible Elastomeric: 1-1/2 inches thick.
2. Mineral-Fiber Blanket: 1-1/2 inches 1.5-lb/cu. ft. (24-kg/cu. m) nominal density.

C. Exposed, rectangular, round and air plenums, supply-air duct insulation shall be the following:
 1. Flexible Elastomeric: 1-1/2 inches thick.
 2. Mineral-Fiber Blanket: 1-1/2 inches 1.5-lb/cu. ft. (24-kg/cu. m) nominal density.

D. Exposed, rectangular, round and air plenums, return in non-conditioned and outdoor air duct supplying AHU’s, insulation shall be the following:
 1. Flexible Elastomeric: 1-1/2 inches thick.
 2. Mineral-Fiber Blanket: 1-1/2 inches 1.5-lb/cu. ft. (24-kg/cu. m) nominal density.

3.13 PIPING INSULATION SCHEDULE, GENERAL

A. Acceptable preformed pipe and tubular insulation materials and thicknesses are identified for each piping system and pipe size range. If more than one material is listed for a piping system, selection from materials listed is Contractor's option.

3.14 INDOOR PIPING INSULATION SCHEDULE

A. Condensate pipe, and Equipment Drain Water below 60 Deg F (16 Deg C):
 1. All Pipe Sizes: Insulation shall be any of the following:
 a. Flexible Elastomeric: 3/4 inch thick.

B. Refrigerant Piping
 1. All Pipe Sizes: Insulation shall be any of the following:
 a. Flexible Elastomeric, Indoor: 1 inch thick.
 b. Flexible Elastomeric, Outdoor: 1.5 inches thick.

C. Heating Water, 20 to 110 Deg F:
 1. NPS 1-1/4 (DN 32) and Smaller: Insulation shall be any of the following:
 a. Mineral-Fiber, Preformed Pipe, Type I: 1.5 inch thick
 b. Flexible Elastomeric: 1 inch think
 2. NPS 1-1/2 (DN 40) and Larger: Insulation shall be any of the following:
 a. Mineral-Fiber, Preformed Pipe, Type I: 2 inches thick
 b. Flexible Elastomeric: 1.5 inches thick
3.15 INDOOR EQUIPMENT INSULATION SCHEDULE

A. Equipment: Air Separator
 1. Woven Glass-Fiber Fabric

3.16 INDOOR, FIELD-APPLIED JACKET SCHEDULE

A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket.

B. If more than one material is listed, selection from materials listed is Contractor's option.

C. Piping, Exposed:
 1. PVC: 20 mils thick

D. Piping (Refrigeration), Exposed within Mechanical Room:
 1. Aluminum, Dimpled with Z-Shaped Locking Seam: 0.020 inch thick.

3.17 OUTDOOR, FIELD-APPLIED JACKET SCHEDULE

A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket.

B. Piping (Refrigeration), Exposed:
 1. Aluminum, Dimpled with Z-Shaped Locking Seam: 0.020 inch thick.

END OF SECTION
SECTION 230950

BUILDING AUTOMATION SYSTEM (BAS) GENERAL

PART 1 – GENERAL

1.1 RELATED DOCUMENTS

A. Section 230969 - Variable Frequency Controllers
B. Section 230951 - Building Automation System (BAS) Basic Materials, Interface Devices, and Sensors
C. Section 230952 - BAS Operator Interfaces
D. Section 230953 - BAS Field Panels
E. Section 230954 - BAS Communication Devices
F. Section 230955 - BAS Software and Programming
G. Section 230958 - Sequences of Operation

1.2 DESCRIPTION OF WORK

A. The system will be provided with an on-site workstation for access to the system. Capability for future connection to the DelDOT Network will be provided but a connection will not be made as part of this project.
B. The building automation system (BAS) defined in this specification shall utilize the BACnet communication requirements as defined by ASHRAE/ANSI 135 (current version and addendum) for all communication.
C. Contractor shall furnish and install a building automation system (BAS). The new BAS shall utilize electronic sensing, microprocessor-based digital control, and electronic actuation of dampers and valves to perform control sequences and functions specified. The BAS for this project will generally consist of monitoring and control of systems listed below. Reference also control drawings, sequences of operation, and points lists.
D. The systems to be controlled under work of this section basically comprise new HVAC systems. The HVAC systems being controlled are Air Handling Units, VAV Systems, Boilers, Pumps, Exhaust Fans, and other devices. This Section defines the manner and method by which these controls function.

1.3 APPLICATION OF OPEN PROTOCOLS

A. Subject to the detailed requirements provided throughout the specifications, the BAS and
digital control and communications components installed, as work of this contract shall be an integrated distributed processing system utilizing BACnet. System components shall communicate using true BACnet in accordance with ASHRAE Standard 135 and current addenda and annexes, including all workstations, all building controllers, and all application specific controllers. Gateways to other communication protocols are not acceptable.

1.4 QUALITY ASSURANCE

A. Product Line Demonstrated History: The product line being proposed for the project must have an installed history of demonstrated satisfactory operation for a length of 2 years since date of final completion in at least 10 installations of comparative size and complexity. Submittals shall document this requirement with references.

B. Installer's Qualifications: Firms specializing and experienced in control system installations for not less than 5 years. Firms with experience in BAS installation projects with point counts equal to this project and systems of the same character as this project. If installer is a Value Added Reseller (VAR) of a manufacturer's product, installer must demonstrate at least three years prior experience with that manufacturer's products. Experience starts with awarded Final Completion of previous projects. Submittals must document this experience with references.

C. Installer's Experience with Proposed Product Line: Firms shall have specialized in and be experienced with the installation of the proposed product line for not less than one year from date of final completion on at least 3 projects of similar size and complexity. Submittals shall document this experience with references.

D. Installer's Field Coordinator and Sequence Programmer Qualifications: Individual(s) shall specialize in and be experienced with control system installation for not less than 5 years. Proposed field coordinator shall have experience with the installation of the proposed product line for not less than 2 projects of similar size and complexity. Installer shall submit the names of the proposed individual and at least one alternate for each duty. Submittals shall document this experience with references. The proposed individuals must show proof of the following training:

1. Product Line Training: Individuals overseeing the installation and configuration of the proposed product line must provide evidence of the most advanced training offered by the Manufacturer on that product line for installation and configuration

2. Programming Training: Individuals involved with programming the site-specific sequences shall provide evidence of the most advanced programming training offered by the vendor of the programming application offered by the Manufacturer.

E. Installer's Service Qualifications: The installer must be experienced in control system operation, maintenance and service. Installer must document a minimum 5-year history of servicing installations of similar size and complexity. Installer must also document at least a one-year history of servicing the proposed product line.
F. Installer's Response Time and Proximity

1. Installer must maintain a fully capable service facility within a 45-mile radius of the project site. Service facility shall manage the emergency service dispatches and maintain the inventory of spare parts.

2. Emergency response times are listed below in this section. Installer must demonstrate the ability to meet the response times.

1.5 CODES AND STANDARDS

A. American Society of Heating, Refrigeration and Air Conditioning Engineers (ASHRAE)

B. Electronics Industries Alliance

2. EIA-709.3-99: Free-Topology Twisted-Pair Channel Specification
3. EIA-232: Interface between Data Terminal Equipment and Data Circuit-Terminating Equipment Employing Serial Binary Data Interchange.
4. EIA-458: Standard Optical Fiber Material Classes and Preferred Sizes
6. EIA-472: General and Sectional Specifications for Fiber Optic Cable
7. EIA-475: Generic and Sectional Specifications for Fiber Optic Connectors and all Sectional Specifications
8. EIA-573: Generic and Sectional Specifications for Field Portable Polishing Device for Preparation Optical Fiber and all Sectional Specifications
9. EIA-590: Standard for Physical Location and Protection of Below-Ground Fiber Optic Cable Plant and all Sectional Specifications

C. Underwriters Laboratories

2. UUKL 864: UL Supervised Smoke Control

D. NEMA Compliance

1. NEMA 250: Enclosure for Electrical Equipment
2. NEMA ICS 1: General Standards for Industrial Controls.

E. NFPA Compliance

1. NFPA 90A "Standard for the Installation of Air Conditioning and Ventilating Systems" where applicable to controls and control sequences.
2. NFPA 70 National Electrical Code (NEC)

F. Institute of Electrical and Electronics Engineers (IEEE)

1. IEEE 142: Recommended Practice for Grounding of Industrial and Commercial Power Systems
2. IEEE 802.3: CSMA/CD (Ethernet - Based) LAN
3. IEEE 802.4: Token Bus Working Group (ARCNET - Based) LAN

1.6 DEFINITIONS

A. Advanced Application Controller (AAC): A device with limited resources relative to the Building Controller (BC). It may support a level of programming and may also be intended for application specific applications.

B. Application Protocol Data Unit (APDU): A unit of data specified in an application protocol and consisting of application protocol control information and possible application user data (ISO 9545).

C. Application Specific Controller (ASC): A device with limited resources relative to the Advanced Application Controller (AAC). It may support a level of programming and may also be intended for application-specific applications.

D. BACnet/BACnet Standard: BACnet communication requirements as defined by ASHRAE/ANSI 135 (Current edition and addendum).

E. BACnet Interoperability Building Blocks (BIBB): A BIBB defines a small portion of BACnet functionality that is needed to perform a particular task. BIBBS are combined to build the BACnet functional requirements for a device in a specification.

F. Binding: In the general sense, binding refers to the associations or mappings of the sources network variable and their intended opr required destinations.

G. Building Automation System (BAS): The entire integrated management and control system

H. Building Controller (BC): A fully programmable device capable of carrying out a number of tasks including control and monitoring via direct digital control (DDC) of specific systems, acting as a communications router between the controlled devices / equipment and the CSS, and temporary data storage for trend information, time schedules, and alarm data.

I. Change of Value (COV): An event that occurs when a measured or calculated analog value changes by a predefined amount (ASHRAE/ANSI 135 (current version and addendum)).

J. Client: A device that is the requestor of services from a server. A client device makes requests of and receives responses from a server device.
K. Continuous Monitoring: A sampling and recording of a variable based on time or change of state (e.g. trending an analog value, monitoring a binary change of state).

L. Controller or Control Unit (CU): Intelligent stand-alone control device. Controller is a generic reference and shall include BCs, AACs, and ASCs as appropriate.

M. Control Systems Server (CSS): A server class computer(s) that maintains the systems configuration and programming database. This server is located at the State of Delaware's data center in a virtual environment and serves as an access point to BAS.

N. Controlling LAN: High speed, peer-to-peer controller LAN connecting BCs, AACs and ASCs. Refer to System Architecture below.

O. Direct Digital Control (DDC): Microprocessor-based control including Analog/Digital conversion and program logic.

P. Functional Profile: A collection of variables required to define the key parameters for a standard application. As this applies to the HVAC industry, this would include applications like VAV terminal, fan coil units, and the like.

Q. Gateway (GTWY): A device, which contains two or more dissimilar networks/protocols, permitting information exchange between them.

R. Handheld Device (HHD): Manufacturer's microprocessor based device for direct connection to a Controller.

S. LAN Interface Device (LANID): Device or function used to facilitate communication and sharing of data throughout the BAS.

T. Local Area Network (LAN): General term for a network segment within the architecture. Various types and functions of LANs are defined herein.

U. Local Supervisory LAN: Also known as the State's Network: Ethernet-based network connecting Primary Controlling LANs with each other and OWSs and CSSs. See System Architecture below.

V. Master-Slave/Token Passing (MS/TP): Data link protocol as defined by the BACnet standard.

W. Open Database Connectivity (ODBC): An open standard application-programming interface (API) for accessing a database developed. ODBC compliant systems make it possible to access any data from any application, regardless of which database management system (DBMS) is handling the data.

X. Operator Interface (OI): A device used by the operator to manage the BAS including OWSs, POTs, and HHDs.

Y. Operator Workstation (OWS): The user's interface with the BAS system. As the BAS network devices are stand-alone, dedicated OWS is not required for communications to
occur. The OWS can be any computer on the State's Network that has a compatible Web browser.

Z. Point-to-Point (PTP): Serial communication as defined in the BACnet standard.

AA. Portable Operators Terminal (POT): Mobile computer used both for direct connection to a controller as well as network connection.

BB. Protocol Implementation Conformance Statement (PICS): A written document, created by the manufacturer of a device, which identifies the particular options specified by BACnet that are implemented in the device (ASHRAE/ANSI 135 (current version and addendum)).

CC. Router: A device that connects two or more networks at the network layer.

DD. Secondary Controlling LAN: LAN connecting AACs and ASCs, generally lower speed and less reliable than the Controlling LAN. Refer to System Architecture below.

EE. Server: A device that is a provider of services to a client. A client device makes requests of and receives responses from a server device.

FF. Standardized Query Language (SQL): A database computer language designed for managing data in relational database management system (RDBMS). Its scope includes data insert, query, update and delete, schema creation and modification, and data access control.

GG. Smart Device: A control I/O device such as a sensor or actuator that can directly communicate with a controller through the network. This differs from an ASC in that it typically deals only with one variable.

HH. Extensible Markup Language (XML): A specification developed by the World Wide Web Consortium. XML is a pared-down version of SGML, designed especially for Web documents. It is a set of rules for encoding documents in machine-readable form that allows designers to create their own customized tags, enabling the definition, transmission, validation, and interpretation of data between applications and between organizations.

1.7 FUNCTIONAL INTENT

A. Throughout Sections 230950 through 230955, and the Sequences of Operation detailed requirements are specified, some of which indicate a means, method or configuration acceptable to meet that requirement. Contractor may submit products that utilize alternate means, methods, and configurations that meet the functional intent. However, these will only be allowed with prior approval.

1.8 SUBMITTALS

A. Submit under provisions of Section 013000.
B. Electronic Submittals: While all requirements for hard copy submittal apply, control submittals and O&M information shall also be provided in electronic format as follows.

1. Drawings and Diagrams: Shop drawings shall be provided on electronic media as an AutoCAD (current version) and/or Adobe Portable Document Format file. All 'X reference' and font files must be provided with AutoCAD files.
2. Other Submittals: All other submittals shall be provided in Adobe Portable Document Format (PDF).

C. Qualifications: Manufacturer, Installer, and Key personnel qualifications as indicated for the appropriate item above.

D. Product Data: Submit manufacturer's technical product data for each control device, panel, and accessory furnished, indicating dimensions, capacities, performance and electrical characteristics, and material finishes. Also include installation and start-up instructions.

E. Shop Drawings: Submit shop drawings for each control system, including a complete drawing for each air handling unit, system, pump, device, etc. with all point descriptors, addresses and point names indicated. Each shop drawing shall contain the following information:

1. System Architecture and System Layout:
 a. One-line diagram indicating schematic locations of all control units, workstations, LAN interface devices, gateways, etc. Indicate network number, device ID, instance number, MAC address, drawing reference number, and controller type for each control unit. Indicate media, protocol, baud rate, and type of each LAN. Indicate all optical isolators, repeaters, end-of-line resistors, junctions, ground locations etc. shall be located on the diagram.
 b. Provide electronic floor plans locating all control units, workstations, LAN interface devices, gateways, etc. Include all network communication wiring routing, power wiring, power originating sources, and low voltage power wiring. Indicate network number, device ID, instance number, MAC address, drawing reference number, and controller type for each control unit. Indicate media, protocol, baud rate, and type of each LAN. All optical isolators, repeaters, end-of-line resistors, junctions, ground locations etc. shall be located on the floor plans. Wiring routing as-built conditions shall be maintained accurately throughout the construction period and the drawing shall be updated to accurately reflect actual, installed conditions.
2. Schematic flow diagram of each air and water system showing fans, coils, dampers, valves, pumps, heat exchange equipment and control devices. Include verbal description of sequence of operation.
3. All physical points on the schematic flow diagram shall be indicated with
names, descriptors, and point addresses identified as listed in the point summary table.

4. With each schematic, provide a point summary table listing building number and abbreviation, system type, equipment type, full point name, point description, Ethernet backbone network number, network number, device ID, object ID (object type, instance number). See Section 230955 - Part III for additional requirements.

5. Label each control device with setting or adjustable range of control.

6. Label each input and output with the appropriate range.

7. Provide a Bill of Materials with each schematic. Indicate device identification to match schematic and actual field labeling, quantity, actual product ordering number, manufacturer, description, size, voltage range, pressure range, temperature range, etc. as applicable.

8. With each schematic, provide valve and actuator information including size, Cv, design flow, design pressure drop, manufacturer, model number, close off rating, etc. Indicate normal positions of spring return valves and dampers.

9. Indicate all required electrical wiring. Electrical wiring diagrams shall include both ladder logic type diagram for motor starter, control, and safety circuits and detailed digital interface panel point termination diagrams with all wire numbers and terminal block numbers identified. Provide panel termination drawings on separate drawings. Ladder diagrams shall appear on system schematic. Clearly differentiate between portions of wiring, which are existing, factory-installed and portions to be field-installed.

10. Details of control panels, including controls, instruments, and labeling shown in plan or elevation indicating the installed locations.

11. Sheets shall be consecutively numbered.

12. Each sheet shall have a title indicating the type of information included and the HVAC system controlled.

13. Table of Contents listing sheet titles and sheet numbers.

14. Legend and list of abbreviations.

15. Memory allocation projections.

16. Submit along with shop drawings but under separate cover calculated and guaranteed system response times of the most heavily loaded LAN in the system.

F. Open Protocol Information

1. BACnet Systems:
 a. BACnet object description, object ID, and device ID, for each I/O point.
 b. Documentation for any non-standard BACnet objects, properties, or enumerations used detailing their structure, data types, and any associated lists of enumerated values.
 c. Submit PICS indicating the BACnet functionality and configuration of each controller.

G. Framed Control Drawings: Laminated control drawings including system control
schematics, sequences of operation and panel termination drawings, shall be provided in panels for major pieces of equipment. Terminal unit drawings shall be located in the central plant equipment panel or mechanical room panel.

H. Control Logic Documentation

1. Submit control logic program listings (for graphical programming) and logic flow charts (for line type programs) to document the control software of all control units.
2. Control logic shall be annotated to describe how it accomplishes the sequence of operation. Annotations shall be sufficient to allow an operator to relate each program component (block or line) to corresponding portions of the specified Sequence of Operation.
3. Include written description of each control sequence.
4. Include control response, settings, setpoints, throttling ranges, gains, reset schedules, adjustable parameters and limits.
5. Sheets shall be consecutively numbered.
6. Each sheet shall have a title indicating the controller designations and the HVAC system controlled.
7. Include Table of Contents listing sheet titles and sheet numbers
8. Submit one complete set of programming and operating manuals for all digital controllers concurrently with control logic documentation. This set will count toward the required number of Operation and Maintenance materials specified below and in Section 013000.

I. Operation and Maintenance Materials:

1. Submit documents under provisions of Section 010300. One copy of the materials shall be delivered directly to the State facilities operation staff, in addition to the copies required by other Sections.
2. Submit maintenance instructions and spare parts lists for each type of control device, control unit, and accessory.
3. Submit BAS User's Guides (Operating Manuals) for each controller type.
4. Submit BAS advanced Programming Manuals for each controller type.
5. Include all submittals (product data, shop drawings, control logic documentation, hardware manuals, software manuals, installation guides or manuals, maintenance instructions and spare parts lists) in maintenance manual; in accordance with requirements of Division 1.

J. Controls contractor shall provide the State with all product line technical manuals and technical bulletins, to include new and upgraded products, by the same distribution channel as to dealers or branches. This service will be provided for 5 years as part of the contract price and will be offered to the State thereafter for the same price as to a dealer or branch.

K. Manufacturers Certificates: For all listed and/or labeled products, provide certificate of conformance.
L. Product Warranty Certificates: submit manufacturers product warranty certificates covering the hardware provided.

1.9 PROJECT RECORD DOCUMENTS

A. Submit documents under provisions of Section 013000.

B. Record copies of product data and control shop drawings updated to reflect the final installed condition.

C. Record copies of approved control logic programming and database on paper and on CD’s. Accurately record actual setpoints and settings of controls, final sequence of operation, including changes to programs made after submission and approval of shop drawings and including changes to programs made during specified testing.

D. Record copies of approved project specific graphic software on CDs.

E. Record copies shall include individual floor plans with controller locations with all interconnecting wiring routing including space sensors, LAN wiring, power wiring, low voltage power wiring. Indicate device instance, MAC address and drawing reference number.

F. Provide record riser diagram showing the location of all controllers.

G. Maintain project record documents throughout the warranty period and submit final documents at the end of the warranty period

1.10 SYSTEM ARCHITECTURE

A. The system provided shall incorporate hardware resources sufficient to meet the functional requirements of these Specifications. The Contractor shall include all items not specifically itemized in these Specifications that are necessary to implement, maintain, and operate the system in compliance with the functional intent of these Specifications.

B. The system shall be configured as a distributed processing network(s) capable of expansion as specified below.

C. The system architecture shall consist of the Ethernet-based State Network, and Controlling LANs that support BCs, AACs, ASCs, Operator Workstations (OWS), Smart Devices (SD), and Remote Communication Devices (RCDs) as applicable. The following indicates a functional description of the BAS structure.

1. Local Supervisory LAN: The Local Supervisory LAN shall be an Ethernet-based, 100 Mbps LAN connecting Primary Control LANs and OWSs. The LAN serves as the inter-BC gateway and OWS-to-BC gateway and communications path. Contractor shall provide this as a dedicated LAN for the control system. LAN shall be IEEE 802.3 Ethernet over Fiber or Category 5 cable with switches and routers that support 100 Mbps throughput. Power-line carrier communication shall not be acceptable for communications. The physical media
will be that installed for the IT infrastructure of the facility and as such network drops will be provided under that scope of work to facilitate work of this scope. This network will be 100 Mbps and therefore all network interface cards shall support that speed. The higher-level layers of this network shall be BACnet as described below:

a. BACnet Supervisory LAN: Shall be BACnet/IP as defined in the BACnet standard and shall share a common network number for the Ethernet backbone, as defined in the BACnet standard. Point/Object naming conventions are specified in 23 09 55 - Part III.

2. Controlling LAN: High-speed, peer-to-peer communicating LAN used to connect AACs, ASCs and Building Controllers (BCs) and communicate exclusively control information. Acceptable technologies include:

 a. Ethernet (IEEE802.3)
 b. ARCNET (IEEE802.4)
 c. Communication to/from building controller (BC) and the control system server (CSS) shall utilize standard TCP/IP, BACnet/IP ports (80 and/or 47808)

3. Secondary Controlling LAN: Network used to connect AACs, ASCs or SDs. These can be Master Slave/Token Passing or polling, in addition to those allowed for Primary Controller LANs. Network speed vs. the number of controllers on the LAN shall be dictated by the response time and trending requirements.

D. Dynamic Data Access: Any data throughout any level of the network shall be available to and accessible by all other devices, Controllers and OWS, whether directly connected or connected remotely.

E. The communication speed between the controllers, LAN interface devices, and operator interface devices shall be sufficient to ensure fast system response time under any loading condition. Contractor shall submit guaranteed response times with shop drawings including calculations to support the guarantee. In no case shall delay times between an event, request, or command initiation and its completion be greater than those listed herein. Contractor shall recommend reconfiguring the LAN as necessary to accomplish these performance requirements.

1. 5 seconds between a Level 1 (critical) alarm occurrence and enunciation at operator workstation.
2. 10 seconds between a Level 2 alarm occurrence and enunciation at operator workstation.
3. 20 seconds between and a Level 3-5 alarm occurrence and enunciation at operator workstation.
4. 10 seconds between an operator command via the operator interface to change a setpoint and the subsequent change in the controller.
5. 5 seconds between an operator command via the operator interface to start/stop a device and the subsequent command to be received at the controller.
6. 10 seconds between a change of value or state of an input and it being updated on the operator interface.
7. 10 seconds between an operator selection of a graphic and it completely painting the screen and updating at least 10 points.

F. The Operator Interface shall provide for overall system supervision, graphical user interface, management report generation, alarm annunciation, and remote monitoring. Refer to Section 23 09 52 - BAS Operator Interfaces.

G. The BCs, AACs, ASCs, and SDs shall monitor, control, and provide the field interface for all points specified. Each BC, AAC, or ASC shall be capable of performing all specified energy management functions, and all DDC functions, independent of other BCs, AACs, or ASCs and operator interface devices as more fully specified in Section 23 09 53 - BAS Field Panels.

H. Systems Configuration Database: The system architecture shall support maintaining the systems configuration database on the CSS. User tools provided to the State shall allow configuring, updating, maintaining, etc. current configurations and settings whether they are initiated at the server or the end device.
 1. Database Schema shall be published and provided to the State to facilitate easy access to the data.
 2. Database shall be ODBC compliant.

I. Interruptions or fault at any point on any Primary Controller LAN shall not interrupt communications between other nodes on the network. If a LAN is severed, two separate networks shall be formed and communications within each network shall continue uninterrupted.

J. All line drivers, signal boosters, and signal conditioners etc. shall be provided as necessary for proper data communication.

K. Anytime any controller's database or program is changed in the field, the controller shall be capable of automatically uploading the new data to the CSS.

1.11 WARRANTY MAINTENANCE

A. Contractor shall warrant all products and labor for a period of (1) one year after Substantial Completion.

B. The State reserves the right to make changes to the BAS during the warranty period. Such changes do not constitute a waiver of warranty. The Contractor shall warrant parts and installation work regardless of any such changes made by the State, unless the Contractor provides clear and convincing evidence that a specific problem is the result of such changes to the BAS.

C. At no cost to the State, during the warranty period, the Contractor shall provide maintenance services for software and hardware components as specified below:
1. Maintenance services shall be provided for all devices and hardware specified in sections 23 09 51 through 23 09 58. Service all equipment per the manufacturer's recommendations. All devices shall be calibrated within the last month of the warranty period.

2. Emergency Service: Any malfunction, failure, or defect in any hardware component or failure of any control programming that would result in property damage or loss of comfort control shall be corrected and repaired following notification by the State to the Contractor.

 a. Response by telephone to any request for service shall be provided within two (2) hours of the State's initial telephone request for service.

 b. In the event that the malfunction, failure, or defect is not corrected through the telephonic communication, at least one (1) hardware and software technician, trained in the system to be serviced, shall be dispatched to the State's site within eight (8) hours of the State's initial telephone request for such services, as specified.

3. Normal Service: Any malfunction, failure, or defect in any hardware component or failure of any control programming that would not result in property damage or loss of comfort control shall be corrected and repaired following telephonic notification by the State to the Contractor.

 a. Response by telephone to any request for service shall be provided within eight (8) working hours (contractor specified 40 hr per week normal working period) of the State's initial telephone request for service.

 b. In the event that the malfunction, failure, or defect is not corrected through the telephonic communication, at least one (1) hardware and software technician, trained in the system to be serviced, shall be dispatched to the State's site within three (3) working days of the State's initial telephone request for such services, as specified.

4. Telephonic Request for Service: Contractor shall specify a maximum of three telephone numbers for The State to call in the event of a need for service. At least one of the lines shall be attended at any given time at all times. Alternatively, pagers can be used for technicians trained in system to be serviced. One of the three paged technicians shall respond to every call within 15 minutes.

5. Technical Support: Contractor shall provide technical support by telephone throughout the warranty period.

6. Preventive maintenance shall be provided throughout the warranty period in accordance with the hardware component manufacturer's requirements.

1.12 DELIVERY, STORAGE, AND HANDLING

A. Provide factory-shipping cartons for each piece of equipment and control device. Maintain cartons during shipping, storage and handling as required to prevent equipment
damage, and to eliminate dirt and moisture from equipment. Store equipment and materials inside and protect from weather.

1.13 LISTING AND LABELING
 A. The BAS and components shall be listed by Underwriters Laboratories (UL 916) as an Energy Management System.

PART 2 – PRODUCTS

2.1 MANUFACTURERS (PRE-APPROVED BY THE STATE)
 A. Automated Logic WebCTRL by Radius Systems
 B. Andover Continuum by Tri-M Group
 C. Facility Explorer - Niagara by Modern Controls
 D. Substitutions: See Section 01 60 00 - Product Requirements

2.2 MATERIALS AND EQUIPMENT
 A. Materials shall be new, the best of their respective kinds without imperfections or blemishes and shall not be damaged in any way. Used equipment shall not used in any way for the permanent installation except where drawings or specs specifically allow existing materials to remain in place.

2.3 UNIFORMITY
 A. To the extent practical, all equipment of the same type serving the same function shall be identical and from the same manufacturer.
 B. All new controllers installed on the control system network shall be furnished and installed by the BAS contractor.

PART 3 – EXECUTION

3.1 INSPECTION
 A. Examine areas and conditions under which control systems are to be installed. Do not proceed with work until unsatisfactory conditions have been corrected in manner acceptable to Installer.

3.2 INSTALLATION OF CONTROL SYSTEMS
 A. General: Install systems and materials in accordance with manufacturer's instructions, roughing-in drawings and details shown on drawings.
B. Network Connectivity: Contractor shall provide infrastructure to allow for a future connection to the DelDOT network.

C. Refer to additional requirements in other sections of this specification.

3.3 SURGE PROTECTION

A. The Contractor shall furnish and install any power supply surge protection, filters, etc. as necessary for proper operation and protection of all BCs, AAC/ASCS operator interfaces, printers, routers, gateways and other hardware and interface devices. All equipment shall be capable of handling voltage variations 10% above or below measured nominal value, with no effect on hardware, software, communications, and data storage.

3.4 CONTROL POWER SOURCE AND SUPPLY

A. Section 230950 Contractor shall extend all power source wiring required for operation of all equipment and devices provided under Sections 230950 through 230955 and Sequences of Operation.

B. General requirements for obtaining power include the following:

1. Obtain power from a source that feeds the equipment being controlled such that both the control component and the equipment are powered from the same panel. Where equipment is powered from a 460V source, obtain power from the electrically most proximate 120V source fed from a common origin.

2. Where control equipment is located inside a new equipment enclosure, coordinate with the equipment manufacturer and feed the control with the same source as the equipment. If the equipment's control transformer is large enough and of the correct voltage to supply the controls, it may be used. If the equipment's control transformer is not large enough or of the correct voltage to supply the controls provide separate transformer.

3. Where a controller controls multiple systems on varying levels of power reliability (normal, emergency, and/or interruptible), the controller shall be powered by the highest level of reliability served. Furthermore, the controller in that condition shall monitor each power type served to determine so logic can assess whether a failure is due to a power loss and respond appropriately. A three-phase monitor into a digital input shall suffice as power monitoring.

4. Standalone Functionality: Refer to Section 230953.

3.5 SEQUENCE OF OPERATION

A. Refer to Section 230958 - Sequences of Operation and the Contract Drawings.

END OF SECTION
THIS PAGE INTENTIONALLY LEFT BLANK
SECTION 230951

BAS BASIC MATERIALS, INTERFACE DEVICES, AND SENSORS

PART 1 – GENERAL

1.1 SECTION INCLUDES

A. Wiring
B. Control Valves and Actuators
C. Control Dampers and Actuators
D. Control Panels
E. Sensors
F. Electric Control Components (Switches, EP Valves, Thermostats, Relays, Smoke Detectors, etc.)
G. Transducers
H. Current Switches
I. Nameplates
J. Testing Equipment

1.2 RELATED DOCUMENTS

A. Section 230950 - Building Automation System (BAS) General
B. Section 230953 - BAS Field Panels
C. Section 230954 - BAS Communications Devices
D. Section 230955 - BAS Software
E. Section 230958 - Sequences of Operation

1.3 DESCRIPTION OF WORK

A. Refer to Section 230950 for general requirements.
B. Refer to other Division 23 sections for installation of instrument wells, valve bodies, and dampers in mechanical systems; not work of this section.
C. Provide the following electrical work of this section, complying with requirements of Division 26 sections:

1. Control wiring between field-installed controls, indicating devices, and unit control panels.
2. Interlock wiring between electrically interlocked devices, sensors, and between a hand or auto position of motor starters as indicated for all mechanical and controls.
3. Wiring associated with indicating and alarm panels (remote alarm panels) and connections to their associated field devices.
4. All other necessary wiring for fully complete and functional control system as specified.

1.4 WORK BY OTHERS

A. Control Valves furnished under this section shall be installed under the applicable piping section under the direction of Section 23 09 51 Contractor who will be fully responsible for the proper operation of the valve.

B. Control Dampers furnished under this section shall be installed under the applicable air distribution or air handling equipment section under the direction of Section 23 09 51 Contractor who will be fully responsible for the proper operation of the damper.

C. Water Pressure Taps, Thermal Wells, Flow Switches, Flow Meters, etc. that will have wet surfaces, shall be installed under the applicable piping Section under the direction of Section 23 09 51 Contractor who will be fully responsible for the proper installation and application.

D. Controlled Equipment Power Wiring shall be furnished and installed under Division 26. Where control involves 120V control devices controlling 120V equipment, Division 26 Contractor shall extend power wiring to the equipment. Section 23 09 51 Contractor shall extend it from the equipment to the control device. Division 23 Contractor shall coordinate with Division 26 Contractor during submittal phase and identify all equipment being powered to the Division 26 Contractor.

PART 2 – PRODUCTS

2.1 MATERIALS AND EQUIPMENT

A. General: Provide electronic control products in sizes and capacities indicated, consisting of valves, dampers, thermostats, clocks, controllers, sensors, and other components as required for complete installation and reviewed and approved by the State. Except as otherwise indicated, provide manufacturer's standard materials and components as published in their product information; designed and constructed as recommended by manufacturer, and as required for application indicated.

B. Communication Wiring: All wiring shall be in accordance with National Electrical Codes and Division 26 of this specification.
1. Contractor shall supply all communication wiring between Building Controllers, Routers, Gateways, AAC's, ASC's and local and remote peripherals (e.g., operator workstations, printers, and modems).

2. Local Supervisory LAN: For any portions of this network required under this section of the specification, contractor shall use Fiber or Category 6 of standard TIA/EIA (100/1000BaseT). Network shall be run with no splices and separate from any wiring over thirty (30) volts.

3. Primary and Secondary roller LANs: Communication wiring shall be individually 100% shielded pairs per manufacturers recommendations for distances installed, with overall PVC cover, Class 2, plenum-rated run with no splices and separate from any wiring over thirty (30) volts. Shield shall be terminated and wiring shall be grounded as recommended by BC manufacturer.

C. Signal Wiring: Contractor shall run all signal wiring in accordance with National Electric Codes and Division 26 of this Specification.

1. Signal wiring to all field devices, including, but not limited to, all sensors, transducers, transmitters, switches, etc. shall be twisted, 100% shielded pair, minimum 18-gauge wire, with PVC cover. Signal wiring shall be run with no splices and separate from any wiring above thirty (30) volts.

2. Signal wiring shield shall be grounded at controller end only unless otherwise recommended by the controller manufacturer.

D. Low Voltage Analog Output Wiring: Contractor shall run all low voltage control wiring in accordance with National Electric Codes and Division 16 of this Specification.

1. Low voltage control wiring shall be minimum 16-gauge, twisted pair, 100% shielded, with PVC cover. Class 2 plenum-rated. Low voltage control wiring shall be run with no splices separate from any wiring above thirty (30) volts.

E. Control Panels: Provide control panels with suitable brackets for wall mounting for each control system. Locate panel adjacent to systems served.

1. Fabricate panels of 16-gage furniture-grade steel, or 6063-T5 extruded aluminum alloy, totally enclosed on four sides, with hinged door and keyed lock, with manufacturer's standard shop-painted finish and color.

2. Provide UL-listed cabinets for use with line voltage devices.

3. Control panel shall be completely factory wired and piped, and all electrical connections made to a terminal strip. Control panel shall have standard manufacturer's color.

4. All gauges and control components shall be identified by means of nameplates.

5. All control tubing and wiring shall be run neatly and orderly in open slot wiring duct with cover.

6. Complete wiring and tubing termination drawings shall be mounted in or adjacent to panel.
2.2 CONTROL VALVES

A. General: Provide factory fabricated control valves of type, body material and pressure class indicated. Where type or body material is not indicated, provide selection as determined by manufacturer for installation requirements and pressure class, based on maximum pressure and temperature in piping system. Provide valve size in accordance with scheduled or specified maximum pressure drop across control valve. Control valves shall be equipped with heavy-duty actuators, and with proper close-off rating for each individual application. Minimum close-off rating shall be as scheduled and adequate for each application and shall generally be considered at dead head rating of the pump.

B. Segmented or Characterized Ball Type

1. Body: Carbon Steel (ASTM 216), one-piece design with wafer style ends.
2. Seat: Reinforced Teflon (PTFE).
3. Ball: Stainless steel ASTM A351
4. Port: Segmented design with equal-percentage characteristic.
5. Stem: Stainless steel.
6. Cold Service Pressure: 200 psi WOG
7. Cavitation Trim: Provide cavitation trim where indicated and/or required, designed to eliminate cavitation and noise while maintaining an equal percentage characteristic. Trim shall be a series of plates with orifices to break the pressure drop into multi-stages.
8. Acceptable Manufacturers: Subject to compliance with requirements approved manufacturers are as follows:
 a. Jamesbury R-Series
 b. Fisher
 c. Belimo
 d. Substitutions: See Section 01 60 00 - Product Requirements

2.3 CONTROL DAMPERS

A. General: Provide factory fabricated automatic control dampers of sizes, velocity and pressure classes as required for smooth, stable, and controllable air flow. Provide parallel or opposed blade dampers as recommended by manufacturers sizing techniques. For dampers located near fan outlets, provide dampers rated for fan outlet velocity and close-off pressure, and recommended by damper manufacturer for fan discharge damper service. Control dampers used for smoke dampers shall comply with UL 555S. Control Dampers used for fire dampers shall comply with UL 555.

B. For general isolation and modulating control service in rectangular ducts at velocities not greater than 1500 fpm (7.62 m/s), differential pressure not greater than 2.5” w.c. (622 Pa):

1. Performance: Test in accordance with AMCA 500.
2. Frames: Galvanized steel, 16-gauge minimum thickness, welded or riveted with corner reinforcement.
3. Blades: Stainless steel in lab exhausts and galvanized steel elsewhere,
maximum blade size 8 inches (200 mm) wide by 48 inches (1219 mm) long, attached to minimum 1/2 inch (12.7 mm) shafts with set screws, 16 gauge minimum thickness.
6. Shaft Bearings: Oil impregnated sintered bronze, graphite impregnated nylon sleeve or other molded synthetic sleeve, with thrust washers at bearings.
7. Linkage: Concealed in frame.
8. Linkage Bearings: Oil impregnated sintered bronze or graphite impregnated nylon.
9. Leakage: Less than one percent based on approach velocity of 1500 ft./min. (7.62 m/s) and 1 inches wg. (249Pa).
10. Maximum Pressure Differential: 2.5 inches wg. (622 Pa)
11. Temperature Limits: -40 to 200 °F (-40 to 93 °C).
12. Where opening size is larger than 48 inches (1219 mm) wide, or 72 inches (1829 mm) high, provide dampers in multiple sections, with intermediate frames and jackshafts appropriate for installation.

2.4 ACTUATORS

A. General: Size actuators and linkages to operate their appropriate dampers or valves with sufficient reserve torque or force to provide smooth modulating action or 2-position action as specified. Select spring-return actuators with manual override to provide positive shut-off of devices as they are applied.

B. Damper Actuators

1. Ambient Operating Temperature Limits: -10 to 150°F (-12.2 to 66 °C)
2. Two Position Electric Actuators: Line voltage with spring return
3. Electronic Actuators: Provide actuators with spring return for two-position (24v), 0-5 Vdc, 0-10 Vdc, 2-10Vdc, 4-20 mA, or PWM input (subject to restrictions) as required. Actuators shall travel full stroke in less than [90] seconds. Actuators shall be designed for a minimum of 60,000 full cycles at full torque and be UL 873 listed. Provide stroke indicator. Actuators shall have positive positioning circuit. Where two actuators are required in parallel or in sequence provide an auxiliary actuator driver. Actuators shall have current limiting motor protection. Actuators shall have manual override where indicated. Modulating actuators for valves shall have minimum rangeability of 40 to 1.
4. Close-Off Pressure: Provide the minimum torque required, and spring return for fail positioning (unless otherwise specifically indicated) sized for required close-off pressure. Required close-off pressure for two-way water valve applications shall be the shutoff head of associated pump. Required close-off rating of steam valve applications shall be design inlet steam pressure plus 50 percent for low pressure steam, and 10 percent for high pressure steam. Required close-off rating of air damper applications shall be shutoff pressure of associated fan, plus 10 percent.
5. Acceptable Manufacturers: Subject to compliance with requirements approved manufacturers are as follows:
a. Belimo
b. Johnson Controls
c. Delta
d. Invensys
e. Substitutions: See Section 01 60 00 - Product Requirements

C. Quarter-Turn Actuators (for ball and butterfly valves):

1. Electric
 a. Motor: Suitable for 120- or 240-Volt single-phase power supply. Insulation shall be NEMA Class F or better. Motor shall be rated for 100 percent duty cycle. Motors shall have inherent overload protection.
 b. Gear Train. Motor output shall be directed to a self-locking gear drive mechanism. Gears shall be rated for torque input exceeding motor locked rotor torque.
 c. Wiring: Power and control wiring shall be wired to a terminal strip in the actuator enclosure
 d. Failsafe Positioning: Actuators shall be spring return type for failsafe positioning.
 e. Enclosure: Actuator enclosure shall be NEMA-4 rated and shall have a minimum of two threaded conduit entries. Provide an enclosure heater for actuators located outside of buildings.
 f. Limit Switches: Travel limit switches shall be UL and CSA approved. Switches shall limit actuator in both open and closed positions.
 g. Mechanical Travel Stops: The actuator shall include mechanical travel stops of stainless-steel construction to limit actuator to specific degrees of rotation.
 h. Manual Override: Actuators shall have manual actuator override to allow operation of the valve when power is off. For valves 4 inches and smaller the override may be a removable wrench or lever or geared handwheel type. For larger valves, the override shall be a fixed geared handwheel type. An automatic power cut-off switch shall be provided to disconnect power from the motor when the handwheel is engaged for manual operation.
 i. Valve Position Indicator: A valve position indicator with arrow and open and closed position marks shall be provided to indicate valve position.
 j. Torque Limit Switches: Provide torque limit switches to interrupt motor power when torque limit is exceeded in either direction of rotation.
 k. Position Controller: For valves used for modulating control, provide an electronic positioner capable of accepting 4-20 mA, 0-10 Vdc, 2-10 Vdc, and 135 Ohm potentiometer.
 l. Ambient Conditions: Actuator shall be designed for operation from -140 to 150 °F ambient temperature with 0 to 100 percent relative humidity.
2.5 GENERAL FIELD DEVICES

A. Provide field devices for input and output of digital (binary) and analog signals into controllers (BCs, AACs, ASCs). Provide signal conditioning for all field devices as recommended by field device manufacturers, and as required for proper operation in the system.

B. It shall be the Contractor's responsibility to assure that all field devices are compatible with controller hardware and software.

C. Field devices specified herein are generally 'two-wire' type transmitters, with power for the device to be supplied from the respective controller. If the controller provided is not equipped to provide this power, or is not designed to work with 'two-wire' type transmitters, or if field device is to serve as input to more than one controller, or where the length of wire to the controller will unacceptably affect the accuracy, the Contractor shall provide 'four-wire' type equal transmitter and necessary regulated DC power supply or 120 VAC power supply, as required.

D. For field devices specified hereinafter that require signal conditioners, signal boosters, signal repeaters, or other devices for proper interface to controllers, Contractor shall furnish and install proper device, including 120V power as required. Such devices shall have accuracy equal to, or better than, the accuracy listed for respective field devices.

E. Accuracy: As stated in this Section, accuracy shall include combined effects of nonlinearity, non-repeatability and hysteresis.

2.6 TEMPERATURE SENSORS (TS)

A. Sensor range: When matched with A/D converter of BC, AAC/ASC, or SD, sensor range shall provide a resolution of no worse than 0.3°F (0.16 °C) (unless noted otherwise). Where thermistors are used, the stability shall be better than 0.25°F over 5 years.

B. Matched Sensors: The following applications shall require matched sensors:

1. Building Loop Connections: Provide matched loop and building supply sensors where control sequence requires controlling to a temperature rise (differential).
2. Hydronic Temperature Difference Calculations: Provide matched supply and return temperature sensors where the pair is used for calculating temperature difference for use in load calculations or sequencing such as across chillers and plants.
3. Air Handling Unit Sequencing: Provide matched pair for the cooling and heating coil leaving sensors where the sequence includes calculating an offset from the supply air setpoint to maintain a leaving heating coil temperature.

C. Room Temperature Sensor: Shall be an element contained within a ventilated cover, suitable for wall mounting. Provide insulated base. Following sensing elements are acceptable:

1. Sensing element shall be platinum RTD, thermistor, or integrated circuit, +/-
0.4°F accuracy at calibration point.

2. Provide setpoint adjustment where indicated. The setpoint adjustment shall be a warmer/cooler indication that shall be scalable via the BAS.

3. Provide an occupancy override button on the room sensor enclosure where indicated. This shall be a momentary contact closure.

4. Provide current temperature indication via an LCD or LED readout where indicated.

D. Single-Point Duct Temperature Sensor: Shall consist of sensing element, junction box for wiring connections and gasket to prevent air leakage or vibration noise. Temperature range as required for resolution indicated in paragraph A. Sensor probe shall be 304 stainless steel.

1. Sensing element shall be platinum RTD, thermistor, or integrated circuit, +/- 0.2°F accuracy at calibration point.

E. Averaging Duct Temperature Sensor: Shall consist of an averaging element, junction box for wiring connections and gasket to prevent air leakage. Provide sensor lengths and quantities to result in one lineal foot of sensing element for each three-square feet of cooling coil/duct face area. Temperature range as required for resolution indicated in paragraph A.

1. Sensing element shall be platinum RTD, or thermistor, +/- 0.2°F accuracy at calibration point.

F. Liquid immersion temperature sensor shall include thermowell, sensor and connection head for wiring connections. Temperature range shall be as required for resolution of 0.15°F.

1. Sensing element (chilled water/glycol systems) shall be platinum RTD +/- 0.2°F accuracy at calibration point. Temperature range shall be as required for resolution of 0.15°F.

2. Sensing element (other systems) shall be platinum RTD, thermistor, or integrated circuit, +/- 0.4°F accuracy at calibration point. Temperature range shall be as required for resolution of 0.3°F.

G. Outside air sensors shall consist of a sensor, sun shield, utility box, and watertight gasket to prevent water seepage. Temperature range shall be as require for resolution indicated in Paragraph A.

1. Sensing element shall be platinum RTD, thermistor, or integrated circuit, +/- 0.4°F accuracy at calibration point.

2.7 TEMPERATURE TRANSMITTERS

A. Where required by Controller, or where wiring runs are over 50 feet, sensors as specified above may be matched with transmitters outputting 4-20 mA linearly across the specified temperature range. Transmitters shall have zero and span adjustments, an accuracy of 0.1°F when applied to the sensor range.
2.8 HUMIDITY TRANSMITTERS
A. Units shall be suitable for duct, wall (room) or outdoor mounting. Unit shall be two-wire transmitter utilizing bulk polymer resistance change or thin film capacitance change humidity sensor. Unit shall produce linear continuous output of 4-20 mA for percent relative humidity (% RH). A combination temperature and humidity sensor may be used for zone level monitoring. Sensors shall have the following minimum performance and application criteria:

1. Input Range: 0 to 100% RH.
2. Accuracy (% RH): +/- 2% (when used for enthalpy calculation, dewpoint calculation or humidifier control) or +/- 3% (monitoring only) between 20-90% RH at 77°F, including hysteresis, linearity, and repeatability.
3. Sensor Operating Range: As required by application
4. Long Term Stability: Less than 1% drift per year.

B. Acceptable Manufacturers: Units shall be Vaisala HM Series, General Eastern, Microline, or Hy-Cal HT Series. Substitutions shall be allowed per Division 1.

2.9 DIFFERENTIAL PRESSURE TRANSMITTERS (DP)
A. General Purpose - Water: Two-wire transmitter, 4-20 mA output with zero and span adjustments. Plus or minus 0.5% overall accuracy, 450 psig (3103 KPa) maximum static pressure rating, 200 psid maximum overpressure rating for 6 through 60 psid range, 450 psid for 100 through 300 psid range. Acceptable units shall be Kele & Associates Model 360 C. Substitutions shall be allowed per Division 1.

B. General Purpose Low-Pressure Air: Generally for use in static measurement of duct pressure or constant volume air velocity pressure measurement where the range is applicable.

1. General: Loop powered two-wire differential capacitance cell-type transmitter.
2. Output: two wire 4-20 mA output with zero adjustment.
3. Overall Accuracy: Plus or minus 1%.
4. Minimum Range: 0.1 in. w.c.
5. Maximum Range: 10 inches w.c.
6. Housing: Polymer housing suitable for surface mounting.
7. Acceptable Manufacturers: Modus T30. Substitutions shall be allowed per Division 1.
8. Static Sensing Element: Pitot-type static pressure sensing tips similar to Dwyer model A-301 and connecting tubing.
9. Range: Select for specified setpoint to be between 25% and 75% full-scale.

C. VAV Velocity Pressure: Generally, for use in variable volume air velocity pressure measurement where the range is applicable.

1. General: Loop powered two-wire differential capacitance cell type transmitter.
2. Output: Two-wire, 4-20 mA output with zero adjustment.
3. Overall Accuracy: Plus or minus 0.25%
4. Minimum Range: 0 in. w.c.
5. Maximum Range: 1-inch w.c.
6. Housing: Polymer housing suitable for surface mounting.
7. Acceptable Manufacturers: Setra. Substitutions shall be allowed per Division 1.
8. Range: Select for minimum range that will accept the maximum velocity pressure expected.

2.10 VALVE BYPASS FOR DIFFERENTIAL PRESSURE SENSORS

A. Provide a five-valve bypass kit for protection of DP sensors where the static on the pipe can cause on over pressure when connected to one port with the other at atmospheric pressure. Kit shall include high- and low-pressure isolation valves, high- and low-pressure vent valves, and a bypass valve contained in a NEMA-1 enclosure.

2.11 DIFFERENTIAL PRESSURE SWITCHES (DPS)

A. General Service - Air: Diaphragm with adjustable setpoint and differential and snap acting form C contacts rated for the application. Provide manufacturer's recommended static pressure sensing tips and connecting tubing

B. General Service - Water: Diaphragm with adjustable setpoint, 2 psig or adjustable differential, and snap-acting Form C contacts rated for the application. 60 psid minimum pressure differential range. 0°F to 160°F operating temperature range.

2.12 PRESSURE SWITCHES (PS)

A. Diaphragm or bourdon tube with adjustable setpoint and differential and snap-acting Form C contacts rated for the application. Pressure switches shall be capable of withstanding 150% of rated pressure.

B. Acceptable Manufacturers: Square D, ITT Neo-Dyn, ASCO, Penn, Honeywell, and Johnson Controls. Substitutions shall be allowed per Division 1.

2.13 TRANSDUCERS

A. Binary to Analog Transducers (Pulse Width Modulating or Tri-State-to-Voltage or -Current):

1. Adjustable zero and span.
2. Failure Mode on Power Loss: Shall be provided with memory feature to allow the transducer to return to last value on power failure.
3. Accuracy: ± 1% of span
4. Output Span: 4-20 mA, 0-5 Vdc, 1-5 Vdc, 0-10Vdc, 2-10Vdc, 0-15Vdc, 3-15Vdc
5. Input: 4-20 mA, pulse width modulated or tri-state input.
7. Enclosure: Polymer designed for surface or panel mount.
8. Failure Mode on Power Loss: Non-failsafe transducers shall have no output air
Failsafe transducers shall exhaust output upon power loss.

B. Electronic-to Electronic (Voltage or Current to Current or Voltage):

1. Adjustable zero and span.
2. Failure Mode on Power Loss: Memory feature to allow the transducer to return to last value on power failure.
3. Accuracy: ± 1% of span.
4. Output Span: 4-20 mA, 0-5 Vdc, 1-5 Vdc, 0-10 Vdc, 2-10 Vdc, 0-15 Vdc, 3-15 Vdc.
5. Input: 0-20 Vdc, 0-20 ma, 0-10 kOhm.
6. Pulse Width Modulated} and Tri-state Input Time Base: Dip switch selectable
7. Enclosure: Polymer enclosure designed for surface or panel mount.

2.14 CURRENT SWITCHES (CS)

A. Clamp-On or Solid-Core Design Current Operated Switch (for Constant Speed Motor Status Indication)

1. Range: 1.5 to 150 amps.
2. Trip Point: Adjustable.
3. Switch: Solid state, normally open, 1 to 135 Vac or Vdc, 0.3 Amps. Zero off state leakage.
4. Lower Frequency Limit: 6 Hz.
5. Trip Indication: LED
6. Approvals: UL, CSA
7. Max. Cable Size: 350 MCM

B. Clamp-on or Solid-Core Wire Through Current Switch (CS/CR) (for Constant Speed Motors): Same as CS with 24v command relay rated at 5A @ 240 Vac resistive, 3A @ 240 Vac inductive, load control contact power shall be induced from monitored conductor (minimum conductor current required to energize relay 5A, max. rating of 135А). Acceptable Manufacturers shall be Veris Industries, Inc., Model # H938/735; or RE Technologies RCS 1150. Substitutions shall be allowed per Division 1.

1. Where used for single-phase devices, provide the CS/CR in a self-contained unit in a housing similar with override switch to Kele RIBX. Substitutions shall be allowed per Division 1.

C. Clamp-On Design Current Operated Switch for Variable Speed Motor Status Indication

1. Range: 1.5 to 135 Amps.
2. Trip Point: Self-calibrating based on VA memory associated with frequency to
3. Switch: Solid state, normally open, 1 to 135 Vac or Vdc, 0.3 Amps. Zero off state leakage.
4. Frequency Range: 5-75 Hz
5. Trip Indication: LED
6. Approvals: UL, CSA
7. Max. Cable Size: 350 MCM

D. Clamp-On Wire Through Current Switch (CS/CR) (for Variable Speed Motors): Same as CS with 24v command relay rated at 5A @ 240 Vac resistive, 3A @ 240 Vac inductive, load control contact power shall be induced from monitored conductor (minimum conductor current required to energize relay 5A, max. rating of 135A). Acceptable manufacturer shall be Veris Industries, Inc., Model # H934. Substitutions shall be allowed per Division 1.

E. Variable Speed Status: Where current switches are used to sense the status for variable speed devices, the CT shall include on-board VA/Hz memory to allow distinction between a belt break and subsequent ramp up to 60 Hz, versus operation at low speed. The belt break scenario shall be indicated as a loss of status and the operation at low speed shall indicate normal status.

2.15 CURRENT TRANSFORMERS (CT)

A. Clamp-On Design Current Transformer (for Motor Current Sensing)
 1. Range: 1-10 amps minimum, 20-200 amps maximum
 2. Trip Point: Adjustable
 3. Output: 0-5 VDC.
 4. Accuracy: ±0.2% from 20 to 100 Hz.
 5. Acceptable Manufacturers: KELE SA100. Substitutions shall be allowed per Division 1.

2.16 OUTDOOR AIR STATIC PRESSURE SENSING TIP

A. Pressure sensor: Pressure sensing tip shall be designed to minimize the effects of wind and resulting velocity pressure up to 80 mph. Acceptable manufacturers shall be Dwyer A-306. Substitutions shall be allowed per Division 1.

B. Low Air Pressure Surge Dampener: 30-second time constant. Acceptable manufacturer shall be Modus SD030. Substitutions shall be allowed per Division 1.

2.17 AIR VELOCITY PRESSURE SENSORS (INSERTION TYPE)

A. Single or Multi-Point Averaging (as indicated): Sensing tip shall be for insertion into duct with mounting flange and push on tube connections. Material shall be suitable to the application.
2.18 CO2 SENSORS/TRANSMITTERS (CO2)

A. CO2 sensors shall use silicon based, diffusion aspirated, infrared single beam, dual-wavelength sensor.

B. Accuracy: ±36ppm at 800 ppm and 68°F.

C. Stability: 5% over 5 years.

D. Output: 4-20 mA, 0-10 Vdc or relay.

E. Mounting: Duct or Wall as indicated.

F. Acceptable Manufacturer: Vaisala, Inc. GMD20 (duct) or GMW20 (wall).

2.19 ELECTRIC CONTROL COMPONENTS

A. Limit Switches (LS): Limit switches shall be UL listed, SPDT or DPDT type, with adjustable trim arm. Limit switches shall be as manufactured by Square D, Allen Bradley. Substitutions shall be allowed per Division 1.

B. Electric Solenoid-Operated Pneumatic Valves (EP): EP valves shall be rated for a minimum of

C. 1.5 times their maximum operating static and differential pressure. Valves shall be ported 2-way, 3-way, or 4-way and shall be normally closed or open as required by the application.

D. EPs shall be sized for minimum pressure drop and shall be UL and CSA listed. Furnish and install gauges on all inputs of EPs. Furnish an adjustable air pressure regulator on input side of solenoid valves serving actuators operating at greater than 30 psig.

1. Coil Enclosure: Indoors shall be NEMA-1, Outdoors and NEMA-3, 4, 7, 9.
2. Fluid Temperature Rating: Valves for compressed air and cold-water service shall have 150 °F (66 °C) minimum rating. Valves for hot water or steam service shall have fluid temperature rating higher than the maximum expected fluid temperature.
3. Acceptable Manufacturers: EP valves shall be as manufactured by ASCO or Parker. Substitutions shall be allowed per Division 1.
4. Coil Rating: EP valves shall have appropriate voltage coil rated for the application (i.e., 24 VAC, 120 VAC, 24 VDC, etc.).

E. Low Temperature Detector ('Freezestat') (FZ): Low temperature detector shall consist of a 'cold spot' element which responds only to the lowest temperature along any one foot of entire element, minimum bulb size of 1/8" x 20' (3.2mm x 6.1m), junction box for wiring connections and gasket to prevent air leakage or vibration noise, DPST (4 wire, 2 circuit) with manual reset. Temperature range 15 to 55°F (-9.4 to 12.8°C), factory set at 38°F.

F. Surface-Mounted Thermostat: Surface-mounted thermostat shall consist of SPDT
contacts, operating temperature range of 50 to 150°F (10 to 65°C), and a minimum 10°F fixed setpoint differential.

G. Low Voltage Wall Thermostat: Wall-mounted thermostat shall consist of SPDT sealed mercury contacts, operating temperature range of 50 to 90°F (10 to 32°C), switch rating of 24 Vac (30 Vac max.), and both manual and automatic fan operation in both the heat and cool modes.

H. Control Relays: All control relays shall be UL listed, with contacts rated for the application, and mounted in minimum NEMA-1 enclosure for indoor locations, NEMA-4 for outdoor locations.

1. Control relays for use on electrical systems of 120 volts or less shall have, as a minimum, the following:
 a. AC coil pull-in voltage range of +10%, -15% or nominal voltage.
 b. Coil sealed volt-amperes (VA) not greater than four (4) VA.
 c. Silver cadmium Form C (SPDT) contacts in a dustproof enclosure, with 8 or 11 pin type plug.
 d. Pilot light indication of power-to-coil and coil retainer clips.
 e. Coil rated for 50 and 60 Hz service.
 f. Acceptable Manufacturers: Relays shall be Potter Brumfield, Model KRPA. Substitutions shall be allowed per Division 1.
 g. Relays used for across-the-line control (start/stop) of 120V motors, 1/4 HP, and 1/3 HP, shall be rated to break minimum 10 Amps inductive load. Relays shall be IDEC. Substitutions shall be allowed per Division 1.
 h. Relays used for stop/start control shall have low voltage coils (30 VAC or less), and shall be provided with transient and surge suppression devices at the controller interface.

I. General Purpose Power Contactors: NEMA ICS 2, AC general-purpose magnetic contactor. ANSI/NEMA ICS 6, NEMA type 1 enclosure. Manufacturer shall be Square 'D', Cutler-Hammer or Westinghouse.

J. Control Transformers: Furnish and install control transformers as required. Control transformers shall be machine tool type and shall be US and CSA listed. Primary and secondary sides shall be fused in accordance with the NEC. Transformer shall be proper size for application and mounted in minimum NEMA-1 enclosure.

1. Transformers shall be manufactured by Westinghouse, Square 'D', or Jefferson. Substitutions shall be allowed per Division 1.

K. Time Delay Relays (TDR): TDRs shall be capable of on or off delayed functions, with adjustable timing periods, and cycle timing light. Contacts shall be rated for the application with a minimum of two (2) sets of Form C contacts, enclosed in a dustproof enclosure.

1. TDRs shall have silver cadmium contacts with a minimum life span rating of one
million operations. TDRs shall have solid state, plug-in type coils with transient suppression devices.

2. TDRs shall be UL and CSA listed, Crouzet type. Substitutions shall be allowed per Division 1.

L. Electric Push Button Switch: Switch shall be momentary contact, oil tight, push button, with number of N.O. and/or N.C. contacts as required. Contacts shall be snap-action type and rated for minimum 120 Vac operation. Switch shall be 800T type, as manufactured by Allen Bradley. Substitutions shall be allowed per Division 1.

M. Pilot Light: Panel-mounted pilot light shall be NEMA ICS 2 oil tight, transformer type, with screw terminals, push-to-test unit, LED type, rated for 120 VAC. Unit shall be 800T type, as manufactured by Allen-Bradley. Substitutions shall be allowed per Division 1.

N. Alarm Horn: Panel-mounted audible alarm horn shall be continuous tone, 120 Vac Sonalert solid-state electronic signal, as manufactured by Mallory. Substitutions shall be allowed per Division 1.

O. Electric Selector Switch (SS): Switch shall be maintained contact, NEMA ICS 2, oil-tight selector switch with contact arrangement, as required. Contacts shall be rated for minimum 120 Vac operation. Switch shall be 800T type, as manufactured by Allen-Bradley. Substitutions shall be allowed per Division 1.

2.20 NAMEPLATES

A. Provide engraved phenolic or micarta nameplates for all equipment, components, and field devices furnished. Nameplates shall be 1/8 thick, black, with white center core, and shall be minimum 1” x 3”, with minimum 1/4” high block lettering. Nameplates for devices smaller than 1” x 3” shall be attached to adjacent surface.

B. Each nameplate shall identify the function for each device.

2.21 TESTING EQUIPMENT

A. Contractor shall test and calibrate all signaling circuits of all field devices to ascertain that required digital and accurate analog signals are transmitted, received, and displayed at system operator terminals, and make all repairs and recalibrations required to complete test. Contractor shall be responsible for test equipment required to perform these tests and calibrations. Test equipment used for testing and calibration of field devices shall be at least twice as accurate as respective field device (e.g., if field device is +/-0.5% accurate, test equipment shall be +/-0.25% accurate over same range).

PART 3 – EXECUTION

3.1 INSPECTION

A. Examine areas and conditions under which control systems are to be installed. Do not proceed with work until unsatisfactory conditions have been corrected in manner
acceptable to Installer.

3.2 INSTALLATION OF CONTROL SYSTEMS

A. General: Install systems and materials in accordance with manufacturer's instructions, roughing-in drawings and details shown on drawings. Install electrical components and use electrical products complying with requirements of National Electric Code and all local codes.

B. Control Wiring: The term "control wiring" is defined to include providing of wire, conduit and miscellaneous materials as required for mounting and connection of electric control devices.

1. Wiring System: Install complete wiring system for electric control systems. Conceal wiring except in mechanical rooms and areas where other conduit and piping are exposed. Installation of wiring shall generally follow building lines. Install in accordance with National Electrical Code and Division 16 of this Specification. Fasten flexible conductors bridging cabinets and doors, neatly along hinge side, and protect against abrasion. Tie and support conductors neatly.

2. Control Wiring Conductors: Install control wiring conductors, without splices between terminal points, color-coded. Install in neat workmanlike manner, securely fastened. Install in accordance with National Electrical Code and Division 16 of this Specification.

3. Communication wiring, signal wiring and low voltage control wiring shall be installed separate from any wiring over thirty (30) volts. Signal wiring shield shall be grounded at controller end only, unless otherwise recommended by the controller manufacturer.

4. All WAN and LAN Communication wiring shield shall be terminated as recommended by controller manufacturer. All WAN and LAN Communication wiring shall be labeled with a network number, device ID at each termination and shall correspond with the WAN and LAN system architecture and floor plan submittals.

5. Install all control wiring external to panels in electric metallic tubing or raceway. However, communication wiring, signal wiring and low voltage control wiring may be run without conduit in concealed, accessible locations if noise immunity is ensured. Contractor will be fully responsible for noise immunity and rewire in conduit if electrical or RF noise affects performance. Accessible locations are defined as areas inside mechanical equipment enclosures, such as heating and cooling units, instrument panels etc.; in accessible pipe chases with easy access, or suspended ceilings with easy access. Installation of wiring shall generally follow building lines. Run in a neat and orderly fashion, bundled where applicable, and completely suspended (strapped to rigid elements or routed through wiring rings) away from areas of normal access. Tie and support conductors neatly with suitable nylon ties. Conductors shall not be supported by the ceiling system or ceiling support system. Conductors shall be pulled tight and be installed as high as practically possible in ceiling cavities. Wiring shall not be laid on the ceiling or duct. Conductors shall not be installed between the top cord of a joist or beam and the bottom of roof decking. Contractor shall be fully responsible for
noise immunity and rewire in conduit if electrical or RF noise affects performance.

7. Number-code or color-code conductors appropriately for future identification and servicing of control system. Code shall be as indicated on approved installation drawings.

C. Control Valves: Install so that actuators, wiring, and tubing connections are accessible for maintenance. Where possible, install with valve stem axis vertical, with operator side up. Where vertical stem position is not possible, or would result in poor access, valves may be installed with stem horizontal. Do not install valves with stem below horizontal, or down.

D. Freezestats: Install freezestats in a serpentine fashion where shown on drawing. Provide one foot of element for each square foot of coil face area. Where coil face area exceeds required length of element, provide multiple devices, wired in parallel for normally open close on trip application, wired in series for normally closed, open on trip application. Adequately support with coil clips.

E. Averaging Temperature Sensors: Cover no more than two square feet per linear foot of sensor length except where indicated. Generally, where flow is sufficiently homogeneous/adequately mixed at sensing location, consult AE for requirements.

F. Fluid Flow Sensors: Install per manufacturer's recommendations in an unobstructed straight length of pipe.

G. Relative Humidity Sensors: Provide element guard as recommended by manufacturer for high velocity installations. For high limit sensors, position remote enough to allow full moisture absorption into the air stream before reaching the sensor.

H. Differential Pressure Transmitters: Provide valve bypass arrangement to protect against over pressure damaging the transmitter.

I. Flow Switches: Where possible, install in a straight run of pipe at least 15 diameters in length to minimize false indications.

J. Current Switches for Motor Status Monitoring: Adjust so that setpoint is below minimum operating current and above motor no load current.

K. Supply Duct Pressure Transmitters:

1. General: Install pressure tips with at least 4 'round equivalent' duct diameters of straight duct with no takeoffs upstream. Install pressure tips securely fastened with tip facing upstream in accordance with manufacturer's installation instructions. Locate the transmitter at an accessible location to facilitate calibration.

2. VAV System 'Down-Duct' Transmitters: Locate pressure tips approximately 2/3 of the hydraulic distance to the most remote terminal in the air system.

L. Cutting and Patching Insulation: Repair insulation to maintain integrity of insulation and
vapor barrier jacket. Use hydraulic insulating cement to fill voids and finish with material matching or compatible with adjacent jacket material.

END OF SECTION
SECTION 230952
BAS OPERATOR INTERFACES

PART 1 – GENERAL

1.1 SECTION INCLUDES

A. Operator Workstations
B. Control System Servers
C. Portable Operator Terminal
D. Handheld Operator Interface Devices
E. Permanently Mounted Operator Interface Devices
F. Printers

1.2 RELATED DOCUMENTS

A. 230950 - Building Automation System (BAS) General (Refer to this Section also for Definitions and Abbreviations)
B. 230951 - BAS Basic Materials, and Devices
C. 230953 - BAS Field Panel
D. 230954 - BAS Communications Devices
E. 230955 - BAS Software and Programming
F. 230958 - BAS Sequence of Operation

1.3 DESCRIPTION OF WORK

A. Furnish and install all Operator Interfaces and Control System Servers as required for the BAS functions specified. All computers shall be warranted by the manufacturer for a period of one year after Substantial Completion.

B. Refer to Section 230950 for general requirements.

PART 2 – PRODUCTS
2.1 OPERATOR WORKSTATION (OWS)

A. Provide personal computer (PC) with current generation multi-core Intel processor operating at

B. 2.0 GHz minimum speed. Include 1 GB RAM and minimum of two (2) 160GB/7200 RPM hard disk drives. Provide a x16 PCIe graphics card, Four USB 2.0 ports, 100/1000 Base-T network card and 16X DVD+/-RW Drive. Provide 19 in (1280 x 1024 min resolution, 6ms max refresh) LCD.

C. Provide detachable keyboard with standard typewriter layout, function keys, and separate numeric keypad. Provide a USB mouse and mouse pad with the system. Provide one open serial port after configuration of the workstation to meet the requirements of the rest of these specifications.

D. Workstation PC shall have the capability of changing serial port interrupt vectors and IOBASE addresses through software.

E. Operating system for operator workstation must be preapproved by the Owner. Provide most current version of Microsoft Office. All software shall be at least the latest version available as of the date of contract completion.

F. Provide software, graphics and programming as specified in Section 230955.

G. Provide network card approved by BAS manufacturer to support Supervisory LAN communications (100/1000 Mbps Ethernet TCP/IP) for OWSs connected to the Local Supervisory LAN and network card or LANID where connected to the Primary Controller LAN.

H. Provide additional hardware, video drivers, etc., to facilitate all control functions and software requirements specified for the BAS.

I. Operator Workstations shall be placed as indicated on the drawings or as directed by the Owner.

2.2 PRINTER

A. Provide minimum 600x600 dpi, min 4 sheets per minute laser printer with 8-1/2” x 11” and 11” x 17” paper trays.

B. Provide this printer at the Control System Server

PART 3 – EXECUTION

3.1 INSTALLATION

A. No license, software component, key, etc. or any piece of information required to install, configure, operate, diagnose and maintain the system shall be withheld from the State.
B. Install systems and materials in accordance with manufacturer’s instructions.

END OF SECTION
SECTION 230953

BAS FIELD PANELS

PART 1 – GENERAL

1.1 SECTION INCLUDES

A. Building Controller (BC)
B. Advance Application Specific Controller (AAC)
C. Application Specific Controller (ASC)

1.2 RELATED DOCUMENTS:

A. Section 230950 - Building Automation System (BAS) General - Refer to this section for definitions of terminology
B. Section 230951 - BAS Basic Materials, Interface Devices, and Sensors
C. Section 230954 - BAS Communications Devices
D. Section 230955 - BAS Software
E. Section 230958 - Sequence of Operation

1.3 DESCRIPTION OF WORK:

A. Furnish and install DDC Control units and/or Smart Devices required to support specified building automation system functions.
B. Refer to Section 230950 for general requirements.

PART 2 – PRODUCTS

2.1 STAND-ALONE FUNCTIONALITY

A. General: These requirements clarify the requirement for stand-alone functionality relative to packaging I/O devices with a controller. Stand-alone functionality is specified with the controller and for each Application Category specified in Part 3. This item refers to acceptable paradigms for associating the points with the processor.

B. Functional Boundary: Provide controllers so that all points associated with and common to one unit or other complete system/equipment shall reside within a single control unit. The boundaries of a standalone system shall be as dictated in the contract documents.
Generally, systems specified for the Application Category will dictate the boundary of the standalone control functionality. See related restrictions below. When referring to the controller as pertains to the standalone functionality, reference is specifically made to the processor. One processor shall execute all the related I/O control logic via one operating system that uses a common programming and configuration tool.

C. The following configurations are considered acceptable with reference to a controller's standalone functionality:

1. Points packaged as integral to the controller such that the point configuration is listed as an essential piece of information for ordering the controller (having a unique ordering number).
2. Controllers with processors and modular back planes that allow plug in point modules as an integral part of the controller.
3. I/O point expander boards, plugged directly into the main controller board to expand the point capacity of the controller.
4. I/O point expansion devices connected to the main controller board via wiring and as such may be remote from the controller and that communicate via a sub LAN protocol. These arrangements to be considered standalone shall have a sub LAN that is dedicated to that controller and include no other controller devices (AACs or ASCs). All wiring to interconnect the I/O expander board shall be:
 a. Contained in the control panel enclosure;
 b. Or run in conduit. Wiring shall only be accessible at the terminations.

D. The following configurations are considered unacceptable with reference to a controller's standalone functionality:

1. Multiple controllers enclosed in the same control panel to accomplish the point requirement.

2.2 BUILDING CONTROLLER (BC)

A. General Requirements:

1. The BC(s) shall provide fully distributed control independent of the operational status of the OWSs and CSS. All necessary calculations required to achieve control shall be executed within the BC independent of any other device. All control strategies performed by the BC(s) shall be both operator definable and modifiable through the Operator Interfaces.
2. BCs shall perform overall system coordination, accept control programs, perform automated HVAC functions, control peripheral devices and perform all necessary mathematical and logical functions. BCs shall share information with the entire network of BCs and AACs/ASCs for full global control. Each controller shall be accessed through the CSS in normal operations. In the event that the CSS is not available, the controller shall permit multi-user operation from multiple OWS and mobile computers connected either locally or over the network. Each unit shall have its own internal RAM, non-volatile
memory, microprocessor, battery backup, regulated power supply, power conditioning equipment, ports for connection of operating interface devices, and control enclosure. BCs shall be programmable from the CSS, OWS, mobile computer, or handheld device. BC shall contain sufficient memory for all specified global control strategies, user defined reports and trending, communication programs, and central alarming.

3. BCs shall be connected to a controller network that qualifies as a controlling LAN.

4. All BCs shall be provided with a UPS to protect against memory loss and allow for continuous communication with the CSS in the event of a loss of power.

 a. The UPS shall be a 500 VA UPS equal to APC Back-UPS CS, 300 Watts / 500 VA, Input 120V / Output 120V, Interface Port DB-9 RS-232, USB

5. In addition, BCs may provide intelligent, standalone control of BAS functions. Each BC may be capable of standalone direct digital operation utilizing its own processor, non-volatile memory, input/output, wiring terminal strips, A/D converters, real-time clock/calendar and voltage transient and lightning protection devices. Refer to standalone functionality specified above.

6. The BC may provide for point mix flexibility and expandability. This requirement may be met via either a family of expander boards, modular input/output configuration, or a combination thereof. Refer to standalone functionality specified above.

7. All BC point data, algorithms and application software shall be modifiable from the CSS and OWS.

8. Each BC shall execute application programs, calculations, and commands via a microprocessor resident in the BC. The database and all application programs for each BC shall be stored in non-volatile or battery backed volatile memory within the BC and will be able to upload/download to/from the CSS.

9. BC shall provide buffer for holding alarms, messages, trends etc.

10. Each BC shall include self-test diagnostics, which allow the BC to automatically alarm any malfunctions, or alarm conditions that exceed desired parameters as determined by programming input.

11. Each BC shall contain software to perform full DDC/PID control loops.

12. For systems requiring end-of-line resistors those resistors shall be located in the BC.

13. Input-Output Processing

 a. Digital Outputs (DO): Outputs shall be rated for a minimum 24 Vac or Vdc, 1-amp maximum current. Each shall be configurable as normally open or normally closed. Each output shall have an LED to indicate the operating mode of the output and a manual hand off or auto switch to allow for override. Each DO shall be discrete outputs from the BC’s board (multiplexing to a separate manufacturer’s board is unacceptable). Provide suppression to limit transients to acceptable levels.
b. Analog Inputs (AI): AI shall be 0-5 Vdc, 0-10 Vdc, 0-20 Vdc, and 0-20 mA. Provide signal conditioning, and zero and span calibration for each input. Each input shall be a discrete input to the BC's board (multiplexing to a separate manufacturers board is unacceptable unless specifically indicated otherwise). A/D converters shall have a minimum resolution of 12 bits.

c. Digital Inputs (DI): Monitor dry contact closures. Accept pulsed inputs of at least one per second. Source voltage for sensing shall be supplied by the BC and shall be isolated from the main board. Software multiplexing of an AI and resistors may only be done in non-critical applications and only with prior approval of Architect/Engineer.

d. Universal Inputs (UI-AI or DI): To serve as either AI or DI as specified above.

e. Electronic Analog Outputs (AO): Voltage mode: 0-5 Vdc and 0-10 Vdc; Current mode: 4-20 mA. Provide zero and span calibration and circuit protection. Pulse Width Modulated (PWM) analog via a DO [and transducer] is acceptable only with State approval (Generally these will not be allowed on loops with a short time constant such as discharge temperature loops, economizer loops, pressure control loops and the like. They are generally acceptable for standard room temperature control loops.). Where these are allowed, transducer/actuator shall be programmable for normally open, normally closed, or hold last position and shall allow adjustable timing. Each DO shall be discrete outputs from the BC's board (multiplexing to a separate manufacturers board is unacceptable). D/A converters shall have a minimum resolution of 10 bits.

f. Pulsed Inputs: Capable of counting up to 8 pulses per second with buffer to accumulate pulse count. Pulses shall be counted at all times.

14. A communication port for operator interface through a mobile computer shall be provided in each BC. It shall be possible to perform all program and database back-up, system monitoring, control functions, and BC diagnostics through this port. Standalone BC panels shall allow temporary use of portable devices without interrupting its normal operation.

15. Each BC shall be equipped with loop tuning algorithm for precise proportional, integral, derivative (PID) control. Loop tuning tools provided with the CSS software is acceptable. In any case, tools to support loop tuning must be provided such that P, I, and D gains are automatically calculated.

16. All analog output points shall have a selectable failure setpoint. The BC shall be capable of maintaining this failure setpoint in the event of a system malfunction, which causes loss of BC control, or loss of output signal, as long as power is available at the BC. The failure setpoint shall be selectable on a per point basis.

17. Slope intercepts and gain adjustments shall be available on a per-point basis.

18. BC Power Loss:

a. Upon a loss of power to any BC, the other units on the controlling
LAN shall not in any way be affected.

b. Upon a loss of power to any BC, the battery backup shall ensure that the energy management control software, the Direct Digital Control software, the database parameters, and all other programs and data stored in the RAM are retained for a minimum of fifty (50) hours. An alarm diagnostic message shall indicate that the BC is under battery power.

c. Upon restoration of power within the specified battery backup period, the BC shall resume full operation without operator intervention. The BC shall automatically reset its clock such that proper operation of any time dependent function is possible without manual reset of the clock. All monitored functions shall be updated.

d. Should the duration of a loss of power exceed the specified battery back-up period or BC panel memory be lost for any reason, the panel shall automatically report the condition (upon resumption of power) and be capable of receiving a download via the network from the CSS or a mobile computer. In addition, the State shall be able to upload the most current versions of all energy management control programs, Direct Digital Control programs, database parameters, and all other data and programs in the memory of each BC to the CSS or a mobile computer via the network or the local USB or RS-232C port.

19. **BC Failure:**

a. Building Controller LAN Data Transmission Failure: BC shall continue to operate in stand-alone mode. BC shall store loss of communication alarm along with the time of the event. All control functions shall continue with the global values programmable to either the last value or a specified value. Peer BCs shall recognize the loss and report alarm.

b. BC Hardware Failure: BC shall cease operation and terminate communication with other devices. All outputs shall go to their specified fail position.

20. Each BC shall be equipped with firmware resident self-diagnostics for sensors and be capable of assessing an open or shorted sensor circuit and taking an appropriate control action (close valve, damper, etc.).

21. BCs may include network communications interface functions for controlling secondary controlling LANs Refer to Section 23 09 54 - BAS System Communications Devices for requirements if this function is packaged with the BC.

22. A minimum of four levels of privileges shall be provided at each BC.

23. All local user accounts shall be password protected. Strong password shall be used and complies with the State security standard.

24. BCs shall be mounted on equipment, in packaged equipment enclosures, or locking wall mounted in a NEMA 1 enclosure, as specified elsewhere.

B. **BACnet Building Controller Requirements:**
1. The BC(s) shall support all BIBBs defined in the BACnet-IP (B-BC) device profile as defined in the BACnet standard.
2. BCs shall communicate over the BACnet-IP LAN.
3. Each BC shall be connected to the BACnet-IP LAN communicating to/from other BCs.

2.3 ADVANCED APPLICATION SPECIFIC CONTROLLER (AAC) AND APPLICATION SPECIFIC CONTROLLER (ASC)

A. General Requirements:

1. AACs and ASCs shall provide intelligent, standalone control of HVAC equipment. Each unit shall have its own internal RAM, non-volatile memory and will continue to operate all local control functions in the event of a loss of communications on the ASC LAN or sub-LAN. Refer to standalone requirements by application specified in Part 3 of this section. In addition, it shall be able to share information with every other BC and AAC/ASC on the entire network.
2. Each AAC and ASC shall include self-test diagnostics that allow the AAC /ASC to automatically relay to the BC, or LAN Interface Device, any malfunctions or abnormal conditions within the AAC /ASC or alarm conditions of inputs that exceed desired parameters as determined by programming input.
3. AACs and ASCs shall include sufficient memory to perform the specific control functions required for its application and to communicate with other devices.
4. Each AAC and ASC must be capable of stand-alone direct digital operation utilizing its own processor, non-volatile memory, input/output, minimum 8-bit A to D conversion, voltage transient and lightning protection devices. All volatile memory shall have a battery backup of at least fifty (50) hrs. with a battery life of (5) five years.
5. All point data; algorithms and application software within an AAC /ASC shall be modifiable from the OWS.
6. AAC and ASC Input-Output Processing

a. Digital Outputs (DO): Outputs shall be rated for a minimum 24 VAC or VDC, 1-amp maximum current. Each shall be configurable as normally open or normally closed. Each output shall have an LED to indicate the operating mode of the output and a manual hand off or auto switch to allow for override (Only AAC requires HOA). Each DO shall be discrete outputs from the AAC/ASC's board (multiplexing to a separate manufacturer's board is unacceptable). Provide suppression to limit transients to acceptable levels.

b. Analog Inputs (AI): AI shall be 0-5 Vdc, 0-10 Vdc, 0-20 Vdc, and 0-20 mA. Provide signal conditioning, and zero and span calibration for each input. Each input shall be a discrete input to the BC's board (multiplexing to a separate manufacturers board is unacceptable unless specifically indicated otherwise). A/D converters shall have a
minimum resolution of 8-10 bits depending on application.

c. Digital Inputs (DI): Monitor dry contact closures. Accept pulsed inputs of at least one per second. Source voltage for sensing shall be supplied by the BC and shall be isolated from the main board. Software multiplexing of an AI and resistors may only be done in non-critical applications and only with prior approval of Architect/Engineer

d. Universal Inputs (UI-AI or DI): To serve as either AI or DI as specified above.

e. Electronic Analog Outputs (AO) as required by application: voltage mode, 0-5VDC and 0-10VDC; current mode (4-20 mA). Provide zero and span calibration and circuit protection. Pulse Width Modulated (PWM) analog via a DO [and transducer] is acceptable only with State approval (Generally, PWM will not be allowed on loops with a short time constant such as discharge temperature loops, economizer loops, pressure control loops and the like. They are generally acceptable for standard room temperature control loops.). Where PWM is allowed, transducer/actuator shall be programmable for normally open, normally closed, or hold last position and shall allow adjustable timing. Each DO shall be discrete outputs from the BC’s board (multiplexing to a separate manufacturers board is unacceptable). D/A converters shall have a minimum resolution of 8 bits.

B. BACnet AAC(s) and ASC(s) Requirements:

1. The AAC(s) and ASC(s) shall support all BIBBs defined in the BACnet Building Controller (B-AAC and B-ASC) device profile as defined in the BACnet standard.

2. AAC(s) and ASC(s) shall communicate over the BACnet Building Controller LAN or the ASC LAN or sub-LAN.

3. Each BC shall be connected to the BACnet Building Controller LAN communicating to/from other BCs.

C. Terminal Box Controllers:

1. Terminal box controllers controlling damper positions to maintain a quantity of supply or exhaust air serving a space shall have an automatically initiated function that resets the volume regulator damper to the fully closed position on a scheduled basis. The controllers shall initially be set up to perform this function once every 24 hours. The purpose of this required function is to reset and synchronize the actual damper position with the calculated damper position and to assure the damper will completely close when commanded. The software shall select scheduled boxes randomly and shall not allow more than 5% of the total quantity of controllers in a building to perform this function at the same time. This reset shall be performed while the AHU is operating. The BAS shall send an alarm for any terminal box that has been reset and does not indicate 0 cfm flow with the damper commanded closed.

PART 3 – EXECUTION
3.1 INSPECTION

A. Examine areas and conditions under which control systems are to be installed. Do not proceed with work until unsatisfactory conditions have been corrected in manner acceptable to Installer.

3.2 INSTALLATION OF CONTROL SYSTEMS:

A. General: Install systems and materials in accordance with manufacturer's instructions, specifications roughing-in drawings and details shown on drawings. Contractor shall install all controllers in accordance with manufacturer's installation procedures and practices.

3.3 HARDWARE APPLICATION REQUIREMENTS

A. General: The functional intent of this specification is to allow cost effective application of manufacturers standard products while maintain the integrity and reliability of the control functions. A BC as specified above is generally fully featured and customizable whereas the AAC/ASC refers to a more cost-effective unit designed for lower-end applications. Specific requirements indicated below are required for the respective application. Manufacturer may apply the most cost-effective unit that meets the requirement of that application.

B. Standalone Capability: Each Control Unit shall be capable of performing the required sequence of operation for the associated equipment. All physical point data and calculated values required to accomplish the sequence of operation shall originate within the associated CU with only the exceptions enumerated below. Refer to Item 2.01 above for physical limitations of standalone functionality. Listed below are functional point data and calculated values that shall be allowed to be obtained from or stored by other CUs or SDs via LAN.

C. Where associated control functions involve functions from different categories identified below, the requirements for the most restrictive category shall be met.

D. Application Category 0 (Distributed monitoring)

1. Applications in this category include the following:
 a. Monitoring of variables that are not used in a control loop, sequence logic, or safety.

2. Points on BCs, AACs, and ASCs may be used in these applications as well as SDs and/or general-purpose I/O modules.

3. Where these points are trended, contractor shall verify and document that the network bandwidth is acceptable for such trends and is still capable of acceptable and timely control function.

E. Application Category 1 (Application Specific Controller):
1. Applications in this category include the following:
 a. Fan Coil Units
 b. Airflow Control Boxes (VAV and Constant Volume Terminal Units)
 c. Misc. Heaters
 d. Unitary equipment <15 tons (Package Terminal AC Units, Package Terminal Heat Pumps, Split-System AC Units, Split-System Heat Pumps)
 e. Induction Units
 f. Variable Speed Drive (VSD) controllers not requiring safety shutdowns of the controlled device.

2. ASCs may be used in these applications.
 a. Standalone Capability: Provide capability to execute control functions for the application for a given setpoint or mode, which shall generally be occupied mode control. Only the following data (as applicable) may be acquired from other controllers via LANs. In the event of a loss of communications with any other controller, or any fault in any system hardware that interrupts the acquisition of any of these values, the ASC shall use the last value obtained before the fault occurred. If such fault has not been corrected after the specified default delay time, specified default value(s) shall then be substituted until such fault has been corrected.
 1) Physical/Virtual Point Default Value
 2) Scheduling Period Normal
 3) Morning Warm-Up Off (cold discharge air) Load Shed Off (no shedding)
 4) Summer/Winter Trend Data N/A
 5) Smoke Pressurization Mode Normal Mode

3. Mounting:
 a. ASCs that control equipment located above accessible ceilings shall be mounted on the equipment in an accessible enclosure that does not hinder maintenance of mechanical equipment and shall be rated for plenum use.
 b. ASCs that control equipment mounted in a mechanical room may either be mounted in, on the equipment, or on the wall of the mechanical room at an adjacent, accessible location.
 c. ASCs that control equipment located in occupied spaces or outside shall either be mounted within the equipment enclosure (responsibility for physical fit remains with the contractor) or in a nearby mechanical/utility room in which case it shall be enclosed in a NEMA 1, locking enclosure.
 d. Section 23 09 53 contractor may furnish ASCs to the terminal unit manufacturer for factory mounting.
4. Programmability: Operator shall be able to modify all setpoints (temperature and airflow), scheduling parameters associated with the unit, tuning and setup parameters, interstage timing parameters, and mode settings. Application-specific block control algorithms may be used to meet the sequence of operations. The ability to customize the control algorithm is not required unless specifically indicated otherwise.

5. LAN Restrictions: Limit the number of nodes on the network to the maximum recommended by the manufacturer.

F. Application Category 2 (General Purpose Terminal Controller)

1. Applications in this category include the following:
 a. Unitary Equipment >= 15 tons (Air Conditioners, Heat Pumps, Packaged Heating/Cooling Units, and the like)
 b. Small, Constant Volume Single Zone Air Handling Units
 c. Constant Volume Pump Start/Stop
 d. Misc. Equipment (Exhaust Fan) Start/Stop
 e. Misc. Monitoring (not directly associated with a control sequence and where trending is not critical)
 f. Steam Converter Control

2. BCs may be used in these applications.
3. ASC's may be used in these applications provided the ASC meets all requirements specified below. This category requires a general-purpose ASC to which application-specific control algorithms can be attached.

4. Standalone Capability: Only the following data (as applicable) may be acquired from other ASCs via LANs. In the event of a loss of communications with any other ASCs, or any fault in any system hardware that interrupts the acquisition of any of these values, the AAC/ASC shall use the last value obtained before the fault occurred. If such fault has not been corrected after the specified default delay time, specified default value(s) shall then be substituted until such fault has been corrected.

<table>
<thead>
<tr>
<th>Physical/Virtual Point</th>
<th>Default Delay Time</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outside Air Temperature</td>
<td>3 minutes</td>
<td>80°F</td>
</tr>
<tr>
<td>Outside Air Humidity</td>
<td>3 minutes</td>
<td>60%RH</td>
</tr>
<tr>
<td>Outside Air Enthalpy</td>
<td>3 minutes</td>
<td>30 Btu/lb</td>
</tr>
<tr>
<td>Cooling/Heating Requests</td>
<td>N/A</td>
<td>None</td>
</tr>
</tbody>
</table>

5. Mounting:
 a. ASCs that control equipment located above accessible ceilings shall be mounted on the equipment so as not to hinder mechanical maintenance and shall be rated for plenum use.
 b. ASCs that control equipment located in occupied spaces or outside shall either be mounted within the equipment enclosure (responsibility for
physical fit remains with the contractor) or in a nearby mechanical/utility room in which case it shall be enclosed in a NEMA 1, locking enclosure.

6. Programmability: Operator shall be able to modify all setpoints (temperature and airflow), scheduling parameters associated with the unit, tuning and set up parameters, interstage timing parameters, and mode settings. Operator shall be able to address and configure spare inputs for monitoring. [Operator shall be able to address and configure spare outputs for simple single loop control actions or event-initiated actions.] Application-specific block control algorithms shall used to meet the sequence of operations. The ability to customize the control algorithm is not required unless specifically indicated otherwise.

7. LAN Restrictions: Limit the number of nodes servicing any one of these applications on the AAC/ASC LAN to 32.

G. Application Category 3 (Advanced Application Controller)

1. Applications in this category include the following:
 a. Large Constant Volume Air Handlers
 b. VAV Air Handlers generally >5,000 and <10,000cfm
 c. Dual Duct Air Handlers generally >5000 and < 10,000 cfm
 d. Multizone Air Handlers
 e. Self-Contained VAV Units

2. BCs may be used in these applications.
3. AAC's may be used in these applications provided:
 a. The AAC's meets all requirements specified below.
 b. All control functions and physical I/O associated with a given unit resides in one AAC.
 c. Input A/D is 10-bit. Exception: 8-bit input A/D can be used when matched with high accuracy sensors, the range of which meets the resolution requirements specified for the applicable sensor in Section 23 09 51.
 d. Pulsed inputs required for the application can be monitored and accumulated effectively.

4. Standalone Capability: Only the following data (as applicable) may be acquired from other AACs via LANs. In the event of a loss of communications with any other AACs, or any fault in any system hardware that interrupts the acquisition of any of these values, the AAC shall use the last value obtained before the fault occurred. If such fault has not been corrected after the specified default delay time, specified default value(s) shall then be substituted until such fault has been corrected.
 Physical/virtual point default delay time default value
 Outside Air Temperature3 minutes80°F
Outside Air Humidity 3 minutes
60% RH
Outside Air Enthalpy 3 minutes
30 Btu/lb
Enable Local Operation Last Value Cooling/Heating Requests 3 minutes None
Smoke Pressurization Mode 3 minutes Normal Mode
Smoke Exhaust Command 3 minutes Normal Mode

5. Mounting:
 a. AACs that control equipment located above accessible ceilings shall be mounted on the equipment so as not to hinder mechanical maintenance and shall be rated for plenum use.
 b. AACs that control equipment located in occupied spaces or outside shall either be mounted within the equipment enclosure (responsibility for physical fit remains with the contractor) or in a nearby mechanical/utility room in which case it shall be enclosed in a NEMA 1, locking enclosure.

6. Programmability: Operator shall be able to modify all setpoints (temperature and airflow), scheduling parameters associated with the unit, tuning and set up parameters, interstage timing parameters, and mode settings. Operator shall be able to address and configure spare inputs for monitoring. Operator shall be able to program custom DDC control algorithms and specify trending parameters, which will be retained in memory in the event of a loss of communications. Application-specific block control algorithms may be used provided they meet the sequence of operations. The control algorithms shall be completely customizable.

7. LAN Restrictions: Each LAN which participates in the transfer of data between the CU and the local operator workstation shall be subject to the following criteria:
 a. Limit the number of nodes servicing any one of these applications on the AAC/ASC LAN to 16.
 b. The Building Controller LAN shall be subject only to manufacturer's published LAN limitations.

H. Application Category 4

1. Applications in this category include the following:
 a. Central Cooling Plant
 b. Central Heating Plant
 c. Cooling Towers
 d. Sequenced or Variable Speed Pump Control
 e. Local Chiller Control (unit specific)
 f. Local Free Cooling Heat Exchanger Control
 g. Air Handlers over 10,000 cfm or serving critical areas

2. BCs shall be used in these applications.
3.4 CONTROL UNIT REQUIREMENTS

A. Refer to Section 230950 for requirements pertaining to control unit quantity and location.

END OF SECTION
THIS PAGE INTENTIONALLY LEFT BLANK
PART 1 – GENERAL

1.1 RELATED DOCUMENTS

A. Section 230950 - Building Automation System (BAS) General
B. Section 230951 - BAS Basic Materials, Interface Devices, and Sensors
C. Section 230953 - BAS Field Panels
D. Section 230955 - BAS Software
E. Section 230958 - Sequences of Operation

1.2 DESCRIPTION OF WORK

A. Contractor shall provide all interface devices and software to provide an integrated system connecting BCs, AACs, ASCs and Gateways to the State network.

PART 2 – PRODUCTS

2.1 NETWORK CONNECTION

A. The system will be provided with an on-site workstation for access to the system. Capability for future connection to the DelDOT Network will be provided but a connection will not be made as part of this project.

2.2 BACNET GATEWAYS

A. Gateways shall be provided to link non-BACnet control products to the BACnet internetwork. All of the functionality described in this section is to be provided by using the BACnet capabilities. Each Gateway shall have the ability to expand the number of BACnet objects of each type supported by 20% to accommodate future system changes.

B. Each Gateway shall provide values for all points on the non-BACnet side of the Gateway to BACnet devices as if the values were originating from BACnet objects. The Gateway shall also provide a way for BACnet devices to modify (write) all points specified by the AOC using standard BACnet services. All points are required to be writable for each site.

C. The Gateway shall implement BACnet schedule objects and permit both read and write
access to the schedules from the BC.

D. Each Gateway shall provide a way to collect and archive or trend (time, value) data pairs.

E. Each Gateway and any devices that the Gateway represents which have time-of-day information shall respond to workstation requests to synchronize the date and time. Each Gateway and any devices that the Gateway represents shall support dynamic device binding and dynamic object binding.

F. All points in the system shall be made network visible through the use of standard BACnet objects or through proprietary BACnet extensions that the workstation also supports. All points shall be writable using standard BACnet services.

G. All devices have a Device Object instance number that is unique throughout the entire inter-network. All BACnet devices shall be configured with a Device Object instance number that is based on the format specified (shown in decimal notation). This includes all physical devices as well as any logical BACnet devices that are physically represented by Gateways.

H. All BACnet Interoperability Building Blocks (BIBBs) are required to be supported for each true BACnet device or Gateway. The Gateway shall support all BIBBs defined in the BACnet Gateway's device profile as defined in the BACnet standard.

2.3 CONTROLLER LOCAL AREA NETWORK INTERFACE DEVICES (LANID)

A. The LANID shall be a microprocessor-based communications device which acts as a gateway/router between the Primary Controlling LAN and the Secondary Controlling LAN. It provides an operator interface. These may be provided within a BC or as a separate device.

B. The LANID shall perform information translation between the Primary Controlling LAN and the Secondary Controlling LAN, supervise communications on a polling Secondary Controlling LAN, and be applicable to systems in which the same functionality is not provided in the BC. In systems where the LANID is a separate device, it shall contain its own microprocessor, RAM, battery, real-time clock, communication ports, and power supply as specified for a BC in Section 23 09 53. Each LANID shall be mounted in a lockable enclosure.

C. Each LANID shall support interrogation, full control, and all utilities associated with all BCs on the Primary Controlling LAN, all AACs and ASCs connected to all Secondary Controlling LANs under the Primary Controlling LAN, and all points connected to those PCUs and SCUs.

D. Upon loss of power to a LANID, the battery shall provide for minimum 100-hour backup of all programs and data in RAM. The battery shall be sealed and self-charging.

E. The LANID shall be transparent to control functions and shall not be required to control information routing on the Primary Controlling LAN.
F. All BACnet Interoperability Building Blocks (BIBBs) are required to be supported for each true BACnet device or Gateway. The Gateway shall support all BIBBs defined in the BACnet Gateway’s device profile as defined in the BACnet standard.

2.4 LOCAL SUPERVISORY LAN GATEWAYS/ROUTERS

A. The gateway/router shall be a microprocessor-based communications device that acts as a gateway/router between the Supervisory LAN CSSs or OWS and the Controlling LAN.

B. The gateway/router shall perform information translation between the Controlling LAN and the Local Supervisory LAN, and shall use BACnet over IP. When BACnet is used, refer to the requirements of the BACnet Gateways specified herein.

C. The gateway/router shall contain its own microprocessor, RAM, battery, real-time clock, communication ports, and power supply as specified for a BC in Section 23 09 53. Each gateway/router shall be mounted in a lockable enclosure.

D. The gateway/router shall allow centralized overall system supervision, operator interface, management report generation, alarm annunciation, acquisition of trend data, and communication with control units. It shall allow system operators to perform the following functions from the CSS, and OWSs:

1. Configure systems.
2. Monitor and supervise control of all points.
3. Change control setpoints.
4. Override input values.
5. Override output values
6. Enter programmed start/stop time schedules.
7. View and acknowledge alarms and messages.
8. Receive, store and display trend logs and management reports.
9. Upload/Download programs, databases, etc. as specified.

E. Upon loss of power to the gateway/router, the battery shall provide for minimum 100 hour backup of all programs and data in RAM. The battery shall be sealed and self-charging.

F. The gateway/router shall be transparent to control functions and shall not be required to control information routing on the Controlling LAN

PART 3 – EXECUTION

3.1 INSPECTION

A. Examine areas and conditions under which control systems are to be installed. Do not proceed with work until unsatisfactory conditions have been corrected in manner acceptable to Installer.
3.2 INSTALLATION OF CONTROL SYSTEMS:

A. General: Install systems and materials in accordance with manufacturer's instructions, roughing-in drawings and details shown on drawings.

B. Contractor shall provide all interface devices and software to provide an integrated system.

END OF SECTION
SECTION 230955

BAS SOFTWARE AND PROGRAMMING

PART 1 – GENERAL

1.1 RELATED DOCUMENTS:

A. Section 230950 - Building Automation System (BAS) General
B. Section 230951 - BAS Basic Materials, Interface Devices, and Sensors
C. Section 230953 - BAS Field Panels
D. Section 230954 - BAS Communications Devices
E. Section 230958 - Sequences of Operation

1.2 DESCRIPTION OF WORK:

A. Fully configure systems and furnish and install all software, programming and dynamic color graphics for a complete and fully functioning system as specified.
B. Refer to Section 230950 - Building Automation System (BAS) for general requirements
C. Refer to 230958 - Sequence of Operation and Contract Drawings for specific sequences of operation for controlled equipment.

1.3 LICENSING

A. Include licensing for all software packages at all required workstations.
B. All operator interface, programming environment, networking, database management and any other software used by the Contractor to install the system or needed to operate the system to its full capabilities shall be licensed and provided to the State.
C. All BAS software should be available on CSS(s) provided, and on all Portable Operator Terminals. All software keys to provide all rights shall be installed on CSS. At least 2 sets of media (CD or DVD) shall be provided with backup software and configurations for all software provided, so that the State may reinstall any software as necessary
D. Provide licensing and original software media for each device. Include all BAS software licenses and all required third party software licenses.
E. Upgrade all software packages to the release (version) in effect at the end of the Warranty Period.
PART 2 – PRODUCTS

2.1 SYSTEM SOFTWARE GENERAL

A. Functionality and Completeness: The Contractor shall furnish and install all software and programming necessary to provide a complete and functioning system as specified. The Contractor shall include all software and programming not specifically itemized in these Specifications, which is necessary to implement, maintain, operate, and diagnose the system in compliance with these Specifications.

B. Configuration: The software shall support the system as a distributed processing network configuration.

2.2 CONTROLLER SOFTWARE

A. BC Software Residency: Each BC as defined below shall be capable of controlling and monitoring of all points physically connected to it. All software including the following shall reside and execute at the BC:

1. Real-Time Operating System software
2. Real-Time Clock/Calendar and network time synchronization
3. BC diagnostic software
4. LAN Communication software/firmware
5. Direct Digital Control software
6. Alarm Processing and Buffering software
7. Energy Management software
8. Data Trending, Reporting, and Buffering software
9. I/O (physical and virtual) database
10. Remote Communications software

B. AAC/ASC Software Residency: Each AAC/ASC as defined below shall be capable of controlling and monitoring of all points physically connected to it. As a minimum, software including the following shall reside and execute at the AAC/ASC. Other software to support other required functions of the AAC/ASC may reside at the BC or LAN interface device (specified in Section 23 09 54) with the restrictions/exceptions per application provided in Section 23 09 53:

1. Real-Time Operating System software
2. AAC/ASC diagnostic software
3. LAN Communications software
4. Control software applicable to the unit it serves that will support a single mode of operation
5. I/O (physical and virtual) database to support one mode of operation

C. Standalone Capability: BC shall continue to perform all functions independent of a
failure in other BC/AAC/ASC, CSS, or other communication links to other BCs/AACs/ASCs or CSSs. Trends and runtime totalization shall be retained in memory. Runtime totalization shall be available on all digital input points that monitor electric motor status. Refer also to Section 23 09 53 for other aspects of standalone functionality.

D. Operating System: Controllers shall include a real-time operating system resident in ROM. This software shall execute independently from any other devices in the system. It shall support all specified functions. It shall provide a command prioritization scheme to allow functional override of control functions. Refer also to Section 23 09 53 for other aspects of the controller's operating system.

E. Network Communications: Each controller shall include software/firmware that supports the networking of CUs on a common communications trunk that forms the respective LAN. Network support shall include the following:

1. Controller communication software shall include error detection, correction, and re-transmission to ensure data integrity.
2. Operator/System communication software shall facilitate communications between other BCs, all subordinate AACs/ASCs, Gateways and LAN Interface Devices or CSS. Software shall allow point interrogation, adjustment, addition/deletion, and programming while the controller is online and functioning without disruption to unaffected points. The software architecture shall allow networked controllers to share selected physical and virtual point information throughout the entire system.

F. Diagnostic Software: Controller software shall include diagnostic software that checks memory and communications and reports any malfunctions.

G. Alarm/Messaging Software: Controller software shall support alarm/message processing and buffering software as more fully specified below.

H. Application Programs: CUs shall support and execute application programs as more fully specified below:

1. All Direct Digital Control software, Energy Management Control software, and functional block application programming software templates shall be provided in a 'ready-to-use' state, and shall not require (but shall allow) user programming.

I. Security: Controller software shall support multiple level privileges access restriction as more fully specified below.

J. Direct Digital Control: Controller shall support application of Direct Digital Control Logic. All logic modules shall be provided pre-programmed with written documentation to support their application. Provide the following logic modules as a minimum:

1. Proportional-Integral-Derivative (PID) control with analog, PWM and floating output
2. Two Position control (Hi or Low crossing with deadband)
3. Single-Pole Double-Throw relay
4. Delay Timer (delay-on-make, delay-on-break, and interval)
5. Hi/Low Selection
6. Reset or Scaling Module
7. Logical Operators (AND, OR, NOT, XOR)

K. Psychrometric Parameters: Controller software shall provide preprogrammed functions to calculated and present psychrometric parameters (given temperature and relative humidity) including the following as a minimum: Enthalpy, Wet Bulb Temperature.

L. Updating/Storing Application Data: Site-specific programming residing in volatile memory shall be uploadable/downloadable from an OWS or CSS using BACnet services connected locally or through the network. Initiation of an upload or download shall include all of the following methods: Manual, Scheduled, and Automatic upon detection of a loss or change.

M. Restart: System software shall provide for orderly shutdown upon loss of power and automatic restart upon power restoration. Volatile memory shall be retained; outputs shall go to programmed fail-safe (open, closed, or last) position. Equipment restart shall include a user definable time delay on each piece of equipment to stagger the restart. Loss of power shall be alarmed at operator interface indicating date and time.

N. Time Synchronization: Automatic time synchronization shall be provided using BACnet services. Operators shall be able to set the time and date in any device on the network that supports time-of-day functionality. The operator shall be able to select to set the time and date for an individual device, devices on a single network, or all devices simultaneously.

O. Misc. Calculations: System software shall automate calculation of psychometric functions, calendar functions, kWh/kW, and flow determination and totalization from pulsed or analog inputs, curve-fitting, look-up table, input/output scaling, time averaging of inputs and A/D conversion coefficients.

2.3 APPLICATION PROGRAMMING DESCRIPTION

A. The application software shall be user programmable.

B. This specification generally requires a programming convention that is logical, easy to learn, use, and diagnose. General approaches to application programming shall be provided by one, or a combination, of the following conventions:

1. Point Definition: Provide templates customized for point type, to support input of individual point information. Use standard BACnet Objects as applicable.

2. Graphical Block Programming: Manipulation of graphic icon 'blocks', each of which represents a subroutine, in a functional/logical manner forming a control logic diagram. Blocks shall allow entry of adjustable settings and parameters via pop-up windows. Provide a utility that shall allow the graphic logic diagrams to be directly compiled into application programs. Logic diagrams shall be viewable either off-line, or on-line with real-time block output values.

3. Functional Application Programming: Pre-programmed application specific
programs that allow/require limited customization via 'fill-in-the-blanks' edit fields. Typical values would be setpoints gains, associated point names, alarm limits, etc.

C. Provide a means for testing and/or debugging the control programs both off-line and on-line.

2.4 ENERGY MANAGEMENT APPLICATIONS

A. System shall have the ability to perform all of the following energy management routines via preprogrammed function blocks or template programs. As a minimum provide the following whether or not required in the software:

1. Time-of-Day Scheduling
2. Calendar-Based Scheduling
3. Holiday Scheduling
4. Temporary Schedule Overrides
5. Optimal Start / Optimal Stop based on space temperature offset, outdoor air temperature, and building heating and cooling capacitance factors as a minimum
6. Night Setback and Morning Recovery Control, with ventilation only during occupancy
7. Economizer Control (enthalpy or dry-bulb)
8. Peak Demand Limiting / Load Shedding
9. Dead Band Control

B. All programs shall be executed automatically without the need for operator intervention and shall be flexible enough to allow operator customization. Programs shall be applied to building equipment as described in Section 23 09 58 - Sequence of Operation.

2.5 ACCESS PRIVILEGES

A. Multiple-level access privileges shall be provided. A minimum of four (4) levels of access shall be supported. Levels will be determined by owner during commissioning.

B. The highest level of access, Administrator Level access, shall allow the BAS administrator to perform application, database, and user management functions.

C. Each login credentials shall be assigned to a pre-defined level of access. Alternately, a comprehensive list of accessibility/functionality items shall be provided, to be enabled or disabled for each user according to the level of access granted.

D. Operators shall be able to perform only those commands available for the access level assigned to their login credentials.

E. Login credentials are stored in the BC's local database. A minimum of 20 usernames shall be supported and programmed per the State's direction.

F. Login credentials can be looked up using the Lightweight Directory Access (LDAP)
through the BAS server.

G. Strong password shall be used on all login credentials.

H. User-definable, automatic log-off timers from 1 to 60 minutes shall be provided to prevent users from inadvertently leaving interface device unattended.

I. At system handover, all default and Contractor created login credentials for the system shall be provided to the State and all temporary login credentials shall be removed.

2.6 ALARM AND EVENT MANAGEMENT REPORTING

A. Alarm management shall be provided to monitor, buffer, and direct alarms and messages to operator devices and memory files. Each BC shall perform distributed, independent alarm analysis and filtering to minimize operator interruptions due to non-critical alarms, minimize network traffic, and prevent alarms from being lost. At no time shall a BC's ability to report alarms be affected by either operator activity at an OWS or local handheld device, or by communications with other panels on the network.

1. Alarm Descriptor: Each alarm or point change shall include that point's English language description, and the time and date of occurrence. In addition to the alarm's descriptor and the time and date, the user shall be able to print, display and store an alarm message to more fully describe the alarm condition or direct operator response.

2. Alarm Prioritization: The software shall allow users to define the handling and routing of each alarm by their assignment to discrete priority levels. A minimum of five (5) priority levels shall be provided - Level 1 Life Safety (i.e. smoke detector), Level 2 Critical (i.e. controller failure), Level 3 Abnormal (i.e. out-of-range temperature), Level 4 Energy Waste (i.e. fighting valves), Level 5 Maintenance Message (i.e. runtime monitor, filter status). For each priority level, users shall have the ability to enable or disable an audible tone whenever an alarm is reported and whenever an alarm returns to normal condition. Users shall have the ability to manually inhibit alarm reporting for each individual alarm and for each priority level. Contractor shall coordinate with the State on establishing alarm priority definitions.

3. Alarm Report Routing: Each alarm priority level shall be associated with a unique user-defined list of operator devices including any combination of local or remote workstations, printers and workstation disk files. All alarms associated with a given priority level shall be routed to all operator devices on the user-defined list and/or email to designated State email address (mailbox resource) associated with that priority level. For each priority level, alarms shall be automatically routed to a default operator device in the event that alarms are unable to be routed to any operator device assigned to the priority level.

4. Auto-Dial Alarm Routing: For alarm priority levels that include a mobile device as one of the listed reporting destinations, the BC shall initiate a call to report the alarm and shall terminate the call after alarm reporting is complete. System shall be capable of multiple retries and buffer alarms until a connection is made. If no connection is made, system shall attempt
connection to an alternate mobile device. System shall also be able to dial multiple mobile devices upon alarm activation.

5. Alarm Acknowledgment: For alarm priority levels that are directed to a OWS, an indication of alarm receipt shall be displayed immediately regardless of the application is in use at the OWS, and shall remain on the screen until acknowledged by a user having a privilege that allows alarm acknowledgment. Upon acknowledgment, the complete alarm message string (including date, time, and username of acknowledging operator) shall be stored in a selected file on the BC or CSS.

B. It shall be possible for any operator to receive a summary of all alarms regardless of acknowledgement status; for which a particular recipient is enrolled for notification; based on current event state; based on the particular BACnet event algorithm (e.g., change of value, change of state, out of range, and so on); alarm priority; and notification class.

C. BACnet Alarming Services: All alarms and events shall be implemented using standard BACnet event detection and notification mechanisms. The workstation shall receive BACnet alarm and event notifications from any gateway or BACnet controller in the system and display them to an operator. Either intrinsic reporting or algorithmic change reporting may be used but the intrinsic reporting method is preferred. The workstation shall also log alarms and events, provide a way for an operator with sufficient privilege to acknowledge alarms, and log acknowledgements of alarms. It shall be possible for an operator to receive, at any time, a summary of all alarms that are currently in effect at any site whether or not they have been acknowledged. Operators shall also be able to view and change alarm limits for any alarm at the appropriate access level.

D. Alarm Historical Database: The database shall store all alarms and events object occurrences in an ODBC or an OLE database-compliant relational database. Provide a commercially available ODBC driver or OLE database data provider, which would allow applications to access the data using standard Microsoft Windows data access services.

2.7 TRENDING

A. The software shall display historical data in both a tabular and graphical format. The requirements of this trending shall include the following:

1. Provide trends for all physical points, virtual points and calculated variables.
2. BACnet Trend Objects are preferred but where not possible trend data shall be stored in relational database format as specified in herein under Data Acquisition and Storage.
3. In the graphical format, the trend shall plot at least 4 different values for a given time period superimposed on the same graph. The 4 values shall be distinguishable by using unique colors. In printed form the 4 lines shall be distinguishable by different line symbology. Displayed trend graphs shall indicate the engineering units for each trended value.
4. The sample rate and data selection shall be selectable by the operator.
5. The trended value range shall be selectable by the operator.
6. Where trended values on one table/graph are COV, software shall automatically fill the trend samples between COV entries.

B. Control Loop Performance Trends: Controllers incorporating PID control loops shall also provide high resolution sampling in less than six second increments for verification of control loop performance.

C. Data Buffering and Archiving: Trend data shall be buffered at the BC and uploaded to hard disk storage when archival is desired. All archived trends shall be transmitted to the CSS. Uploads shall occur based upon a user-defined interval, manual command, or automatically when the trend buffers become full.

D. Time Synchronization: Provide a time master that is installed and configured to synchronize the clocks of all BACnet devices supporting time synchronization. Synchronization shall be done using Coordinated Universal Time (UTC). All trend sample times shall be able to be synchronized. The frequency of time synchronization message transmission shall be selectable by the operator.

2.8 DYNAMIC PLOTTING

A. Provide a utility to dynamically plot in real-time at least four (4) values on a given 2-dimensional dynamic plot/graph with at least two Y-axes. At least five (5) dynamic plots shall be allowed simultaneously.

2.9 DATA ACQUISITION AND STORAGE

A. All points included in the typical equipment point list must be represented in a common, open or accessible format. All points should be provided as BACnet standard analog, binary, schedule, or trend objects when possible. Naming conventions for these points and network addressing are discussed in the 'Point Naming Conventions' paragraph below.

B. Non-BACnet data from the BAS shall be stored in relational database format. The format and the naming convention used for storing the database files shall remain consistent across the database and across time. The relational structure shall allow for storage of any additional data points, which are added to the BAS in future. The metadata/schema or formal descriptions of the tables, columns, domains, and constraints shall be provided for each database.

C. The database shall allow applications to access the data while the database is running. The database shall not require shutting down in order to provide read-write access to the data.

D. Data shall be able to be read from the database without interrupting the continuous storage of trend data being carried by the BAS.

E. The database shall be ODBC or OLE database compliant. Provide a commercially available ODBC driver or OLE database data provider, which would allow applications to access the data using standard Microsoft Windows data access services.
2.10 TOTALIZATION

A. The software shall support totalizing analog, digital, and pulsed inputs and be capable of accumulating, storing, and converting these totals to engineering units used in the documents.

B. These values shall generally be accessible to the Operator Interfaces to support management-reporting functions.

C. Totalization of electricity use/demand shall allow application of totals to different rate periods, which shall be user definable.

D. When specified to provide electrical or utility Use/Demand, the Contractor shall obtain from the local utility all information required to obtain meter data, including k factors, conversion constants, and the like.

2.11 EQUIPMENT SCHEDULING

A. Provide a graphic utility for user-friendly operator interface to adjust equipment-operating schedules.

B. All schedules shall be implemented using BACnet objects and messages. All building systems with date and time scheduling requirements shall have schedules represented by the BACnet Schedule object. All operators shall be able to view the entries for a schedule. Operators with sufficient privilege shall be able to modify schedule entries from any BACnet workstation.

C. Scheduling feature shall include multiple seven-day master schedules, plus holiday schedule, each with start time and stop time. Master schedules shall be individually editable for each day and holiday.

D. Scheduling feature shall allow for each individual equipment unit to be assigned to one of the master schedules.

E. Timed override feature shall allow an operator to temporarily change the state of scheduled equipment. An override command shall be selectable to apply to an individual unit, all units assigned to a given master schedule, or to all units in a building. Timed override shall terminate at the end of an operator selectable time, or at the end of the scheduled occupied/unoccupied period, whichever comes first. A privilege level that does not allow assignment of master schedules shall allow a timed override feature.

F. A yearly calendar feature shall allow assignment of holidays, and automatic reset of system real time clocks for transitions between daylight savings time and standard time.

2.12 POINT STRUCTURING AND NAMING

A. General: The intent of this section is to require a consistent means of naming points across all State facilities. Contractor shall configure the systems from the perspective of the Enterprise, not solely the local project. The following requirement establishes a
standard for naming points and addressing Buildings, Networks, Devices, Instances, and the like. The convention is tailored towards the BACnet-based format and as such, the interface shall always use this naming convention. True BACnet systems shall also use this naming convention. For non-BACnet systems, the naming convention shall be implemented as much as practical, and any deviations from this naming convention shall be approved by the State. The Contractor shall contact the State to determine the Building number and abbreviation.

C. Point Summary Table

1. The term 'Point' is a generic description for the class of object represented by analog and binary inputs, outputs, and values in accordance with ASHARE 135 standard.
2. With each schematic, Contractor shall provide a Point Summary Table listing:
 a. Building number and abbreviation
 b. System type
 c. Equipment type
 d. Point suffix
 e. Full point name (see Point Naming Convention paragraph)
 f. Point description
 g. Ethernet backbone network number
 h. Network number
 i. Device ID
 j. Device MAC address
 k. Object ID (object type, instance number)
 l. Engineering units.

3. Additional fields for non-BACnet systems shall be appended to each row. Point Summary Table shall be provided in both hard copy and in electronic format (ODBC-compliant).
4. Point Summary Table shall also illustrate Network Variables/BACnet Data Links Bindings.
5. The Contractor shall coordinate with the State's representative and compile and submit a proposed Point Summary Table for review prior to any object programming or project startup.
6. The Point Summary Table shall be kept current throughout the duration of the project by the Contractor as the Master List of all points for the project. Project closeout documents shall include an up-to-date accurate Point Summary Table. The Contractor shall deliver to the State the final Point Summary Table prior to Substantial Completion of the system. The Point Summary Table shall be used as a reference and guide during the commissioning process.
7. The Point Summary Table shall contain all data fields on a single row per point. The Point Summary Table is to have a single master source for all point information in the building that is easily sorted and kept up to date. Although a relational database of Device ID-to-point information would be more efficient, the single line format is required as a single master table that will
reflect all point information for the building. The point description shall be an easily understandable English-language description of the point. Point Summary Table Example
Row Headers and Examples
(Transpose for a single point per row format)

<table>
<thead>
<tr>
<th>Campus</th>
<th>RK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Building Number</td>
<td>006</td>
</tr>
<tr>
<td>Building Association</td>
<td>ZZ = no association (default to ZZ)</td>
</tr>
<tr>
<td>System Type</td>
<td>Cooling</td>
</tr>
<tr>
<td>Equipment Type</td>
<td>Chiller</td>
</tr>
<tr>
<td>Point Suffix</td>
<td>CHLR1KW</td>
</tr>
<tr>
<td>*Point Name (Object Name)</td>
<td>CA0006ZZ.COOLING.CHILLER.CHLR1KW</td>
</tr>
<tr>
<td>*Point Description (Object Description)</td>
<td>Chiller 1 kW</td>
</tr>
<tr>
<td>Ethernet Network Number</td>
<td>600</td>
</tr>
<tr>
<td>Network Number</td>
<td>610</td>
</tr>
<tr>
<td>Device ID</td>
<td>1024006</td>
</tr>
<tr>
<td>Device MAC address</td>
<td>24</td>
</tr>
<tr>
<td>Object Type</td>
<td>AI</td>
</tr>
<tr>
<td>Instance Number</td>
<td>4</td>
</tr>
<tr>
<td>Engineering Units</td>
<td>KW</td>
</tr>
<tr>
<td>Network Variable?</td>
<td>True</td>
</tr>
<tr>
<td>Server Device</td>
<td>1024006</td>
</tr>
<tr>
<td>Client Devices</td>
<td>1028006</td>
</tr>
</tbody>
</table>
| Included with Functional | }
D. Point Naming Convention

1. All point names shall adhere to the format as established below. Said objects shall include all physical I/O points, calculated points used for standard reports, and all application program parameters. For each BAS object, a specific and unique BACnet object name shall be required.

2. For each point, four (4) distinct descriptors shall be linked to form each unique object name: Building, System, Equipment, and Point. Use alphanumeric characters. Space and special characters are not allowed. Each of the four descriptors must be bound by a period to form the entire object name. Reference the paragraphs below for an example of these descriptors.

3. The State shall designate the Building descriptor. The System descriptor shall further define the object in terms of air handling, cooling, heating, or other system. The Equipment descriptor shall define the equipment category; e.g., Chiller, Air Handler, or other equipment. The Point descriptor shall define the hardware or software type or function associated with the equipment; e.g., supply temperature, water pressure, alarm, mixed air temperature setpoint, etc. and shall contain any numbering conventions for multiples of equipment; e.g., CHLR1KW, CHLR2KW, BLR2AL (Boiler 2 Alarm), HWP1ST (Hot Water Pump 1 Status).

4. A consistent object (point) naming convention shall be utilized to facilitate familiarity and operational ease across the BAS network. Inter-facility consistency shall be maintained to ensure transparent operability to the greatest degree possible. The table below details the object naming convention and general format of the descriptor string.

<table>
<thead>
<tr>
<th>Descriptors</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Campus, Building Number & Building Association</td>
<td>RK0006ZZ AZ0134ZZ</td>
</tr>
<tr>
<td></td>
<td>The Master Building List also has the correct abbreviations for each building.</td>
</tr>
<tr>
<td>System</td>
<td>AIRHANDLING - EXHAUST - HEATING - COOLING - UTILITY - ENDUSE - MISC</td>
</tr>
<tr>
<td></td>
<td>Boilers and ancillary equipment Chillers and ancillary equipment</td>
</tr>
<tr>
<td></td>
<td>Main electrical and gas meters Specific building loads by Type</td>
</tr>
<tr>
<td>Equipment</td>
<td>BOILERS - CHILLERS - FACILITY - TOWERS - WEATHER</td>
</tr>
<tr>
<td></td>
<td>Non-specific boiler system points - Non-specific chiller system points</td>
</tr>
</tbody>
</table>

*Represents information that shall reside in the relevant BACnet property for the object
<table>
<thead>
<tr>
<th>Point Suffix</th>
<th>See Input/Output point summary table for conventions</th>
</tr>
</thead>
</table>

5. Examples: Within each object name, the descriptors shall be bound by a period. Within each descriptor, words shall not be separated by dashes, spaces, or other separators as follows:

a. RK0006ZZ.COOLING.CHILLERS.CHWP1ST
b. RK0006ZZ.HEATING.BOILERS.BLR1CFH

E. Device Addressing Convention:

1. BACnet network numbers and Device Object IDs shall be unique throughout the network.
2. All assignment of network numbers and Device Object IDs shall be coordinated with the State.
3. Each Network number shall be unique throughout all facilities and shall be assigned in the following manner unless specified otherwise:
 a. BBBFF, where: BBB = 1-655 assigned to each building, FF = 00 for building backbone network, 1-35 indicating floors or separate systems in the building.
4. Each Device Object Identifier property shall be unique throughout the system and shall be assigned in the following manner unless specified otherwise:
 a. XXFFBBB, where: XX = number 0 to 40, FF = 00 for building backbone network, 1-35 indicating floors or separate systems in the building. BBB = 1-655 assigned to each building.
5. The BAS Contractor shall coordinate with designated State representative to ensure that no duplicate Device Object IDs occur.
6. Alternative Device ID schemes or cross project Device ID duplication if allowed shall be approved before project commencement by the State.

2.13 OPERATOR INTERFACE GRAPHIC SOFTWARE

A. Graphic software shall facilitate user-friendly interface to all aspects of the System Software specified above. The intent of this specification is to require a graphic package that provides for intuitive operation of the systems without extensive training and experience. It shall facilitate logical and simple system interrogation, modification, configuration, and diagnosis.

B. Graphic software shall support multiple simultaneous screens to be displayed and resizeable in a web-based environment. All functions excepting text entry functions shall be executable with a mouse.
C. Graphic software shall display current operating mode (i.e. warm-up, dehumidification, et al) for equipment with multiple modes of operation.

D. Graphic software shall provide for multitasking such that other application can be used while the operator is accessing the BAS. Software shall provide the ability to alarm graphically even when operator is in another software package.

E. The software shall be compatible to the current and current minus one versions of Microsoft Windows operating system. The software shall allow for the State's creation of user-defined, color graphic displays of geographic maps, building plans, floor plans, and mechanical and electrical system schematics. These graphics shall be capable of displaying all point information from the database including any attributes associated with each point (i.e., engineering units, etc.). In addition, operators shall be able to command equipment or change setpoints from a graphic through the use of a pointing device; e.g. mouse and touch screen.

F. Screen Penetration: The operator interface shall allow users to access the various system graphic screens via a graphical penetration scheme by using the pointing device to select from menus or 'button' icons. Each graphic screen shall be capable of having a unique list of other graphic screens that are directly linked through the selection of a menu item or button icon.

G. Dynamic Data Displays: Dynamic physical point values shall automatically updated at a minimum frequency of 6 updates per minute without operator intervention. Point value fields shall be displayed with a color code depicting normal, abnormal, override and alarm conditions.

H. Point Override Feature: Each displayed point shall be individually enabled/disabled to allow pointing device driven override of digital points or changing of analog points. Such overrides or changes shall occur in the control unit, not just in the BAS software. The graphic point override feature shall be subject to privilege level protection. Points that are overridden shall be reported as an alarm, and shall be displayed in a coded color. The alarm message shall include the operator's login name. A list of points that are currently in an override state shall be available through menu selection and include the time/date of the override along with the operator's login name that initiated that override.

I. Dynamic Symbols: Provide a selection of standard symbols that change in appearance based on the value of an associated point.

 1. Analog symbol: Provide a symbol that represents the value of an analog point as the length of a line or linear bar.
 2. Digital symbol: Provide symbols such as switches, pilot lights, rotating fan wheels, etc. to represent the value of digital input and output points.
 3. Point Status Color: Graphic presentations shall indicate different colors for different point statuses. (For instance, green = normal, red = alarm, gray (or ?????) for non-response.

J. Graphics Development Package: Graphic development and generation software shall be provided to allow the user to add, modify, or delete system graphic displays.
1. The Contractor shall provide libraries of pre-engineered screens and symbols depicting standard air handling unit components (e.g. fans, cooling coils, filters, dampers, etc.), mechanical system components (e.g., pumps, chillers, cooling towers, boilers, etc.), complete mechanical systems (e.g. constant volume-terminal reheat, VAV, etc.) and electrical symbols.

2. The Graphic Development Package shall use a pointing device to allow the user to perform the following:
 a. Define symbols
 b. Position items on graphic screens
 c. Attach physical or virtual points to a graphic
 d. Define background screens
 e. Define connecting lines and curves
 f. Locate, orient and size descriptive text
 g. Define and display colors for all elements
 h. Establish correlation between symbols or text and associated system points or other displays
 i. Create hot spots or link triggers to other graphic displays or other functions in the software

K. Graphic images shall reside on the CSS.

L. The software shall be capable of initiating communication between the BC and the CSS:
 1. Upon user command, to perform all specified functions.
 2. In accordance with user-programmed time schedules to report alarms and upload trend and report data to the CSS.

M. The software shall automatically terminate the communication when all specified functions are completed.

PART 3 – EXECUTION

3.1 SYSTEM CONFIGURATION

A. Contractor shall thoroughly and completely configure BAS system software, supplemental software, network communications, BC and CSS, if necessary.

3.2 SITE-SPECIFIC APPLICATION PROGRAMMING

A. Provide all database creation and site-specific application control programming as required by these Specifications, national and local standards and for a fully functioning system. Contractor shall provide all initial site-specific application programming and thoroughly document programming. Generally meet the intent of the written sequences of operation. It is the Contractor's responsibility to request clarification on sequence issues that require such clarification.

B. All site-specific programming shall be fully documented and submitted for review and
approval, both prior to downloading into the panel, at the completion of functional performance testing, and at the end of the warranty period.

C. All programming, graphics and data files must be maintained in a logical system of directories with self-explanatory file names. All files developed for the project will be the property of the State and shall remain on the BC and CSS at the completion of the project.

3.3 PRIVILEGE LEVELS SETUP

A. Set up the following privilege levels to include the specified capabilities:

1. Level 1: (BAS Administrator)
 a. Level 2 capabilities
 b. Configure system software
 c. Modify graphic software
 d. View, add, change and delete user login credentials and privilege levels
 e. All unrestricted system capabilities including all network management functions.

2. Level 1a (Contractor Technician)
 a. Level 2 capabilities
 b. Configure system software
 c. Modify graphic software

3. Level 2: (Maintenance Manager)
 a. Level 3 capabilities
 b. Modify control unit programs

4. Level 3: (Senior BAS Technician)
 a. Level 4 capabilities
 b. Override output points
 c. Change setpoints
 d. Change equipment schedules

5. Level 4: (Junior BAS Technician and Trainee)
 a. Level 5 capabilities
 b. Acknowledge alarms
 c. Temporarily override equipment schedules

6. Level 5: (Read Only)
 a. Display all graphic data
 b. Trend point data
B. Contractor shall assist:

1. State's BAS Administrator with assigning user login credentials and privilege levels, configure system software and modify graphic software.
2. Maintenance Manager with modifying control unit programs.

3.4 POINT PARAMETERS

A. Provide the following minimum programming for each analog input:

1. Name
2. Address
3. Scanning frequency or COV threshold
4. Engineering units
5. Offset calibration and scaling factor for engineering units
6. High and low alarm values and alarm differentials for return to normal condition
7. High and low value reporting limits (reasonableness values), which shall prevent control logic from using shorted or open circuit values.
8. Default value to be used when the actual measured value is not reporting. This is required only for points that are transferred across the primary and/or secondary controlling networks and used in control programs residing in control units other than the one in which the point resides. Events causing the default value to be used shall include failure of the control unit in which the point resides, or failure of any network over which the point value is transferred.
9. Selectable averaging function that shall average the measured value over a user selected number of scans for reporting.

B. Provide the following minimum programming for each analog output:

1. Name
2. Address
3. Output updating frequency
4. Engineering units
5. Offset calibration and scaling factor for engineering units
6. Output Range
7. Default value to be used when the normal controlling value is not reporting.

C. Provide the following minimum programming for each digital input:

1. Name
2. Address
3. Engineering units (on/off, open/closed, freeze/normal, etc.)
4. Debounce time delay
5. Message and alarm reporting as specified
6. Reporting of each change of state, and memory storage of the time of the last change of state
7. Totalization of on-time (for all motorized equipment status points), and accumulated number of off-to-on transitions.
D. Provide the following minimum programming for each digital output:

1. Name
2. Address
3. Output updating frequency
4. Engineering units (on/off, open/closed, freeze/normal, etc.)
5. Direct or Reverse action selection
6. Minimum on-time
7. Minimum off-time
8. Status association with a DI and failure alarming (as applicable)
9. Reporting of each change of state, and memory storage of the time of the last change of state.
10. Totalization of on-time (for all motorized equipment status points), and accumulated number of off-to-on transitions.
11. Default value to be used when the normal controlling value is not reporting.

3.5 TRENDS

A. Contractor shall establish and store trend logs. Trend logs shall be prepared for each physical input and output point, and all dynamic virtual points such as setpoints subject to a reset schedule, intermediate setpoint values for cascaded control loops, and the like as directed by the State.

B. The State will analyze trend logs of the system operating parameters to evaluate normal system functionality. Contractor shall establish these trends and ensure they are being stored properly.

1. Data shall include a single row of field headings and the data thereafter shall be contiguous. Each record shall include a date and time field or single date stamp. Recorded parameters for a given piece of equipment or component shall be trended at the same intervals and be presented in a maximum of two separate 2-dimensional formats with time being the row heading and field name being the column heading.

C. Sample times indicated as COV (±) or change-of-value mean that the changed parameter only needs to be recorded after the value changes by the amount listed. When output to the trending file, the latest recorded value shall be listed with any given time increment record. The samples shall be filled with the latest values also if the points include different time intervals. If the BAS does not have the capability to record based on COV, the parameter shall be recorded based on the interval common to the unit.

D. Trending intervals or COV thresholds shall be dictated by the State upon system start-up.

E. The Contractor shall demonstrate functional trends as specified for a period of 30 days after successful system demonstration before Substantial Completion of the system.

3.6 TREND GRAPHS

A. Prepare controller and graphic software to display graphical format trends. Tended
values and intervals shall be the same as those specified.

B. Lines shall be labeled and shall be distinguishable from each other by using either different line types, or different line colors.

C. Indicate engineering units of the y-axis values; e.g. degrees F., inches w.g., Btu/lb, percent open, etc.

D. The y-axis scale shall be chosen so that all trended values are in a readable range. Do not mix trended values on one graph if their unit ranges are incompatible.

E. Trend outside air temperature, humidity, and enthalpy during each period in which any other points are trended.

F. All points trended for one subsystem (e.g. air handling unit, chilled water system, etc.) shall be trended during the same trend period.

G. Each graph shall be clearly labeled with the subsystem title, date, and times.

3.7 ALARMS

A. Override Alarms: Any point that is overridden through the override feature of the graphic software shall be reported as a Level 3 alarm.

B. Analog Input Alarms: For each analog input, program an alarm message for reporting whenever the analog value is outside of the programmed alarm limits. Report a 'Return-to-Normal' message after the analog value returns to the normal range, using a

C. Programmed alarm differential. The alarm limits shall be individually selected by the Contractor based on the following criteria:

1. Space temperature, except as otherwise stated in sequence of operation: Level 3
 a. Low alarm: 64°F
 b. Low return-to-normal: 68°F
 c. High alarm: 85°F
 d. High return-to-normal: 80°F

2. Controlled media temperature other than space temperature (e.g. AHU discharge air temperature, steam converter leaving water temperature, condenser water supply, chilled water supply, etc.): Level 3 (If controlled media temperature setpoint is reset, alarm setpoints shall be programmed to follow setpoint)
 a. Low alarm: 3°F below setpoint
 b. Low return-to-normal: 2°F below setpoint
 c. High alarm: 3°F above setpoint
 d. High return-to-normal: 2°F above setpoint.

3. AHU mixed air temperature: Level 4
a. Low alarm: 45°F
b. Low return-to-normal: 46°F
c. High alarm: 90°F
d. High return-to-normal: 89°F

4. Duct Pressure:
 a. Low alarm: 0.5”w.g. below setpoint
 b. Low return-to-normal: 0.25”w.g. below setpoint
 c. High alarm: 0.5”w.g. above setpoint
 d. High return-to-normal: 0.25”w.g. above setpoint

5. Space humidity:
 a. Low alarm: 35%
 b. Low return-to-normal: 40%
 c. High alarm: 75%
 d. High return-to-normal: 70%

D. HOA Switch Tampering Alarms: The Sequences of Operation are based on the presumption that motor starter Hand-Off-Auto (HOA) switches are in the 'Auto' position. [If a motorized equipment unit starts without a prior start command from the FMS, (as sensed by status sensing device), then FMS shall perform the remaining sequence as specified.] BAS shall also enunciate the following Level 5 alarm message if status indicates a unit is operational when the run command is not present:

 1. DEVICE FAILURE: Status is indicated on the device even though it has been commanded to stop. Check the HOA switch, control relay, status sensing device, contactors, and other components involved in starting the unit. Acknowledge this alarm when the problem has been corrected.

E. Maintenance Alarms: Enunciate Level 5 alarms when runtime accumulation exceeds a value specified by the operator

 1. DEVICE REQUIRES MAINTENANCE. Runtime has exceeded specified value since last reset.

F. See requirements for additional equipment-specific alarms specified in Section 23 09 59 - Sequences of Operation.

3.8 GRAPHIC SCREENS

A. Floor Plan Screens: The contract document drawings will be made available to the Contractor in AutoCAD (current version) format upon request. These drawings may be used only for developing backgrounds for specified graphic screens; however, the State does not guarantee the suitability of these drawings for the Contractor's purpose.

 1. Provide graphic floor plan screens for each floor of the building. Indicate the location of all equipment that is not located on the equipment room screens.
Indicate the location of temperature sensors associated with each temperature-controlled zone (i.e., VAV terminals, fan-coils, single-zone AHUs, etc.) on the floor plan screens. Zone background color shall change based on the temperature offset from setpoint. Display the space temperature point adjacent to each temperature sensor symbol. Use a distinct line symbol to demarcate each terminal unit zone boundary. Use distinct colors to demarcate each air handling unit zone. Mechanical floor plan drawings will be made available to the contractor upon request for the purpose of determining zone boundaries. Indicate room numbers as provided by the State. Provide a drawing link from each space temperature sensor symbol and equipment symbol shown on the graphic floor plan screens to each corresponding equipment schematic graphic screen.

2. Provide graphic floor plan screens for each mechanical equipment room and a plan screen of the roof. Indicate the location of each item of mechanical equipment. Provide a drawing link from each equipment symbol shown on the graphic plan view screen to each corresponding mechanical system schematic graphic screen.

3. If multiple floor plans are necessary to show all areas, provide a graphic building key plan. Use elevation views and/or plan views as necessary to graphically indicate the location of all of the larger scale floor plans. Link graphic building key plan to larger scale partial floor plans. Provide links from each larger scale graphic floor plan screen to the building key plan and to each of the other graphic floor plan screens.

4. Provide a graphic site plan with links to and from each building plan.

B. System Schematic Screens: Provide graphic system schematic screen for each subsystem controlled with each I/O point in the project appearing on at least one graphic screen. System graphics shall include flow diagrams with status, setpoints, current analog input and output values, operator commands, etc. as applicable. General layout of the system shall be schematically correct. Input/output devices shall be shown in their schematically correct locations. Include appropriate engineering units for each displayed point value. Verbose names (English language descriptors) shall be included for each point on all graphics; this may be accomplished by the use of a hover box when the operator moves the cursor over the displayed point. Indicate all adjustable setpoints on the applicable system schematic graphic screen or, if space does not allow, on a supplemental linked-setpoint screen.

1. Provide graphic screens for each air handling system. Indicate outside air temperature and enthalpy, and mode of operation as applicable (i.e., occupied, unoccupied, warm-up, cool-down). Link screens for air handlers to the heating system and cooling system graphics. Link screens for supply and exhaust systems if they are not combined onto one screen.

2. Provide a graphic screen for each zone. Provide links to graphic system schematic screens of air handling units that serve the corresponding zone.

3. Provide a cooling system graphic screen showing all points associated with the chillers, cooling towers and pumps. Indicate outside air dry-bulb temperature and calculated wet-bulb temperature. Link screens for chilled water and condenser water systems if they cannot fit onto one cooling plant.
4. Link screens for heating and cooling system graphics to utility history reports showing current and monthly electric uses, demands, peak values, and other pertinent values.

C. Bar Chart Screens: On each graphic Bar Chart Screen, provide drawing links to the graphic air handling unit schematic screens.

1. Provide a graphic chilled water valve screen showing the analog output signal of all chilled water valves in a bar chart format, with signals expressed as percentage of fully open valve (percentage of full cooling). Indicate the discharge air temperature and setpoint of each air handling unit, cooling system chilled water supply and return temperatures and the outside air temperature and humidity on this graphic. Provide drawing links between the graphic cooling plant screen and this graphic screen.

2. Provide a graphic heating water valve screen showing the analog output signal of all air handling unit heating water valves in a bar chart format, with signals expressed as percentage of fully open valve (percentage of full heating). Indicate the temperature of the controlled medium (such as AHU discharge air temperature or zone hot water supply temperature) and the associated setpoint and the outside air temperature and humidity.

D. Alarms: Each programmed alarm shall appear on at least one graphic screen. In general, alarms shall be displayed on the graphic system schematic screen for the system that the alarm is associated with (for example, chiller alarm shall be shown on graphic cooling system schematic screen). For all graphic screens, display analog values that are in a 'high alarm' condition in a red color, 'low alarm' condition in a blue color. Indicate digital values that are in alarm condition in a red color.

END OF SECTION
SECTION 230958

SEQUENCE OF OPERATION

PART 1 – GENERAL

1.1 RELATED DOCUMENTS
 A. Section 230950 - Building Automation System (BAS) General
 B. Section 230951 - BAS Basic Materials, Interface Devices, and Sensors
 C. Section 230953 - BAS Field Panels
 D. Section 230954 - BAS Communications Devices
 E. Section 230955 - BAS Software

1.2 SYSTEM DESCRIPTION
 A. The systems to be controlled under work of this section basically comprise of new HVAC systems. The HVAC systems being controlled are Air Handling Units, VAV Systems, Boilers, Pumps, Exhaust Fans, and other devices.
 B. This Section defines the manner and method by which controls function.

1.3 SUBMITTALS
 A. Refer to Section 230950 and Division 1 for requirements for control shop drawings, product data, User Manual, etc.
 B. Programming Manual: Provide BAS system programming manual as well as documentation of site-specific programming prior to the start of Acceptance Phase.

1.4 PROJECT RECORD DOCUMENTS
 A. Within two weeks of the completion of commissioning, provide record documents to represent the final control configuration with actual setpoints and tuning parameters as existed at acceptance.
 B. Record documents shall be modified control drawings with the actual installed information. Drawings shall be delivered in both reproducible hard copy and electronic format in AutoCAD (current version) drawing files. Provide all supporting files, blocks, fonts, etc. required by the drawings.
 C. Provide final points list as described above.
D. Provide final detailed wiring diagrams with all wire numbers and termination points indicated.

E. Accurately record final sequences and control logic made after submission of shop drawings.

PART 2 – PRODUCTS (NOT USED)

PART 3 – EXECUTION

3.1 GENERAL

A. Sequences specified herein indicate the functional intent of the systems operation and may not fully detail every aspect of the programming that may be required to obtain the indicated operation. Contractor should also refer to Contract Drawings for additional information. Contractor shall provide all programming necessary to obtain the sequences/system operation indicated.

B. When an air handling unit is not in operation, control devices shall remain in their “off” positions. “Off” positions may differ from the “normal” (meaning failed) position. Except as specified otherwise, “off” and “normal” positions of control devices shall be as follows:

<table>
<thead>
<tr>
<th>Device</th>
<th>"Off Position"</th>
<th>"Normal Position"</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heating coil valves</td>
<td>closed</td>
<td>open</td>
</tr>
<tr>
<td>Cooling coil valves</td>
<td>closed</td>
<td>closed</td>
</tr>
<tr>
<td>Outside air damper</td>
<td>closed</td>
<td>closed</td>
</tr>
<tr>
<td>Return air damper</td>
<td>open</td>
<td>open</td>
</tr>
<tr>
<td>Exhaust/relief air damper</td>
<td>closed</td>
<td>closed</td>
</tr>
<tr>
<td>Var. Freq. Drive</td>
<td>off</td>
<td>Min. speed</td>
</tr>
</tbody>
</table>

C. Except as specified otherwise, throttling ranges, proportional bands, and cycle differentials shall be centered on the associated setpoint. All modulating feedback control loops shall include the capability of having proportional, integral, and derivative action. Unless the loop is specified “proportional only” or “P+I”, Contractor shall apply appropriate elements of integral and derivative gain to each control loop which shall result in stable operation, minimum settling time, and shall maintain the primary variable within the specified maximum allowable variance.

D. Scheduling Terminology: When air handlers are scheduled throughout the day, the following defines the terminology used (Designer coordinate with The State regarding actual occupancy schedules and initial setpoints):

1. Occupied Period: Period of time when the building is in use and occupied. Generally, systems will be fully operational throughout this period and ventilation air shall be continuously introduced. Space temperature setpoints will
generally be in the “normal” range of 69-77°F.

2. Unoccupied period: Period of time when the building or zone is not in use and unoccupied. Ventilation air shall not be introduced.

3. Preoccupancy Period: Time prior to the Occupied period when the systems are returning the space temperatures from setback to “normal” or occupied setpoints (warm-up and cool-down). Ventilation air shall not be introduced unless outside air conditions permit free-cooling. Time period shall be determined by an optimum start strategy unless otherwise specified.

4. Setback Period: Setback will typically coincide start with the end of the occupied period and end with the start of the preoccupancy period, however it shall be provided with its own schedule. Generally systems will be off except to maintain a “setback” temperature.

E. Where any sequence or occupancy schedule calls for more than one motorized unit to start simultaneously, the BAS start commands shall be staggered by 5 second (adj.) intervals to minimize inrush current.

F. Alarm messages specified throughout the sequences are assigned to discrete priority levels. Priority levels dictate the handling and destination of alarm reports, and are defined in Section 230955 - ATC System Software and Programming.

G. Wherever a value is indicated as adjustable (adj.), it shall be modifiable, with the proper privilege level, from the operator interface or via a function block menu. For these points, it is unacceptable to have to modify programming statements to change the setpoint.

H. Where reset action is specified in a sequence of operation, but a reset schedule is not indicated on the drawings, one of the following methods shall be employed:

1. Contractor shall determine a fixed reset schedule which shall result in stable operation and shall maintain the primary variable within the specified maximum allowable variance.

2. A floating reset algorithm shall be used which increments the secondary variable setpoint (setpoint of control loop being reset) on a periodic basis to maintain primary variable setpoint. The recalculation time and reset increment shall be chosen to maintain the primary variable within the specified maximum allowable variance.

3. Primary variable shall control the devices directly using a PID feedback control loop without resetting the secondary variable. However, the control devices shall still modulate as necessary to maintain upper and lower limits on the secondary variable. Proportional band, integral gain, and derivative term shall be selected to maintain the primary variable within the specified maximum allowable tolerance while minimizing overshoot and settling time. Contractor shall gain prior approval for implementing this method of reset.

I. Where a supply air temperature or duct pressure setpoint is specified to be reset by the space temperature of the zones calling for the most cooling/heating, the following method shall be employed:
1. A floating reset algorithm shall be used which increments the secondary variable (e.g., supply air temperature or duct pressure) setpoint on a periodic basis to maintain primary variable (e.g., space temperature) setpoint. The reset increment shall be determined by the quantity of “need heat” or “need cool” requests from individual SCU's. A SCU's “need heat” virtual point shall activate whenever the zone's space temperature falls below the currently applicable (occupied or unoccupied) heating setpoint throttling range. A SCU's “need cool” virtual point shall activate whenever the zone's space temperature rises above the currently applicable (occupied, unoccupied, or economy) cooling setpoint throttling range. The recalculation time and reset increment shall be chosen to maintain the primary variable within the specified maximum allowable variance while minimizing overshoot and settling time. Reset range maximum and minimum values shall limit the setpoint range.

J. Where “prove operation” of a device (generally controlled by a digital output) is indicated in the sequence, it shall require that the BAS shall, after an adjustable time delay after the device is commanded to operate (feedback delay), confirm that the device is operational via the status input. If the status point does not confirm operation after the time delay or anytime thereafter for an adjustable time delay (debounce delay) while the device is commanded to run, an alarm shall be enunciated audibly and via an alarm message at the operator interface and print at the alarm printers. A descriptive message shall be attached to the alarm message indicating the nature of the alarm and actions to be taken. Contractor shall provide messages to meet this intent. Upon failure of equipment with redundant backup, run command shall be removed from equipment and the device shall be locked out until the alarm is manually acknowledged. Upon failure of equipment without redundant backup, run command shall remain energized and the alarm shall be latched until reset by an operator. BAS shall provide for adjustable maximum rates of change for increasing and decreasing output from the following analog output points:

1. Speed control of variable speed drives
2. Chiller supply water temperature setpoint reset
3. Chiller demand limit
4. Travel rate of tower isolation and chiller isolation valves

K. Wherever a value is indicated to be dependent on another value (i.e.: setpoint plus 5°F) BAS shall use that equation to determine the value. Simply providing a virtual point that the operator must set is unacceptable. In this case three virtual points shall be provided. One to store the parameter (5°F), one to store the setpoint, and one to store the value which is the result of the equation.

3.2 AIR HANDLING UNITS - GENERAL

A. Logic Strategies: The BAS shall fully control the air handlers. Generally, the BAS shall energize the AH (start the fans and activate control loops) as dictated for each air handler. The following indicates when and how the BAS shall energize the AHs and control various common aspects of them. The following “logic strategies” shall be included by reference with each air handler with any specific clarifications required:

1. Scheduled Occupancy: BAS shall determine the occupancy periods (occupied,
unoccupied, preoccupancy, and setback) as defined above. The following details the common control aspects related to the scheduled occupancy.

a. Occupied Period: BAS shall energize the AH during all occupied periods. Note that the beginning of the occupancy period shall be set sufficiently before the actual start of occupancy to obtain the required building component of ventilation per ASHRAE 62. Specific times shall be as directed by the A/E. Minimum OA flow setpoint shall be as scheduled on the drawings. “Normal” setpoints shall apply.

b. Unoccupied Period: Minimum OA flow shall be 0 CFM or the minimum OA damper position shall be 0%. If during the unoccupied period there is a request for occupancy override, the occupancy mode shall become active for an adjustable period. The unoccupied period and the preoccupancy period will typically overlap.

c. Setback Period: BAS shall deenergize the unit except as required to maintain a setback temperature as indicated in the individual sequences with a 5°F cycle differential. Generally, where setback temperatures apply in multiple zones, the worst zone shall control the system. Setback setpoints generally apply except during preoccupancy [and night purge]. If during the unoccupied period there is a request for occupancy override, the occupancy mode shall become active for an adjustable period.

d. Preoccupancy: BAS shall energize the AH continuously during the preoccupancy period. Minimum OA flow shall be 0 CFM or the minimum OA damper position shall be 0%. “Normal” setpoints shall apply. Preoccupancy duration shall be one of the following as specified by reference:

1) Fixed: The duration of the preoccupancy period shall be fixed as scheduled by the operator.
2) Optimum: The duration of the morning warm-up period shall vary according to outside air temperature and space temperature such that the space temperature rises to occupied period heating setpoint at the beginning of, but not before, the scheduled occupied period. The duration of the cool-down period shall vary according to outside air temperature and space temperature such that the space temperature falls to the occupied period cooling setpoint at the beginning of, but not before, the scheduled occupied period.

2. Minimum OA Control: BAS shall maintain minimum ventilation during the occupied period. The following strategies may apply:

a. Damper Controlled Fixed: During the occupied period, applicable mixing dampers shall be modulated to maintain an OA flow rate of no less than the MVR as dictated in the design and required by ASHRAE 62. Setpoint flow rates shall be provided by the A/E. Flow rate shall be determined in any of the following ways as specified for the particular
AH:

1) Measured directly by an OA flow station
2) As determined by CO2 mixing equations using the SA, OA, and RA CO2 sensors

b. Damper Controlled Reset: During the occupied period, applicable mixing dampers shall be modulated to maintain an OA flow rate setpoint. Setpoint shall be reset between limits of system exhaust make-up air CFM and the design minimum CFM to maintain an RA CO2 setpoint of 900 ppm (adj.). Loop shall be a “sample and bump” or dynamic proportional only loop tuned for the slow response. Setpoint flow rates shall be provided by the A/E. Flow rate shall be determined in any of the following ways as specified for the particular AH:

1) Measured directly by an OA flow station
2) As determined by CO2 mixing equations using the SA, OA, RA, and/or Space CO2 sensors

3. Airside Economizer: BAS shall modulate the mixing dampers to provide “free cooling” when conditions merit. The free cooling shall generally be staged before any mechanical cooling. While conditions merit, dampers shall be modulated in a DA PID loop to maintain mixed air temperature at a setpoint as specified for the individual unit. Economizer logic shall remain enabled during setback cooling where applicable. One of the following strategies shall be used to enable the economizer mode:

a. Dry Bulb Comparison: Economizer mode shall be active while the unit is energized AND when OA enthalpy fall below 28 btu/# AND outside air temperature falls below return air temperature (with 2°F cycle differential). Economizer mode shall be inactive when OA enthalpy rises above 29 btu/# OR outside air temperature rises above return air temperature (with 2°F cycle differential), dampers shall return to their scheduled minimum positions as specified above. Economizer shall remain enabled during setback cooling.

b. Dry Bulb Switch: Economizer mode shall be active while the unit is energized AND when OA enthalpy fall below 28 btu/# AND outside air temperature falls below the switching setpoint of 70°F (adj.) (with 5°F cycle differential). Economizer mode shall be inactive when OA enthalpy rises above 29 btu/# OR outside air temperature rises above switching setpoint, dampers shall return to their scheduled minimum positions as specified above.

4. Sequenced Heating and Cooling: BAS shall control the heating and cooling coils and air side economizer as detailed for the particular AH. Program logic shall directly prohibit the heating and cooling valves as well as the heating valve and economizer damper to be open (or above minimum) simultaneously. This does not apply to cooling and reheat valves that are used simultaneously for
dehumidification.

5. Mixed Air Low Limit Override: BAS shall override the signal to the OA damper via a proportional only loop to maintain a minimum mixed air temperature of 45°F (adj.) (loop shall output 0% at 45°F which shall be passed to the output via a low selector).

6. Freeze Safety: Upon operation of a freezestat, unit shall be deenergized with the exception of the heating loops. Typically supply and return fans where applicable shall be deenergized via a hardwired interlock, and an indication of the operation shall be sensed by the BAS. BAS shall enunciate appropriate alarm and remove and lock out the start command, which shall initiate "fan failure" alarms. OA dampers shall close and heating loops shall remain active.

7. Smoke Safety: Upon indication of smoke by a smoke detector, FAC shall deenergize the AH. Smoke detector shall notify the fire alarm system and BAS, shut down the fans, and close the smoke dampers via hard-wired interlock.

B. The detailed “logic strategies” above shall be required by reference to them in each of the individual sequences on the contract drawings or as shown below.

3.3 AIR HANDLING UNIT DIAGNOSTICS - GENERAL

A. Diagnostic Strategies: In addition to the standard alarm limits specified for all sensed variables the BAS monitor and diagnose anomalies in the operation of the air handlers. The following “diagnostic strategies” shall be included by reference with each air handler with any specific clarifications required:

1. Run Time Limit: BAS shall accumulate the runtime of the status of associated rotating equipment and enunciate a level 5 alarm to indicate that the unit is in need of service.

2. Filter Monitoring: BAS shall monitor the differential pressure transmitter across the filter bank(s). A level 5 alarm shall be reported when pressure drop exceeds the transmitter's setting.

3. Start Monitoring: BAS shall accumulate the starts of cycling equipment. BAS shall further enunciate a level 5 alarm when the number of starts exceeds the specified value within the specified time period. (ie: more than 3 starts in a 30 min period)

4. Heating Valve Leak: While heating valve is closed, if the temperature increase across the heating coil exceeds 2°F continuously for 30 minutes; or if the discharge temperature is more than 5°F above setpoint for more than 30 minutes continuously, enunciate the following alarm at level 3 and 4 priority:

 a. ENERGY WASTE: An unexpected temperature rise is occurring across the heating coil. Please check for leaking valve or faulty controls.

5. Cooling Valve Leak: While cooling valve is closed, if the temperature drop across the cooling coil exceeds 2°F continuously for 30 minutes; or if the discharge temperature is more than 5°F below setpoint for more than 30 minutes continuously, enunciate the following alarm at level 3 and 4 priority:
a. ENERGY WASTE: An unexpected temperature drop is occurring across the cooling coil. Please check for leaking valve or faulty controls.

6. Cooling Capacity Shortage: BAS shall monitor the output to the valve. If the output exceeds 99% open for 1 hour continuously, enunciate the following alarm

 a. Lack of Capacity: The cooling valve of XXX has been commanded to the full open position for an extended time period. Ensure that the setpoint for the control loop is at a reasonable value and that flow to the coil has not been obstructed as in a plugged strainer, throttled balancing valve, debris in the control valve, etc.

7. Economizer Anomaly: If mixed air temperature is less than low limit mixed air temperature °F or greater than [85]; or if the outside air temperature is between 55°F and 65°F and the mixed air temperature is more than 2°F different from the outside air temperature for more than 30 minutes continuously, enunciate the following alarm at level 3 and 4 priority:

 a. ENERGY WASTE: An unexpected mixed air temperature indicates a possible problem with the economizer damper controls. Please check for faulty dampers or controls.

8. Fighting Valves: BAS shall monitor the valve positions of the preheat and cooling coils and shall enunciate the following level 3 alarm if the valve positions are both over 10% open.

 a. Fighting Valves: The preheat and the cooling valves are opening simultaneously on XXX. Coordinate the control loops.

9. Fighting Thermal Zones: BAS shall monitor the mode of multiple terminal zones within a thermal zone and enunciate the following level 3 alarm if some are in heating mode, and others are in cooling mode:

 a. FIGHTING TERMINAL UNITS: Simultaneous heating and cooling exists in XXX. Coordinate the setpoints.

10. Fighting Humidity Zones: BAS shall monitor the mode of multiple terminal zones within a humidity zone and enunciate the following level 3 alarm if some are in heating mode, and others are in cooling mode:

 a. FIGHTING TERMINAL UNITS: simultaneous humidification and dehumidification exists in XXX. Coordinate the setpoints.

11. Unstable Control: BAS shall monitor the output to the actuator. BAS shall calculate the average change in output per second over a 30-min. period. The average change in output signal shall be calculated as follows: \[\frac{\text{Abs}(\text{Current Output} \%-\text{Last Output} \%) \, / \, \text{Scan Interval(s)} \, / \, \text{# of Scans in 30 min}} \]. The program shall execute the check once every 14 hours (start the 30-min. interval change accumulation, after 30 min. perform the check and clear the sum). BAS
shall enunciate the following alarm if the average rate of change exceeds 1%/sec or one half of the maximum rate of change programmed for the point.

a. Unstable Control: The control loop on XXX appears to be unstable. Establish a plot of the valve output to validate this. If the damper is hunting unacceptably, tune the loop.

3.4 CENTRAL PLANT EQUIPMENT - MONITORING AND MANAGEMENT

A. General: The BAS shall monitor various aspects of the heating and cooling systems and calculate parameters as specified below to facilitate plant operations and management.

B. Trending: The BAS shall continuously monitor, calculate and display the following parameters at the intervals indicated. These values shall be stored and reported per the trending requirements defined in Section 23 09 55.

C. Parameters to be trended:

1. Load on the secondary systems in MBH per the following equation: (Return Temp-Supply Temp) * (GPM) / .5. This shows cooling as a positive heat load and heating as a negative heat load. Note that multipliers on this value to accommodate the BAS processors are acceptable as long as they are clearly indicated. This value shall be trended and stored every two hours.
2. All temperature sensors at 1-hour intervals
3. All relative humidity sensors at 1-hour intervals
4. All pressure sensors at 1-hour intervals
5. All run requests and statuses on a change in value
6. All analog loop outputs on 1-hour intervals
7. Calculated enthalpies in 2-hour intervals
8. Summed cooling and heating requests on 2-hour intervals

END OF SECTION
THIS PAGE INTENTIONALLY LEFT BLANK
SECTION 232113
MECHANICAL PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes pipe and fitting materials, joining methods, special-duty valves, and specialties for the following:

1. Heating Water Piping
2. Condensate-drain piping.

B. Related Sections include the following:

1. Section 232123 "Hydronic Pumps" for pumps, motors, and accessories for hydronic piping.
2. Section 232116 “Mechanical Piping Specialties” for piping underground that interfaces with this piping within the building.

1.3 PERFORMANCE REQUIREMENTS

A. Hydronic piping components and installation shall be capable of withstanding the following minimum working pressure and temperature:

1. Heating Water Piping: 150 psig at 180 deg F.
2. Condensate-Drain Piping: 150 deg F.

1.4 SUBMITTALS

A. Product Data: For each type of the following:

1. Piping materials.
2. Air control devices.

B. Shop Drawings: Detail, at 1/4 scale, the piping layout, fabrication of pipe anchors, hangers, supports for multiple pipes, alignment guides, and attachments of the same to the building structure. Detail location of anchors, alignment guides, and expansion joints and loops.

C. Welding certificates.
D. Qualification Data: For Installer.

E. Field quality-control test reports.

F. Operation and Maintenance Data: For air control devices, hydronic specialties, and special-duty valves to include in emergency, operation, and maintenance manuals.

1.5 QUALITY ASSURANCE

A. Welding: Qualify processes and operators according to ASME Boiler and Pressure Vessel Code: Section IX.
 1. Comply with provisions in ASME B31 Series, "Code for Pressure Piping."
 2. Certify that each welder has passed AWS qualification tests for welding processes involved and that certification is current.

B. ASME Compliance: Comply with ASME B31.9, "Building Services Piping," for materials, products, and installation. Safety valves and pressure vessels shall bear the appropriate ASME label. Fabricate and stamp air separators and expansion tanks to comply with ASME Boiler and Pressure Vessel Code: Section VIII, Division 01.

PART 2 - PRODUCTS

2.1 COPPER TUBE AND FITTINGS

A. Soft Copper Tube: ASTM B 88, Type K water tube, annealed temper.

B. Drawn-Temper Copper Tubing: ASTM B 88, Type L.

C. Wrought-Copper Fittings: ASME B16.22.
 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Anvil International, Inc.
 b. S. P. Fittings; a division of Star Pipe Products.
 c. Victaulic Company.

D. Wrought-Copper Unions: ASME B16.22.

2.2 JOINING MATERIALS

A. Pipe-Flange Gasket Materials: Suitable for chemical and thermal conditions of piping system contents.
 1. ASME B16.21, nonmetallic, flat, asbestos free, 1/8-inch maximum thickness unless thickness or specific material is indicated.
a. Full-Face Type: For flat-face, Class 125, cast-iron and cast-bronze flanges.
b. Narrow-Face Type: For raised-face, Class 250, cast-iron and steel flanges.

B. Flange Bolts and Nuts: ASME B18.2.1, carbon steel, unless otherwise indicated.

C. Plastic, Pipe-Flange Gasket, Bolts, and Nuts: Type and material recommended by piping system manufacturer, unless otherwise indicated.

D. Solder Filler Metals: ASTM B 32, lead-free alloys. Include water-flushable flux according to ASTM B 813.

E. Welding Filler Metals: Comply with AWS D10.12/D10.12M for welding materials appropriate for wall thickness and chemical analysis of steel pipe being welded.

2.3 TRANSITION FITTINGS

A. Plastic-to-Metal Transition Unions:

1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

b. IPEX Inc.
c. NIBCO INC.

2. MSS SP-107, PE union. Include brass or copper end, Schedule 80 solvent-cement-joint end, rubber gasket, and threaded union.

2.4 DIELECTRIC FITTINGS

A. General Requirements: Assembly of copper alloy and ferrous materials with separating nonconductive insulating material. Include end connections compatible with pipes to be joined.

B. Dielectric Unions:

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

b. Central Plastics Company.
c. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
d. Wilkins; a Zurn company.

2. Description:
b. Pressure Rating: 125 psig minimum at 180 deg F.
c. End Connections: Solder-joint copper alloy and threaded ferrous.

C. Dielectric Flanges:

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 b. Central Plastics Company.
 c. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 d. Wilkins; a Zurn company.

2. Description:
 b. Factory-fabricated, bolted, companion-flange assembly.
 c. Pressure Rating: 125 psig minimum at 180 deg F.
 d. End Connections: Solder-joint copper alloy and threaded ferrous; threaded solder-joint copper alloy and threaded ferrous.

D. Dielectric Nipples:

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Elster Perfection.
 b. Grinnell Mechanical Products.
 c. Precision Plumbing Products, Inc.
 d. Victaulic Company.

2. Description:
 a. Standard: IAPMO PS 66
 b. Electroplated steel nipple, complying with ASTM F 1545.
 c. Pressure Rating: 300 psig.
 d. End Connections: Male threaded or grooved.
 e. Lining: Inert and noncorrosive, propylene.
PART 3 - EXECUTION

3.1 PIPING APPLICATIONS
A. Heating Water Piping, aboveground, 2-1/2” and smaller shall be the following:
 1. Type L, drawn-temper copper tubing, wrought-copper fittings, and soldered joints.
B. Condensate-Drain Piping: Type M or DWV, drawn-temper copper tubing, wrought-
copper fittings, and soldered joints.

3.2 VALVE APPLICATIONS
A. Install valves in accordance with Division 23 Section “Valves”.
B. Install shut off-duty valves at each branch connection to supply mains, and at supply
 connection to each piece of equipment.
C. Install, balancing valves in the return pipe of each air terminal unit coil.
D. Install check valves at each pump discharge and elsewhere as required to control flow
direction.
E. Install pressure-reducing valves at makeup-water connection to regulate system fill
 pressure.

3.3 PIPING INSTALLATIONS
A. Drawing plans, schematics, and diagrams indicate general location and arrangement of
 piping systems. Indicate piping locations and arrangements if such were used to size pipe
 and calculate friction loss, expansion, pump sizing, and other design considerations. Install
 piping as indicated unless deviations to layout are approved on Coordination Drawings.
B. Install piping in concealed locations, unless otherwise indicated.
C. Install piping indicated to be exposed at right angles or parallel to building walls.
 Diagonal runs are prohibited unless specifically indicated otherwise.
D. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.
E. Install piping to permit valve servicing.
F. Install piping at indicated slopes.
G. Install piping free of sags and bends.
H. Install fittings for changes in direction and branch connections.
I. Install piping to allow application of insulation.

J. Select system components with pressure rating equal to or greater than system operating pressure.

K. Install groups of pipes parallel to each other, spaced to permit applying insulation and servicing of valves.

L. Install drains, consisting of a tee fitting, NPS 3/4 ball valve, and short NPS 3/4 threaded nipple with cap, at low points in piping system mains and elsewhere as required for system drainage.

M. Install piping at a uniform grade of 0.2 percent upward in direction of flow.

N. Reduce pipe sizes using eccentric reducer fitting installed with level side up.

O. Install branch connections to mains using tee fittings in main pipe, with the branch connected to the bottom of the main pipe. For up-feed risers, connect the branch to the top of the main pipe.

P. Install unions in piping, 2” and smaller, adjacent to valves, at final connections of equipment, and elsewhere as indicated.

Q. Install strainers on inlet side of each control valve, pressure-reducing valve, solenoid valve, in-line pump, and elsewhere as indicated. Install 3/4” nipple and ball valve in blowdown connection of strainers 2” and larger. Match size of strainer blowoff connection for strainers smaller than 2”.

R. Install meters and gages as specified in Division 23 Section "Meters and Gages for Mechanical Piping."

S. Identify piping as specified in Division 23 Section "Identification for Mechanical Piping and Equipment."

T. Install sleeves for piping penetrations of walls, ceilings, and floors.

U. Install escutcheons for piping penetrations of walls, ceilings, and floors.

3.4 HANGERS AND SUPPORTS

A. Hanger, support, and anchor devices are specified in Division 23 Section "Hangers and Supports for Mechanical Piping and Equipment." Comply with the following requirements for maximum spacing of supports.

B. Install the following pipe attachments:

1. Adjustable steel clevis hangers for individual horizontal piping less than 20 feet long.
2. Provide copper-clad hangers and supports for hangers and supports in direct contact with copper pipe.

C. Install hangers for drawn-temper copper piping with the following maximum spacing and minimum rod sizes:

1. NPS 1 and smaller: Maximum span, 6 feet; minimum rod size, 1/4 inch.
2. NPS 1-1/2 to 2-1/2: Maximum span, 8 feet; minimum rod size, 3/8 inch.

D. Support vertical runs at floor.

3.5 PIPE JOINT CONSTRUCTION

A. Join pipe and fittings according to the following requirements and Division 23 Sections specifying piping systems.

B. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.

C. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.

D. Soldered Joints: Apply ASTM B 813, water-flushable flux, unless otherwise indicated, to tube end. Construct joints according to ASTM B 828 or CDA's "Copper Tube Handbook," using lead-free solder alloy complying with ASTM B 32.

F. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:

1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is specified.
2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.

G. Flanged Joints: Select appropriate gasket material, size, type, and thickness for service application. Install gasket concentrically positioned. Use suitable lubricants on bolt threads.

3.6 HYDRONIC SPECIALTIES INSTALLATION

A. Install manual air vents at high points in piping and elsewhere as required for system air venting.

B. Refer to Specification Section 232116 for additional requirements.
3.7 FIELD QUALITY CONTROL

A. Prepare hydronic piping according to ASME B31.9 and as follows:

1. Leave joints, including welds, uninsulated and exposed for examination during test.
2. Provide temporary restraints for expansion joints that cannot sustain reactions due to test pressure. If temporary restraints are impractical, isolate expansion joints from testing.
3. Flush hydronic piping systems with clean water; then remove and clean or replace strainer screens.
4. Isolate equipment from piping. If a valve is used to isolate equipment, its closure shall be capable of sealing against test pressure without damage to valve. Install blinds in flanged joints to isolate equipment.
5. Install safety valve, set at a pressure no more than one-third higher than test pressure, to protect against damage by expanding liquid or other source of overpressure during test.

B. Perform the following tests on hydronic piping:

1. Use ambient temperature water as a testing medium unless there is risk of damage due to freezing. Another liquid that is safe for workers and compatible with piping may be used.
2. While filling system, use vents installed at high points of system to release air. Use drains installed at low points for complete draining of test liquid.
3. Isolate expansion tanks and determine that hydronic system is full of water.
4. Subject piping system to hydrostatic test pressure that is not less than 1.5 times the system's working pressure. Test pressure shall not exceed maximum pressure for any vessel, pump, valve, or other component in system under test. Verify that stress due to pressure at bottom of vertical runs does not exceed 90 percent of specified minimum yield strength or 1.7 times "SE" value in Appendix A in ASME B31.9, "Building Services Piping."
5. After hydrostatic test pressure has been applied for at least 10 minutes, examine piping, joints, and connections for leakage. Eliminate leaks by tightening, repairing, or replacing components, and repeat hydrostatic test until there are no leaks.
6. Prepare written report of testing.
7. Results of pipe pressure tests shall be submitted to Engineer, Owner, and Owner’s Representative for review prior to closing in walls, floors, or ceilings that will prevent access to piping for repairs.

C. Perform the following before operating the system:

1. Open manual valves fully.
2. Inspect pumps for proper rotation.
3. Set makeup pressure-reducing valves for required system pressure.
4. Inspect air vents at high points of system and determine if all are installed and operating freely (automatic type), or bleed air completely (manual type).
5. Set temperature controls so all coils are calling for full flow.
6. Inspect and set operating temperatures of hydronic equipment to specified values.
7. Verify lubrication of motors and bearings.

D. Flush hydronic piping systems with clean water. Remove and clean or replace strainer screens. After cleaning and flushing hydronic piping systems, but before balancing, remove disposable fine-mesh strainers in pump suction diffusers.

END OF SECTION
SECTION 232116

MECHANICAL PIPING SPECIALTIES

PART 1 -- GENERAL

1.1 RELATED DOCUMENTS:

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY:

A. This Section includes the following domestic water piping specialties:
 1. Vacuum breakers.
 2. Strainers.
 3. Drain valves.
 4. Air vents.
 5. Air Separators
 6. Expansion Tanks
 7. Cleanouts

B. Related Sections include the following:
 1. Section 230523 "Valves"
 2. Section 230519 "Meters and Gages for Mechanical Piping"
 3. Section 232113 "Mechanical Piping"

1.3 PERFORMANCE REQUIREMENTS:

A. Minimum Working Pressure for Domestic Water Piping Specialties: 125 psig, unless otherwise indicated.

1.4 SUBMITTALS:

A. Product Data: For each type of product indicated.

B. Shop Drawings: Diagram power, signal, and control wiring.

C. Field quality-control test reports.

D. Operation and Maintenance Data: For domestic water piping specialties to include in emergency, operation, and maintenance manuals.
1.5 QUALITY ASSURANCE:

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

B. NSF Compliance:

2. Comply with NSF 61, "Drinking Water System Components - Health Effects; Sections 1 through 9."

PART 2 - PRODUCTS

2.1 VACUUM BREAKERS:

A. Pipe-Applied, Atmospheric-Type Vacuum Breakers:

1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. FEBCO; SPX Valves & Controls.
 c. Zurn Plumbing Products Group; Wilkins Div.
3. Size: NPS 1/4 to NPS 3 (DN 8 to DN 80), as required to match connected piping.
5. Inlet and Outlet Connections: Threaded.

B. Hose-Connection Vacuum Breakers:

1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 b. Woodford Manufacturing Company.
 c. Zurn Plumbing Products Group.
5. Finish: Rough bronze.
C. Pressure Vacuum Breakers:

1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Conbraco Industries, Inc.
 c. Zurn Plumbing Products Group; Wilkins Div.

3. Operation: Continuous-pressure applications.
4. Pressure Loss: 5 psig (35 kPa) maximum, through middle 1/3 of flow range.
5. Accessories:
 a. Valves: Ball type, on inlet and outlet.

2.2 STRAINERS:

A. Y-Pattern and Basket Strainers:

1. Body: Bronze for NPS 2 (DN 50) and smaller; cast iron with interior lining complying with AWWA C550 or FDA-approved, epoxy coating and for NPS 2-1/2 (DN 65) and larger.
2. End Connections: Threaded for NPS 2 (DN 50) and smaller flanged for NPS 2-1/2 (DN 65) and larger.
3. Screen: Stainless steel with round perforations, unless otherwise indicated.
4. Perforation Size:
 a. Strainers NPS 2 (DN 50) and Smaller: 0.020 inch (0.51 mm).
 b. Strainers NPS 2-1/2 to NPS 4 (DN 65 to DN 100): 0.045 inch (1.14 mm).

2.3 DRAIN VALVES:

A. Ball-Valve-Type, Hose-End Drain Valves:

2. Pressure Rating: 400-psig (2760-kPa) minimum CWP.
4. Body: Copper alloy.
5. Ball: Chrome-plated brass.
8. Inlet: Threaded or solder joint.
2.4 AIR CONTROL DEVICES

A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

1. Amtrol, Inc.
2. Armstrong Pumps, Inc.
3. Bell & Gossett; a division of ITT Industries.
4. Taco.

B. AIR VENTS:

1. Manual Air Vents:
 a. Body: Bronze.
 b. Internal Parts: Nonferrous.
 c. Operator: Screwdriver or thumbscrew.
 d. Inlet Connection: NPS 1/2
 f. CWP Rating: 150 psig.

C. Tangential-Type Air Separators:

1. Tank: Cast iron for sizes 2-1/2 inches and smaller, carbon steel for sizes 3 inches and larger. ASME constructed and labeled for 125-psig minimum working pressure and 350 deg F maximum operating temperature.
2. Air Collector Tube: Perforated 304 stainless steel, 3/16" diameter perforations, and free area not less than 5 times the cross-sectional area of the connecting pipe.
3. Tangential Inlet and Outlet Connections: Threaded for NPS 2 and smaller; flanged connections for NPS 2-1/2 and larger.
5. Designed and constructed per ASME Section VIII, Division 1.

2.5 DIAPHRAGM-TYPE EXPANSION TANKS

A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

1. Bell & Gossett; a division of ITT Industries.
2. Amtrol, Inc.
3. Taco.

B. Tank: Carbon steel, rated for 125-psig working pressure and 240 deg F maximum operating temperature. Factory test after taps are fabricated and supports installed and are labeled according to ASME Boiler and Pressure Vessel Code: Section VIII, Division 1.
C. Diaphragm: Heavy duty butyl rubber, securely sealed into tank to separate air charge from system water to maintain required expansion capacity.

D. Air-Charge Fittings: Schrader valve, stainless steel with EPDM seats.

2.6 FLEXIBLE PIPING CONNECTORS

A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

1. BRD Noise and Vibration Control, Inc.; HUSH JOINT
2. Amber/Booth Company, Inc.
3. Isolation Technology, Inc.

B. Body: Metallic or elastomeric

C. End Connections: Flanged or slip ends to match equipment.

D. Performance: Capable of misalignment

E. CWP Rating: 150 psig.

F. Maximum Operating Temperature: 250 deg F.

2.7 CLEANOUTS

A. Exposed Cleanouts:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 b. MIFAB, Inc.
 d. Tyler Pipe; Wade Div.

2. Standard: ASME A112.36.2M for cleanout test tee.
3. Size: Same as connected drainage piping
4. Body Material: as required to match connected piping.
5. Closure Countersunk or raised-head plug.
6. Closure Plug Size: Same as or not more than one size smaller than cleanout size.

B. Concealed Cleanouts:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

PART 3 - EXECUTION

3.1 INSTALLATION:

A. Refer to Division 23 Section "Basic Mechanical Materials and Methods" for piping joining materials, joint construction, and basic installation requirements.

B. Install Y-pattern strainers for water on supply side of each control valve, water pressure-reducing valve, solenoid valve, and pump.

C. Install in-line air separators in pump suction. Install drain valve on air separators.

D. Install air vents at high points of water piping, at heat transfer coils, and elsewhere as required for system air venting.

E. Install expansion tanks above the air separator. Install tank fitting in tank bottom and charge tank. Use manual vent for initial fill to establish proper water level in tank.

1. Install tank fittings that are shipped loose.
2. Support tank from structure above with sufficient strength to carry weight of tank, piping connections, fittings, plus tank full of water. Do not overload building components and structural members.

F. Install wood-blocking reinforcement for wall-mounting-type specialties.

G. Install escutcheons at wall, floor, and ceiling penetrations in exposed finished locations and within cabinets and millwork. Use deep-pattern escutcheons if required to conceal protruding pipe fittings.
H. Install cleanouts in aboveground piping and building drain piping according to the following, unless otherwise indicated:

1. Size same as drainage piping.
2. Locate at each change in direction of piping greater than 45 degrees.
3. Locate at minimum intervals of 50 feet.
4. Locate at base of each vertical stack.

I. For cleanouts located in concealed piping, install cleanout wall access covers, of types indicated, with frame and cover flush with finished wall.

3.2 CONNECTIONS:

A. Piping installation requirements are specified in other Division 23 Sections. Drawings indicate general arrangement of piping and specialties.

B. Ground equipment according to Division 26 Section "Grounding and Bonding."

C. Connect wiring according to Division 26 Section "Conductors and Cables."

3.3 LABELING AND IDENTIFYING:

A. Equipment Nameplates and Signs: Install engraved plastic-laminate equipment nameplate or sign on or near each of the following:
 1. Pressure vacuum breakers.

B. Distinguish among multiple units, inform operator of operational requirements, indicate safety and emergency precautions, and warn of hazards and improper operations, in addition to identifying unit. Nameplates and signs are specified in Division 23 Section "Identification for Mechanical Piping and Equipment."

3.4 FIELD QUALITY CONTROL:

A. Perform the following tests and prepare test reports:
 1. Test each pressure vacuum breaker and backflow preventers according to authorities having jurisdiction and the device's reference standard.

B. Remove and replace malfunctioning domestic water piping specialties and retest as specified above.

3.5 ADJUSTING:

A. Set field-adjustable pressure set points of water pressure-reducing valves.

END OF SECTION
THIS PAGE INTENTIONALLY LEFT BLANK
SECTION 232123

HYDRONIC PUMPS

PART 1 - DESCRIPTION

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Wet rotor, in-line centrifugal pumps.

1.3 DEFINITIONS

A. EPT: Ethylene propylene terpolymer.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of pump. Include certified performance curves and rated capacities, operating characteristics, furnished specialties, final impeller dimensions, and accessories for each type of product indicated. Indicate pump's operating point on curves.

B. Shop Drawings: For each pump.
 1. Show pump layout and connections.
 2. Include setting drawings with templates for installing foundation and anchor bolts and other anchorages.
 3. Include diagrams for power, signal, and control wiring.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For pumps to include in emergency, operation, and maintenance manuals.

1.6 DELIVERY, STORAGE, AND HANDLING

A. Deliver materials to the site in such a manner as to protect the materials from shipping and handling damage. Provide materials on factory provided shipping skids and lifting lugs if required for handling. Materials which could be damaged by the elements should be packaged in such a manner that they could withstand short-term exposure during transportation.
B. Store materials in clean, dry place and protect from weather and construction traffic. Handle carefully to avoid damage.

C. Use all means necessary to protect equipment before, during, and after installation.

D. All scratched, dented, and otherwise damaged units shall be repaired or replaced as directed by the Owner.

1.7 WARRANTY

A. Provide a minimum 18-month warranty on materials and installation

1.8 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Mechanical Seals: One mechanical seal for each pump.

PART 2 - PRODUCTS

2.1 WET ROTOR, IN-LINE CENTRIFUGAL PUMPS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

1. ITT Corporation; Bell & Gossett.
2. Armstrong Pumps Inc.
4. TACO Incorporated.

B. Components

1. The pumps shall be a wet rotor inline pump, in cast iron or lead free bronze body construction specifically designed for quiet operation. Suitable standard operations at 230° F and 175 PSIG working pressure.
2. The pump internals shall be capable of being serviced without disturbing piping connections.
3. Pump shall be equipped with a water-tight seal to prevent leakage.
4. Pump volute shall be of a cast iron design for heating systems or lead-free bronze for domestic water systems. The connection style on the cast iron and bronze pumps shall be flanged.
5. Flange dimensions shall be HVAC industry standard 2 or 4 bolts sizes.
6. Motor shall be a synchronous, permanent-magnet (PM) motor and tested with the pump as one unit. Conventional induction motors will not be acceptable.
7. Each motor shall have an Integrated Variable Frequency Drive tested as one unit by the manufacturer.

8. Integrated motor protection shall be verified by UL to protect the pump against over/under voltage, over temperature of motor and/or electronics, over current, locked rotor and dry run (no load condition).

9. Pump shall have BACnet connections built into the VFD as standard options.

10. Analog inputs, such as 0-10V and 4-20mA, are standard inputs built into the VFD.

11. Pumps shall be UL 778 listed and bear the UL Listed Mark for USA and Canada with on-board thermal overload protection.

12. Each pump shall be factory performance tested before shipment.

C. See below for available operating modes. Refer to the controls sequences on the drawings for actual system sequence of operation.

1. Proportional Pressure – The differential pressure will continuously increase or decrease along a linear curve based on the flow demand.

2. Constant Pressure – The pump maintains a constant differential pressure set by the user at any flow demand until the maximum speed is reached.

3. Constant Speed – The pump maintains a constant speed at any flow rate

4. Night Set Back – The pump will recognize a 10°C water temperature reduction and will switch to nighttime operation.

5. T-Constant – This control will use a PI algorithm to vary the speed of the pump in order to maintain a constant temperature of the fluid media.

6. Delta-T Constant – This control mode will use a PI algorithm to vary the speed of the pump in order to maintain a constant differential temperature between the built-in temperature sensor and external temperature sensor.

7. Delta-P-T – This control mode is paired with proportional or constant pressure mode. The nominal differential pressure setpoint will vary according to the fluid temperature.

8. Delta-P-Delta-T – This control mode is paired with proportional or constant pressure mode. The nominal differential pressure setpoint will vary according to the differential temperature between the built-in temperature sensor and external temperature sensor.

D. Two Pump Control shall be available. See below for available operating modes. Refer to the controls sequences on the drawings for actual system sequence of operation.

1. Backup – This mode will start the second pump in case of failure to the master pump.

2. Alternate Operation – This mode will run one pump at a time. The working time is switched every 24 hrs.

3. Parallel Operation – In this mode, both pumps run simultaneously at the same set point. The master pump determines the behavior of the full system and is able to optimize the performance. To guarantee the required performance with the minimum power consumption the master pump starts or stops the second pump depending on the head and the flow required.

E. Capacities and Characteristics are as scheduled on the drawings.
PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine equipment foundations and anchor-bolt locations for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.

B. Examine roughing-in for piping systems to verify actual locations of piping connections before pump installation.

C. Examine foundations and inertia bases for suitable conditions where pumps are to be installed.

D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PUMP INSTALLATION

A. Comply with manufacturer’s requirements.

B. Install pumps to provide access for periodic maintenance including removing motors, impellers, couplings, and accessories.

C. Independently support pumps and piping so weight of piping is not supported by pumps and weight of pumps is not supported by piping.

D. Power and control wiring shall run in separate channel.

E. Pumps shall NOT be run dry to check rotation.

F. Equipment Mounting: Install in-line pumps with continuous-thread hanger rods and elastomeric hangers of size required to support weight of in-line pumps.

 1. Comply with requirements for seismic-restraint devices specified in Division 23 Section “Vibration and Seismic Controls for Mechanical Piping and Equipment.”
 2. Comply with requirements for hangers and supports specified in Division 23 Section "Hangers and Supports for Mechanical Piping and Equipment."

3.3 ALIGNMENT

A. Perform alignment service.

B. Comply with requirements in Hydronics Institute standards for alignment of pump and motor shaft. Add shims to the motor feet and bolt motor to base frame. Do not use grout between motor feet and base frame.

C. Comply with pump and coupling manufacturers' written instructions.
D. After alignment is correct, tighten foundation bolts evenly but not too firmly. Completely fill baseplate with non-shrink, nonmetallic grout while metal blocks and shims or wedges are in place. After grout has cured, fully tighten foundation bolts.

3.4 CONNECTIONS

A. Where installing piping adjacent to pump, allow space for service and maintenance.

B. Connect piping to pumps. Install valves that are same size as piping connected to pumps.

C. Install suction and discharge pipe sizes equal to or greater than diameter of pump nozzles.

D. Install check valve and throttling valve with memory stop on domestic hot water recirculating pump. Install similar or triple-duty valve on discharge side of geothermal system pumps.

E. Install Y-type strainer or suction diffuser and shutoff valve on suction side of geothermal system pumps.

F. Install pressure gages on pump suction and discharge for geothermal system pumps.

G. Reduction from line size to pump connection size shall be made with eccentric reducers attached to the pump with tops flat to allow continuity of flow and to avoid air pockets.

H. Furnish and install a line size shut-off valve on the suction and discharge sides of the pumps.

I. Provide temperature gauges where and as detailed or directed.

J. All piping shall be brought to equipment and pump connections in such a manner so as to prevent the possibility of any load or stress being applied to the connections or piping.

K. Ground equipment according to Division 26 Section for Grounding and Bonding for Electrical Systems.

L. Connect wiring according to Division 26 Section for Low-Voltage Electrical Power Conductors and Cables.

3.5 STARTUP SERVICE

A. Perform startup service.

1. Complete installation and startup checks according to manufacturer's written instructions.

2. Check piping connections for tightness.

3. Clean strainers on suction piping.

4. Perform the following startup checks for each pump before starting:

 a. Verify bearing lubrication.
b. Verify that pump is free to rotate by hand and that pump for handling hot liquid is free to rotate with pump hot and cold. If pump is bound or drags, do not operate until cause of trouble is determined and corrected.

c. Verify that pump is rotating in the correct direction.

5. Prime pump by opening suction valves and closing drains, and prepare pump for operation.

7. Open discharge valve slowly.

3.6 DEMONSTRATION

A. Train Owner's maintenance personnel to adjust, operate, and maintain hydronic pumps.

END OF SECTION
SECTION 232300

REFRIGERANT PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary
 Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes refrigerant piping used for air-conditioning applications.

B. Related Sections:
 1. Division 23 Section “Mechanical Insulation for pipe insulation supports.
 2. Division 23 Section “Split System Air Conditioners” for unit pipe installation
 requirements.

1.3 PERFORMANCE REQUIREMENTS

A. Line Test Pressure for Refrigerant R-410A:

1.4 ACTION SUBMITTALS

A. Product Data: For each type of valve and refrigerant piping specialty indicated. Include
 pressure drop, based on manufacturer's test data, for the following:

 1. Thermostatic expansion valves.
 2. Solenoid valves.
 3. Filter dryers.
 4. Strainers.
 5. Pressure-regulating valves.

B. Shop Drawings: Show layout of refrigerant piping and specialties, including pipe, tube,
 and fitting sizes, flow capacities, valve arrangements and locations, slopes of horizontal
 runs, oil traps, double risers, wall and floor penetrations, and equipment connection
 details. Show interface and spatial relationships between piping and equipment.

 1. Shop Drawing Scale: 1/4-inch equals 1 foot (1:50).
2. Refrigerant piping indicated on Drawings is schematic only. Size piping and design actual piping layout, including oil traps, double risers, specialties, and pipe and tube sizes to accommodate, as a minimum, equipment provided, elevation difference between compressor and evaporator, and length of piping to ensure proper operation and compliance with warranties of connected equipment. Layout must be coordinated with field conditions and certified by VRF unit manufacturer prior to submittal.

1.5 INFORMATIONAL SUBMITTALS
A. Field quality-control test reports.

1.6 CLOSEOUT SUBMITTALS
A. Operation and Maintenance Data: For refrigerant valves and piping specialties to include in maintenance manuals.

1.7 QUALITY ASSURANCE
A. Welding: Qualify procedures and personnel according to ASME Boiler and Pressure Vessel Code: Section IX, "Welding and Brazing Qualifications."
C. Comply with ASME B31.5, "Refrigeration Piping and Heat Transfer Components."

1.8 PRODUCT STORAGE AND HANDLING
A. Store piping in a clean and protected area with end caps in place to ensure that piping interior and exterior are clean when installed.

1.9 COORDINATION
A. Coordinate size and location of roof curbs, equipment supports, and roof penetrations. These items are specified in Section 07720 "Roof Accessories."

PART 2 -PRODUCTS

2.1 COPPER TUBE AND FITTINGS
A. Copper Tube: ASTM B 280, Type ACR.
B. Wrought-Copper Fittings: ASME B16.22.
C. Wrought-Copper Unions: ASME B16.22.
D. Solder Filler Metals: ASTM B 32. Use 95-5 tin antimony or alloy HB solder to join copper socket fittings on copper pipe.
E. Brazing Filler Metals: AWS A5.8.

F. Flexible Connectors:
2. End Connections: Socket ends.
3. Offset Performance: Capable of minimum 3/4-inch (20-mm) misalignment in minimum 7-inch- (180-mm-) long assembly.
4. Pressure Rating: Factory test at minimum 500 psig (3450 kPa).
5. Maximum Operating Temperature: 250 deg F (121 deg C).

2.2 VALVES AND SPECIALTIES

A. Diaphragm Packless Valves:
1. Body and Bonnet: Forged brass or cast bronze; globe design with straight-through or angle pattern.
3. Operator: Rising stem and hand wheel.
5. End Connections: Socket, union, or flanged.

B. Packed-Angle Valves:
1. Body and Bonnet: Forged brass or cast bronze.
2. Packing: Molded stem, back seating, and replaceable under pressure.
3. Operator: Rising stem.
5. Seal Cap: Forged-brass or valox hex cap.
6. End Connections: Socket, union, threaded, or flanged.

C. Check Valves:
1. Body: Ductile iron, forged brass, or cast bronze; globe pattern.
2. Bonnet: Bolted ductile iron, forged brass, or cast bronze; or brass hex plug.
5. End Connections: Socket, union, threaded, or flanged.
6. Maximum Opening Pressure: 0.50 psig (3.4 kPa).

D. Service Valves:
1. **Body:** Forged brass with brass cap including key end to remove core.

2. **Core:** Removable ball-type check valve with stainless-steel spring.

3. **Seat:** Polytetrafluoroethylene.

4. **End Connections:** Copper spring.

5. **Working Pressure Rating:** 500 psig (3450 kPa).

E. Solenoid Valves: Comply with ARI 760 and UL 429; listed and labeled by an NRTL.

1. **Body and Bonnet:** Plated steel.

2. **Solenoid Tube, Plunger, Closing Spring, and Seat Orifice:** Stainless steel.

3. **Seat:** Polytetrafluoroethylene.

4. **End Connections:** Threaded.

5. **Electrical:** Molded, watertight coil in NEMA 250 enclosure of type required by location with 1/2-inch (16-GRC) conduit adapter, and 24-V ac coil.

6. **Working Pressure Rating:** 400 psig (2760 kPa).

7. **Maximum Operating Temperature:** 240 deg F (116 deg C).

F. Safety Relief Valves: Comply with ASME Boiler and Pressure Vessel Code; listed and labeled by an NRTL.

1. **Body and Bonnet:** Ductile iron and steel, with neoprene O-ring seal.

2. **Piston, Closing Spring, and Seat Insert:** Stainless steel.

3. **Seat Disc:** Polytetrafluoroethylene.

4. **End Connections:** Threaded.

5. **Working Pressure Rating:** 400 psig (2760 kPa).

6. **Maximum Operating Temperature:** 240 deg F (116 deg C).

G. Thermostatic Expansion Valves: Comply with ARI 750.

1. **Body, Bonnet, and Seal Cap:** Forged brass or steel.

2. **Diaphragm, Piston, Closing Spring, and Seat Insert:** Stainless steel.

3. **Packing and Gaskets:** Non-asbestos.

4. **Capillary and Bulb:** Copper tubing filled with refrigerant charge.

5. **Suction Temperature:** matching system operation.

6. **Superheat:** Adjustable.

7. **Reverse-flow option** (for heat-pump applications).

8. **End Connections:** Socket, flare, or threaded union.

9. **Working Pressure Rating:** 450 psig (3100 kPa).

H. Straight-Type Strainers:

1. **Body:** Welded steel with corrosion-resistant coating.

2. **Screen:** 100-mesh stainless steel.

3. **End Connections:** Socket or flare.

4. **Working Pressure Rating:** 500 psig (3450 kPa).

5. **Maximum Operating Temperature:** 275 deg F (135 deg C).

I. Angle-Type Strainers:
1. Body: Forged brass or cast bronze.
2. Drain Plug: Brass hex plug.
3. Screen: 100-mesh monel.
4. End Connections: Socket or flare.

J. Moisture/Liquid Indicators:
2. Window: Replaceable, clear, fused glass window with indicating element protected by filter screen.
3. Indicator: Color coded to show moisture content in ppm.
5. End Connections: Socket or flare.

K. Replaceable-Core Filter Dryers: Comply with ARI 730.
1. Body and Cover: Painted-steel shell with ductile-iron cover, stainless-steel screws, and neoprene gaskets.
2. Filter Media: 10 micron, pleated with integral end rings; stainless-steel support.
3. Desiccant Media: Activated alumina or charcoal.
4. Designed for reverse flow (for heat-pump applications).
5. End Connections: Socket.
7. Maximum Pressure Loss: 2 psig (14 kPa).
8. Rated Flow: matching system operation

L. Permanent Filter Dryers: Comply with ARI 730.
2. Filter Media: 10 micron, pleated with integral end rings; stainless-steel support.
3. Desiccant Media: Activated alumina or charcoal.
4. Designed for reverse flow (for heat-pump applications).
5. End Connections: Socket.
7. Maximum Pressure Loss: 2 psig (14 kPa).

M. Mufflers:
2. End Connections: Socket or flare.

N. Receivers: Comply with ARI 495.

1. Comply with UL 207; listed and labeled by an NRTL.
2. Body: Welded steel with corrosion-resistant coating.
3. Tappings: Inlet, outlet, liquid level indicator, and safety relief valve.
4. End Connections: Socket or threaded.

O. Liquid Accumulators: Comply with ARI 495.

2. End Connections: Socket or threaded.

2.3 REFRIGERANTS

A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

1. Atofina Chemicals, Inc.
2. DuPont Company; Fluorochemicals Div.
3. Honeywell, Inc.; Genetron Refrigerants.
4. INEOS Fluor Americas LLC.

B. ASHRAE 34, R-410A: Pentafluoroethane/Difluoromethane.

PART 3 - EXECUTION

3.1 PIPING APPLICATIONS FOR REFRIGERANTS

A. Suction Lines NPS 4 (DN 100) and Smaller for Conventional Air-Conditioning Applications: Copper, Type ACR, annealed-temper tubing and wrought-copper fittings with brazed or soldered joints.

B. Hot-Gas and Liquid Lines, and Suction Lines for Heat-Pump Applications: Copper, Type ACR, annealed-temper tubing and wrought-copper fittings with brazed or soldered joints.

C. Safety-Relief-Valve Discharge Piping: Type ACR, annealed-temper tubing and wrought-copper fittings with brazed or soldered joints
3.2 VALVE AND SPECIALTY APPLICATIONS

A. Install diaphragm packless valves in suction and discharge lines of compressor.

B. Install service valves for gage taps at inlet and outlet of hot-gas bypass valves and strainers if they are not an integral part of valves and strainers.

C. Install a check valve at the compressor discharge and a liquid accumulator at the compressor suction connection.

D. Except as otherwise indicated, install diaphragm packless valves on inlet and outlet side of filter dryers.

E. Install a full-sized, three-valve bypass around filter dryers.

F. Install solenoid valves upstream from each expansion valve and hot-gas bypass valve. Install solenoid valves in horizontal lines with coil at top.

G. Install thermostatic expansion valves as close as possible to distributors on evaporators.
 1. Install valve so diaphragm case is warmer than bulb.
 2. Secure bulb to clean, straight, horizontal section of suction line using two bulb straps. Do not mount bulb in a trap or at bottom of the line.
 3. If external equalizer lines are required, make connection where it will reflect suction-line pressure at bulb location.

H. Install safety relief valves where required by ASME Boiler and Pressure Vessel Code. Pipe safety-relief-valve discharge line to outside according to ASHRAE 15.

I. Install moisture/liquid indicators in liquid line at the inlet of the thermostatic expansion valve or at the inlet of the evaporator coil capillary tube.

J. Install strainers upstream from and adjacent to the following unless they are furnished as an integral assembly for device being protected:
 1. Solenoid valves.
 2. Thermostatic expansion valves.
 3. Hot-gas bypass valves.
 4. Compressor.

K. Install filter dryers in liquid line between compressor and thermostatic expansion valve, and in the suction line at the compressor.

L. Install receivers sized to accommodate pump-down charge.

M. Install flexible connectors at compressors.
3.3 PIPING INSTALLATION

A. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems; indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on Shop Drawings.

B. Install refrigerant piping according to ASHRAE 15.

C. Install piping in concealed locations unless otherwise indicated and except in equipment rooms and service areas.

D. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.

E. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.

F. Install piping adjacent to machines to allow service and maintenance.

G. Install piping free of sags and bends.

H. Install fittings for changes in direction and branch connections.

I. Select system components with pressure rating equal to or greater than system operating pressure.

J. Install piping as short and direct as possible, with a minimum number of joints, elbows, and fittings.

K. Arrange piping to allow inspection and service of refrigeration equipment. Install valves and specialties in accessible locations to allow for service and inspection. Install access doors or panels if valves or equipment requiring maintenance is concealed behind finished surfaces.

L. Install refrigerant piping in protective conduit where installed belowground.

M. Install refrigerant piping in rigid or flexible conduit in locations where exposed to mechanical injury.

N. Slope refrigerant piping as follows:

1. Install horizontal hot-gas discharge piping with a uniform slope downward away from compressor.
2. Install horizontal suction lines with a uniform slope downward to compressor.
3. Install traps and double risers to entrain oil in vertical runs.
4. Liquid lines may be installed level.
When brazing or soldering, remove solenoid-valve coils and sight glasses; also remove valve stems, seats, and packing, and accessible internal parts of refrigerant specialties. Do not apply heat near expansion-valve bulb.

Before installation of refrigerant piping, clean pipe and fittings using the following procedures:

1. Shot blast the interior of piping.
2. Remove coarse particles of dirt and dust by drawing a clean, lintless cloth through tubing by means of a wire or electrician's tape.
3. Draw a clean, lintless cloth saturated with trichloroethylene through the tube or pipe. Continue this procedure until cloth is not discolored by dirt.
4. Draw a clean, lintless cloth, saturated with compressor oil, squeezed dry, through the tube or pipe to remove remaining lint. Inspect tube or pipe visually for remaining dirt and lint.
5. Finally, draw a clean, dry, lintless cloth through the tube or pipe.
6. Safety-relief-valve discharge piping is not required to be cleaned but is required to be open to allow unrestricted flow.

Install piping with adequate clearance between pipe and adjacent walls and hangers or between pipes for insulation installation.

Identify refrigerant piping and valves according to Section 230553 "Identification for HVAC Piping and Equipment."

Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Section 230000 "Basic Mechanical Materials and Methods."

Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Section 230000 "Basic Mechanical Materials and Methods."

Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Section 230000 "Basic Mechanical Materials and Methods."

3.4 PIPE JOINT CONSTRUCTION

A. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.

B. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.

C. Soldered Joints: Construct joints according to ASTM B 828 or CDA's "Copper Tube Handbook."

D. Brazed Joints: Construct joints according to AWS's "Brazing Handbook," Chapter "Pipe and Tube."
1. Use Type BcuP, copper-phosphorus alloy for joining copper socket fittings with copper pipe.

3.5 HANGERS AND SUPPORTS

A. Hanger, support, and anchor products are specified in Section 230529 "Hangers and Supports for Mechanical Piping and Equipment."

B. Install the following pipe attachments:

1. Adjustable steel clevis hangers for individual horizontal runs less than 20 feet long.
2. Roller hangers and spring hangers for individual horizontal runs 20 feet or longer.
3. Pipe Roller: MSS SP-58, Type 44 for multiple horizontal piping 20 feet or longer, supported on a trapeze.
4. Spring hangers to support vertical runs.
5. Copper-clad hangers and supports for hangers and supports in direct contact with copper pipe.

C. Install hangers for copper tubing with the following maximum spacing and minimum rod sizes:

1. NPS 1/2: Maximum span, 60 inches; minimum rod size, 1/4 inch.
2. NPS 5/8: Maximum span, 60 inches; minimum rod size, 1/4 inch.
3. NPS 1: Maximum span, 72 inches; minimum rod size, 1/4 inch.
4. NPS 1-1/4: Maximum span, 96 inches; minimum rod size, 3/8 inch.
5. NPS 1-1/2: Maximum span, 96 inches; minimum rod size, 3/8 inch.
6. NPS 2 and larger: Maximum span, 96 inches; minimum rod size, 3/8 inch.

D. Install hangers for steel piping with the following maximum spacing and minimum rod sizes:

1. NPS 2 and larger: Maximum span, 10 feet; minimum rod size, 3/8 inch.

E. Support multifloor vertical runs at least at each floor.

3.6 FIELD QUALITY CONTROL

A. Perform tests and inspections and prepare test reports.

B. Tests and Inspections:

1. Comply with ASME B31.5, Chapter VI.
2. Test refrigerant piping, specialties, and receivers. Isolate compressor, condenser, evaporator, and safety devices from test pressure if they are not rated above the test pressure.
3. Test high- and low-pressure side piping of each system separately at not less than the pressures indicated in Part 1 "Performance Requirements" Article.
a. Fill system with nitrogen to the required test pressure.
b. System shall maintain test pressure at the manifold gage throughout duration of test.
c. Test joints and fittings with electronic leak detector or by brushing a small amount of soap and glycerin solution over joints.
d. Remake leaking joints using new materials, and retest until satisfactory results are achieved.

3.7 SYSTEM CHARGING

A. Charge system using the following procedures:
 1. Install core in filter dryers after leak test but before evacuation.
 2. Evacuate entire refrigerant system with a vacuum pump to 500 micrometers (67 Pa). If vacuum holds for 12 hours, system is ready for charging.
 3. Break vacuum with refrigerant gas, allowing pressure to build up to 2 psig (14 kPa).
 4. Charge system with a new filter-dryer core in charging line.

3.8 ADJUSTING

A. Adjust thermostatic expansion valve to obtain proper evaporator superheat.
B. Adjust high- and low-pressure switch settings to avoid short cycling in response to fluctuating suction pressure.
C. Adjust set-point temperature of air-conditioning or chilled-water controllers to the system design temperature.
D. Perform the following adjustments before operating the refrigeration system, according to manufacturer's written instructions:
 1. Open shutoff valves in condenser water circuit.
 2. Verify that compressor oil level is correct.
 3. Open compressor suction and discharge valves.
 4. Open refrigerant valves except bypass valves that are used for other purposes.
 5. Check open compressor-motor alignment and verify lubrication for motors and bearings.

E. Replace core of replaceable filter dryer after system has been adjusted and after design flow rates and pressures are established.

END OF SECTION
THIS PAGE INTENTIONALLY LEFT BLANK
SECTION 232500
HVAC WATER TREATMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes the following HVAC water-treatment systems to serve the ground loop heat pump water system:

1. HVAC water-treatment chemicals.

B. Related Sections:

1. Section 017700 “Closeout Procedures”.
2. Section 232113 “Mechanical Piping”.

1.3 DEFINITIONS

A. Low Voltage: As defined in NFPA 70 for circuits and equipment operating at less than 50 V or for remote-control, signaling power-limited circuits

B. TDS: Total dissolved solids.

1.4 PERFORMANCE REQUIREMENTS

A. Water quality for HVAC systems shall minimize corrosion, scale buildup, and biological growth for optimum efficiency of HVAC equipment without creating a hazard to operating personnel or the environment.

B. Base HVAC water treatment on quality of water available at Project site, HVAC system equipment material characteristics and functional performance characteristics, operating personnel capabilities, and requirements and guidelines of authorities having jurisdiction.

1.5 SUBMITTALS

A. Product Data: Include rated capacities, operating characteristics, furnished specialties, and accessories for the following products:

1. Inhibitor injection timers.
2. Chemical solution tanks.
3. Glycol Feed System
4. Chemical test equipment.
5. Chemical material safety data sheets.

B. Shop Drawings: Pretreatment and chemical treatment equipment showing tanks, maintenance space required, and piping connections to HVAC systems. Include plans, elevations, sections, details, and attachments to other work.

C. Field quality-control test reports.

D. Other Informational Submittals:
 1. Water-Treatment Program: Written sequence of operation on an annual basis for the application equipment required to achieve water quality defined in the "Performance Requirements" Article above.

1.6 QUALITY ASSURANCE

A. HVAC Water-Treatment Service Provider Qualifications: An experienced HVAC water-treatment service provider capable of analyzing water qualities, installing water-treatment equipment, and applying water treatment as specified in this Section.

1.7 MAINTENANCE SERVICE

A. Scope of Maintenance Service for Hot Water System: Provide chemicals and service program to maintain water conditions required above to inhibit corrosion, scale formation, and biological growth for the hot water loop and equipment. Services and chemicals shall be provided for a period of one year from date of Substantial Completion, and shall include the following:

1. Initial water analysis and HVAC water-treatment recommendations.
2. Startup assistance for Contractor to flush the systems, clean with detergents, and initially fill systems with required chemical treatment prior to operation.
3. Periodic field service and consultation.
5. Laboratory technical analysis.
6. Analyses and reports of all chemical items concerning safety and compliance with government regulations.

PART 2 - PRODUCTS

2.1 CHEMICAL TREATMENT TEST EQUIPMENT

A. Test Kit: Manufacturer-recommended equipment and chemicals in a wall-mounting cabinet for testing pH, TDS, inhibitor, chloride, alkalinity, and hardness; sulfite and testable polymer tests for chillers systems.
2.2 CHEMICALS

A. Chemicals shall be as recommended by water-treatment system manufacturer that are compatible with piping system components and connected equipment, and that can attain water quality specified in Part 1 "Performance Requirements" Article.

PART 3 - EXECUTION

3.1 WATER ANALYSIS

A. Perform an analysis of supply water to determine quality of water available at Project site.

3.2 INSTALLATION

A. Install chemical application equipment on concrete bases, level and plumb. Maintain manufacturer's recommended clearances. Arrange units so controls and devices that require servicing are accessible. Anchor tanks and floor-mounting accessories to substrate.

B. Install water testing equipment on wall near water chemical application equipment.

C. Provide pipe coupon inside of bypass feeder as recommended by chemical treatment supplier.

3.3 CONNECTIONS

A. Piping installation requirements are specified in other Division 23 Sections. Drawings indicate general arrangement of piping, fittings, and specialties.

B. Install piping adjacent to equipment to allow service and maintenance.

C. Make piping connections between HVAC water-treatment equipment and dissimilar-metal piping with dielectric fittings. Dielectric fittings are specified in Division 23

D. Install shutoff valves on HVAC water-treatment equipment inlet and outlet. Metal general-duty valves are specified in Division 23

E. Refer to Division 23 for backflow preventers required in makeup water connections to potable-water systems.

3.4 FIELD QUALITY CONTROL

A. Perform tests and inspections and prepare test reports.

1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

B. Tests and Inspections:
1. Inspect field-assembled components and equipment installation, including piping and electrical connections.
2. Inspect piping and equipment to determine that systems and equipment have been cleaned, flushed, and filled with water, and are fully operational before introducing chemicals for water-treatment system.
3. Place HVAC water-treatment system into operation and calibrate controls during the preliminary phase of HVAC systems' startup procedures.
4. Do not enclose, cover, or put piping into operation until it is tested and satisfactory test results are achieved.
5. Test for leaks and defects. If testing is performed in segments, submit separate report for each test, complete with diagram of portion of piping tested.
6. Leave uncovered and unconcealed new, altered, extended, and replaced water piping until it has been tested and approved. Expose work that has been covered or concealed before it has been tested and approved.
7. Cap and subject piping to static water pressure of 50 psig above operating pressure, without exceeding pressure rating of piping system materials. Isolate test source and allow test pressure to stand for four hours. Leaks and loss in test pressure constitute defects.
8. Repair leaks and defects with new materials and retest piping until no leaks exist.

C. Remove and replace malfunctioning units and retest as specified above.

D. Comply with ASTM D 3370 and with the following standards:

3.5 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain HVAC water-treatment systems and equipment. Refer to Division 01 Section "Demonstration and Training."

B. Training: Provide a "how-to-use" self-contained breathing apparatus video that details exact operating procedures of equipment.

END OF SECTION
SECTION 233113

DUCTS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

1. Duct Materials.
2. Single wall spiral round ducts.
3. Transverse duct connection system.
5. Ductwork fabrication.
6. Ductwork Leakage Testing

B. Related Sections:

1. Section 230000 - Basic Mechanical Materials and Methods
2. Section 230529 - Hangers and Supports
3. Section 233300 - Duct Accessories.
4. Section 230593 – Testing, Adjusting, and Balancing

1.2 REFERENCES

A. ASTM International:

2. ASTM A90/A90M - Standard Test Method for Weight Mass of Coating on Iron and Steel Articles with Zinc or Zinc-Alloy Coatings.
5. ASTM A653/A653M - Standard Specification for Steel Sheet, Zinc-Coated (Galvanized) or Zinc-Iron Alloy-Coated (Galvannealed) by the Hot-Dip Process.
6. ASTM A1008/A1008M - Standard Specification for Steel, Sheet, Cold-Rolled, Carbon, Structural, High-Strength Low-Alloy and High-Strength Low-Alloy with Improved Formability.

B. National Fire Protection Association:
 2. NFPA 90B - Standard for the Installation of Warm Air Heating and Air Conditioning Systems.

C. Sheet Metal and Air Conditioning Contractors:
 2. SMACNA - HVAC Duct Construction Standard - Metal and Flexible.

D. Underwriters Laboratories Inc.:
 1. UL 181 - Factory-Made Air Ducts and Connectors.

1.3 PERFORMANCE REQUIREMENTS

A. Variation of duct configuration or sizes other than those of equivalent or lower loss coefficient is not permitted except by written permission. Size round ducts installed in place of rectangular ducts in accordance with ASHRAE table of equivalent rectangular and round ducts.

1.4 SUBMITTALS

A. Shop Drawings: Submit duct fabrication drawings, drawn to scale not smaller than 1/8-inch equals 1 foot, on drawing sheets same size as Contract Documents, indicating:
 1. Fabrication, assembly, and installation details, including plans, elevations, sections, details of components, and attachments to other work.
 2. Duct layout, indicating pressure classifications and sizes in plan view. For exhaust duct systems, indicate classification of materials handled as defined in this section.
 3. Fittings.
 4. Reinforcing details and spacing.
 5. Seam and joint construction details.
 6. Penetrations through fire rated and other walls.
 7. Air handling units, terminal induction units and electric coils.
 8. Hangers and supports, including methods for building attachment, vibration isolation, and duct attachment.

B. Product Data: Submit data for duct materials, duct connectors.

C. Test Reports: Indicate pressure tests performed. Include date, section tested, test pressure, and leakage rate, following SMACNA HVAC Air Duct Leakage Test Manual.
D. Manufacturer’s Installation Instructions: Submit special procedures for glass fiber ducts.

1.5 QUALITY ASSURANCE
A. Perform Work in accordance with SMACNA - HVAC Duct Construction Standards - Metal and flexible.
B. Construct ductwork to NFPA 90A standards.

1.6 QUALIFICATIONS
A. Manufacturer: Company specializing in manufacturing products specified in this section with minimum three years documented experience.
B. Installer: Company specializing in performing Work of this section with minimum five years documented experience.

1.7 ENVIRONMENTAL REQUIREMENTS
A. Section 016000 - Product Requirements.
B. Do not install duct sealant when temperatures are less than those recommended by sealant manufacturers.
C. Maintain temperatures during and after installation of duct sealant.

1.8 FIELD MEASUREMENTS
A. Verify field measurements prior to fabrication.

1.9 WARRANTY
A. Section 017300 - Execution: Product warranties and product bonds.
B. Furnish one-year manufacturer warranty for ducts.

PART 2 - PRODUCTS

2.1 DUCT MATERIALS
A. Galvanized Steel Ducts: ASTM A653/A653M galvanized steel sheet, lock-forming quality, having G90 zinc coating of in conformance with ASTM A90/A90M.
B. Fasteners: Rivets, bolts, or sheet metal screws.
C. Hanger Rod: ASTM A36/A36M; steel; threaded both ends, threaded one end, or continuously threaded.
D. Refer to Article 3.3 – Seam and Joint Sealing as well as 3.4 – Field Quality Control for required SMACNA Seal Class and Leakage Levels.

2.2 TRANSVERSE DUCT CONNECTION SYSTEM

A. Product Description: SMACNA "E" rated or SMACNA "F" rated rigidity class connection, interlocking angle and duct edge connection system with sealant, gasket, cleats, and corner clips.

2.3 CASINGS

A. Fabricate casings in accordance with SMACNA HVAC Duct Construction Standards - Metal and Flexible and construct for operating pressures indicated.

B. Reinforce access door frames with steel angles tied to horizontal and vertical plenum supporting angles. Furnish hinged access doors where indicated or required for access to equipment for cleaning and inspection.

2.4 DUCTWORK FABRICATION

A. Fabricate and support rectangular ducts in accordance with SMACNA HVAC Duct Construction Standards - Metal and Flexible and as indicated on Drawings. Provide duct material, gages, reinforcing, and sealing for operating pressures indicated.

B. Fabricate and support round ducts with longitudinal seams in accordance with SMACNA HVAC Duct Construction Standards - Metal and Flexible (Round Duct Construction Standards), and as indicated on Drawings. Provide duct material, gages, reinforcing, and sealing for operating pressures indicated.

C. Construct T's, bends, and elbows with minimum radius 1-1/2 times centerline duct width. Where not possible and where rectangular elbows are used, provide airfoil turning vanes.

D. Increase duct sizes gradually, not exceeding 15 degrees divergence wherever possible; maximum 30 degrees divergence upstream of equipment and 45 degrees convergence downstream.

E. Fabricate continuously welded round and oval duct fittings two gages heavier than duct gages indicated in SMACNA Standard. Minimum 4 inch (100 mm) cemented slip joint, brazed or electric welded. Prime coat welded joints.

F. Provide standard 45-degree lateral wye takeoffs. When space does not allow 45-degree lateral wye takeoff, use 90-degree conical tee connections.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Section 01- Administrative Requirements: Coordination and project conditions.
B. Verify sizes of equipment connections before fabricating transitions.

3.2 INSTALLATION

A. Install and seal ducts in accordance with SMACNA HVAC Duct Construction Standards - Metal and Flexible.

B. During construction, install temporary closures of metal or taped polyethylene on open ductwork to prevent construction dust from entering ductwork system.

C. Install duct hangers and supports in accordance with Section 230529.

D. Use double nuts and lock washers on threaded rod supports.

E. Slope underground ducts to plenums or low pump out points at 1:500. Install access doors for inspection.

F. Connect flexible ducts to metal ducts with draw bands.

G. Set plenum doors 6 to 12 inches (150 to 300 mm) above floor. Arrange door swing so fan static pressure holds door in closed position.

3.3 SEAM AND JOINT SEALING

A. Seal duct seams and joints according to SMACNA's "HVAC Duct Construction Standards--Metal and Flexible" for duct pressure class required by fan static pressure.

B. Seal ducts before external insulation is applied.

C. Ductwork Schedule: Ductwork shall be constructed in accordance with the following schedule:

1. Leakage Class 6, Seal Level B for ducts in pressure classes for ductwork downstream of VAV Boxes up to air devices.

2. Leakage Class 3, Seal Level A for ducts in pressure classes from 2- to 10-inch wg (both positive and negative pressures), which includes ductwork to/from air handling unit to VAV Boxes for VAV application or to/from air handling unit/DOAS to diffuser for constant volume application.

3.4 FIELD QUALITY CONTROL

A. Perform the following field tests and inspections according to SMACNA's "HVAC Air Duct Leakage Test Manual" and prepare test reports:

1. Disassemble, reassemble, and seal segments of systems to accommodate leakage testing and for compliance with test requirements.

2. Conduct tests at static pressures equal to maximum design pressure of system or section being tested. If pressure classes are not indicated, test entire system at
maximum system design pressure. Do not pressurize systems above maximum design operating pressure. Give seven days' advance notice for testing.

3. Maximum Allowable Leakage: The Contractor shall test the duct system to verify compliance with the following seal level and leakage class requirements:

 a. Leakage Class 6, Seal Level B for rectangular and/or round ducts – 50% of Ductwork shall be tested.
 b. For Ductwork configured as Leakage Class 3, Seal Level A for rectangular and/or round ducts – 100% of Ductwork shall be tested.

4. Remake leaking joints and retest until leakage is equal to or less than maximum allowable.

3.5 INTERFACE WITH OTHER PRODUCTS

 A. Install openings in ductwork where required to accommodate thermometers and controllers. Install pitot tube openings for testing of systems. Install pitot tube complete with metal can with spring device or screw to prevent air leakage. Where openings are provided in insulated ductwork, install insulation material inside metal ring.

 B. Connect diffusers to low pressure ducts with hard metal duct.

 C. Connect induction air terminal units to supply ducts directly.

END OF SECTION
SECTION 233300
DUCT ACCESSORIES

PART 1 – GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Duct Accessories
 2. Backdraft dampers.
 3. Volume dampers.
 4. Turning vanes.
 5. Duct-mounting access doors.
 6. Flexible connectors.
 7. Flexible ducts.
 8. Fire Dampers

B. Related Sections:
 1. Section 230000 “Basic Mechanical Materials and Methods”.
 2. Section 230529 “Hangers and Supports”.
 3. Section 233113 “Metal Ducts”.
 4. Section 230593 “Testing, Adjusting, and Balancing for HVAC”.

1.2 REFERENCES

A. National Fire Protection Association:
 2. NFPA 92A - Recommended Practice for Smoke-Control Systems.

B. Sheet Metal and Air Conditioning Contractors:
 1. SMACNA - HVAC Duct Construction Standard - Metal and Flexible.

1.3 SUBMITTALS

A. Section 013300 - Submittal Procedures: Submittal procedures.

B. Shop Drawings: Indicate for shop fabricated assemblies including volume control dampers duct access doors and duct test holes.

C. Product Data: Submit data for shop fabricated assemblies including backdraft dampers, volume control dampers, duct access doors, duct test holes, and hardware used.
D. Manufacturer’s Certificate: Certify products meet or exceed specified requirements.

1.4 QUALIFICATIONS
A. Manufacturer: Company specializing in manufacturing products specified in this section with minimum three years documented experience.

1.5 DELIVERY, STORAGE, AND HANDLING
A. Section 016000 - Product Requirements: Product storage and handling requirements.
B. Protect dampers from damage to operating linkages and blades.

1.6 FIELD MEASUREMENTS
A. Verify field measurements prior to fabrication.

1.7 COORDINATION
A. Section 013100 – Product Management and Coordination: Coordination and project conditions.
B. Coordinate Work where appropriate with building control Work.

1.8 WARRANTY
A. Section 017300 - Execution: Product warranties and product bonds.
B. Furnish one-year manufacturer warranty for duct accessories.

PART 2 – PRODUCTS

2.1 DUCT ACCESSORIES
A. Manufacturers: In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection:
 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, manufacturers specified.
 2. Manufacturers: Subject to compliance with requirements, provide products by one of the manufacturers specified.

2.2 BACKDRAFT DAMPERS
A. Available Manufacturers:
 1. Greenheck.
2. Penn Ventilation Company, Inc.
3. Ruskin Company.

B. Description: Multiple-blade, parallel action gravity balanced, with center-pivoted blades of maximum 6-inch (150-mm) width, with sealed edges, assembled in rattle-free manner with 90-degree stop, steel ball bearings, and axles; adjustment device to permit setting for varying differential static pressure.

C. Frame: 0.063-inch- (1.6-mm-) thick extruded aluminum, with welded corners and mounting flange.

D. Blades: 0.050-inch- (1.2-mm-) thick aluminum sheet.

E. Blade Seals: Vinyl.

F. Blade Axles: Nonferrous.

G. Tie Bars and Brackets: Aluminum.

H. Return Spring: Adjustable tension.

2.3 VOLUME DAMPERS

A. Available Manufacturers:

1. Nailor Industries Inc.
2. Penn Ventilation Company, Inc.
3. Ruskin Company.

B. General Description: Factory fabricated, with required hardware and accessories. Stiffen damper blades for stability. Include locking device to hold single-blade dampers in a fixed position without vibration. Close duct penetrations for damper components to seal duct consistent with pressure class.

1. Pressure Classes of 4-Inch wg or Higher: End bearings or other seals for ducts with axles full length of damper blades and bearings at both ends of operating shaft.

C. Standard Volume Dampers: Multiple- or single-blade, parallel- or opposed-blade design as indicated, standard leakage rating and suitable for horizontal or vertical applications.

1. Steel Frames: Hat-shaped, galvanized sheet steel channels, minimum of 0.064-inch-thick, with mitered and welded corners; frames with flanges where indicated for attaching to walls and flangeless frames where indicated for installing in ducts.
2. Roll-Formed Steel Blades: 0.064-inch- thick, galvanized sheet steel.
3. Aluminum Frames: Hat-shaped, 0.10-inch- thick, aluminum sheet channels; frames with flanges where indicated for attaching to walls; and flangeless frames where indicated for installing in ducts.
4. Roll-Formed Aluminum Blades: 0.10-inch thick aluminum sheet.
5. Extruded-Aluminum Blades: 0.050-inch thick extruded aluminum.
8. Tie Bars and Brackets: Galvanized steel.

D. Jackshaft: 1-inch diameter, galvanized-steel pipe rotating within pipe-bearing assembly mounted on supports at each mullion and at each end of multiple-damper assemblies.

1. Length and Number of Mountings: Appropriate to connect linkage of each damper in multiple-damper assembly.

E. Damper Hardware: Zinc-plated, die-cast core with dial and handle made of 3/32-inch-thick zinc-plated steel, and a 3/4-inch hexagon locking nut. Include center hole to suit damper operating-rod size. Include elevated platform for insulated duct mounting.

2.4 TURNING VANES

A. Fabricate to comply with SMACNA's "HVAC Duct Construction Standards--Metal and Flexible" for vanes and vane runners. Vane runners shall automatically align vanes.

B. Manufactured Turning Vanes: Fabricate 1-1/2-inch wide, double-vane, curved blades of galvanized sheet steel set 3/4-inch o.c.; support with bars perpendicular to blades set 2 inches o.c.; and set into vane runners suitable for duct mounting.

1. Available Manufacturers:
 a. Ductmate Industries, Inc.
 b. METALAIRE, Inc.

2.5 DUCT-MOUNTING ACCESS DOORS

A. General Description: Fabricate doors airtight and suitable for duct pressure class.

B. Door: Double wall, insulated, duct mounting, and rectangular; fabricated of galvanized sheet metal with insulation fill and thickness as indicated for duct pressure class. Include vision panel where indicated. Include 1-by-1-inch butt or piano hinge and cam latches.

1. Available Manufacturers:
 a. Ductmate Industries, Inc.
 b. Flexmaster U.S.A., Inc.
 c. Greenheck.
 e. Nailor Industries Inc.

2. Frame: Galvanized sheet steel, with bend-over tabs and foam gaskets.
3. Provide number of hinges and locks as follows:
a. Less than 12 Inches Square: Secure with two sash locks.
b. Up to 18 Inches Square: Two hinges and two sash locks.
c. Up to 24 by 48 Inches: Three hinges and two compression latches with outside and inside handles.
d. Sizes 24 by 48 Inches and Larger: One additional hinge.

C. Door: Double wall, duct mounting, and round; fabricated of galvanized sheet metal with insulation fill and 1-inch thickness. Include cam latches.

1. Available Manufacturers:
 a. Ductmate Industries, Inc.
 b. Flexmaster U.S.A., Inc.

2. Frame: Galvanized sheet steel, with spin-in notched frame.

D. Seal around frame attachment to duct and door to frame with neoprene or foam rubber.

E. Insulation: 1-inch- (25-mm-) thick, fibrous-glass or polystyrene-foam board.

2.6 FLEXIBLE CONNECTORS

A. Available Manufacturers:

 1. Ductmate Industries, Inc.
 2. Ventfabrics, Inc.

B. General Description: Flame-retardant or noncombustible fabrics, coatings, and adhesives complying with UL 181, Class 1.

C. Metal-Edged Connectors: Factory fabricated with a fabric strip 3-1/2 inches (89 mm wide attached to two strips of 2-3/4-inch- (70-mm-) wide, 0.028-inch- (0.7-mm-) thick, galvanized sheet steel or 0.032-inch- (0.8-mm-) thick aluminum sheets. Select metal compatible with ducts.

 1. Minimum Weight: 26 oz./sq. yd. (880 g/sq. m).
 2. Tensile Strength: 480 lbf/inch (84 N/mm) in the warp and 360 lbf/inch (63 N/mm) in the filling.
 3. Service Temperature: Minus 40 to plus 200 deg F (Minus 40 to plus 93 deg C).

2.7 FLEXIBLE DUCTS

A. Available Manufacturers:

 1. Flexmaster U.S.A., Inc.
 2. Hart & Cooley, Inc.
B. Noninsulated-Duct Connectors: UL 181, Class 1, 2-ply vinyl film supported by helically wound, spring-steel wire.

1. Pressure Rating: 10-inch wg positive and 1.0-inch wg negative.
2. Maximum Air Velocity: 4000 fpm
3. Temperature Range: Minus 10 to plus 160 deg F

C. Flexible Duct Clamps: Stainless-steel band with cadmium-plated hex screw to tighten band with a worm-gear action, in sizes 3 through 18 inches to suit duct size.

2.8 FIRE DAMPERS

A. Manufacturers: Ruskin Model IBD2, United Enertech FD-C, or approved equal.

B. UL classified 1-1/2 hour rated static curtain type fire dampers, suitable for application in static HVAC systems. Test and qualify with UL a complete range of damper sizes covering dampers specified. Testing 1 size only is not acceptable.

C. Pressure Drop Ratings: Damper pressure drop ratings based on tests and procedures performed in accordance with AMCA 500.

D. Delivery: Deliver materials to site in manufacturer's original, unopened containers and packaging, with labels clearly indicating manufacturer and material.

E. Storage: Store materials in a dry area indoors, protected from damage and in accordance with manufacturer's instructions.

F. Handling: Handle and lift dampers in accordance with manufacturer's instructions. Protect materials and finishes during handling and installation to prevent damage.

G. Fabrication:

1. Fire Rating: UL 555 classified and labeled as a 1-1/2 hour static fire damper.
3. Frame: Maximum 5 inches (127 mm) x minimum 20 gage (0.9 mm) roll formed, galvanized steel channel.
4. Blades:
 a. Style: Curtain type, in airstream.
 b. Action: Spring or gravity closure upon fusible link release.
 c. Orientation: Horizontal.
 d. Material: Minimum 24 gage (0.6 mm) roll formed, galvanized steel.
5. Closure Springs: Type 301 stainless steel, constant force type, if required.
9. Assembly: Factory assemble damper and accessories and furnish as a single unit conforming to UL 555.
H. Performance Data:

1. Temperature Qualified: Damper qualified in accordance with UL 555 as a 1-1/2 hour fire damper.
2. Pressure Drop: Maximum 0.1 inch w.g. at 2,000 feet per minute through 24 inch wide damper, no sleeve.

I. Accessories:

1. Picture Frame Mounting Angles:
 a. One-piece, roll formed retaining angles [1-1/2 x 1-1/2 inches (38 x 38 mm)] [1-1/2 x 2-1/2 inches (38 x 64 mm)].
 b. Factory matched and shipped on individual damper.
 c. Factory prepunched screw holes.
 d. Factory sleeve.

J. Factory Sleeve: Minimum 20 gage (1.0 mm) thickness, minimum 12 inches (305 mm) length.

K. Steel Mullions: For dampers in oversized masonry wall openings.

L. Factory Tests: Factory cycle damper to assure proper operation.

M. Breakaway Connection: Drivemate, Ductmate.

2.9 DUCT ACCESSORY HARDWARE

A. Instrument Test Holes: Cast iron or cast aluminum to suit duct material, including screw cap and gasket. Size to allow insertion of pitot tube and other testing instruments and of length to suit duct insulation thickness.

B. Adhesives: High strength, quick setting, neoprene based, waterproof, and resistant to gasoline and grease.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Verify ducts and equipment installation are ready for accessories.

B. Verify rated walls are ready for fire damper installation.

C. Check location of air outlets and inlets and make necessary adjustments in position to conform to architectural features, symmetry, and lighting arrangement.
D. Inspect areas to receive dampers. Notify the Engineer of conditions that would adversely affect the installation or subsequent utilization of the dampers. Do not proceed with installation until unsatisfactory conditions are corrected.

3.2 INSTALLATION

A. Install in accordance with NFPA 90A and follow SMACNA HVAC Duct Construction Standards - Metal and Flexible. Refer to Section 233113 for duct construction and pressure class.

B. Install duct accessories according to applicable details in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" for metal ducts.

C. Install back-draft dampers on exhaust fans or exhaust ducts nearest to outside and where indicated on Drawings.

D. Install temporary duct test holes, where indicated on Drawings, and required for testing and balancing purposes. Cut or drill in ducts. Cap with neat patches, neoprene plugs, threaded plugs, or threaded or twist-on metal caps.

E. Install dampers at locations indicated on the drawings and in accordance with manufacturer's UL approved installation instructions.

F. Install dampers square and free from racking with blades running horizontally.

G. Do not compress or stretch damper frame into duct or opening.

H. Handle damper using sleeve or frame. Do not lift damper using blades, actuator, or jackshaft.

I. Install bracing for multiple section assemblies to support assembly weight and to hold against system pressure. Install bracing as needed.

J. Provide duct access panel, size as required to access and service duct interior components.

3.3 DEMONSTRATION

A. Section 017300 - Execution: Requirements for demonstration and training.

B. Demonstrate re-setting of fire dampers to Owner's representative.

END OF SECTION
SECTION 233423

HVAC POWER VENTILATORS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Centrifugal Roof Fans

1.3 PERFORMANCE REQUIREMENTS

A. Project Altitude: Base fan-performance ratings on sea level.
B. Operating Limits: Classify according to AMCA 99.

1.4 SUBMITTALS

A. Product Data: For each type of product indicated. Include rated capacities, operating characteristics, and furnished specialties and accessories. Also include the following:
 1. Certified fan performance curves with system operating conditions indicated.
 2. Certified fan sound-power ratings.
 3. Motor ratings and electrical characteristics, plus motor and electrical accessories.
 4. Material thickness and finishes, including color charts.
 5. Dampers, including housings, linkages, and operators.
 6. Roof curbs.
 7. Fan speed controllers.

B. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.
 1. Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 2. Wiring Diagrams: For power, signal, and control wiring.

C. Delegated-Design Submittal: For unit hangars and supports indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
1. Vibration Isolation Base Details: Detail fabrication including anchorages and attachments to structure and to supported equipment. Include adjustable motor bases, rails, and frames for equipment mounting.

2. Design Calculations: Calculate requirements for selecting vibration isolators and for designing vibration isolation bases.

1.5 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Reflected ceiling plans and other details, drawn to scale, on which the following items are shown and coordinated with each other, using input from Installers of the items involved:

 1. Roof framing and support members relative to duct penetrations.
 2. Ceiling suspension assembly members.
 3. Size and location of initial access modules for acoustical tile.
 4. Ceiling-mounted items including light fixtures, diffusers, grilles, speakers, sprinklers, access panels, and special moldings.

B. Field quality-control reports.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For power ventilators to include in emergency, operation, and maintenance manuals.

1.7 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. AMCA Compliance: Fans shall have AMCA-Certified performance ratings and shall bear the AMCA-Certified Ratings Seal.

C. UL Standards: Power ventilators shall comply with UL 705. Power ventilators for use for restaurant kitchen exhaust shall also comply with UL 762.

1.8 COORDINATION

A. Coordinate size and location of structural-steel support members.

B. Coordinate sizes and locations of concrete bases with actual equipment provided.

C. Coordinate sizes and locations of roof curbs, equipment supports, and roof penetrations with actual equipment provided.
PART 2 - PRODUCTS

2.1 CENTRIFUGAL ROOF EXHAUST FANS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

1. Greenheck Fan Corporation
3. Loren Cook Company.

B. Housing: Removable spun aluminum dome top and outlet baffle; one-piece aluminum base with venturi inlet cone.

C. Provide housing drain for removal of rain and condensation.

D. Direct-Drive Units: Motor mounted in airstream, factory wired to disconnect switch located on outside of fan housing.

E. Fan Wheels:

1. Fan impeller shall be centrifugal, backward inclined, with non-stall characteristics. The impeller shall be electronically balanced both statically and dynamically per AMCA Standard 204.
2. Fan impeller shall be manufactured of aluminum, fully welded.

F. Accessories:

1. Variable-Speed Controller (direct drive units): Solid-state control to reduce speed from 100 to less than 50 percent.
2. Disconnect Switch: Nonfusible type, with thermal-overload protection mounted inside fan housing, factory wired through an internal aluminum conduit.
3. Bird Screens: Removable, 1/2-inch mesh, aluminum or brass wire.
4. Dampers: Counterbalanced, parallel-blade, backdraft dampers mounted in curb base; factory set to close when fan stops.
5. Motorized Dampers: Parallel-blade dampers mounted in curb base with electric actuator; wired to close when fan stops.
6. Mounting Pedestal: Galvanized steel with removable access panel.

G. Prefabricated Roof Curbs: Galvanized steel; mitered and welded corners; 1-1/2-inch-thick, rigid, fiberglass insulation adhered to inside walls; and 1-1/2-inch wood nailer. Size as required to suit roof opening and fan base.

2. Overall Height: 18 inches.
3. Hinged sub-base to provide access to damper.
5. Metal Liner: Galvanized steel.
6. Mounting Pedestal: Galvanized steel with removable access panel.

2.2 MOTORS

A. Comply with NEMA designation, temperature rating, service factor, and efficiency requirements for motors specified in Division 23 Section "Common Motor Requirements for Mechanical Equipment."

2.3 SOURCE QUALITY CONTROL

A. Sound-Power Level Ratings: Comply with AMCA 301, "Methods for Calculating Fan Sound Ratings from Laboratory Test Data." Factory test fans according to AMCA 300, "Reverberant Room Method for Sound Testing of Fans." Label fans with the AMCA-Certified Ratings Seal.

B. Fan Performance Ratings: Establish flow rate, pressure, power, air density, speed of rotation, and efficiency by factory tests and ratings according to AMCA 210/ASHRAE 51, "Laboratory Methods of Testing Fans for Certified Aerodynamic Performance Rating."

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install power ventilators level and plumb.

B. Secure roof-mounted fans to roof curbs with zinc-plated hardware.

C. Install units with clearances for service and maintenance.

D. Lift and support units with manufacturer’s designated lifting or supporting points.

E. Label units according to requirements specified in Section 230553 "Identification for Mechanical Piping and Equipment."

3.2 CONNECTIONS

A. Drawings indicate general arrangement of ducts and duct accessories. Make final duct connections with flexible connectors. Flexible connectors are specified in Section 233300 "Duct Accessories."

B. Install ducts adjacent to power ventilators to allow service and maintenance.

C. Ground equipment according to Section 260526 "Grounding and Bonding for Electrical Systems."

D. Connect wiring according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables."
3.3 FIELD QUALITY CONTROL

A. Tests and Inspections:
 1. Verify that shipping, blocking, and bracing are removed.
 2. Verify that unit is secure on mountings and supporting devices and that connections to ducts and electrical components are complete. Verify that proper thermal-overload protection is installed in motors, starters, and disconnect switches.
 3. Verify that cleaning and adjusting are complete.
 4. Disconnect fan drive from motor, verify proper motor rotation direction, and verify fan wheel free rotation and smooth bearing operation. Reconnect fan drive system.
 5. Adjust damper linkages for proper damper operation.
 6. Verify lubrication for bearings and other moving parts.
 7. Verify that manual and automatic volume control and fire and smoke dampers in connected ductwork systems are in fully open position.
 8. Disable automatic temperature-control operators, energize motor and adjust fan to indicated rpm, and measure and record motor voltage and amperage.
 9. Shut unit down and reconnect automatic temperature-control operators.
 10. Remove and replace malfunctioning units and retest as specified above.

B. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

C. Prepare test and inspection reports.

3.4 ADJUSTING

A. Adjust damper linkages for proper damper operation.

B. Comply with requirements in Section 230593 “Testing, Adjusting, and Balancing for HVAC” for testing, adjusting, and balancing procedures.

C. Adjust speed controllers as required to achieve design airflow.

D. Replace fan and motor pulleys as required to achieve design airflow.

E. Lubricate bearings.

3.5 DEMONSTRATION

A. Train Owner's maintenance personnel to adjust, operate, and maintain the system.

B. Contractor shall be responsible for demonstrating the system sequence of operation as described on the contract drawings. Demonstration shall be in the presence of the owner or owner's representative. A minimum of 7 days’ notice shall be provided in advance of the demonstrations.
END OF SECTION
SECTION 233600
AIR TERMINAL UNITS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 RELATED DOCUMENTS
A. Related Sections:
 1. Section 233300 Duct Accessories

1.3 SUMMARY
A. Section Includes:
 1. Single-duct air terminal units.

1.4 SUBMITTALS
A. Product Data: For each type of product indicated.
B. Shop Drawings: For air terminal units. Include plans, elevations, sections, details, and attachments to other work.
C. Delegated-Design Submittal:
 1. Materials, fabrication, assembly, and spacing of hangers and supports.
D. Field quality-control reports.
E. Operation and maintenance data.

1.5 INFORMATIONAL SUBMITTALS
A. Certificates: For certification required in "Quality Assurance" Article.
B. Source quality-control reports.
C. Startup service reports.
D. Warranty: Sample of special warranty.
1. Base bid warranty shall be for 5 years.
2. As part of Alternate #4, a price shall be provided to extend the warranty period an additional 60 months (120 months total).

1.6 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1-2004, Section 5 - "Systems and Equipment" and Section 7 - "Construction and System Start-Up."

PART 2 - PRODUCTS

2.1 SINGLE-DUCT AIR TERMINAL UNITS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Johnson Controls, Inc.
2. Price
3. Titus

B. General:

1. Units shall incorporate a single point electrical connection for the entire unit. All electrical components shall be UL or ETL listed or recognized and installed in accordance with the National Electrical Code. All electrical components shall be mounted in a control box. The entire assembly shall be ETL listed and so labeled.
2. All sound data shall be compiled in an independent laboratory and in accordance with the latest version of ARI 880. All units shall be ARI certified and bear the ARI certification label.

C. Configuration: Volume-damper assembly inside unit casing with control components inside a protective metal shroud. The air flow sensor, heating coil, control power transformers, damper and mounting panel as well as additional components will be factory mounted, control actuator, sensors, relays, etc. shall be field mounted.

D. General Performance: Terminal unit manufacturer shall provide flow curves for the primary air sensor clearly labeled and permanently attached on the bottom or side of each terminal unit. At an inlet velocity of 2000 fpm, the differential static pressure for any unit size, 4 – 16 shall not exceed 0.10" w.g. for the basic unit. Casing leakage shall not exceed 2% of terminal rated airflow at 1.5" w.g. interior casing pressure. All high side casing joints shall be sealed with approved sealant and high side casing and damper leakage shall not exceed 2% of terminal rated airflow at 3" w.g.
E. Casing: Terminals shall be constructed of not less than 22-gauge galvanized steel, able to withstand a 125-hour salt spray test per ASTM B-117. Stainless steel casings, or galvannealed steel casings with a baked enamel paint finish, may be used as an alternative. The terminal casing shall be mechanically assembled (spot-welded casings are not acceptable). All appurtenances including control assemblies, control enclosures, hot water heating coils, and electric heating coils shall not extend beyond the top and bottom of the unit casing. At an inlet velocity of 2000 f.p.m., the static pressure drop across the basic terminal or basic terminal with a sound attenuator shall not exceed .08" W.G. for all unit sizes

1. Air Inlet: Round stub connection or S-slip and drive connections for duct attachment.
3. Access: Removable panels for access to parts requiring service, adjustment, or maintenance; with airtight gasket.
4. Casing Lining: Casing shall be internally lined with 1/2" thick, 4 pound per cubic foot skin, dual density fiberglass insulation, rated for a maximum air velocity of 3600 f.p.m. In addition to using adhesive complying with NFPA 90A, the insulation shall incorporate a secondary mechanical fastener attached to the unit casing wall (clench nail). Adhesive as the only method of fastening the insulation to the casing is not acceptable. Maximum thermal conductivity shall be 0.24. Insulation must meet all requirements of ASTM Standards C1071 (fibrous glass duct lining insulation), G21 (Resistance of synthetic polymers to fungi), UL 181 (materials for the fabrication of air duct and air connector systems) and NFPA 90A (Installation of air conditioning and ventilating systems). Raw insulation edges on the discharge of the unit must be covered with metal liner to eliminate flaking of insulation during field duct connections. Simple "buttering" of raw edges with an approved sealant is not acceptable.

F. Hot Water Coil: Single duct terminal shall include an integral hot water coil where indicated on the plans. The coil shall be manufactured by the terminal unit manufacturer and shall have a minimum 22-gauge galvanized sheet metal casing. Coil to be constructed of pure aluminum fins with full fin collars to assure accurate fin spacing and maximum tube contact. Fins shall be spaced with a minimum of 10 per inch and mechanically fixed to seamless copper tubes for maximum heat transfer. Each coil shall be tested at a minimum of 350 PSIG under water.

G. Velocity Sensors: Differential pressure airflow sensor shall traverse the duct using the equal cross-sectional area or log-linear traverse method along two perpendicular diameters. Single axis sensor shall not be acceptable for duct diameters 6" or larger. A minimum of 12 total pressure sensing points shall be utilized. The total pressure inputs shall be averaged using a pressure chamber located at the center of the sensor. A sensor that delivers the differential pressure signal from one end of the sensor is not acceptable. The sensor shall output an amplified differential pressure signal that is at least 2.5 times the equivalent velocity pressure signal obtained from a conventional pitot tube. The sensor shall develop a differential pressure of 0.03" w.g. at an air velocity of < 450 FPM. Documentation shall be submitted which substantiates this
requirement. Brass balancing taps and airflow calibration charts shall be provided for field airflow measurements.

H. Volume Damper: The primary air valve shall consist of a minimum 22-gauge cylindrical body that includes embossment rings for rigidity. The damper blade shall be connected to a solid shaft by means of an integral molded sleeve which does not require screw or bolt fasteners. The shaft shall be manufactured of a low thermal conducting composite material and include a molded damper position indicator visible from the exterior of the unit. The damper shall pivot in self-lubricating bearings. The damper actuator shall be mounted on the exterior of the terminal for ease of service. The valve assembly shall include internal mechanical stops for both fully open and closed positions. The damper blade seal shall be secured without use of adhesives.

1. Maximum Damper Leakage: The air valve leakage shall not exceed 1% of maximum inlet rated airflow at 3” W.G. inlet pressure.

I. Controls: Terminal boxes are to be shipped with factory installed terminal strip for connection to BAS controller. The terminal shall include, but not be limited to Max CFM, Min CFM, Heating CFM, and terminal K factor. Heating system operating data shall also be factory installed for all terminals with heat. Communications with the digital controller shall be accomplished through the MS/TP BACnet network or through a Bluetooth connector. The digital controller shall have hardware input and output connections to facilitate the specified sequence of operation in either the network mode, or on a stand-alone basis. The terminal unit manufacturer shall coordinate, where necessary, with the ATC Contractor.

1. Control Transformer: Factory mounted for control voltage on with terminal strip in control box for field wiring of thermostat and power source.
2. Wiring Terminations: Controls to terminal strip. Terminal lugs to match quantities, sizes, and materials of branch-circuit conductors. Enclose terminal lugs in terminal box that is sized according to NFPA 70.
3. Disconnect Switch: Factory-mounted, fuse type.

J. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.

K. Refer to Specification Section 230529 “Hangars and Supports for Mechanical Piping and Equipment”.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Installing contractor will install single packaged unit(s), including components and controls required for operation, in accordance with single packaged unit manufacturer’s written instructions and recommendations. Single packaged units will be installed as
specified Install air terminal units according to NFPA 90A, "Standard for the Installation of Air Conditioning and Ventilating Systems."

B. Install air terminal units level and plumb. Maintain sufficient clearance for normal service and maintenance.

3.2 HANGER AND SUPPORT INSTALLATION

A. Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Chapter 4, "Hangers and Supports."

B. Building Attachments: Concrete inserts, powder-actuated fasteners, or structural-steel fasteners appropriate for construction materials to which hangers are being attached.

 1. Use powder-actuated concrete fasteners for standard-weight aggregate concretes and for slabs more than 4 inches thick.
 2. Do not use powder-actuated concrete fasteners for lightweight-aggregate concretes and for slabs less than 4 inches thick.

C. Install upper attachments to structures. Select and size upper attachments with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

3.3 CONNECTIONS

A. Install piping adjacent to air terminal unit to allow service and maintenance.

B. Connect ducts to air terminal units according to Division 23 Section 233113 "Metal Ducts."

C. Make connections to air terminal units with flexible connectors complying with requirements in Division 23 Section 233300"Air Duct Accessories."

3.4 IDENTIFICATION

A. Label each air terminal unit with plan number, nominal airflow, and maximum and minimum factory-set airflows. Comply with requirements in Division 23 Section 230553 "Identification for Mechanical Piping and Equipment" for equipment labels and warning signs and labels.

3.5 FIELD QUALITY CONTROL

A. Perform tests and inspections.

B. Tests and Inspections:

 1. After installing air terminal units and after electrical circuitry has been energized, test for compliance with requirements.
2. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

C. Air terminal unit will be considered defective if it does not pass tests and inspections.

D. Prepare test and inspection reports.

3.6 TESTING, VERIFICATION, AND FIELD QUALITY CONTROL

A. Perform the following tests and inspections:

1. Operational Test: After controls have been engaged, start units to confirm proper damper motor rotation and operation. Verify performance response to space settings both for above and below set point temperatures
2. Test and adjust controls and safety devices. Replace damaged and malfunctioning controls and equipment.
3. Verify unit controls operations and integration with the BAS

B. Coordinate with Commissioning Requirements specified in Building Automation System Sections 230950 through 230958.

C. Remove and replace malfunctioning units and retest as specified above.

D. Prepare test and inspection reports.

END OF SECTION
SECTION 233713
DIFFUSERS, REGISTERS, AND GRILLES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Rectangular and square ceiling diffusers.
 2. Registers and Grilles.

B. Related Sections:
 1. Section 233300 "Duct Accessories" for volume-control dampers not integral to diffusers, registers, and grilles.

1.3 SUBMITTALS

A. Product Data: For each type of product indicated, include the following:
 1. Data Sheet: Indicate materials of construction, finish, and mounting details; and performance data including throw and drop, static-pressure drop, and noise ratings.
 2. Diffuser, Register, and Grille Schedule: Indicate drawing designation, room location, quantity, model number, size, and accessories furnished.

B. Samples for Initial Selection: For diffusers, registers, and grilles with factory-applied color finishes.

C. Delegated Design: It is the responsibility of the GRD manufacturer to review the GRD selections and reselect the GRD’s for site specific performance achievement.
 1. Manufacturer shall provide a written guarantee that grilles, registers and diffusers (GRD’s) will distribute air uniformly through the conditioned space with a 20-degree F temperature differential between average room temperature and supply air temperature and that the grilles, registers and diffusers will provide proper throws suitable for actual room dimensions without dead spots or excessive room terminal velocities within the occupied zone.
 2. Prior to submitting a proposal for the work, the GRD manufacturer’s representative shall review the drawings, and system design and re-select the
proper GRD sizes for actual project space requirements. Manufacturer shall
determine the sizes of GRD’s necessary for proper air distribution and guarantee
that all grilles, registers, and diffusers furnished will perform as required for the
intended application, without drafts, stagnant spots, or excessive velocity
airflows throughout the entire space. If necessary, change the GRD sizes to meet
the specific jobsite air distribution requirements.

D. Provide a GRD schedule for approval clearly indicating the room, CFM, size, static
pressure drop, throw and NC level delineating the manufacturer’s specific performance of
the proposed GRD. Note: failure to provide a tabulated schedule will result in the
automatic rejection of the submittal.

1.4 INFORMATIONAL SUBMITTALS

A. Source quality-control reports.

PART 2 - PRODUCTS

2.1 CEILING DIFFUSERS

A. Square Ceiling Diffusers (D-1,2):

1. Manufacturers: Subject to compliance with requirements, available
manufacturers offering products that may be incorporated into the Work include,
but are not limited to, the following:

 a. Basis of Design: Tuttle & Bailey A1200
 b. Price
 c. Titus.
 d. Hart & Cooley Inc.

2. Description:

 a. Square ceiling diffusers
 b. The diffuser shall have two cones, which give a uniform face size and
 appearance when different neck sizes are used in the same area. All
 cones shall be one-piece precision die-stamped; the back cone shall also
 include an integrally drawn. The inner cones shall be constructed as a
 single, removable inner cone assembly for easy installation and cleaning.
 The inner cone assembly must have a hole with removable plug in the
 center to allow quick adjustment of an inlet damper without removing
 the inner cone assembly. Diffusers shall be constructed of 0.040
 aluminum.
 c. The finish shall be #26 white. The finish shall be an anodic acrylic paint,
 baked at 315°F for 30 minutes. The pencil hardness must be HB to H.
 d. The paint must pass a 100-hour ASTM B117 Corrosive Environments
 Salt Spray Test without creepage, blistering or deterioration of film. The
 paint must pass a 250-hour ASTM D870 Water Immersion Test. The
paint must also pass the ASTM D2794 Reverse Impact Cracking Test with a 50-inch pound force applied.

e. Round damper shall be constructed of heavy gauge steel. Damper shall be operable from the face of the diffuser. Sectorizing baffles shall be provided to restrict the discharge air in certain directions.

f. Provide molded insulation blanket. The insulation will be R-6, foil-backed and provided an additional 1-inch gap around the neck to install insulated flex duct.

g. The manufacturer shall provide published performance data for the square diffuser. The diffuser shall be tested in accordance with ANSI/ASHRAE Standard 7

4. Finish: Baked enamel, white.
5. Face Style: Plaque.

2.2 LINEAR SLOT DIFFUSER (LSD-1,2,3,4,5,6,7)

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

1. Basis of Design: Tuttle & Bailey APR
2. Price.
3. Titus

B. Description:

1. Supply, Linear Slot Plenum
 a. Devices shall be specifically designed for variable-air-volume flows.
 b. Plenum Material: Galvanized Steel
 c. Plenum Insulation: Internally insulated
 d. Slot Frame and Support Bar Material: Heavy gauge Extruded Aluminum
 e. Slot Finish: Baked enamel, white
 f. Pattern Controller Finish: Black
 g. Pattern Controller: Maximum 3'-0” with 180 degree adjustment
 h. Pattern Controller: Aerodynamically curved steel deflector
 i. Dimensions: As scheduled or identified on Drawings

2.3 SQUARE CEILING REGISTER (R-1)

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
1. Basis of Design: Tuttle & Bailey APR
2. Price.
3. Titus

B. Description:

1. Return, Flush Face

a. Perforated ceiling diffusers steel, flush face, for return. The return models shall have the same face and border construction as the supply models for harmonious appearance in the room. Diffusers shall have a perforated face with 3/16-inch diameter holes on ¼-inch staggered centers and no less than 51 percent free area. Perforated face shall be aluminum. The back pan shall be one piece stamped heavy gauge steel of the sizes and mounting types shown on the plans and outlet schedule. The diffuser neck shall have 1-1/8-inch depth for easy duct connection.

b. Diffusers must discharge a uniform horizontal blanket of air into the room and protect ceiling against smudging. Pattern controllers in the supply models shall be mounted on the back of the perforated face and must be field adjustable to allow the discharged air to enter the room in either vertical or one-, two-, three- or four-way horizontal jets. The perforated face must be easily un-latchable from the backpan to facilitate option of the face for pattern controller adjustment or to access an optional damper.

c. The finish shall be #26 white. The finish shall be an anodic acrylic paint, baked at 315°F for 30 minutes. The pencil hardness must be HB to H.

d. The paint must pass a 100-hour ASTM B117 Corrosive Environments Salt Spray Test without creepage, blistering or deterioration of film. The paint must pass a 250-hour ASTM D870 Water Immersion Test. The paint must also pass the ASTM D2794 Reverse Impact Cracking Test with a 50-inch pound force applied.

e. Damper shall be constructed of heavy gauge steel. Damper shall be operable from the face of the diffuser by unlatching the diffuser face. The diffuser must be designed such that complete removal of the face is not required during damper adjustment.

f. The manufacturer shall provide published performance data for the perforated diffuser. The diffuser shall be tested in accordance with ANSI/ASHRAE Standard 70-1991.

3. Finish: Baked enamel, white.
7. Dampers: Radial opposed blade.
2.4 REGISTERS AND GRILLES

A. Fixed Face Transfer Grille (T-1,2,3,4)

1. Material: Steel frame, aluminum blades
2. Finish: Baked enamel, white.
3. Blades: Double deflection, 2” spacing, with front blades parallel to long dimension.
5. Mounting: Countersunk screw.
6. Damper Type: Adjustable opposed blade.

B. Fixed Face Exhaust Grille (R-2,3,4)

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Basis of Design: Tuttle & Bailey APR
 b. Titus
 c. Price
 d. Hart & Cooley Inc.

2. The manufacturer shall provide published performance data for the grille. The grille shall be tested in accordance with ANSI/ASHRAE Standard 70-1991.

3. Description:
 a. Aluminum return grilles with ½-inch blade spacing. The fixed deflection blades shall be available parallel to the long dimension of the grille. Construction shall be of extruded aluminum with a 1¼-inch wide border on all sides. Screw holes shall be countersunk for a neat appearance. Corners shall be welded with full penetration resistance welds.
 b. Deflection blades shall be contoured to a specifically designed and tested cross-section to meet published test performance data. Blades shall be firmly held in place by mullions from behind the grille and fixed to the grille by welding in place. Blade deflection angle shall be available at 0°.
 c. Opposed-blade volume damper shall be constructed of aluminum. Damper shall be operable from the face of the grille.
 d. The grille finish shall be #26 white. The finish shall be an anodic acrylic paint, baked at 315° F for 30 minutes. The pencil hardness must be HB to H. The paint must pass a 100-hour ASTM B117 Corrosive Environments Salt Spray Test without creepage, blistering or deterioration of film.
 e. The paint shall pass a 250-hour ASTM D870 Water Immersion Test. The paint must also pass the ASTM D2794 Reverse Impact Cracking Test with a 50-inch pound force applied.
 f. The manufacturer shall provide published performance data for the grille. The grille shall be tested in accordance with ANSI/ASHRAE Standard 70-1991.
4. Material: Aluminum
5. Finish: Baked enamel, white.
6. Blades: Single deflection, 1/2” spacing, with front blades parallel to long dimension.
9. Damper Type: Adjustable opposed blade.

2.5 SOURCE QUALITY CONTROL

A. Verification of Performance: Rate diffusers, registers, and grilles according to ASHRAE 70, "Method of Testing for Rating the Performance of Air Outlets and Inlets."

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas where diffusers, registers, and grilles are to be installed for compliance with requirements for installation tolerances and other conditions affecting performance of equipment.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Install diffusers, registers, and grilles level and plumb.

B. Ceiling-Mounted Outlets and Inlets: Drawings indicate general arrangement of ducts, fittings, and accessories. Air outlet and inlet locations have been indicated to achieve design requirements for air volume, noise criteria, airflow pattern, throw, and pressure drop. Make final locations where indicated, as much as practical. For units installed in lay-in ceiling panels, locate units in the center of panel. Where architectural features or other items conflict with installation, notify Architect for a determination of final location.

C. Install diffusers, registers, and grilles with airtight connections to ducts and to allow service and maintenance of dampers, air extractors, and fire dampers.

3.3 ADJUSTING

A. After installation, adjust diffusers, registers, and grilles to air patterns indicated, or as directed, before starting air balancing.

END OF SECTION
SECTION 235100

BREECHINGS, CHIMNEYS, STACKS, AND COMBUSTION AIR PIPE

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, and other Division 01 Specifications Sections, apply to this Section.

1.2 SUMMARY
A. This Section includes the following:
 1. Listed vents and chimneys.
 2. Combustion air pipe

1.3 ACTION SUBMITTALS
A. Product Data: For the following:
 1. Gas vents.

B. Shop Drawings: For vents. Include plans, elevations, sections, details, and attachments to other work.
 1. Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, methods of field assembly, components, and hangers, and location and size of each field connection.

1.4 INFORMATIONAL SUBMITTALS
A. Warranty: Special warranty specified in this Section.

1.5 QUALITY ASSURANCE
A. Source Limitations: Obtain listed system components through one source from a single manufacturer.

C. Certified Sizing Calculations: Manufacturer shall certify venting system sizing calculations.
1.6 COORDINATION

A. Coordinate installation of roof curbs, equipment supports, and roof penetrations.

1.7 WARRANTY

A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components of venting system that fail in materials or workmanship within specified warranty period. Failures include, but are not limited to, structural failures caused by expansion and contraction.

1. Warranty Period: 10 years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 LISTED SPECIAL GAS VENTS

A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

1. Heat-Fab, Inc.
2. Metal-Fab, Inc.
3. Selkirk Inc.; Selkirk Metalbestos and Air Mate.

B. Description: Double-wall metal vents tested according to UL 1738 and rated for 480 deg F continuously, with positive or negative flue pressure complying with NFPA 211.

C. Construction: Inner shell and outer jacket separated by at least a 1/2-inch airspace.

D. Inner Shell: ASTM A 959, Type 29-4C stainless steel.

E. Outer Jacket: Aluminized steel.

F. Accessories: Tees, elbows, increasers, draft-hood connectors, terminations, adjustable roof flashings, storm collars, support assemblies, thimbles, firestop spacers, and fasteners; fabricated from similar materials and designs as vent-pipe straight sections; all listed for same assembly. Accessories shall be as recommended by manufacturer of equipment that vent is serving.

2.2 COMBUSTION AIR PIPE

A. Steel Pipe: ASTM A 53/A 53M, black steel, Schedule 40, Type E or S, Grade B.

2. Unions: ASME B16.39, Class 150, malleable iron with brass-to-iron seat, ground joint, and threaded ends.
3. Joint Compound and Tape: Teflon Tape.

B. Cellular-Core PVC Pipe: ASTM F 891, Schedule 80 underground.

1. PVC Socket Fittings: ASTM D 2665, made to ASTM D 3311, drain, waste, and vent patterns and to fit Schedule 40 pipe.

 a. Adhesive primer shall have a VOC content of 550 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 b. Adhesive primer shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

1. PVC solvent cement shall have a VOC content of 510 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

2. Solvent cement shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas and conditions for compliance with requirements for installation tolerances and other conditions affecting performance of work.

1. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 APPLICATION

A. Refer to equipment specifications for required venting system.

3.3 INSTALLATION OF LISTED VENTS AND CHIMNEYS

A. Locate to comply with minimum clearances from combustibles and minimum termination heights according to product listing or NFPA 211, whichever is most stringent.

B. Seal between sections of positive-pressure vents according to manufacturer's written installation instructions, using sealants recommended by manufacturer.

C. Support vents at intervals recommended by manufacturer to support weight of vents and all accessories, without exceeding appliance loading.
D. Slope breechings down in direction of appliance, with condensate drain connection at lowest point piped to nearest drain.

E. Lap joints in direction of flow.

F. Connect base section to foundation using anchor lugs of size and number recommended by manufacturer.

G. Join sections with acid-resistant joint cement to provide continuous joint and smooth interior finish.

H. Erect stacks plumb to finished tolerance of no more than 1 inch out of plumb from top to bottom.

I. Provide condensate drain connection at bottom ell of the vent.

3.4 CLEANING

A. After completing system installation, including outlet fittings and devices, inspect exposed finish. Remove burrs, dirt, and construction debris and repair damaged finishes.

B. Clean breechings internally, during and after installation, to remove dust and debris. Clean external surfaces to remove welding slag and mill film. Grind welds smooth and apply touchup finish to match factory or shop finish.

C. Provide temporary closures at ends of vents that are not completed or connected to equipment.

END OF SECTION
SECTION 235216
CONDENSING BOILERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. This Section includes natural gas-fueled firetube condensing boilers.

1.3 ACTION SUBMITTALS
A. Product Data: Include performance data, operating characteristics, furnished specialties, and accessories.

B. Shop Drawings: For boilers, boiler trim, and accessories. Include plans, elevations, sections, details, and attachments to other work.
 2. Detailed sequence of operation.
 3. Detailed points list to be integrated with the BAS.

1.4 INFORMATIONAL SUBMITTALS
A. Source quality-control test reports.

B. Field quality-control test reports.

C. Warranty: Special warranty specified in this Section.

D. Other Informational Submittals:
 1. Startup service reports.

1.5 CLOSEOUT SUBMITTALS
A. Operation and Maintenance Data: For boilers, components, and accessories to include in emergency, operation, and maintenance manuals.
1.6 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

B. ASME Compliance: Fabricate and label boilers to comply with ASME Boiler and Pressure Vessel Code.

C. ASHRAE/IESNA 90.1 Compliance: Boilers shall have minimum efficiency according to "Gas and Oil Fired Boilers - Minimum Efficiency Requirements."

E. I=B=R Compliance: Boilers shall be tested and rated according to HI's "Rating Procedure for Heating Boilers" and "Testing Standard for Commercial Boilers," with I=B=R emblem on a nameplate affixed to boiler.

F. UL Compliance: Test boilers for compliance with UL 795, "Commercial-Industrial Gas Heating Equipment." Boilers shall be listed and labeled by a testing agency acceptable to authorities having jurisdiction.

1.7 COORDINATION

A. Coordinate size and location of concrete bases. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified with concrete.

1.8 WARRANTY

A. General Warranty: The special warranty specified in this Article shall not deprive the Owner of other rights the Owner may have under other provisions of the Contract Documents and shall be in addition to, and run concurrent with, other warranties made by the Contractor under requirements of the Contract Documents. Installing contractor shall provide one year of warranty parts and labor.

B. Special Warranty: Submit a written warranty, executed by the contractor for the heat exchanger.

1. Warranty Period: Manufacturer’s standard, but not less than 10 years from date of Substantial Completion on the heat exchanger. Warranty shall be non-prorated and not limited to thermal shock.
PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by the following manufacturer:

1. Lochnivar.
2. Weil-McLain
3. HTP

2.2 DESIGN

A. Description: Factory-fabricated, -assembled, and -tested, fire-tube condensing boiler with heat exchanger sealed pressure tight, built on a steel base, including insulated jacket; flue-gas vent; combustion-air intake connections; water supply, return, and condensate drain connections; and controls. Water-heating service only.

B. Heat Exchanger: Nonferrous, corrosion-resistant combustion chamber.

C. Pressure Vessel: Carbon steel with welded heads and tube connections.

D. Burner: Natural gas, forced draft.

E. Blower: Centrifugal fan to operate during each burner firing sequence and to prepurge and postpurge the combustion chamber.

1. Motors: Comply with NEMA designation, temperature rating, service factor, and efficiency requirements for motors specified in Section 230513 "Common Motor Requirements for HVAC Equipment."

2. Motor Sizes: Minimum size as indicated; if not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.

F. Gas Train: Combination gas valve with manual shutoff and pressure regulator.

G. Ignition: Spark ignition with 100 percent main-valve shutoff with electronic flame supervision.

H. Casing:

1. Jacket: Sheet metal, with snap-in or interlocking closures.
2. Control Compartment Enclosures: NEMA 250, Type 1A.
3. Finish: Baked-enamel or powder-coat protective finish.
4. Insulation: Minimum 2-inchthick, polyurethane-foam insulation surrounding the heat exchanger.
2.3 BOILER TRIM

A. Include devices sized to comply with ASME B31.9.

C. Aquastat Controllers: Operating and high limit.

D. Safety Relief Valve: ASME rated.

E. Pressure and Temperature Gages.

F. Boiler Air Vent: Automatic.

G. Drain Valve: Minimum NPS 3/4 hose-end gate valve.

I. Circulation Pump: Nonoverloading, in-line pump with electronically commutated (EC) motor having thermal-overload protection and lubricated bearings; designed to operate at specified boiler pressures and temperatures.

J. Condensate Drain

2.4 CONTROLS

A. Refer to Section 230900 "Instrumentation and Controls for HVAC".

C. Boiler operating controls shall include the following devices and features:

 1. Control transformer.
 2. Set-Point Adjust: Set points shall be adjustable.
 3. Retain "Operating Level Control" and "Low-Water Cutoff and Pump Control" subparagraphs below for steam boilers.
 4. Operating Pressure Control: Factory wired and mounted to cycle burner.
 5. Low-Water Cutoff and Pump Control: Cycle feedwater pump(s) for makeup water control.
 6. Retain one of three "Sequence of Operation" subparagraphs below for operating control sequences. Retain one of first two subparagraphs for hot-water boilers; or third, for steam boilers.
 7. Sequence of Operation: Electric, factory-fabricated and field-installed panel to control burner firing rate to maintain space temperature in response to thermostat with heat anticipator located in heated space.

 a. Include automatic, alternating-firing sequence for multiple boilers to ensure maximum system efficiency throughout the load range and to provide equal runtime for boilers.

D. Burner Operating Controls: To maintain safe operating conditions, burner safety controls limit burner operation.

 1. High Cutoff: Manual reset stops burner if operating conditions rise above maximum boiler design temperature.
2. In "Low-Water Cutoff Switch" Subparagraph below, retain first option for hot-water boilers and second option for steam boilers.
5. Audible Alarm: Factory mounted on control panel with silence switch; shall sound alarm for above conditions.

G. Building Automation System Interface: Factory install hardware and software to enable building automation system to monitor, control, and display boiler status and alarms.
 1. Hardwired Points:
 b. Control: On/off operation, hot water supply temperature setpoint adjustment.
 2. A communication interface with building automation system shall enable building automation system operator to remotely control and monitor the boiler from an operator workstation. Control features available, and monitoring points displayed, locally at boiler control panel shall be available through building automation system.

I. Refer to drawings for system diagram and control sequence.

2.5 ELECTRICAL POWER

A. Controllers, Electrical Devices, and Wiring: Electrical devices and connections are specified in electrical Sections.

B. Single-Point Field Power Connection: Factory-installed and -wired switches, motor controllers, transformers, and other electrical devices necessary shall provide a single-point field power connection to boiler.
 1. House in NEMA 250, Type 1 enclosure.
 2. Wiring shall be numbered and color-coded to match wiring diagram.
 3. Install factory wiring outside of an enclosure in a metal raceway.
 4. Field power interface shall be to circuit breaker.

2.6 VENTING KITS

A. Kit: Complete system, ASTM A959, Type 29-4C stainless steel, pipe, vent terminal, thimble, indoor plate, vent adapter, condensate trap and dilution tank, and sealant.

B. Combustion-Air Intake: Complete system, stainless steel, pipe, vent terminal with screen, inlet air coupling, and sealant.
2.7 CAPACITIES AND CHARACTERISTICS

A. Refer to drawings.

2.8 SOURCE QUALITY CONTROL

A. Test and inspect boilers according to the ASME Boiler and Pressure Vessel Code, Section IV. Boilers shall be test fired in the factory with a report attached permanently to the exterior cabinet of the boiler for field reference. Test and inspect factory-assembled boilers, before shipping, according to ASME Boiler and Pressure Vessel Code.

B. Burner and Hydrostatic Test: Factory adjust burner to eliminate excess oxygen, carbon dioxide, oxides of nitrogen emissions, and carbon monoxide in flue gas and to achieve combustion efficiency; perform hydrostatic test.

C. Allow Owner access to source quality-control testing of boilers. Notify the Engineer 14 days in advance of testing.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Before boiler installation, examine roughing-in for concrete equipment bases, anchor-bolt sizes and locations, and piping and electrical connections to verify actual locations, sizes, and other conditions affecting boiler performance, maintenance, and operations.

1. Final boiler locations indicated on Drawings are approximate. Determine exact locations before roughing-in for piping and electrical connections.

B. Examine mechanical spaces for suitable conditions where boilers will be installed.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 BOILER INSTALLATION

A. Equipment Mounting:

1. Install boilers on cast-in-place concrete equipment base(s).

B. Install gas-fired boilers according to NFPA.

C. Assemble and install boiler trim.

D. Install electrical devices furnished with boiler but not specified to be factory mounted.

E. Support boilers on a minimum 4-inch-thick concrete base.

F. Install control wiring to field-mounted electrical devices.
3.3 CONNECTIONS

A. Piping installation requirements are specified in other Sections. Drawings indicate general arrangement of piping, fittings, and specialties.

B. Install piping, pumps, and all hydraulic specialties adjacent to boiler to allow service and maintenance.

C. Connect gas piping to boiler gas-train inlet with union. Piping shall be at least full size of gas train connection. Provide a reducer if required.

D. Connect heating water piping to supply- and return-boiler tappings with shutoff valve and union or flange at each connection.

E. Install piping from safety relief valves to nearest floor drain.

F. Install piping from equipment drain connection to nearest floor drain. Piping shall be at least full size of connection. Provide an isolation valve if required.

G. Connect breeching to boiler outlet, full size of outlet. See section 235100 for vent materials.

H. Drain combustion and flue gas condensate through an acid neutralization basin prior to discharge to drain.

 1. As part of equipment start-up, contractor shall test PH of condensate discharge from the neutralization basin. The results shall be included in the start-up report.

I. Ground equipment according to Division 26, "Grounding and Bonding."

J. Connect wiring according to Division 26, "Conductors and Cables."

3.4 FIELD QUALITY CONTROL

A. Manufacturer’s Field Service: Engage a factory-authorized service representative to supervise the field

 1. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment. Boiler shall be commissioned by factory authorized technician. Contact local representative for factory authorized technician information.

B. Manufacturer’s representative shall supply a factory authorized service technician to start up the boilers.

C. The contractor shall provide a manufacturer’s authorized technician to assist the CxA with startup, checkout and troubleshooting during functional performance testing. Representative must be knowledgeable of the equipment, system and operation and capable of performing adjustments as needed to facilitate the commissioning process.
D. Tests and Inspections:

1. Engage a factory-authorized service representative to provide startup service. Start up to be performed only after complete boiler room operation is field verified to offer a substantial load, and complete system circulation. One-year warranty shall be handled by factory authorized tech.

2. Verify that installation is as indicated and specified.
 a. Verify that electrical wiring installation complies with manufacturer’s submittal and installation requirements in Division 26 Sections. Do not proceed with boiler startup until wiring installation is acceptable to equipment Installer.

3. Complete manufacturer’s installation and startup checklist and verify the following:
 a. Boiler is level on concrete base.
 b. Flue and chimney are installed without visible damage.
 c. No damage is visible to boiler jacket, refractory, or combustion chamber.
 d. Pressure-reducing valves are checked for correct operation and specified relief pressure. Adjust as required.
 e. Clearances have been provided and piping is flanged for easy removal and servicing.
 f. Heating circuit pipes have been connected to correct ports.
 g. Labels are clearly visible.
 h. Boiler, burner, and flue are clean and free of construction debris.
 i. Pressure and temperature gages are installed.
 j. Control installations are completed.

4. Ensure pumps operate properly.

5. Check that fluid-level, flow-switch, and high-temperature interlocks are in place.

6. Start pumps and boilers, and adjust burners to maximum operating efficiency.
 a. Fill out startup checklist and attach copy with Contractor Startup Report.
 b. Check and record performance of factory-provided boiler protection devices and firing sequences.
 c. Check and record performance of boiler fluid-level, flow-switch, and high-temperature interlocks.
 d. Operate boilers as recommended or required by manufacturer.

7. Perform the following tests for maximum and minimum firing rates for modulating burner. Adjust boiler combustion efficiency at maximum and minimum modulation rates. Perform combustion flue gas test at minimum and maximum modulation rate. Measure and record the following:
 a. Combustion-air temperature at inlet to burner.
 b. Flue-gas temperature at boiler discharge.
 c. Flue-gas carbon-dioxide, oxygen, and carbon monoxide concentration.
 d. Flue gas NOX emissions where applicable.
e. Natural flue draft.

8. Measure and record temperature rise through each boiler
9. Repeat tests until results comply with requirements indicated.
11. Provide temporary equipment and system modifications necessary to dissipate the heat produced during tests if building systems are not adequate.
12. Notify the Engineer in advance of test dates.
13. Document test results in a report and submit to Engineer of Record.

3.5 CLEANING

A. Flush and clean boilers on completion of installation, according to manufacturer’s written instructions.

B. After completing boiler installation, including outlet fittings and devices, inspect exposed finish. Remove burrs, dirt, and construction debris.

3.6 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner’s maintenance personnel as specified below:

1. Operate boiler, including accessories and controls, to demonstrate compliance with requirements.
2. Train Owner’s maintenance personnel on procedures and schedules related to startup and shutdown, troubleshooting, servicing, and preventive maintenance.
3. Review data in the maintenance manuals. Refer to Division 1 Section “Contract Closeout.”
4. Review data in the maintenance manuals. Refer to Division 1 Section “Operation and Maintenance Data.”
5. Schedule training with Owner with at least 7 days’ advance notice.

END OF SECTION
SECTION 237416
ROOFTOP AIR-HANDLING UNITS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section includes outdoor, roof mounted air handling units

1.3 REFERENCES
A. AFBMA 9 - Load Ratings and Fatigue Life for Ball Bearings.
C. AMCA 210 - Laboratory Methods of Testing Fans for Rating Purposes.
D. AMCA 300 - Test Code for Sound Rating Air Moving Devices.
E. AMCA 500 - Test Methods for Louver, Dampers, and Shutters.
G. AHRI 430 - Central-Station Air-Handling Units.
H. AHRI 435 - Application of Central-Station Air-Handling Units.
J. NEMA MG1 - Motors and Generators.
K. NFPA 70 - National Electrical Code.
L. SMACNA - HVAC Duct Construction Standards - Metal and Flexible.
M. UL 723 - Test for Surface Burning Characteristics of Building Materials.
N. UL 900 - Test Performance of Air Filter Units.
P. UL 94 - Test for Flammability of Plastic Materials for Parts in Devices and Appliances.
T. ASHRAE 90.1 Energy Code.
V. GSA 2003 Facilities Standard - 5.9 HVAC Systems and Components.

1.4 SUBMITTALS

A. Shop Drawings: Shop drawing submittals will include, but not limited to, the following: drawings indicating components, dimensions, weights, required clearances, and location, type and size of field connections, and power and control wiring connections. Product Data: Product data will include dimensions, weights, capacities, ratings, fan performance, motor electrical characteristics, and gauges and finishes of materials. All cooling and heating capacities will be provided as net capacities and take into account heat gain from all motors in the air stream

1. Fan curves with specified operating point clearly plotted will be provided.
2. Product data of filter media, filter performance data, filter assembly, and filter frames will be provided.
3. Electrical requirements for power supply wiring; including wiring diagrams for interlock and control wiring will be supplied. Factory and field-installed wiring will be clearly indicated.
4. Manufacturer’s standard published installation instructions will be provided.
5. Manufacturer sequence of operation and points list.

1.5 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Plans and other details, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:

1. Structural members to which RTUs will be attached.
2. Roof openings.
3. Roof curbs and flashing.

B. Product Certificates: Submit certification that specified equipment will withstand wind forces identified in "Performance Requirements" Article and in Section 230548 "Vibration Controls for HVAC."

1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculations.
2. Dimensioned Outline Drawings of Equipment Unit: Identify center of wind force and locate and describe mounting and anchorage provisions.
3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

C. Field quality-control reports.
D. Sample Warranty: For special warranty.

1.6 QUALIFICATIONS
A. Manufacturer: Company specializing in manufacturing Air Handler products specified in this section must show a minimum five years documented experience and complete catalog data on total product.

1.7 SAFETY AGENCY LISTED & CERTIFICATION
A. Air Handling units shall be cETLus safety listed to conform with UL Standard 1995 and CAN/CSA Standard C22.2 No. 236.
B. Air handler furnished with double width, double inlet (DWDI) fans and/or plenum fans where applicable, shall be certified in accordance with the central station air handling units certification program, which is based on AHRI Standard 430.
C. Air handling unit water heating & cooling coils shall be certified in accordance with the forced circulation air cooling and air heating coils certification program, which is based on AHRI Standard 410.

1.8 DELIVERY, STORAGE, AND HANDLING
A. Unit will be delivered to the job site fully assembled, wired, and charged with refrigerant and oil by the manufacturer.
B. Unit will be stored and handled per Manufacturer’s instructions.
C. All handling and storage procedures will be per manufacturer’s recommendations.

1.9 CLOSEOUT SUBMITTALS
A. Operation and Maintenance Data: Manufacturer’s standard operating and maintenance instructions will be supplied in accordance with Section 017823 – Operation and Maintenance Data, including but not limited to instructions for lubrication, filter replacement, compressor, motor and drive replacement, coil cleaning, filter maintenance, spare parts lists, and wiring diagrams.
1.10 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Filters: One set of filters for each unit.

1.11 WARRANTY

A. Special Warranty: Manufacturer will warrant all equipment and material of its manufacture against defects in workmanship and material for a period of eighteen (18) months from date of shipment.

1. The warranty will include parts and labor during this period.
2. The warranty will not include parts associated with routine maintenance, such as belts, air filters, etc.
3. Provide manufacturer’s five (5) year compressor parts warranty.

PART 2 - PRODUCTS

2.1 SYSTEM DESCRIPTION

A. Completely factory assembled unitized construction single packaged air conditioning unit including a factory-mounted and wired unit controller and sensors, single point power with non-fused disconnect, 460V/3/60 power supply, outdoor air handling section with return and supply openings, discharge plenum and direct expansion refrigerant condensing section. The unit will be provided with 5kA SCCR equipment rating as standard. The unit nameplate will reflect this rating. Rooftop unit control is to be through the BAS as indicated in the contract documents.

2.2 ROOFTOP AIR HANDLING UNITS (RTU-1 & RTU-2)

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

1. Johnson Controls, Inc.
2. Daikin
3. Carrier

B. General Description

1. Configuration: Fabricate as detailed on prints.
2. Performance: Conform to AHRI 410 and 430 Standards. Refer to equipment schedules on drawings.
3. Acoustics: Sound power levels (dB) for the unit shall not exceed the specified levels shown on the unit schedule. The manufacturer shall provide the necessary sound treatment to meet these levels if required.

C. Unit Construction

1. Manufacturers standard double wall galvanized sheet metal construction with minimum 1-1/2” inch thick walls with 1-1/2 pound density thermal insulation formed to provide both maximum resistance to bacterial growth in the air stream and superior structural integrity. Floor construction will be double wall.

2. The roof will be double wall construction sloped on both sides and with a drip lip to provide proper drainage of water without staining sides of unit. Roof sections are connected together via integral channels and gasketing. Each fastened seam is further protected by a sheet metal channel covering the full length of the gasket surface.

3. Exterior surfaces are coated with a 1.5 mil powder paint, capable of withstanding a minimum 1000-hour salt spray hours in accordance with ASTM B-117.

4. The casing leakage rate shall not exceed .5 cfm per square foot of cabinet area at 5 inches of positive static pressure or 6 inches of negative static pressure (.0025 m3/s per square meter of cabinet area at 1.24 kPa static pressure).

5. Fabricate unit with heavy gauge channel posts and panels secured with mechanical fasteners. All panels, access doors, and ship sections shall be sealed with permanently applied bulb-type gasket. Shipped loose gasketing is not allowed.

6. Panels and access doors shall be fully framed, double-wall construction.

 a. The outer panel shall be constructed of G60 painted galvanized steel.
 b. The inner liner shall be constructed of G90 galvanized steel.
 c. The floor plate shall be constructed as specified for the inner liner.
 d. Unit will be furnished with solid inner liners.

7. Panel deflection shall not exceed L/240 ratio at 125% of design static pressure, maximum 5 inches of positive or 6 inches of negative static pressure. Deflection shall be measured at the panel midpoint.

8. Module to module field assembly shall be accomplished with an overlapping, full perimeter internal splice joint that is sealed with bulb type gasketing on both mating modules to minimize on-site labor and meet indoor air quality standards.

9. Double wall access doors will be provided in the fan, coil, filter and inlet sections of the unit. Doors will be double wall construction with a solid liner and minimum thickness of 1-inch. Doors will be attached to the unit with piano type stainless steel hinges. Latches will be positive-action, creating an airtight seal between the door and unit. Panels and doors will be completely gasketed with a closed cell neoprene gasket. Control and power panel includes knockouts for electrical and piping connections.

10. Provide cross broke roof cap system to divert water from the top surface of the air handler. The rain shed roof cap shall have 2” standing seams covered with splice cap channels to seal top seam. Splice cap shall break down over sides of standing seam to protect the ends of the seam.
a. Cooling coil piping vestibule 18” deep shall be factory installed of standard cabinet construction on the coil connection side of the unit. Roof cap over vestibule shall be a continuous single piece covering both the coil section and the vestibule. Roof cap seams between coil section and vestibule are not allowed.

11. The unit will include an integral design base rail with lifting points clearly marked and visible on the base rail and three 1-1/4” FPT connections for condensate drainage. The unit base will be designed with a recessed curb mounting location. The recessed curb mounting surface will provide a continuous surface for field application of curb gasketing to create a weather tight seal between the curb and unit.

12. Roof curb shall be furnished by others. It shall be designed to allow for proper structural support and condensate trapping.

13. An insulated, double-walled piping vestibule, 18” deep, shall be factory installed of standard cabinet construction on the coil connection side of the unit. Roof cap over vestibule shall be a continuous single piece covering both the coil section and the vestibule. Roof cap seams between coil section and vestibule are not allowed.

14. Construct drain pans from stainless steel with cross break and double sloping pitch to drain connection. Provide drain pans under cooling coil section. Drain connection centerline shall be a minimum of 3” above the base rail to aid in proper condensate trapping. Drain connections that protrude from the base rail are not acceptable. There must be a full 2” thickness of insulation under drain pan.

D. Fan Assemblies

1. The supply fan will be a double-width, double-inlet (DWDI), airfoil fan Class I or II construction as required by the fan rating point. Access doors will be provided on both sides of the unit for fan/motor access.

2. The fan motor will be NEMA design ball bearing type with a factory installed shaft grounding ring to increase motor longevity. Motors will be ODP premium efficiency. The motor will be located on an adjustable base.

3. The fan and fan motor will be internally mounted and isolated on a full width, isolator support channel using 1-inch springs.

4. Fan drives will be selected with a 1.5 service factor and antistatic belts will be furnished. All drives will be fixed pitch. Fan shafts will be selected to operate well below the first critical sped and each shaft will be factory coated after assembly with an anticorrosion coating.

5. The supply fan will be controlled by a variable frequency drive for variable air volume (VAV) fan control. The supply fan speed will be controlled by a VFD to maintain duct pressure.

6. The VFD will include an integral DC link chode to reduce harmonic distortion in the incoming and outgoing power feeds. If a DC link chode is not provided, an AC line reactor must be provided. Inlet guide vanes will not be acceptable.

E. Bearings, Shafts, and Drives
1. **Bearings:** Basic load rating computed in accordance with AFBMA - ANSI Standards. The bearings shall be designed for service with an L-50 life of 200,000 hours and shall be a heavy-duty pillow block, self-aligning, grease-lubricated ball or spherical roller bearing type.

2. Shafts shall be solid, hot rolled steel, ground and polished, keyed to shaft, and protectively coated with lubricating oil. Hollow shafts are not acceptable.

3. The fan wheel shall be direct coupled to the motor shaft. The wheel width shall be determined by motor speed and fan performance characteristics.

F. Electrical

1. The air handler(s) shall be ETL and ETL-Canada listed by Intertek Testing Services, Inc. Units shall conform to bi-national standard ANSI/UL Standard 1995/CSA Standard C22.2 No. 236.

2. Fan motors shall be manufacturer provided and installed, Open Drip Proof, premium efficiency (meets or exceeds EPAct requirements), 1750 RPM, single speed, 200V / 60HZ / 3P. Complete electrical characteristics for each fan motor shall be as shown in schedule.

3. **Wiring Termination:** Provide terminal lugs to match branch circuit conductor quantities, sizes, and materials indicated. Enclosed terminal lugs in terminal box sized to NFPA 70.

4. Manufacturer shall provide ASHRAE 90.1 Energy Efficiency equation details for individual equipment to assist Building Engineer for calculating system compliance.

5. Installing contractor shall provide GFI receptacle within 25 feet of unit to satisfy National Electrical Code requirements.

G. Economizer Section

1. Outside air inlet openings are covered by a factory installed rain hood permanently attached to the cabinet to prevent windblown precipitation from entering the unit. The outside air hood contains a removable and cleanable filter with an efficiency rating of 50% based on ASHRAE 52-76.

2. All damper assemblies are low-leak design. Damper blades are fabricated from a minimum of 16-gauge galvanized steel. Blade edges are covered with vinyl seals. Damper shafts are fabricated from solid steel and mounted in the frame with bronze bearings.

3. The outdoor air and return air dampers are interlocked and positioned by a fully modulating, solid-state damper actuator. The actuator is spring-loaded so that the outside air damper closes when power to the unit is interrupted. The operation of the economizer is fully integrated into the cooling control system. The economizer is controlled via a dual enthalpy economizer.

H. Return/Relief

1. Building air exhaust is accomplished through barometric relief dampers installed in the return air plenum. The dampers open relative to the building pressure. The opening pressure can be adjusted via a spring tension.
I. Evaporator Section

1. Evaporator coils will be direct expansion type with intertwined circuiting to assure complete coil face activity during part load operation. Coil tubes will be 3/8” OD copper, with internally enhanced tubes. Fins will be enhanced Aluminum Fins mechanically expanded to bond with the copper tubes. Coil casing will be fabricated from heavy gauge galvanized steel. All coils will be pressure tested at a minimum of 450 PSIG.

2. A stainless steel double-sloped drain pan will be provided under the entire width of the evaporator coil. The main drain pan will be sloped a total of 1/8” per foot towards the drainage point. Main drain pan will be accessible and easily cleanable in the field. The condensate drain opening will be flush with the bottom of the drain pan to allow complete drainage. Coils in excess of 48” high will have an intermediate drain pan extending the entire finned length of the coil to provide better water drainage. Drainage from the intermediate drain pan will be to the primary drain pan.

J. Condenser Section

1. Propeller type, directly driven by permanently lubricated TEAO motor. Condenser fans will be matched up with compressors to optimize system control.

2. Condenser coils are 3/8” seamless copper tubes, arranged in staggered rows, mechanically expanded into Aluminum Fins. Coils are configured in a V-bank configuration, with individual flat coils rotated from the vertical plane for protection from hail damage for each condensing circuit. Condensing coils will have an integral subcooler for more efficient, stable operation.

3. Units will use industrial duty hermetic scroll compressors, piped and charged with oil and HFC-410A refrigerant. Compressors include a solid-state protection module, designed to protect the compressor from over-temperature and over-current conditions. Each compressor will include the following safety and convenience devices: discharge line check valve and oil sight glass. Compressors will be vibration isolated from the unit, and installed in an easily accessible area of the unit. All compressor-to-pipe connections will be brazed.

4. Refrigerant piping includes check valves, thermal expansion valves with replaceable thermostatic elements, Replaceable Core Drier, high and low pressure switches, antirecycling timing device to prevent compressor restart for five minutes after shutdown. Shut-off isolation valves are located on the suction and discharge lines of the compressor circuit for compressor servicing. Hot gas bypass piping is provided for optimal unit control at low loads.

K. Filters

1. All filter holding frames will be of heavy-duty extruded aluminum construction designed for industrial applications. All filter media will be 12-inch rigid filters with 95% efficiency (MERV 14) with 2-inch pleated pre-filters (MERV 8).

2. Filter efficiencies will be rated in accordance with ASHRAE Standard 52-76.

3. A differential pressure filter switch provides a signal to the rooftop unit controller when filter become dirty and require cleaning.

4. Filter media shall be UL 900 listed, Class I or Class II.
5. Filter Magnehelic gauge(s) shall be furnished and mounted by others.

L. Additional Sections

1. Plenum section shall be provided and properly sized for inlet and/or discharge air flow (between 600 and 1500 feet per minute). The plenum shall provide single or multiple openings as shown on drawings and project schedule.

2.3 DAMPERS

A. Outdoor-Air Damper: Linked damper blades, for percent outdoor air indicated. Provide motorized damper actuator.

B. Outdoor- and Return-Air Mixing Dampers: Opposed-blade galvanized-steel dampers mechanically fastened to cadmium plated for galvanized-steel operating rod in reinforced cabinet. Connect operating rods with common linkage and interconnect so dampers operate simultaneously.

1. Leakage Rate: As required by ASHRAE/IES 90.1.
2. Damper Motor: Modulating with adjustable minimum position.
3. Relief-Air Damper: Gravity actuated or motorized, as required by ASHRAE/IES 90.1, with bird screen and hood.

2.4 ELECTRICAL POWER CONNECTIONS

A. RTU shall have a single connection of power to unit with unit-mounted disconnect switch accessible from outside unit and control-circuit transformer with built-in overcurrent protection.

2.5 DDC TERMINAL CONTROLLERS FOR ROOFTOP UNITS

A. Refer to drawings for individual equipment sequence of operation and required sensors.

B. Interface with DDC System for HVAC Requirements:

1. Coordinate with Specification Section 230900 “Building Automation System” BAS requirements.
2. All controls and control devices will be provided by the controls contractor. Controller shall accomplish sequence indicated on drawings.

C. Basic Controls: Control will include automatic start, stop, operating, protection sequences across the range of scheduled conditions and transients. The single packaged unit controller will provide automatic control of compressor start/stop, energy saver delay and anti-recycle timers, condenser fans, and unit alarms. Automatic reset to normal operation after power failure. Software stored in non-volatile memory, with programmed setpoints retained in lithium battery backed real time clock (RTC) memory for minimum 5 years. Liquid crystal display, descriptions and numeric data in English (or Metric) units. Sealed keypad with sections for Setpoints, Display, Entry, Unit Options & clock, and an On/Off Switch.
D. Enclosure: Unit will be shipped complete with factory configured, installed, wired and tested single packaged unit controller housed in a rain and dust tight NEMA 3R/12 (IP55) powder painted steel cabinet with hinged, latched, and gasket sealed door.

E. Diagnostics: Upon startup of the controller, it will run through a self-diagnostic check to verify proper operation and sequence loading. The single packaged unit controller will continually monitor all input and output points on the controller to maintain proper operation. The unit will continue to operate in a trouble mode or shut down as necessary to prevent an unsafe condition for the building occupants, or to prevent damage to the equipment. In the event of a unit shutdown or alarm, the operating conditions, date and time will be stored in the shutdown history to facilitate service and troubleshooting.

F. The unit will include BACnet MSTP (RS-485) communications directly from the unit controller. Equipment that is not native BACnet at the unit control board will include any necessary interface or translator device factory mounted and wired within the unit. A control points list, BIBBs and PICS statement will be provided by the manufacturer to facilitate communications programming with the building automation system. Programming, establishing communications and commissioning will be the responsibility of the installing controls contractor.

G. Electrical Connection: Factory wire motors and controls for a single electrical connection.

2.6 ACCESSORIES

A. Filter differential pressure switch with sensor tubing on either side of filter. Set for final filter pressure loss.

B. Factory- or field-installed demand-controlled ventilation.

C. Safeties:
 1. Condensate overflow switch.
 2. Phase-loss reversal protection.
 3. High- or low-pressure control.

D. Outdoor air intake weather hood with moisture eliminator.

2.7 ROOF CURBS

A. Wind and Seismic Restraints: Metal brackets compatible with the curb and casing, painted to match RTU, used to anchor unit to the curb, and designed for loads at Project site. Comply with requirements in Section 230548 "Vibration Controls for HVAC" for wind-load requirements.

B. Materials: Galvanized steel with corrosion-protection coating, watertight gaskets, and factory-installed wood nailer; complying with NRCA standards.
 1. Curb Insulation and Adhesive: Comply with NFPA 90A or NFPA 90B.
a. Materials: ASTM C 1071, Type I or II.
b. Thickness: 2 inches.

2. Application: Factory applied with adhesive and mechanical fasteners to the internal surface of curb.

a. Liner Adhesive: Comply with ASTM C 916, Type I.
b. Mechanical Fasteners: Galvanized steel, suitable for adhesive attachment, mechanical attachment, or welding attachment to duct without damaging liner when applied as recommended by manufacturer and without causing leakage in cabinet.
c. Liner materials applied in this location shall have air-stream surface coated with a temperature-resistant coating or faced with a plain or coated fibrous mat or fabric depending on service air velocity.
d. Liner Adhesive: Comply with ASTM C 916, Type I.

C. Curb Dimensions: Height of 24 inches. Adaptable horizontal dimensions as required for existing roof openings.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of RTUs.

B. Examine roughing-in for RTUs to verify actual locations of piping and duct connections before equipment installation.

C. Examine roofs for suitable conditions where RTUs will be installed.

D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Installing contractor will install single packaged unit(s), including components and controls required for operation, in accordance with single packaged unit manufacturer’s written instructions and recommendations. Single packaged units will be installed as specified.

1. Single packaged unit(s) will be stored and protected in accordance with manufacturers recommendations.
2. Single packaged unit(s) will be stored only in a clean, dry place, protected from weather and construction traffic.
3. Single packaged unit will be handled such that damage to components, enclosure, and finish is avoided.
B. Locate the single packaged unit as indicated on drawings, including cleaning and service maintenance clearance per Manufacturer instructions. Adjust and level the single packaged unit on the roof curb.

C. Roof Curb: Install on roof structure or concrete base, level and secure, according to AHRI Guideline B. Install RTUs on curbs and coordinate roof penetrations and flashing with roof construction. Secure RTUs to upper curb rail, and secure curb base to roof framing or concrete base with anchor bolts.

D. Unit Support: Install unit level on structural curbs. Coordinate wall penetrations and flashing with wall construction. Secure RTUs to structural support with anchor bolts.

E. Equipment Mounting:
 1. Comply with requirements for vibration isolation and seismic control devices specified in Section 230548 "Vibration Controls for HVAC."

3.3 CONNECTIONS

A. Install condensate drain, minimum connection size, with trap and indirect connection to nearest roof drain or area drain.

B. Install piping adjacent to RTUs to allow service and maintenance.

C. Duct installation requirements are specified in other HVAC Sections. Drawings indicate the general arrangement of ducts. The following are specific connection requirements:
 1. Install ducts to termination at top of roof curb.
 2. Remove roof decking only as required for passage of ducts. Do not cut out decking under entire roof curb.
 3. Connect supply ducts to RTUs with flexible duct connectors specified in Section 233300 "Air Duct Accessories."
 4. Install return-air duct continuously through roof structure.

3.4 FIELD QUALITY CONTROL

A. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.

B. Perform the following tests and inspections with the assistance of a factory-authorized service representative:
 3. ETL/cETL.
 4. Manufactured in facility registered to ISO 9002.
7. The refrigerant circuit will be pressure-tested, evacuated and fully charged with refrigerant and oil. The refrigerant circuit will undergo a factory helium leak test and undergo an automated operational run test and quality inspection prior to shipment.

8. The unit controller will be configured and run tested at the factory to minimize field setup time. If the unit is not configured and tested, then the manufacturer will provide field start up and testing to ensure that the controller is functioning properly.

9. After installing RTUs and after electrical circuitry has been energized, test units for compliance with requirements.

10. Inspect for and remove shipping bolts, blocks, and tie-down straps.

11. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.

12. Test and adjust controls and safety. Replace damaged and malfunctioning controls and equipment.

C. RTU will be considered defective if it does not pass tests and inspections.

D. Prepare test and inspection reports.

3.5 STARTUP SERVICE

A. Manufacturer’s Supervision: A factory-trained service representative of the manufacturer will supervise the unit startup and application specific calibration of control components

1. The single packaged unit will not be operated for any purpose, temporary or permanent, until ductwork is clean, filters are in place, bearings are lubricated, and fan has been test run under observation.

2. After the single packaged unit is installed, the variable speed drive (if supplied) will be field commissioned by a factory trained and employed service technician.

3. Complete installation and startup checks according to manufacturer's written instructions.

4. Verify that shipping, blocking, and bracing are removed.

5. Verify that unit is secure on mountings and supporting devices and that connections to piping, ducts, and electrical systems are complete. Verify that proper thermal-overload protection is installed in motors, controllers, and switches.

6. Verify proper motor rotation direction, free fan wheel rotation, and smooth bearing operations. Reconnect fan drive system.

7. Verify that bearings and other moving parts are lubricated with factory-recommended lubricants.

8. Verify that zone dampers fully open and close for each zone.

9. Verify that face-and-bypass dampers provide full face flow.

10. Verify that outdoor- and return-air mixing dampers open and close, and maintain minimum outdoor-air setting.

12. Install new, clean filters.

13. Verify that manual and automatic volume control and fire and smoke dampers in connected duct systems are in fully open position.
B. Starting procedures for air-handling units include the following:

1. Energize motor; verify proper operation of motor, drive system, and fan wheel. Adjust fan to indicated rpm.
2. Measure and record motor electrical values for voltage and amperage.
3. Manually operate dampers from fully closed to fully open position and record fan performance.

3.6 CLEANING AND ADJUSTING

A. Occupancy Adjustments: When requested within 12 months from date of Substantial Completion, provide on-site assistance in adjusting system to suit actual occupied conditions. Provide up to two visits to Project during other-than-normal occupancy hours for this purpose.

B. After completing system installation and testing, adjusting, and balancing RTU and air-distribution systems, clean filter housings and install new filters.

3.7 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain RTUs.

END OF SECTION
SECTION 238129

SPLIT SYSTEM AIR CONDITIONERS

PART 1 - GENERAL

1.1 SECTION INCLUDES

A. Split System Air Conditioning system includes:
 1. Outdoor/Condensing unit(s).
 2. Indoor/Evaporator units.
 3. Refrigerant piping.
 4. Control panels.
 5. Control wiring.

1.2 RELATED REQUIREMENTS

A. Section 232300 - Refrigerant Piping: Additional requirements for refrigerant piping system.

1.3 REFERENCE STANDARDS

C. NFPA 70 - National Electrical Code; National Fire Protection Association; Most Recent Edition Adopted by Authority Having Jurisdiction, Including All Applicable Amendments and Supplements.

1.4 SUBMITTALS

A. See Section 01 3000 - Administrative Requirements, for submittal procedures.

B. Design Data:
 1. Provide design calculations showing that system will achieve performance specified.
 2. Provide design data required by ASHRAE 90.1.
C. Product Data: Submit manufacturer's standard data sheets showing the following for each item of equipment, marked to correlate to equipment item markings shown in the contract documents:

1. Outdoor/Central Units:
 a. Refrigerant Type and Size of Charge.
 b. Cooling Capacity: Btu/h.
 c. Heating Capacity: Btu/h.
 d. Cooling Input Power: Btu/h.
 e. Heating Input Power: Btu/h.
 f. Operating Temperature Range, Cooling and Heating.
 g. Air Flow: Cubic feet per minute.
 h. Fan Curves.
 i. External Static Pressure (ESP): Inches WG.
 j. Sound Pressure Level: dB(A).
 k. Electrical Data:
 1) Maximum Circuit Amps (MCA).
 2) Maximum Fuse Amps (MFA).
 3) Maximum Starting Current (MSC).
 4) Full Load Amps (FLA).
 5) Total Over Current Amps (TOCA).
 6) Fan Motor: HP.
 l. Weight and Dimensions.
 m. Maximum refrigerant piping run from outdoor/condenser unit to indoor/evaporator unit.
 n. Maximum height difference between outdoor/condenser unit to indoor/evaporator unit, both above and below.
 o. Control Options.

2. Indoor/Evaporator Units:
 a. Cooling Capacity: Btu/h.
 b. Heating Capacity: Btu/h.
 c. Cooling Input Power: Btu/h.
 d. Heating Input Power: Btu/h.
 e. Air Flow: Cubic feet per minute.
 f. Fan Curves.
 g. External Static Pressure (ESP): Inches WG.
 h. Sound Pressure level: dB(A).
 1) Electrical Data: Maximum Circuit Amps (MCA).
 2) Maximum Fuse Amps (MFA).
 3) Maximum Starting Current (MSC).
 4) Full Load Amps (FLA).
 5) Total Over Current Amps (TOCA).
 6) Fan Motor: HP.
i. Weight and Dimensions.
j. Control Options.

3. Control Panels: Complete description of options, control points, zones/groups.

1.5 QUALITY CONTROL

A. Manufacturer Qualifications:
 1. Company that has been manufacturing variable refrigerant volume heat pump equipment for at least 5 years.
 2. Company that provides system design software to installers.

B. Installer Qualifications: Trained and approved by manufacturer of equipment.

1.6 DELIVERY, STORAGE AND HANDLING

A. Deliver, store, and handle equipment and refrigerant piping according to manufacturer's recommendations.

1.7 WARRANTY

A. Compressors: Provide manufacturer's warranty for six (6) years from date of installation. During the stated period, should any part fail due to defects in material and workmanship, it shall be repaired or replaced at the discretion of the manufacturer. All warranty service work shall be performed by a factory trained service professional.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

 A. Basis of Design: Samsung
 B. Mitsubishi.
 C. Daikin.

2.2 HVAC SYSTEM DESIGN

 A. System Operation: Heating or cooling, selected at system level.
 1. Provide a complete functional system that achieves the specified performance based on the specified design conditions and that is designed and constructed according to the equipment manufacturer's requirements.
 2. Conditioned spaces are shown on the drawings.
 3. Required equipment unit capacities are shown on the drawings.
 4. Refrigerant piping sizes are not shown on the drawings.
 5. Connect equipment to condensate piping provided by others; condensate piping is
shown on the drawings.

B. Outside Air Design Conditions:
 1. Summer Outside Air Design Temperature: 95 degrees F dry-bulb; 78 degrees F wet-bulb.
 2. Winter Outside Air Design Temperature: 10 degrees F dry-bulb.

C. Energy Design Wind Speed: 25 mph.

D. Operating Temperature Ranges:
 1. Cooling Mode Operating Range: 14 degrees F to 115 degrees F dry bulb.
 2. Heating Mode Operating Range: -5 degrees F to 75 degrees F dry bulb; minus 4 degrees F to 60 degrees F wet bulb; without low ambient controls or auxiliary heat source.

E. Controls: Provide the following control interfaces:
 1. One central remote-control panel for entire system; locate where indicated.

F. Local Controllers: Wall-mounted, wired, containing temperature sensor.

2.3 EQUIPMENT

A. All Units: Factory assembled, wired, and piped and factory tested for function and safety
 Refrigerant: R-410A.
 2. Safety Certification: Tested to UL 1995 by UL or Intertek-ETL and bearing the certification label.
 3. Provide outdoor/condensing units capable of serving indoor unit capacity up to 200 percent of the capacity of the outdoor/condensing unit.
 4. Provide units capable of serving the zones indicated.
 5. Thermal Performance: Provide heating and cooling capacity as indicated, based on the following nominal operating conditions:

B. Electrical Characteristics:
 1. Power - Indoor Units: 208 to 230 Volts, single phase, 60 Hz.

C. Refrigerant Piping:
 1. Insulate each refrigerant line individually between the condensing and indoor units.
2.4 OUTDOOR/CONDENSING UNITS

A. Outdoor/Condensing Units: Air-cooled DX refrigeration units, designed specifically for use with indoor/evaporator units; factory assembled and wired with all necessary electronic and refrigerant controls; modular design for ganging multiple units.

1. Refrigeration Circuit: Scroll compressors, motors, fans, condenser coil, electronic expansion valves, solenoid valves, 4-way valve, distribution headers, capillaries, filters, shut off valves, oil separators, service ports and refrigerant regulator.
2. Refrigerant: Factory charged.
3. Variable Volume Control: Modulate compressor capacity automatically to maintain constant suction and condensing pressures while varying refrigerant volume to suit heating/cooling loads.
4. Capable of being installed with wiring and piping to the left, right, rear or bottom.
5. Capable of heating operation at low end of operating range as specified, without additional low ambient controls or auxiliary heat source; during heating operation, reverse cycle (cooling mode) oil return or defrost is not permitted, due to potential reduction in space temperature.
6. Sound Pressure Level: As specified, measured at 3 feet from front of unit; provide night setback sound control as a standard feature; three selectable sound level steps of 55 dB, 50 dB, and 45 dB, maximum.
7. Power Failure Mode: Automatically restart operation after power failure without loss of programmed settings.
8. Safety Devices: High pressure sensor and switch, low pressure sensor/switch, control circuit fuses, crankcase heaters, fusible plug, overload relay, inverter overload protector, thermal protectors for compressor and fan motors, over current protection for the inverter and anti-recycling timers.
9. Provide refrigerant sub-cooling to ensure the liquid refrigerant does not flash when supplying to us indoor units.
10. Oil Recovery Cycle: Automatic, occurring 2 hours after start of operation and then every 8 hours of operation; maintain continuous heating during oil return operation.
11. Controls: Provide contacts for electrical demand shedding.

B. Unit Cabinet: Weatherproof and corrosion resistant; rust-proofed mild steel panels coated with baked enamel finish.

1. Designed to allow side-by-side installation with minimum spacing.

C. Fans: One or more direct-drive propeller type, vertical discharge, with multiple speed operation via DC (digitally commutating) inverter.

1. Provide minimum of 1 fan for each condensing unit.
2. External Static Pressure: Factory set at 0.12 in WG, minimum.
3. Fan Airflow: As indicated for specific equipment.
4. Fan Motors: Factory installed; permanently lubricated bearings; inherent protection; fan guard; output as indicated for specific equipment.
D. Condenser Coils: Copper tubes expanded into aluminum fins to form mechanical bond; waffle louver fin and rifled bore tube design to ensure high efficiency performance.

E. Compressors: Scroll type, hermetically sealed, variable speed inverter-driven and fixed speed in combination to suit total capacity; minimum of one variable speed, inverter driven compressor per condenser unit.

1. Failure Mode: In the event of compressor failure, operate remaining compressor(s) at proportionally reduced capacity; provide microprocessor and associated controls specifically designed to address this condition.
2. Provide each compressor with crankcase heater, high pressure safety switch, and internal thermal overload protector.
3. Provide oil separators and intelligent oil management system.
4. Provide spring mounted vibration isolators.

2.5 INDOOR/EVAPORATOR UNITS

A. All Indoor/Evaporator Units: Factory assembled and tested DX fan-coil units, with electronic proportional expansion valve, control circuit board, factory wiring and piping, self-diagnostics, auto-restart function, 3-minute fused time delay, and test run switch.

1. Refrigerant: Refrigerant circuits factory-charged with dehydrated air, for field charging.
2. Temperature Control Mechanism: Return air thermistor and computerized Proportional-Integral-Derivative (PID) control of superheat.
3. Coils: Direct expansion type constructed from copper tubes expanded into aluminum fins to form a mechanical bond; waffle louver fin and high heat exchange, rifled bore tube design; factory tested.

B. Provide thermistor on liquid and gas lines.

1. Fans: Direct-drive, with statically and dynamically balanced impellers; high and low speeds unless otherwise indicated; motor thermally protected.
2. Return Air Filter: Washable long-life net filter with mildew proof resin, unless otherwise indicated.
3. Condensate Drainage: Built-in condensate drain pan with PVC drain connection.

C. Units Without Built-In Condensate Pump: Provide built-in condensate float switch and wiring connections.

1. Cabinet Insulation: Sound absorbing foamed polystyrene and polyethylene insulation.

D. Wall Surface-Mounted Units: Finished white casing, with removable front grille; foamed polystyrene and polyethylene sound insulation; wall mounting plate; polystyrene condensate drain pan.

1. Airflow Control: Auto-swing louver that closes automatically when unit stops; five (5) steps of discharge angle, set using remote controller; upon restart,
discharge angle defaulting to same angle as previous operation.

2. Sound Pressure Range: Measured at low speed at 3.3 feet below and away from unit.

3. Condensate Drain Connection: Back, with piping concealed in wall.

4. Fan: Direct-drive cross-flow type.

PART 3 - EXECUTION

3.1 EXAMINATION
 A. Verify that required electrical services have been installed and are in the proper locations prior to starting installation.
 B. Verify that condensate piping has been installed and is in the proper location prior to starting installation.

3.2 INSTALLATION
 A. Install in accordance with manufacturer's instructions.
 B. Install refrigerant piping in accordance with equipment manufacturer's instructions.
 C. Perform wiring in accordance with NFPA 70, National Electric Code (NEC).
 D. Coordinate with installers of systems and equipment connecting to this system.
 E. Contractor shall coordinate final pipe routing with manufacturer to determine proper refrigerant charge prior to charging the system.

3.3 FIELD QUALITY CONTROL
 A. Provide manufacturer's field representative to inspect installation prior to startup.

3.4 SYSTEM STARTUP
 A. Prepare and start equipment and system in accordance with manufacturer's instructions and recommendations.
 B. Adjust equipment for proper operation within manufacturer's published tolerances.

3.5 CLEANING
 A. Clean exposed components of dirt, finger marks, and other disfigurements.

3.6 CLOSEOUT ACTIVITIES
 A. Demonstration: Demonstrate operation of system to Owner personnel.
1. Use operation and maintenance data as reference during demonstration.
2. Briefly describe function, operation, and maintenance of each component.

3.7 PROTECTION
A. Protect installed components from subsequent construction operations.
B. Replace exposed components broken or otherwise damaged beyond repair.

3.8 DEMONSTRATION
A. Train Owner's maintenance personnel to adjust, operate, and maintain the system.

END OF SECTION
SECTION 238239.16
PROPELLER UNIT HEATERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section includes propeller unit heaters with the following heating systems:
 1. Surface Mounted Electric Unit Heaters.
 2. Ceiling Suspended Electric Unit Heaters.

1.3 DEFINITIONS
A. CWP: Cold working pressure.
B. PTFE: Polytetrafluoroethylene plastic.
C. TFE: Tetrafluoroethylene plastic.

1.4 SUBMITTALS
A. Product Data: For each type of product.
 1. Include rated capacities, operating characteristics, furnished specialties, and accessories.
B. Shop Drawings:
 1. Include plans, elevations, sections, and details.
 2. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 3. Include equipment schedules to indicate rated capacities, operating characteristics, furnished specialties, and accessories.
 4. Indicate location and arrangement of integral controls.
PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

1. Reznor/Thomas & Betts Corporation.
2. Sterling HVAC Products; Div. of Mestek Technology Inc.

2.2 SURFACE MOUNTED ELECTRIC UNIT HEATERS

A. DESCRIPTION

1. Assembly including casing, coil, fan, and motor in horizontal discharge configuration with fixed discharge louver.
2. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. PERFORMANCE REQUIREMENTS

1. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1, Section 5 - "Systems and Equipment" and Section 7 - "Construction and Startup."
2. ASHRAE/IESNA 90.1 Compliance: Applicable requirements in ASHRAE/IESNA 90.1, Section 6 - "Heating, Ventilating, and Air-Conditioning."

C. HOUSINGS

1. Casing: 20-gauge die-formed steel with adapter for surface mounting.
2. Finish: Manufacturer's standard baked enamel applied to factory-assembled and -tested cabinet unit heaters before shipping.
3. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.

D. COILS

1. Electric-Resistance Heating Coil: Nickel-chromium heating wire, free from expansion noise and 60-Hz hum, embedded in magnesium oxide refractory and sealed in steel or corrosion-resistant metallic sheath with fins no closer than 0.16 inch (4 mm). Element ends shall be enclosed in terminal box. Fin surface temperature shall not exceed 550 deg F (288 deg C) at any point during normal operation.
2. Circuit Protection: One-time fuses in terminal box for overcurrent protection and limit controls for high-temperature protection of heaters.
3. Wiring Terminations: Stainless-steel or corrosion-resistant material.

E. FAN AND MOTOR

1. Fan: Propeller type with aluminum wheel directly mounted on motor shaft in the fan venturi.

F. CONTROLS

1. Control Devices:
 a. Wall-mounted thermostat.
2. Refer to drawings for individual equipment sequence of operation and required sensors.

G. CAPACITIES AND CHARACTERISTICS

1. Refer to drawings for equipment capacity requirements.

2.3 CEILING SUSPENDED ELECTRIC UNIT HEATERS

A. DESCRIPTION

1. Assembly including casing, coil, fan, and motor in horizontal discharge configuration with adjustable discharge louver.
2. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
4. Comply with UL 823.

B. PERFORMANCE REQUIREMENTS

1. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1, Section 5 - "Systems and Equipment" and Section 7 - "Construction and Startup."
2. ASHRAE/IESNA 90.1 Compliance: Applicable requirements in ASHRAE/IESNA 90.1, Section 6 - "Heating, Ventilating, and Air-Conditioning."

C. HOUSINGS

1. Casing: 20-gauge die-formed steel.
 a. Casing substrates shall be prepared for finishing with a hot wash, iron phosphatizing clear rinse, chromic acid rinse, and oven drying.
b. Paint finish shall be lead-free, chromate free, alkyd melamine resin base and applied with an electrostatic two-pass system. Finish shall be baked at 350 degrees F.

2. Finish: Manufacturer's standard baked enamel applied to factory-assembled and -tested propeller unit heaters before shipping.

3. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.

4. Discharge Louver: Adjustable fin diffuser for horizontal units.

D. COILS

1. Electric-Resistance Heating Coil: Nickel-chromium heating wire, free from expansion noise and 60-Hz hum, embedded in magnesium oxide refractory and sealed in steel or corrosion-resistant metallic sheath with fins no closer than 0.16 inch (4 mm). Element ends shall be enclosed in terminal box. Fin surface temperature shall not exceed 550 deg F (288 deg C) at any point during normal operation.

2. Circuit Protection: One-time fuses in terminal box for overcurrent protection and limit controls for high-temperature protection of heaters.

3. Wiring Terminations: Stainless-steel or corrosion-resistant material.

E. FAN AND MOTOR

1. Fan: Propeller type with aluminum wheel directly mounted on motor shaft in the fan venturi.

F. CONTROLS

1. Control Devices:
 a. Wall-mounted thermostat.

2. Refer to drawings for individual equipment sequence of operation and required sensors.

G. CAPACITIES AND CHARACTERISTICS

1. Refer to drawings for equipment capacity requirements.
PART 3 - EXECUTION

3.1 EXAMINATION
 A. Examine areas to receive propeller unit heaters for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
 B. Examine roughing-in for electrical connections to verify actual locations before unit-heater installation.
 C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION
 A. Install propeller unit heaters to comply with NFPA 90A.
 B. Install propeller unit heaters level and plumb.
 C. Suspend propeller unit heaters from structure with all-thread hanger rods and elastomeric hangers. Hanger rods and attachments to structure are specified in Section 230529 "Hangers and Supports for HVAC Piping and Equipment." Vibration hangers are specified in Section 230548 "Vibration Control for Mechanical Equipment."
 D. Install wall-mounted thermostats and switch controls in electrical outlet boxes at heights to match lighting controls. Verify location of thermostats and other exposed control sensors with Drawings and room details before installation.

3.3 CONNECTIONS
 A. Comply with safety requirements in UL 1995.
 B. Ground equipment according to Section 260526 "Grounding and Bonding for Electrical Systems."
 C. Connect wiring according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

3.4 FIELD QUALITY CONTROL
 A. Perform the following tests and inspections with the assistance of a factory-authorized service representative:
 1. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
 2. Operate electric heating elements through each stage to verify proper operation and electrical connections.
 3. Test and adjust controls and safety devices. Replace damaged and malfunctioning controls and equipment.
B. Units will be considered defective if they do not pass tests and inspections.

C. Prepare test and inspection reports.

3.5 ADJUSTING

A. Adjust initial temperature set points.

B. Occupancy Adjustments: When requested within 12 months of date of Substantial Completion, provide on-site assistance in adjusting system to suit actual occupied conditions. Provide up to two visits to Project during other-than-normal occupancy hours for this purpose.

3.6 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain propeller unit heaters.

B. Contractor shall be responsible for demonstrating the system sequence of operation as described on the contract drawings. Demonstration shall be in the presence of the owner or owner's representative. A minimum of 7 days’ notice shall be provided in advance of the demonstrations.

END OF SECTION
SECTION 260513

MEDIUM-VOLTAGE CABLES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section includes cables and related cable splices, terminations, and accessories for medium-voltage (2001 to 35,000 V) electrical distribution systems.

1.3 DEFINITIONS
 A. Jacket: A continuous nonmetallic outer covering for conductors or cables.
 C. Sheath: A continuous metallic covering for conductors or cables.

1.4 ACTION SUBMITTALS
 A. Product Data: For each type of cable. Include splices and terminations for cables and cable accessories.

1.5 INFORMATIONAL SUBMITTALS
 A. Qualification Data: For Installer.
 B. Material Certificates: For each type of cable and accessory.
 C. Source quality-control reports.
 D. Field quality-control reports.

1.6 QUALITY ASSURANCE
 A. Installer: Engage a cable splicer, trained and certified by splice material manufacturer, to install, splice, and terminate medium-voltage cable.
 B. Testing Agency Qualifications: Member company of NETA or an NRTL.
 1. Testing Agency's Field Supervisor: Certified by NETA to supervise on-site testing.
1.7 FIELD CONDITIONS

A. Interruption of Existing Electric Service: Do not interrupt electric service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary electric service according to requirements indicated:

1. Notify Owner no fewer than five days in advance of proposed interruption of electric service.
2. Do not proceed with interruption of electric service without Owner's written permission.

PART 2 - PRODUCTS

2.1 SYSTEM DESCRIPTION

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. Comply with IEEE C2 and NFPA 70.

C. Source Limitations: Obtain cables and accessories from single source from single manufacturer.

2.2 CABLES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Aetna Insulated Wire, Inc.
2. Okonite Company (The).
3. Prysmian Power Cables and Systems USA, LLC.

B. Cable Type: Type MV 105.

C. Conductor Insulation: Ethylene-propylene rubber.

1. Voltage Rating: 15 kV.
2. Insulation Thickness: 133 percent insulation level.

D. Conductor: Copper.

E. Comply with UL 1072, AEIC CS8, ICEA S-93-639/NEMA WC 74, and ICEA S-97-682.

F. Conductor Stranding: Concentric lay, Class B.
G. Shielding: Copper tape, helically applied over semiconducting insulation shield.

1. Circuit Identification: Color-coded tape (black, red, blue) under the metallic shielding.

H. Cable Jacket: Sunlight-resistant PVC.

2.3 CONNECTORS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. 3M.
3. Raychem; a brand of nVent.
4. Thomas & Betts Corporation; A Member of the ABB Group.

B. Comply with ANSI C119.4 for connectors between aluminum conductors or for connections between aluminum to copper conductors.

C. Copper-Conductor Connectors: Copper barrel crimped connectors.

2.4 SOLID TERMINATIONS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. 3M.
3. Raychem; a brand of nVent.
4. Thomas & Betts Corporation; A Member of the ABB Group.

B. Shielded-Cable Terminations: Comply with the following classes of IEEE 48. Insulation class shall be equivalent to that of cable. Include shield ground strap for shielded cable terminations.

1. Class I Terminations: Modular type, furnished as a kit, with stress-relief tube; multiple, molded-silicone-rubber, insulator modules; shield ground strap; and compression-type connector.
2. Class I Terminations: Heat-shrink type with heat-shrink inner stress control and outer nontracking tubes; multiple, molded, nontracking skirt modules; and compression-type connector.
3. Class I Terminations: Modular type, furnished as a kit, with stress-relief shield terminator; multiple-wet-process, porcelain, insulator modules; shield ground strap; and compression-type connector.
2.5 SEPARABLE INSULATED CONNECTORS

A. Description: Modular system, complying with IEEE 386, with disconnecting, single-pole, cable terminators and with matching, stationary, plug-in, dead-front terminals designed for cable voltage and for sealing against moisture.

B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. 3M.
3. Raychem; a brand of nVent.
4. Thomas & Betts Corporation; A Member of the ABB Group.

C. Terminations at Distribution Points: Modular type, consisting of terminators installed on cables and modular, dead-front, terminal junctions for interconnecting cables.

D. Load-Break Cable Terminators: Elbow-type units with 200-A-load make/break and continuous-current rating; coordinated with insulation diameter, conductor size, and material of cable being terminated. Include test point on terminator body that is capacitance coupled.

E. Tool Set: Shotgun hot stick with energized terminal indicator, fault-indicator test tool, and carrying case.

2.6 SPLICE KITS

A. Description: For connecting medium voltage cables; type as recommended by cable or splicing kit manufacturer for the application.

B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. 3M.
3. Raychem; a brand of nVent.
4. Thomas & Betts Corporation; A Member of the ABB Group.

C. Standard: Comply with IEEE 404.

D. Splicing Products: As recommended, in writing, by splicing kit manufacturer for specific sizes, materials, ratings, and configurations of cable conductors. Include all components required for complete splice, with detailed instructions.

1. Combination tape and cold-shrink-rubber sleeve kit with rejacketing by cast-epoxy-resin encasement or other waterproof, abrasion-resistant material.
4. Premolded, EPDM splicing body kit with cable joint sealed by interference fit of mating parts and cable.
5. Separable multiway splice system with all components for the required splice configuration.

2.7 MEDIUM-VOLTAGE TAPES

A. Description: Electrical grade, insulating tape rated for medium voltage application.

B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. 3M.
 3. Raychem; a brand of nVent.
 4. Thomas & Betts Corporation; A Member of the ABB Group.

C. Ethylene/propylene rubber-based, 30-mil splicing tape, rated for 130 deg C operation. Minimum 3/4 inch wide.

2.8 ARC-PROOFING MATERIALS

A. Description: Fire retardant, providing arc flash protection.

B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. 3M.
 3. Raychem; a brand of nVent.
 4. Thomas & Betts Corporation; A Member of the ABB Group.

C. Tape for First Course on Metal Objects: 10-mil-thick, corrosion-protective, moisture-resistant, PVC pipe-wrapping tape.

D. Arc-Proofing Tape: Fireproof tape, flexible, conformable, intumescent to 0.3 inch thick, and compatible with cable jacket.

E. Glass-Cloth Tape: Pressure-sensitive adhesive type, 1 inch wide.

2.9 SOURCE QUALITY CONTROL

A. Test and inspect cables according to ICEA S-97-682 before shipping.
PART 3 - EXECUTION

3.1 INSTALLATION

A. Install cables according to IEEE 576.

B. Proof conduits prior to conductor installation by passing a wire brush mandrel and then a rubber duct swab through the conduit. Separate the wire brush and the rubber swab by 48 to 72 inches on the pull rope.

1. Wire Brush Mandrel: Consists of a length of brush approximately the size of the conduit inner diameter with stiff steel bristles and an eye on each end for attaching the pull ropes. If an obstruction is felt, pull the brush back and forth repeatedly to break up the obstruction.

2. Rubber Duct Swab: Consists of a series of rubber discs approximately the size of the conduit inner diameter on a length of steel cable with an eye on each end for attaching the pull ropes. Pull the rubber duct swab through the duct to extract loose debris from the duct.

C. Pull Conductors: Do not exceed manufacturer's recommended maximum pulling tensions and sidewall pressure values.

1. Where necessary, use manufacturer-approved pulling compound or lubricant that does not deteriorate conductor or insulation.

2. Use pulling means, including fish tape, cable, rope, and basket-weave cable grips, that do not damage cables and raceways. Do not use rope hitches for pulling attachment to cable.

3. Use pull-in guides, cable feeders, and draw-in protectors as required to protect cables during installation.

4. Do not pull cables with ends unsealed. Seal cable ends with rubber tape.

D. Install exposed cables parallel and perpendicular to surfaces of exposed structural members and follow surface contours where possible.

E. Support cables according to Section 260529 "Hangers and Supports for Electrical Systems."

F. In manholes, handholes, pull boxes, junction boxes, and cable vaults, train cables around walls by the longest route from entry to exit; support cables at intervals adequate to prevent sag.

G. Install sufficient cable length to remove cable ends under pulling grips. Remove length of conductor damaged during pulling.

H. Install cable splices at pull points and elsewhere as indicated; use standard kits.

I. Install terminations at ends of conductors, and seal multiconductor cable ends with standard kits.
J. Install separable insulated-connector components as follows:

1. Protective Cap: At each terminal junction, with one on each terminal to which no feeder is indicated to be connected.
2. Portable Feed-Through Accessory: At each terminal junction, with one on each terminal.
3. Standoff Insulator: At each terminal junction, with one on each terminal.

K. Arc Proofing: Unless otherwise indicated, arc proof medium-voltage cable at locations not protected by conduit, cable tray, direct burial, or termination materials. In addition to arc-proofing tape manufacturer's written instructions, apply arc proofing as follows:

1. Clean cable sheath.
2. Wrap metallic cable components with 10-mil pipe-wrapping tape.
3. Smooth surface contours with electrical insulation putty.
4. Apply arc-proofing tape in one half-lapped layer with coated side toward cable.
5. Band arc-proofing tape with two layers of 1-inch-wide half-lapped, adhesive, glass-cloth tape at each end of the arc-proof tape.

L. Seal around cables passing through fire-rated elements according to Section 078413 "Penetration Firestopping."

M. Identify cables according to Section 260553 "Identification for Electrical Systems." Identify phase and circuit number of each conductor at each splice, termination, pull point, and junction box. Arrange identification so that it is unnecessary to move the cable or conductor to read the identification.

3.2 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

B. Perform the following tests and inspections:

1. Perform each visual and mechanical inspection and electrical test stated in NETA ATS. Certify compliance with test parameters.
2. After installing medium-voltage cables and before electrical circuitry has been energized, test for compliance with requirements.
3. Perform Partial Discharge test of each new conductor according to NETA ATS, Ch. 7.3.3 and to test equipment manufacturer's recommendations.
4. Perform Dissipation Factor test of each new conductor according to NETA ATS, Ch. 7.3.3 and to test equipment manufacturer's recommendations.

C. Medium-voltage cables will be considered defective if they do not pass tests and inspections.

D. Prepare test and inspection reports.

END OF SECTION
THIS PAGE INTENTIONALLY LEFT BLANK
SECTION 260519
LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Copper building wire rated 600 V or less.
2. Fire-alarm wire and cable.
3. Connectors, splices, and terminations rated 600 V and less.

B. Related Requirements:

1. Section 260513 "Medium-Voltage Cables" for single-conductor and multiconductor cables, cable splices, and terminations for electrical distribution systems with 601 to 35,000 V.

1.3 DEFINITIONS

A. RoHS: Restriction of Hazardous Substances.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. Product Schedule: Indicate type, use, location, and termination locations.

1.5 INFORMATIONAL SUBMITTALS

A. Qualification Data: For testing agency.

B. Field quality-control reports.

1.6 QUALITY ASSURANCE

A. Testing Agency Qualifications: Member company of NETA.

1. Testing Agency's Field Supervisor: Certified by NETA to supervise on-site testing.
PART 2 - PRODUCTS

2.1 COPPER BUILDING WIRE

A. Description: Flexible, insulated and uninsulated, drawn copper current-carrying conductor with an overall insulation layer or jacket, or both, rated 600 V or less.

B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Alpha Wire Company.
2. Cerro Wire LLC.
4. Okonite Company (The).
5. Southwire Company.

C. Standards:

1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and use.
2. RoHS compliant.
3. Conductor and Cable Marking: Comply with wire and cable marking according to UL's "Wire and Cable Marking and Application Guide."

D. Conductors: Copper, complying with ASTM B3 for bare annealed copper and with ASTM B8 for stranded conductors.

E. Conductor Insulation:

1. Type THWN-2: Comply with UL 83.
2. Type XHHW-2: Comply with UL 44.

2.2 FIRE-ALARM WIRE AND CABLE

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Allied Wire & Cable Inc.
2. Draka Cableteq USA; a Prysmian Group company.
3. Genesis Cable Products; Honeywell International, Inc.
4. West Penn Wire.

B. General Wire and Cable Requirements: NRTL listed and labeled as complying with NFPA 70, Article 760.

C. Signaling Line Circuits: Twisted, shielded pair, No. 18 AWG.

1. Circuit Integrity Cable: Twisted shielded pair, NFPA 70, Article 760, Classification CI, for power-limited fire-alarm signal service Type FPL. NRTL
listed and labeled as complying with UL 1424 and UL 2196 for a two-hour rating.

D. Non-Power-Limited Circuits: Solid-copper conductors with 600-V rated, 75 deg C, color-coded insulation, and complying with requirements in UL 2196 for a two-hour rating.

1. Low-Voltage Circuits: No. 16 AWG, minimum, in pathway.
2. Line-Voltage Circuits: No. 12 AWG, minimum, in pathway.

2.3 CONNECTORS AND SPLICES

A. Description: Factory-fabricated connectors, splices, and lugs of size, ampacity rating, material, type, and class for application and service indicated; listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and use.

B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. 3M Electrical Products.
2. AFC Cable Systems; a part of Atkore International.
4. Ideal Industries, Inc.
5. O-Z/Gedney; a brand of Emerson Industrial Automation.
6. Thomas & Betts Corporation; A Member of the ABB Group.

C. Jacketed Cable Connectors: For steel and aluminum jacketed cables, zinc die-cast with set screws, designed to connect conductors specified in this Section.

D. Lugs: One piece, seamless, designed to terminate conductors specified in this Section.

1. Material: Copper.
2. Type: Two hole with standard barrels.
3. Termination: Compression.

PART 3 - EXECUTION

3.1 CONDUCTOR MATERIAL APPLICATIONS

A. Feeders: Copper; solid for No. 10 AWG and smaller; stranded for No. 8 AWG and larger.

B. Branch Circuits: Copper. Solid for No. 10 AWG and smaller; stranded for No. 8 AWG and larger.

3.2 CONDUCTOR INSULATION AND MULTICONDUCTOR CABLE APPLICATIONS AND WIRING METHODS

A. Service Entrance: Type XHHW-2, single conductors in raceway.

B. Exposed Feeders: Type THHN/THWN-2, single conductors in raceway.

C. Feeders Concealed in Ceilings, Walls, Partitions, and Crawlspace: Type THHN/THWN-2, single conductors in raceway.

D. Feeders Concealed in Concrete, below Slabs-on-Grade, and Underground: Type XHHW-2, single conductors in raceway.

E. Exposed Branch Circuits, Including in Crawlspace: Type THHN/THWN-2, single conductors in raceway.

F. Branch Circuits Concealed in Ceilings, Walls, and Partitions: Type THHN/THWN-2, single conductors in raceway.

G. Branch Circuits Concealed in Concrete, below Slabs-on-Grade, and Underground: Type XHHW-2, single conductors in raceway.

H. Cord Drops and Portable Appliance Connections: Type SO, hard service cord with stainless-steel, wire-mesh, strain relief device at terminations to suit application.

3.3 INSTALLATION OF CONDUCTORS AND CABLES

A. Conceal cables in finished walls, ceilings, and floors unless otherwise indicated.

B. Complete raceway installation between conductor and cable termination points according to Section 260533 "Raceways and Boxes for Electrical Systems" prior to pulling conductors and cables.

C. Use manufacturer-approved pulling compound or lubricant where necessary; compound used must not deteriorate conductor or insulation. Do not exceed manufacturer's recommended maximum pulling tensions and sidewall pressure values.

D. Use pulling means, including fish tape, cable, rope, and basket-weave wire/cable grips, that will not damage cables or raceway.

E. Install exposed cables parallel and perpendicular to surfaces of exposed structural members, and follow surface contours where possible.

F. Support cables according to Section 260529 "Hangers and Supports for Electrical Systems."

3.4 INSTALLATION OF FIRE-ALARM WIRING

A. Comply with NECA 1 and NFPA 72.
B. Wiring Method: Install wiring in metal pathway according to Section 260529 "Hangers and Supports for Electrical Systems."

1. Fire-alarm circuits and equipment control wiring associated with fire-alarm system shall be installed in a dedicated pathway system. This system shall not be used for any other wire or cable.

C. Wiring within Enclosures: Separate power-limited and non-power-limited conductors as recommended by manufacturer. Install conductors parallel with or at right angles to sides and back of the enclosure. Bundle, lace, and train conductors to terminal points with no excess. Connect conductors that are terminated, spliced, or interrupted in any enclosure associated with fire-alarm system to terminal blocks. Mark each terminal according to system's wiring diagrams. Make all connections with approved crimp-on terminal spade lugs, pressure-type terminal blocks, or plug connectors.

D. Cable Taps: Use numbered terminal strips in junction, pull, and outlet boxes; cabinets; or equipment enclosures where circuit connections are made.

E. Color-Coding: Color-code fire-alarm conductors differently from the normal building power wiring. Use one color-code for alarm circuit wiring and another for supervisory circuits. Color-code audible alarm-indicating circuits differently from alarm-initiating circuits. Use different colors for visible alarm-indicating devices. Paint fire-alarm system junction boxes and covers red.

F. Risers: Install at least two vertical cable risers to serve the fire-alarm system. Separate risers in close proximity to each other with a minimum one-hour-rated wall, so the loss of one riser does not prevent receipt or transmission of signals from other floors or zones.

G. Wiring to Remote Alarm Transmitting Device: 1-inch conduit between the fire-alarm control panel and the transmitter. Install number of conductors and electrical supervision for connecting wiring as needed to suit monitoring function.

3.5 CONNECTIONS

A. Tighten electrical connectors and terminals according to manufacturer's published torque-tightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A-486B.

B. Make splices, terminations, and taps that are compatible with conductor material.

C. Wiring at Outlets: Install conductor at each outlet, with at least 6 inches of slack.

D. Comply with requirements in Section 284621.11 "Addressable Fire-Alarm System" for connecting, terminating, and identifying wires and cables.

3.6 IDENTIFICATION

A. Identify and color-code conductors and cables according to Section 260553 "Identification for Electrical Systems."
3.7 FIRESTOPPING

A. Apply firestopping to electrical penetrations of fire-rated floor and wall assemblies to restore original fire-resistance rating of assembly according to Section 078413 "Penetration Firestopping."

3.8 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

B. Perform tests and inspections.

1. After installing conductors and cables and before electrical circuitry has been energized, test service entrance and feeder conductors for compliance with requirements.

2. Perform each of the following visual and electrical tests:

 a. Inspect exposed sections of conductor and cable for physical damage and correct connection according to the single-line diagram.

 b. Test bolted connections for high resistance using one of the following:

 1) A low-resistance ohmmeter.
 2) Calibrated torque wrench.
 3) Thermographic survey.

 c. Inspect compression-applied connectors for correct cable match and indentation.

 d. Inspect for correct identification.

 e. Inspect cable jacket and condition.

 f. Insulation-resistance test on each conductor for ground and adjacent conductors. Apply a potential of 500-V dc for 300-V rated cable and 1000-V dc for 600-V rated cable for a one-minute duration.

 g. Continuity test on each conductor and cable.

 h. Uniform resistance of parallel conductors.

3. Initial Infrared Scanning: After Substantial Completion, but before Final Acceptance, perform an infrared scan of each splice in conductors No. 3 AWG and larger. Remove box and equipment covers so splices are accessible to portable scanner. Correct deficiencies determined during the scan.

 a. Instrument: Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.

 b. Record of Infrared Scanning: Prepare a certified report that identifies switches checked and that describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.
4. Follow-up Infrared Scanning: Perform an additional follow-up infrared scan of each switch 11 months after date of Substantial Completion.

C. Cables will be considered defective if they do not pass tests and inspections.

D. Prepare test and inspection reports to record the following:

1. Procedures used.
2. Results that comply with requirements.
3. Results that do not comply with requirements, and corrective action taken to achieve compliance with requirements.

END OF SECTION
SECTION 260526
GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section includes grounding and bonding systems and equipment.
B. Section includes grounding and bonding systems and equipment, plus the following special applications:
 1. Underground distribution grounding.
 2. Ground bonding common with lightning protection system.

1.3 ACTION SUBMITTALS
A. Product Data: For each type of product indicated.

1.4 INFORMATIONAL SUBMITTALS
A. Qualification Data: For testing agency and testing agency's field supervisor.
B. Field quality-control reports.

1.5 CLOSEOUT SUBMITTALS
A. Operation and Maintenance Data: For grounding to include in emergency, operation, and maintenance manuals.
 1. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:
 a. Plans showing as-built, dimensioned locations of system described in "Field Quality Control" Article, including the following:
 1) Ground rods.
 2) Ground rings.
 3) Grounding arrangements and connections for separately derived systems.
1.6 QUALITY ASSURANCE

A. Testing Agency Qualifications: Certified by NETA.

PART 2 - PRODUCTS

2.1 SYSTEM DESCRIPTION

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. Comply with UL 467 for grounding and bonding materials and equipment.

2.2 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Burndy; Part of Hubbell Electrical Systems.
2. ERICO; a brand of nVent.
3. Harger Lightning & Grounding.
4. Thomas & Betts Corporation; A Member of the ABB Group.

2.3 CONDUCTORS

A. Insulated Conductors: Copper wire or cable insulated for 600 V unless otherwise required by applicable Code or authorities having jurisdiction.

B. Bare Copper Conductors:

4. Bonding Cable: 28 kcmil, 14 strands of No. 17 AWG conductor, 1/4 inch in diameter.
5. Bonding Conductor: No. 4 or No. 6 AWG, stranded conductor.
6. Bonding Jumper: Copper tape, braided conductors terminated with copper ferrules; 1-5/8 inches wide and 1/16 inch thick.
7. Tinned Bonding Jumper: Tinned-copper tape, braided conductors terminated with copper ferrules; 1-5/8 inches wide and 1/16 inch thick.

C. Grounding Bus: Predrilled rectangular bars of annealed copper, 1/4 by 4 inches in cross section, with 9/32-inch holes spaced 1-1/8 inches apart. Stand-off insulators for mounting shall comply with UL 891 for use in switchboards, 600 V and shall be Lexan or PVC, impulse tested at 5000 V.
2.4 CONNECTORS

A. Listed and labeled by an NRTL acceptable to authorities having jurisdiction for applications in which used and for specific types, sizes, and combinations of conductors and other items connected.

B. Welded Connectors: Exothermic-welding kits of types recommended by kit manufacturer for materials being joined and installation conditions.

C. Bus-Bar Connectors: Mechanical type, cast silicon bronze, solderless compression-type wire terminals, and long-barrel, two-bolt connection to ground bus bar.

D. Beam Clamps: Mechanical type, terminal, ground wire access from four directions, with dual, tin-plated or silicon bronze bolts.

E. Cable-to-Cable Connectors: Compression type, copper or copper alloy.

F. Cable Tray Ground Clamp: Mechanical type, zinc-plated malleable iron.

G. Conduit Hubs: Mechanical type, terminal with threaded hub.

H. Ground Rod Clamps: Mechanical type, copper or copper alloy, terminal with hex head bolt.

I. Straps: Solid copper, [cast-bronze clamp] [copper lugs]. Rated for 600 A.

J. U-Bolt Clamps: Mechanical type, copper or copper alloy, terminal listed for direct burial.

K. Water Pipe Clamps:
 1. Mechanical type, two pieces with stainless-steel bolts.
 b. Listed for direct burial.
 2. U-bolt type with malleable-iron clamp and copper ground connector.

2.5 GROUNDING ELECTRODES

A. Ground Rods: Copper-clad steel; 3/4 inch by 10 feet.

PART 3 - EXECUTION

3.1 APPLICATIONS

A. Conductors: Install solid conductor for No. 8 AWG and smaller, and stranded conductors for No. 6 AWG and larger unless otherwise indicated.
B. Underground Grounding Conductors: Install bare copper conductor, No. 2/0 AWG minimum.
 1. Bury at least 30 inches below grade.
 2. Duct-Bank Grounding Conductor: Bury 12 inches above duct bank when indicated as part of duct-bank installation.

C. Grounding Conductors: Green-colored insulation with continuous yellow stripe.

D. Grounding Bus: Install in electrical equipment rooms, in rooms housing service equipment, and elsewhere as indicated.
 1. Install bus horizontally, on insulated spacers 2 inches minimum from wall, 6 inches above finished floor unless otherwise indicated.
 2. Where indicated on both sides of doorways, route bus up to top of door frame, across top of doorway, and down; connect to horizontal bus.

E. Conductor Terminations and Connections:
 1. Pipe and Equipment Grounding Conductor Terminations: Bolted connectors.
 2. Underground Connections: Welded connectors except at test wells and as otherwise indicated.
 3. Connections to Ground Rods at Test Wells: Bolted connectors.

3.2 GROUNDING AT THE SERVICE

A. Equipment grounding conductors and grounding electrode conductors shall be connected to the ground bus. Install a main bonding jumper between the neutral and ground buses.

3.3 GROUNDING SEPARATELY DERIVED SYSTEMS

A. Generator: Install grounding electrode(s) at the generator location. The electrode shall be connected to the equipment grounding conductor and to the frame of the generator.

3.4 GROUNDING UNDERGROUND DISTRIBUTION SYSTEM COMPONENTS

A. Comply with IEEE C2 grounding requirements.

B. Grounding Manholes and Handholes: Install a driven ground rod through manhole or handhole floor, close to wall, and set rod depth so 4 inches will extend above finished floor. If necessary, install ground rod before manhole is placed and provide No. 1/0 AWG bare, tinned-copper conductor from ground rod into manhole through a waterproof sleeve in manhole wall. Protect ground rods passing through concrete floor with a double wrapping of pressure-sensitive insulating tape or heat-shrunk insulating sleeve from 2 inches above to 6 inches below concrete. Seal floor opening with waterproof, nonshrink grout.
C. Grounding Connections to Manhole Components: Bond exposed-metal parts such as inserts, cable racks, pulling irons, ladders, and cable shields within each manhole or handhole, to ground rod or grounding conductor. Make connections with No. 4 AWG minimum, stranded, hard-drawn copper bonding conductor. Train conductors level or plumb around corners and fasten to manhole walls. Connect to cable armor and cable shields according to written instructions by manufacturer of splicing and termination kits.

D. Pad-Mounted Transformers and Switches: Install two ground rods and ground ring around the pad. Ground pad-mounted equipment and noncurrent-carrying metal items associated with substations by connecting them to underground cable and grounding electrodes. Install tinned-copper conductor not less than No. 2 AWG for ground ring and for taps to equipment grounding terminals. Bury ground ring not less than 6 inches from the foundation.

3.5 EQUIPMENT GROUNDING

A. Install insulated equipment grounding conductors with all feeders and branch circuits.

B. Air-Duct Equipment Circuits: Install insulated equipment grounding conductor to duct-mounted electrical devices operating at 120 V and more, including air cleaners, heaters, dampers, humidifiers, and other duct electrical equipment. Bond conductor to each unit and to air duct and connected metallic piping.

C. Water Heater, Heat-Tracing, and Antifrost Heating Cables: Install a separate insulated equipment grounding conductor to each electric water heater and heat-tracing cable. Bond conductor to heater units, piping, connected equipment, and components.

D. Poles Supporting Outdoor Lighting Fixtures: Install grounding electrode and a separate insulated equipment grounding conductor in addition to grounding conductor installed with branch-circuit conductors.

E. Metallic Fences: Comply with requirements of IEEE C2.

1. Grounding Conductor: Bare copper, not less than No. 8 AWG.
2. Gates: Shall be bonded to the grounding conductor with a flexible bonding jumper.
3. Barbed Wire: Strands shall be bonded to the grounding conductor.

3.6 FENCE GROUNDING

A. Fence Grounding: Install at maximum intervals of [1500 feet] except as follows:

1. Fences within 100 Feet of Buildings, Structures, Walkways, and Roadways: Ground at maximum intervals of [750 feet].

a. Gates and Other Fence Openings: Ground fence on each side of opening.
1) Bond metal gates to gate posts.
2) Bond across openings, with and without gates, except at openings indicated as intentional fence discontinuities. Use No. 2 AWG wire and bury it at least 18 inches below finished grade.

B. Protection at Crossings of Overhead Electrical Power Lines: Ground fence at location of crossing and at a maximum distance of 150 feet on each side of crossing.

C. Fences Enclosing Electrical Power Distribution Equipment: Ground as required by IEEE C2 unless otherwise indicated.

D. Grounding Method: At each grounding location, drive a grounding rod vertically until the top is 6 inches below finished grade. Connect rod to fence with No. 6 AWG conductor. Connect conductor to each fence component at grounding location.

E. Bonding Method for Gates: Connect bonding jumper between gate post and gate frame.

F. Bonding to Lightning-Protection System: If fence terminates at lightning-protected building or structure, ground the fence and bond the fence grounding conductor to lightning-protection down conductor or lightning-protection grounding conductor, complying with NFPA 780.

3.7 INSTALLATION

A. Grounding Conductors: Route along shortest and straightest paths possible unless otherwise indicated or required by Code. Avoid obstructing access or placing conductors where they may be subjected to strain, impact, or damage.

B. Ground Bonding Common with Lightning Protection System: Comply with NFPA 780 and UL 96 when interconnecting with lightning protection system. Bond electrical power system ground directly to lightning protection system grounding conductor at closest point to electrical service grounding electrode. Use bonding conductor sized same as system grounding electrode conductor, and install in conduit.

C. Ground Rods: Drive rods until tops are 2 inches below finished floor or final grade unless otherwise indicated.

1. Interconnect ground rods with grounding electrode conductor below grade and as otherwise indicated. Make connections without exposing steel or damaging coating if any.
2. Use exothermic welds for all below-grade connections.
3. For grounding electrode system, install at least three rods spaced at least one-rod length from each other and located at least the same distance from other grounding electrodes, and connect to the service grounding electrode conductor.

D. Bonding Straps and Jumpers: Install in locations accessible for inspection and maintenance except where routed through short lengths of conduit.
1. Bonding to Structure: Bond straps directly to basic structure, taking care not to penetrate any adjacent parts.
2. Bonding to Equipment Mounted on Vibration Isolation Hangers and Supports: Install bonding so vibration is not transmitted to rigidly mounted equipment.
3. Use exothermic-welded connectors for outdoor locations; if a disconnect-type connection is required, use a bolted clamp.

E. Grounding and Bonding for Piping:

1. Metal Water Service Pipe: Install insulated copper grounding conductors, in conduit, from building's main service equipment, or grounding bus, to main metal water service entrances to building. Connect grounding conductors to main metal water service pipes; use a bolted clamp connector or bolt a lug-type connector to a pipe flange by using one of the lug bolts of the flange. Where a dielectric main water fitting is installed, connect grounding conductor on street side of fitting. Bond metal grounding conductor conduit or sleeve to conductor at each end.
2. Water Meter Piping: Use braided-type bonding jumpers to electrically bypass water meters. Connect to pipe with a bolted connector.
3. Bond each aboveground portion of gas piping system downstream from equipment shutoff valve.

F. Bonding Interior Metal Ducts: Bond metal air ducts to equipment grounding conductors of associated fans, blowers, electric heaters, and air cleaners. Install bonding jumper to bond across flexible duct connections to achieve continuity.

G. Grounding for Steel Building Structure: Install a driven ground rod at base of each corner column and at intermediate exterior columns at distances not more than 60 feet apart.

H. Connections: Make connections so possibility of galvanic action or electrolysis is minimized. Select connectors, connection hardware, conductors, and connection methods so metals in direct contact are galvanically compatible.

1. Use electroplated or hot-tin-coated materials to ensure high conductivity and to make contact points closer in order of galvanic series.
2. Make connections with clean, bare metal at points of contact.
5. Coat and seal connections having dissimilar metals with inert material to prevent future penetration of moisture to contact surfaces.

3.8 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
B. Perform tests and inspections.
C. Tests and Inspections:

1. After installing grounding system but before permanent electrical circuits have been energized, test for compliance with requirements.
2. Inspect physical and mechanical condition. Verify tightness of accessible, bolted, electrical connections with a calibrated torque wrench according to manufacturer’s written instructions.
3. Test completed grounding system at each location where a maximum ground-resistance level is specified, at service disconnect enclosure grounding terminal.
 a. Measure ground resistance no fewer than two full days after last trace of precipitation and without soil being moistened by any means other than natural drainage or seepage and without chemical treatment or other artificial means of reducing natural ground resistance.
 b. Perform tests by fall-of-potential method according to IEEE 81.

D. Grounding system will be considered defective if it does not pass tests and inspections.

E. Prepare test and inspection reports.

F. Report measured ground resistances that exceed the following values:

1. Power and Lighting Equipment or System with Capacity of 500 kVA and Less: 10 ohms.

G. Excessive Ground Resistance: If resistance to ground exceeds specified values, notify Architect promptly and include recommendations to reduce ground resistance.

END OF SECTION
SECTION 260529

HANGERS AND SUPPORTS FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Steel slotted support systems.
2. Conduit and cable support devices.
3. Support for conductors in vertical conduit.
4. Structural steel for fabricated supports and restraints.
5. Mounting, anchoring, and attachment components, including powder-actuated fasteners, mechanical expansion anchors, concrete inserts, clamps, through bolts, toggle bolts, and hanger rods.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for the following:

 a. Slotted support systems, hardware, and accessories.
 b. Clamps.
 c. Hangers.
 d. Sockets.
 e. Eye nuts.
 f. Fasteners.
 g. Anchors.
 h. Saddles.
 i. Brackets.

2. Include rated capacities and furnished specialties and accessories.
3. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
4. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
5. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.
B. Welding certificates.

1.4 QUALITY ASSURANCE

A. Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M.

PART 2 - PRODUCTS

2.1 SUPPORT, ANCHORAGE, AND ATTACHMENT COMPONENTS

A. Steel Slotted Support Systems: Preformed steel channels and angles with minimum 13/32-inch-diameter holes at a maximum of 8 inches o.c. in at least one surface.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Allied Tube & Conduit; a part of Atkore International.
 b. B-line, an Eaton business.
 c. Thomas & Betts Corporation; A Member of the ABB Group.
 d. Unistrut; Part of Atkore International.

2. Standard: Comply with MFMA-4 factory-fabricated components for field assembly.

5. Metallic Coatings: Hot-dip galvanized after fabrication and applied according to MFMA-4.

B. Conduit and Cable Support Devices: Steel hangers, clamps, and associated fittings, designed for types and sizes of raceway or cable to be supported.

C. Support for Conductors in Vertical Conduit: Factory-fabricated assembly consisting of threaded body and insulating wedging plug or plugs for nonarmored electrical conductors or cables in riser conduits. Plugs shall have number, size, and shape of conductor gripping pieces as required to suit individual conductors or cables supported. Body shall be made of malleable iron.

D. Structural Steel for Fabricated Supports and Restraints: ASTM A36/A36M steel plates, shapes, and bars; black and galvanized.

E. Mounting, Anchoring, and Attachment Components: Items for fastening electrical items or their supports to building surfaces include the following:

1. Mechanical-Expansion Anchors: Insert-wedge-type, [zinc-coated] [stainless] steel, for use in hardened portland cement concrete, with tension, shear, and pullout capacities appropriate for supported loads and building materials where used.
2.2 FABRICATED METAL EQUIPMENT SUPPORT ASSEMBLIES

A. Description: Welded or bolted structural-steel shapes, shop or field fabricated to fit dimensions of supported equipment.

B. Materials: Comply with requirements in Section 055000 "Metal Fabrications" for steel shapes and plates.

PART 3 - EXECUTION

3.1 APPLICATION

A. Comply with the following standards for application and installation requirements of hangers and supports, except where requirements on Drawings or in this Section are stricter:

1. NECA 1.
2. NECA 101
3. NECA 105.

B. Comply with requirements in Section 078413 "Penetration Firestopping" for firestopping materials and installation for penetrations through fire-rated walls, ceilings, and assemblies.

C. Comply with requirements for raceways and boxes specified in Section 260533 "Raceways and Boxes for Electrical Systems."

D. Maximum Support Spacing and Minimum Hanger Rod Size for Raceways: Space supports for EMT, IMC, and RMC as scheduled in NECA 1, where its Table 1 lists maximum spacings that are less than those stated in NFPA 70. Minimum rod size shall be 1/4 inch in diameter.
E. Multiple Raceways or Cables: Install trapeze-type supports fabricated with steel slotted support system, sized so capacity can be increased by at least 25 percent in future without exceeding specified design load limits.

1. Secure raceways and cables to these supports with two-bolt conduit clamps.

3.2 SUPPORT INSTALLATION

A. Comply with NECA 1 and NECA 101 for installation requirements except as specified in this article.

B. Strength of Support Assemblies: Where not indicated, select sizes of components so strength will be adequate to carry present and future static loads within specified loading limits. Minimum static design load used for strength determination shall be weight of supported components plus 200 lb.

C. Mounting and Anchorage of Surface-Mounted Equipment and Components: Anchor and fasten electrical items and their supports to building structural elements by the following methods unless otherwise indicated by code:

1. To Wood: Fasten with lag screws or through bolts.
2. To New Concrete: Bolt to concrete inserts.
3. To Masonry: Approved toggle-type bolts on hollow masonry units and expansion anchor fasteners on solid masonry units.
4. To Existing Concrete: Expansion anchor fasteners.
5. To Steel: Welded threaded studs complying with AWS D1.1/D1.1M, with lock washers and nuts.
6. To Light Steel: Sheet metal screws.
7. Items Mounted on Hollow Walls and Nonstructural Building Surfaces: Mount cabinets, panelboards, disconnect switches, control enclosures, pull and junction boxes, transformers, and other devices on slotted-channel racks attached to substrate.

D. Drill holes for expansion anchors in concrete at locations and to depths that avoid the need for reinforcing bars.

3.3 CONCRETE BASES

A. Construct concrete bases of dimensions indicated, but not less than 4 inches larger in both directions than supported unit, and so anchors will be a minimum of 10 bolt diameters from edge of the base.

B. Use 3000-psi, 28-day compressive-strength concrete. Concrete materials, reinforcement, and placement requirements are specified in Section 033000 "Cast-in-Place Concrete."

C. Anchor equipment to concrete base as follows:
1. Place and secure anchorage devices. Use supported equipment manufacturer's setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
2. Install anchor bolts to elevations required for proper attachment to supported equipment.
3. Install anchor bolts according to anchor-bolt manufacturer's written instructions.

3.4 PAINTING

A. Touchup: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.
 1. Apply paint by brush or spray to provide minimum dry film thickness of 2.0 mils.

B. Touchup: Comply with requirements in Section 099113 "Exterior Painting" and Section 099123 "Interior Painting" for cleaning and touchup painting of field welds, bolted connections, and abraded areas of shop paint on miscellaneous metal.

C. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A780.

END OF SECTION
SECTION 260533

RACEWAYS AND BOXES FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Metal conduits and fittings.
2. Nonmetallic conduits and fittings.
3. Metal wireways and auxiliary gutters.
4. Surface raceways.
5. Boxes, enclosures, and cabinets.

B. Related Requirements:

1. Section 078413 "Penetration Firestopping" for firestopping at conduit and box entrances.
2. Section 260543 "Underground Ducts and Raceways for Electrical Systems" for exterior ductbanks, manholes, and underground utility construction.

1.3 DEFINITIONS

A. GRC: Galvanized rigid steel conduit.

1.4 ACTION SUBMITTALS

A. Product Data: For surface raceways, wireways and fittings, floor boxes, hinged-cover enclosures, and cabinets.

B. Shop Drawings: For custom enclosures and cabinets. Include plans, elevations, sections, and attachment details.

1.5 INFORMATIONAL SUBMITTALS

A. Source quality-control reports.
PART 2 - PRODUCTS

2.1 METAL CONDUITS AND FITTINGS

A. Metal Conduit:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. AFC Cable Systems; a part of Atkore International.
 b. Allied Tube & Conduit; a part of Atkore International.
 c. O-Z/Gedney; a brand of Emerson Industrial Automation.
 d. Wheatland Tube Company.

2. Listing and Labeling: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

3. GRC: Comply with ANSI C80.1 and UL 6.

4. EMT: Comply with ANSI C80.3 and UL 797.

5. FMC: Comply with UL 1; zinc-coated steel.

6. LFMC: Flexible steel conduit with PVC jacket and complying with UL 360.

B. Metal Fittings:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. AFC Cable Systems; a part of Atkore International.
 b. Allied Tube & Conduit; a part of Atkore International.
 c. O-Z/Gedney; a brand of Emerson Industrial Automation.

2. Comply with NEMA FB 1 and UL 514B.

3. Listing and Labeling: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

4. Fittings, General: Listed and labeled for type of conduit, location, and use.

5. Fittings for EMT:
 a. Material: Steel.
 b. Type: compression.

6. Expansion Fittings: PVC or steel to match conduit type, complying with UL 651, rated for environmental conditions where installed, and including flexible external bonding jumper.

C. Joint Compound for IMC, GRC, or ARC: Approved, as defined in NFPA 70, by authorities having jurisdiction for use in conduit assemblies, and compounded for use to lubricate and protect threaded conduit joints from corrosion and to enhance their conductivity.
2.2 NONMETALLIC CONDUITS AND FITTINGS

A. Nonmetallic Conduit:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. AFC Cable Systems; a part of Atkore International.
 b. CANTEX INC.
 c. RACO; Hubbell.
 d. Thomas & Betts Corporation; A Member of the ABB Group.

2. Listing and Labeling: Nonmetallic conduit shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

3. RNC: Type EPC-40-PVC, complying with NEMA TC 2 and UL 651 unless otherwise indicated.

4. LFNC: Comply with UL 1660.

5. Rigid HDPE: Comply with UL 651A.

B. Nonmetallic Fittings:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. AFC Cable Systems; a part of Atkore International.
 b. CANTEX INC.
 c. RACO; Hubbell.
 d. Thomas & Betts Corporation; A Member of the ABB Group.

2. Fittings, General: Listed and labeled for type of conduit, location, and use.

3. Fittings for ENT and RNC: Comply with NEMA TC 3; match to conduit or tubing type and material.
 a. Fittings for LFNC: Comply with UL 514B.

4. Solvents and Adhesives: As recommended by conduit manufacturer.

2.3 BOXES, ENCLOSURES, AND CABINETS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

2. Erickson Electrical Equipment Company.
3. Hoffman; a brand of nVent.
5. Oldcastle Enclosure Solutions.
6. O-Z/Gedney; a brand of Emerson Industrial Automation.
B. General Requirements for Boxes, Enclosures, and Cabinets: Boxes, enclosures, and cabinets installed in wet locations shall be listed for use in wet locations.

C. Sheet Metal Outlet and Device Boxes: Comply with NEMA OS 1 and UL 514A.

D. Cast-Metal Outlet and Device Boxes: Comply with NEMA FB 1, ferrous alloy, Type FD, with gasketed cover.

E. Nonmetallic Outlet and Device Boxes: Comply with NEMA OS 2 and UL 514C.

F. Metal Floor Boxes:
 1. Material: Cast metal.
 2. Type: Fully adjustable.
 3. Shape: Rectangular.
 4. Listing and Labeling: Metal floor boxes shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

G. Luminaire Outlet Boxes: Nonadjustable, designed for attachment of luminaire weighing 50 lb. Outlet boxes designed for attachment of luminaires weighing more than 50 lb shall be listed and marked for the maximum allowable weight.

H. Small Sheet Metal Pull and Junction Boxes: NEMA OS 1.

I. Cast-Metal Access, Pull, and Junction Boxes: Comply with NEMA FB 1 and UL 1773, galvanized, cast iron with gasketed cover.

J. Box extensions used to accommodate new building finishes shall be of same material as recessed box.

K. Device Box Dimensions: 4 inches square by 2-1/8 inches deep.

L. Gangable boxes are allowed.

M. Hinged-Cover Enclosures: Comply with UL 50 and NEMA 250, Type 1 with continuous-hinge cover with flush latch unless otherwise indicated.
 1. Metal Enclosures: Steel, finished inside and out with manufacturer's standard enamel.
 2. Interior Panels: Steel; all sides finished with manufacturer's standard enamel.

N. Cabinets:
 1. NEMA 250, Type 1 galvanized-steel box with removable interior panel and removable front, finished inside and out with manufacturer's standard enamel.
 2. Hinged door in front cover with flush latch and concealed hinge.
 3. Key latch to match panelboards.
 4. Metal barriers to separate wiring of different systems and voltage.
5. Accessory feet where required for freestanding equipment.
6. Nonmetallic cabinets shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

PART 3 - EXECUTION

3.1 RACEWAY APPLICATION

A. Outdoors: Apply raceway products as specified below unless otherwise indicated:

1. Exposed Conduit: GRC.
2. Concealed Conduit, Aboveground: GRC.
3. Underground Conduit: RNC, Type EPC-40-PVC.
4. Connection to Vibrating Equipment (Including Transformers and Hydraulic, Pneumatic, Electric Solenoid, or Motor-Driven Equipment): LFMC.

B. Indoors: Apply raceway products as specified below unless otherwise indicated:

1. Exposed, Not Subject to Physical Damage: EMT.
2. Exposed, Not Subject to Severe Physical Damage: EMT.
3. Exposed and Subject to Severe Physical Damage: GRC. Raceway locations include the following:
 a. Mechanical rooms.
4. Concealed in Ceilings and Interior Walls and Partitions: EMT.
5. Connection to Vibrating Equipment (Including Transformers and Hydraulic, Pneumatic, Electric Solenoid, or Motor-Driven Equipment): FMC, except use LFMC in damp or wet locations.
6. Damp or Wet Locations: GRC.
7. Boxes and Enclosures: NEMA 250, Type 1, except use NEMA 250, Type 4X stainless steel in damp or wet locations.

C. Minimum Raceway Size: 3/4-inch trade size.

D. Raceway Fittings: Compatible with raceways and suitable for use and location.

1. Rigid Conduit: Use threaded rigid steel conduit fittings unless otherwise indicated. Comply with NEMA FB 2.10.
2. EMT: Use compression, steel fittings. Comply with NEMA FB 2.10.
3. Flexible Conduit: Use only fittings listed for use with flexible conduit. Comply with NEMA FB 2.20.

E. Do not install aluminum conduits, boxes, or fittings in contact with concrete or earth.
3.2 INSTALLATION

A. Comply with requirements in Section 260529 "Hangers and Supports for Electrical Systems" for hangers and supports.

B. Comply with NECA 1 and NECA 101 for installation requirements except where requirements on Drawings or in this article are stricter. Comply with NECA 102 for aluminum conduits. Comply with NFPA 70 limitations for types of raceways allowed in specific occupancies and number of floors.

C. Do not install raceways or electrical items on any "explosion-relief" walls or rotating equipment.

D. Do not fasten conduits onto the bottom side of a metal deck roof.

E. Keep raceways at least 6 inches away from parallel runs of flues and steam or hot-water pipes. Install horizontal raceway runs above water and steam piping.

F. Complete raceway installation before starting conductor installation.

G. Arrange stub-ups so curved portions of bends are not visible above finished slab.

H. Install no more than the equivalent of three 90-degree bends in any conduit run except for control wiring conduits, for which fewer bends are allowed. Support within 12 inches of changes in direction.

I. Make bends in raceway using large-radius preformed ells. Field bending shall be according to NFPA 70 minimum radii requirements. Use only equipment specifically designed for material and size involved.

J. Conceal conduit within finished walls, ceilings, and floors unless otherwise indicated. Install conduits parallel or perpendicular to building lines.

K. Support conduit within 12 inches of enclosures to which attached.

L. Raceways Embedded in Slabs:
 1. Run conduit larger than 1-inch trade size, parallel or at right angles to main reinforcement. Where at right angles to reinforcement, place conduit close to slab support. Secure raceways to reinforcement at maximum 10-foot intervals.
 2. Arrange raceways to cross building expansion joints at right angles with expansion fittings.
 3. Arrange raceways to keep a minimum of 2 inches of concrete cover in all directions.
 4. Do not embed threadless fittings in concrete unless specifically approved by Architect for each specific location.
 5. Change from ENT to GRC before rising above floor.

M. Stub-Ups to Above Recessed Ceilings:
1. Use EMT, IMC, or RMC for raceways.
2. Use a conduit bushing or insulated fitting to terminate stub-ups not terminated in hubs or in an enclosure.

N. Threaded Conduit Joints, Exposed to Wet, Damp, Corrosive, or Outdoor Conditions: Apply listed compound to threads of raceway and fittings before making up joints. Follow compound manufacturer's written instructions.

O. Coat field-cut threads on PVC-coated raceway with a corrosion-preventing conductive compound prior to assembly.

P. Raceway Terminations at Locations Subject to Moisture or Vibration: Use insulating bushings to protect conductors including conductors smaller than No. 4 AWG.

Q. Terminate threaded conduits into threaded hubs or with locknuts on inside and outside of boxes or cabinets. Install bushings on conduits up to 1-1/4-inch trade size and insulated throat metal bushings on 1-1/2-inch trade size and larger conduits terminated with locknuts. Install insulated throat metal grounding bushings on service conduits.

R. Install raceways square to the enclosure and terminate at enclosures with locknuts. Install locknuts hand tight plus 1/4 turn more.

S. Do not rely on locknuts to penetrate nonconductive coatings on enclosures. Remove coatings in the locknut area prior to assembling conduit to enclosure to assure a continuous ground path.

T. Cut conduit perpendicular to the length. For conduits 2-inch trade size and larger, use roll cutter or a guide to make cut straight and perpendicular to the length.

U. Install pull wires in empty raceways. Use polypropylene or monofilament plastic line with not less than 200-lb tensile strength. Leave at least 12 inches of slack at each end of pull wire. Cap underground raceways designated as spare above grade alongside raceways in use.

V. Install raceway sealing fittings at accessible locations according to NFPA 70 and fill them with listed sealing compound. For concealed raceways, install each fitting in a flush steel box with a blank cover plate having a finish similar to that of adjacent plates or surfaces. Install raceway sealing fittings according to NFPA 70.

W. Install devices to seal raceway interiors at accessible locations. Locate seals so no fittings or boxes are between the seal and the following changes of environments. Seal the interior of all raceways at the following points:

1. Where conduits pass from warm to cold locations, such as boundaries of refrigerated spaces.
2. Where an underground service raceway enters a building or structure.
3. Conduit extending from interior to exterior of building.
4. Conduit extending into pressurized duct and equipment.
5. Conduit extending into pressurized zones that are automatically controlled to maintain different pressure set points.

6. Where otherwise required by NFPA 70.

X. Comply with manufacturer's written instructions for solvent welding RNC and fittings.

Y. Expansion-Joint Fittings:

1. Install in each run of aboveground RNC that is located where environmental temperature change may exceed 30 deg F and that has straight-run length that exceeds 25 feet. Install in each run of aboveground RMC and EMT conduit that is located where environmental temperature change may exceed 100 deg F and that has straight-run length that exceeds 100 feet.

2. Install type and quantity of fittings that accommodate temperature change listed for each of the following locations:
 a. Outdoor Locations Not Exposed to Direct Sunlight: 125 deg F temperature change.
 b. Outdoor Locations Exposed to Direct Sunlight: 155 deg F temperature change.
 c. Indoor Spaces Connected with Outdoors without Physical Separation: 125 deg F temperature change.
 d. Attics: 135 deg F temperature change.

3. Install fitting(s) that provide expansion and contraction for at least 0.00041 inch per foot of length of straight run per deg F of temperature change for PVC conduits. Install fitting(s) that provide expansion and contraction for at least 0.000078 inch per foot of length of straight run per deg F of temperature change for metal conduits.

4. Install expansion fittings at all locations where conduits cross building or structure expansion joints.

5. Install each expansion-joint fitting with position, mounting, and piston setting selected according to manufacturer's written instructions for conditions at specific location at time of installation. Install conduit supports to allow for expansion movement.

Z. Flexible Conduit Connections: Comply with NEMA RV 3. Use a maximum of 36 inches of flexible conduit for recessed and semirecessed luminaires, equipment subject to vibration, noise transmission, or movement; and for transformers and motors.

1. Use LFMC in damp or wet locations subject to severe physical damage.

2. Use LFMC or LFNC in damp or wet locations not subject to severe physical damage.

AA. Mount boxes at heights indicated on Drawings. If mounting heights of boxes are not individually indicated, give priority to ADA requirements. Install boxes with height measured to center of box unless otherwise indicated.
BB. Recessed Boxes in Masonry Walls: Saw-cut opening for box in center of cell of masonry block, and install box flush with surface of wall. Prepare block surfaces to provide a flat surface for a raintight connection between box and cover plate or supported equipment and box.

CC. Horizontally separate boxes mounted on opposite sides of walls so they are not in the same vertical channel.

DD. Locate boxes so that cover or plate will not span different building finishes.

EE. Support boxes of three gangs or more from more than one side by spanning two framing members or mounting on brackets specifically designed for the purpose.

FF. Fasten junction and pull boxes to or support from building structure. Do not support boxes by conduits.

GG. Set metal floor boxes level and flush with finished floor surface.

HH. Set nonmetallic floor boxes level. Trim after installation to fit flush with finished floor surface.

3.3 FIRESTOPPING

A. Install firestopping at penetrations of fire-rated floor and wall assemblies. Comply with requirements in Section 078413 "Penetration Firestopping."

3.4 PROTECTION

A. Protect coatings, finishes, and cabinets from damage and deterioration.

1. Repair damage to galvanized finishes with zinc-rich paint recommended by manufacturer.

2. Repair damage to PVC coatings or paint finishes with matching touchup coating recommended by manufacturer.

END OF SECTION
THIS PAGE INTENTIONALLY LEFT BLANK
SECTION 260543

UNDERGROUND DUCTS AND RACEWAYS FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Metal conduits and fittings, including GRC and PVC-coated steel conduit.
2. Rigid nonmetallic duct.
3. Duct accessories.
5. Polymer concrete handholes and boxes with polymer concrete cover.
7. Utility structure accessories.

1.3 DEFINITIONS

A. Direct Buried: Duct or a duct bank that is buried in the ground, without any additional casing materials such as concrete.

B. Duct: A single duct or multiple ducts. Duct may be either installed singly or as a component of a duct bank.

C. Duct Bank:

1. Two or more ducts installed in parallel, with or without additional casing materials.
2. Multiple duct banks.

D. GRC: Galvanized rigid (steel) conduit.

E. Trafficways: Locations where vehicular or pedestrian traffic is a normal course of events.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product.

1. Include duct-bank materials, including spacers and miscellaneous components.
2. Include duct, conduits, and their accessories, including elbows, end bells, bends, fittings, and solvent cement.
3. Include accessories for manholes, handholes, boxes.
4. Include underground-line warning tape.

B. Shop Drawings:
1. Precast or Factory-Fabricated Underground Utility Structures:
 a. Include plans, elevations, sections, details, attachments to other work, and accessories.
 b. Include duct entry provisions, including locations and duct sizes.
 c. Include reinforcement details.
 d. Include frame and cover design and manhole chimneys.
 e. Include grounding details.
 f. Include dimensioned locations of cable rack inserts, pulling-in and lifting irons, and sumps.
 g. Include joint details.

2. Factory-Fabricated Handholes and Boxes Other Than Precast Concrete:
 a. Include dimensioned plans, sections, and elevations, and fabrication and installation details.
 b. Include duct entry provisions, including locations and duct sizes.
 c. Include cover design.
 d. Include grounding details.
 e. Include dimensioned locations of cable rack inserts, and pulling-in and lifting irons.

1.5 INFORMATIONAL SUBMITTALS
A. Qualification Data: For professional engineer and testing agency responsible for testing nonconcrete handholes and boxes.

B. Product Certificates: For concrete and steel used in precast concrete manholes and handholes, as required by ASTM C858.

C. Source quality-control reports.

D. Field quality-control reports.

1.6 MAINTENANCE MATERIALS SUBMITTALS
A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1.7 QUALITY ASSURANCE
A. Testing Agency Qualifications: Qualified according to ASTM E329 for testing indicated.
1.8 FIELD CONDITIONS

A. Interruption of Existing Electrical Service: Do not interrupt electrical service to facilities occupied by Owner or others unless permitted under the following conditions, and then only after arranging to provide temporary electrical service according to requirements indicated:

1. Notify Owner no fewer than five days in advance of proposed interruption of electrical service.
2. Do not proceed with interruption of electrical service without Owner's written permission.

B. Ground Water: Assume ground-water level is 36 inches below ground surface unless a higher water table is noted on Drawings.

PART 2 - PRODUCTS

2.1 METAL CONDUITS AND FITTINGS

A. GRC: Comply with ANSI C80.1 and UL 6.

B. Coated Steel Conduit: PVC-coated GRC.

1. Comply with NEMA RN 1.
2. Coating Thickness: 0.040 inch, minimum.

C. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. AFC Cable Systems; a part of Atkore International.
2. Allied Tube & Conduit; a part of Atkore International.
3. O-Z/Gedney; a brand of Emerson Industrial Automation.

D. Listed and labeled as defined in NFPA 70, by a nationally recognized testing laboratory, and marked for intended location and application.

2.2 RIGID NONMETALLIC DUCT

A. Underground Plastic Utilities Duct: Type EPC-80-PVC and Type EPC-40-PVC RNC, complying with NEMA TC 2 and UL 651, with matching fittings complying with NEMA TC 3 by same manufacturer as duct.

B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. ARNCO Corp.
2. CANTEX INC.
5. Spiraduct/AFC Cable Systems, Inc.

C. Listed and labeled as defined in NFPA 70, by a nationally recognized testing laboratory, and marked for intended location and application.

2.3 FLEXIBLE NONMETALLIC DUCTS

A. HDPE Duct: Type EPEC-40 HDPE, complying with NEMA TC 7 and UL 651A.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. ARNCO Corp.
 b. Carlon; a brand of Thomas & Betts Corporation.
 d. Opti-Com Manufacturing Network, Inc (OMNI).
 e. Premier Conduit.

2. Listed and labeled as defined in NFPA 70, by a nationally recognized testing laboratory, and marked for intended location and application.

2.4 DUCT ACCESSORIES

A. Duct Spacers: Factory-fabricated, rigid, PVC interlocking spacers; sized for type and size of duct with which used, and selected to provide minimum duct spacing indicated while supporting duct during concreting or backfilling.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Allied Tube & Conduit; a part of Atkore International.
 b. CANTEX INC.
 c. Carlon; a brand of Thomas & Betts Corporation.

B. Underground-Line Warning Tape: Comply with requirements for underground-line warning tape specified in Section 260553 "Identification for Electrical Systems."

2.5 PRECAST CONCRETE HANDHOLES AND BOXES

A. Description: Factory-fabricated, reinforced-concrete, monolithically poured walls and bottom unless open-bottom enclosures are indicated. Frame and cover shall form top of enclosure and shall have load rating consistent with that of handhole or box.

B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Christy Concrete Products.
2. Elmhurst-Chicago Stone Co.
3. Oldcastle Precast, Inc.
4. Utility Concrete Products, LLC.

C. Comply with ASTM C858 for design and manufacturing processes.

D. Frame and Cover: Weatherproof cast-iron frame, with cast-iron cover with recessed cover hook eyes and tamper-resistant, captive, cover-securing bolts.

E. Cover Finish: Nonskid finish shall have a minimum coefficient of friction of 0.50.

F. Cover Legend: Molded lettering, as indicated for each service.

G. Configuration: Units shall be designed for flush burial and have open bottom unless otherwise indicated.

H. Extensions and Slabs: Designed to mate with bottom of enclosure. Same material as enclosure.
 1. Extension shall provide increased depth of 12 inches.
 2. Slab: Same dimensions as bottom of enclosure, and arranged to provide closure.

I. Joint Sealant: Asphaltic-butyl material with adhesion, cohesion, flexibility, and durability properties necessary to withstand maximum hydrostatic pressures at the installation location with the ground-water level at grade.

J. Knockout Panels: Precast openings in walls, arranged to match dimensions and elevations of approaching duct, plus an additional 12 inches vertically and horizontally to accommodate alignment variations.
 1. Center window location.
 2. Knockout panels shall be located no less than 6 inches from interior surfaces of walls, floors, or frames and covers of handholes, but close enough to corners to facilitate racking of cables on walls.
 3. Knockout panel opening shall have cast-in-place, welded-wire fabric reinforcement for field cutting and bending to tie in to concrete envelopes of duct.
 4. Knockout panels shall be framed with at least two additional No. 3 steel reinforcing bars in concrete around each opening.
 5. Knockout panels shall be 1-1/2 to 2 inches thick.

2.6 POLYMER CONCRETE HANDHOLES AND BOXES WITH POLYMER CONCRETE COVER

A. Description: Molded of sand and aggregate, bound together with a polymer resin, and reinforced with steel or fiberglass or a combination of the two.

B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
1. Armorcast Products Company.
2. Oldcastle Enclosure Solutions.

D. Color: Gray.

E. Configuration: Units shall be designed for flush burial and have open bottom unless otherwise indicated.

F. Cover: Weatherproof, secured by tamper-resistant locking devices and having structural load rating consistent with enclosure.

G. Cover Finish: Nonskid finish shall have a minimum coefficient of friction of 0.50.

H. Cover Legend: Molded lettering, "ELECTRIC."

I. Direct-Buried Wiring Entrance Provisions: Knockouts equipped with insulated bushings or end-bell fittings, selected to suit box material, sized for wiring indicated, and arranged for secure, fixed installation in enclosure wall.

J. Duct Entrance Provisions: Duct-terminating fittings shall mate with entering duct for secure, fixed installation in enclosure wall.

2.7 UTILITY STRUCTURE ACCESSORIES

A. Accessories for Utility Structures: Utility equipment and accessory items used for utility structure access and utility support, listed and labeled for intended use and application.

B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Christy Concrete Products.
2. Oldcastle Precast, Inc.

2.8 SOURCE QUALITY CONTROL

A. Test and inspect precast concrete utility structures according to ASTM C1037.

B. Nonconcrete Handhole and Pull-Box Prototype Test: Test prototypes of manholes and boxes for compliance with SCTE 77. Strength tests shall be for specified tier ratings of products supplied.

1. Strength tests of complete boxes and covers shall be by an independent testing agency or manufacturer. A qualified registered professional engineer shall certify tests by manufacturer.
PART 3 - EXECUTION

3.1 PREPARATION

A. Coordinate layout and installation of duct, duct bank, manholes, handholes, and boxes with final arrangement of other utilities, site grading, and surface features as determined in the field. Notify Architect if there is a conflict between areas of excavation and existing structures or archaeological sites to remain.

B. Coordinate elevations of duct and duct-bank entrances into manholes, handholes, and boxes with final locations and profiles of duct and duct banks, as determined by coordination with other utilities, underground obstructions, and surface features. Revise locations and elevations as required to suit field conditions and to ensure that duct and duct bank will drain to manholes and handholes, and as approved by Architect.

3.2 UNDERGROUND DUCT APPLICATION

A. Duct for Electrical Cables More Than 600 V: Type EPC-40-PVC RNC, concrete-encased unless otherwise indicated.

B. Duct for Electrical Feeders 600 V and Less: Type EPC-40-PVC RNC, direct-buried unless otherwise indicated.

C. Duct for Electrical Branch Circuits: Type EPC-40-PVC RNC, direct-buried unless otherwise indicated.

D. Bored Underground Duct: Type EPEC-40-HDPE unless otherwise indicated.

E. Stub-ups: Concrete-encased GRC.

3.3 UNDERGROUND ENCLOSURE APPLICATION

A. Handholes and Boxes for 600 V and Less:
 1. Units in Roadways and Other Deliberate Traffic Paths: Precast concrete. AASHTO HB 17, H-20 structural load rating.
 2. Units in Driveway, Parking Lot, and Off-Roadway Locations, Subject to Occasional, Nondeliberate Loading by Heavy Vehicles: Precast concrete, AASHTO HB 17, H-20 or Polymer concrete, SCTE 77, Tier 15 structural load rating.
 3. Units in Sidewalk and Similar Applications with a Safety Factor for Nondeliberate Loading by Vehicles: Precast concrete, AASHTO HB 17, H-10 or Polymer concrete units, SCTE 77, Tier 8.
 4. Cover design load shall not exceed the design load of the handhole or box.

3.4 EARTHWORK

A. Excavation and Backfill: Comply with Section 312000 "Earth Moving," but do not use heavy-duty, hydraulic-operated, compaction equipment.
B. Restoration: Replace area immediately after backfilling is completed or after construction vehicle traffic in immediate area is complete.

C. Restore surface features at areas disturbed by excavation, and re-establish original grades unless otherwise indicated. Replace removed sod immediately after backfilling is completed.

D. Restore areas disturbed by trenching, storing of dirt, cable laying, and other work. Restore vegetation and include necessary topsoiling, fertilizing, liming, seeding, sodding, sprigging, and mulching. Comply with Section 329200 "Turf and Grasses" and Section 329300 "Plants."

E. Cut and patch existing pavement in the path of underground duct, duct bank, and underground structures according to "Cutting and Patching" Article in Section 017300 "Execution."

3.5 DUCT AND DUCT-BANK INSTALLATION

A. Where indicated on Drawings, install duct, spacers, and accessories into the duct-bank configuration shown. Duct installation requirements in this Section also apply to duct bank.

B. Install duct according to NEMA TCB 2.

C. Slope: Pitch duct a minimum slope of 1:300 down toward manholes and handholes and away from buildings and equipment. Slope duct from a high point between two manholes, to drain in both directions.

D. Curves and Bends: Use 5-degree angle couplings for small changes in direction. Use manufactured long sweep bends with a minimum radius of 48 inches, both horizontally and vertically, at other locations unless otherwise indicated.

1. Duct shall have maximum of three 90 degree bends or the total of all bends shall be no more 270 degrees between pull points.

E. Joints: Use solvent-cemented joints in duct and fittings and make watertight according to manufacturer's written instructions. Stagger couplings so those of adjacent duct do not lie in same plane.

F. Installation Adjacent to High-Temperature Steam Lines: Where duct is installed parallel to underground steam lines, perform calculations showing the duct will not be subject to environmental temperatures above 40 deg C. Where environmental temperatures are calculated to rise above 40 deg C, and anywhere the duct crosses above an underground steam line, install insulation blankets listed for direct burial to isolate the duct bank from the steam line.

G. End Bell Entrances to Manholes and Concrete and Polymer Concrete Handholes: Use end bells, spaced approximately 10 inches o.c. for 5-inch duct, and vary proportionately for other duct sizes.
1. Begin change from regular spacing to end-bell spacing 10 feet from the end bell, without reducing duct slope and without forming a trap in the line.

2. Expansion and Deflection Fittings: Install an expansion and deflection fitting in each duct in the area of disturbed earth adjacent to manhole or handhole. Install an expansion fitting near the center of all straight line direct-buried duct with calculated expansion of more than 3/4 inch.

3. Grout end bells into structure walls from both sides to provide watertight entrances.

H. Building Wall Penetrations: Make a transition from underground duct to GRC at least 10 feet outside the building wall, without reducing duct line slope away from the building and without forming a trap in the line. Use fittings manufactured for RNC-to-GRC transition. Install GRC penetrations of building walls as specified in Section 260544 "Sleeves and Sleeve Seals for Electrical Raceways and Cabling."

I. Sealing: Provide temporary closure at terminations of duct with pulled cables. Seal spare duct at terminations. Use sealing compound and plugs to withstand at least 15-psig hydrostatic pressure.

K. Concrete-Encased Ducts and Duct Bank:

1. Excavate trench bottom to provide firm and uniform support for duct. Prepare trench bottoms as specified in Section 312000 "Earth Moving" for pipes less than 6 inches in nominal diameter.

2. Width: Excavate trench 12 inches wider than duct on each side.

3. Depth: Install so top of duct envelope is at least 24 inches below finished grade in areas not subject to deliberate traffic, and at least 30 inches below finished grade in deliberate traffic paths for vehicles unless otherwise indicated.

4. Support duct on duct spacers coordinated with duct size, duct spacing, and outdoor temperature.

5. Spacer Installation: Place spacers close enough to prevent sagging and deforming of duct, with not less than four spacers per 20 feet of duct. Place spacers within 24 inches of duct ends. Stagger spacers approximately 6 inches between tiers. Secure spacers to earth and to duct to prevent floating during concreting. Tie entire assembly together using fabric straps; do not use tie wires or reinforcing steel that may form conductive or magnetic loops around ducts or duct groups.

6. Minimum Space between Duct: 3 inches between edge of duct and exterior envelope wall, 2 inches between ducts for like services, and 4 inches between power and communications ducts.

7. Elbows: Use manufactured GRC elbows for stub-ups, at building entrances, and at changes of direction in duct run.

a. Couple RNC duct to GRC with adapters designed for this purpose, and encase coupling with 3 inches of concrete.

b. Stub-ups to Outdoor Equipment: Extend concrete-encased GRC horizontally a minimum of 60 inches from edge of base. Install insulated grounding bushings on terminations at equipment.
1) Stub-ups shall be minimum 4 inches above finished floor and minimum 3 inches from conduit side to edge of slab.

c. Stub-ups to Indoor Equipment: Extend concrete-encased GRC horizontally a minimum of 60 inches from edge of wall. Install insulated grounding bushings on terminations at equipment.

1) Stub-ups shall be minimum 4 inches above finished floor and no less than 3 inches from conduit side to edge of slab.

8. Reinforcement: Reinforce concrete-encased duct where crossing disturbed earth and where indicated. Arrange reinforcing rods and ties without forming conductive or magnetic loops around ducts or duct groups.

9. Forms: Use walls of trench to form side walls of duct bank where soil is self-supporting and concrete envelope can be poured without soil inclusions; otherwise, use forms.

10. Concrete Cover: Install a minimum of 3 inches of concrete cover between edge of duct to exterior envelope wall, 2 inches between duct of like services, and 4 inches between power and communications ducts.

11. Concreting Sequence: Pour each run of envelope between manholes or other terminations in one continuous operation.

a. Start at one end and finish at the other, allowing for expansion and contraction of duct as its temperature changes during and after the pour. Use expansion fittings installed according to manufacturer’s written instructions, or use other specific measures to prevent expansion-contraction damage.

b. If more than one pour is necessary, terminate each pour in a vertical plane and install 3/4-inch reinforcing-rod dowels extending a minimum of 18 inches into concrete on both sides of joint near corners of envelope.

12. Pouring Concrete: Comply with requirements in "Concrete Placement" Article in Section 033000 "Cast-in-Place Concrete." Place concrete carefully during pours to prevent voids under and between duct and at exterior surface of envelope. Do not allow a heavy mass of concrete to fall directly onto ducts. Allow concrete to flow around duct and rise up in middle, uniformly filling all open spaces. Do not use power-driven agitating equipment unless specifically designed for duct-installation application.

L. Direct-Buried Duct and Duct Bank:

1. Excavate trench bottom to provide firm and uniform support for duct. Comply with requirements in Section 312000 "Earth Moving" for preparation of trench bottoms for pipes less than 6 inches in nominal diameter.

2. Width: Excavate trench 12 inches wider than duct on each side.

3. Depth: Install top of duct at least 36 inches below finished grade unless otherwise indicated.

4. Set elevation of bottom of duct bank below frost line.
5. Support ducts on duct spacers coordinated with duct size, duct spacing, and outdoor temperature.

6. Spacer Installation: Place spacers close enough to prevent sagging and deforming of duct, with not less than four spacers per 20 feet of duct. Place spacers within 24 inches of duct ends. Stagger spacers approximately 6 inches between tiers. Secure spacers to earth and to ducts to prevent floating during concreting. Tie entire assembly together using fabric straps; do not use tie wires or reinforcing steel that may form conductive or magnetic loops around ducts or duct groups.

7. Install duct with a minimum of 3 inches between ducts for like services and 6 inches between power and communications duct.

8. Install manufactured GRC elbows for stub-ups, at building entrances, and at changes of direction in duct.

 a. Couple RNC duct to GRC with adapters designed for this purpose, and encase coupling with 3 inches of concrete.

 b. Stub-ups to Outdoor Equipment: Extend concrete-encased GRC horizontally a minimum of 60 inches from edge of base. Install insulated grounding bushings on terminations at equipment.

 1) Stub-ups shall be minimum 4 inches above finished floor and minimum 3 inches from conduit side to edge of slab.

 c. Stub-ups to Indoor Equipment: Extend concrete-encased GRC horizontally a minimum of 60 inches from edge of wall. Install insulated grounding bushings on terminations at equipment.

 1) Stub-ups shall be minimum 4 inches above finished floor and no less than 3 inches from conduit side to edge of slab.

9. After installing first tier of duct, backfill and compact. Start at tie-in point and work toward end of duct run, leaving ducts at end of run free to move with expansion and contraction as temperature changes during this process. Repeat procedure after placing each tier. After placing last tier, hand place backfill to 4 inches over duct and hand tamp. Firmly tamp backfill around ducts to provide maximum supporting strength. Use hand tamper only. After placing controlled backfill over final tier, make final duct connections at end of run and complete backfilling with normal compaction. Comply with requirements in Section 312000 "Earth Moving" for installation of backfill materials.

 a. Place minimum 3 inches of sand as a bed for duct. Place sand to a minimum of 6 inches above top level of duct.

M. Underground-Line Warning Tape: Bury conducting underground line specified in Section 260553 "Identification for Electrical Systems" no less than 12 inches above all concrete-encased duct and duct banks and approximately 12 inches below grade. Align tape parallel to and within 3 inches of centerline of duct bank. Provide an additional warning tape for each 12-inch increment of duct-bank width over a nominal 18 inches. Space additional tapes 12 inches apart, horizontally.
3.6 INSTALLATION OF CONCRETE MANHOLES, HANDHOLES, AND BOXES

A. Precast Concrete Handhole and Manhole Installation:
 1. Comply with ASTM C891 unless otherwise indicated.
 2. Install units level and plumb and with orientation and depth coordinated with connecting duct, to minimize bends and deflections required for proper entrances.
 3. Unless otherwise indicated, support units on a level bed of crushed stone or gravel, graded from 1-inch sieve to No. 4 sieve and compacted to same density as adjacent undisturbed earth.

B. Elevations:
 1. Install handholes with bottom below frost line.
 2. Handhole Covers: In paved areas and trafficways, set surface flush with finished grade. Set covers of other handholes 1 inch above finished grade.
 3. Where indicated, cast handhole cover frame integrally with handhole structure.

3.7 GROUNDING

A. Ground underground ducts and utility structures according to Section 260526 "Grounding and Bonding for Electrical Systems."

3.8 FIELD QUALITY CONTROL

A. Perform the following tests and inspections:
 1. Demonstrate capability and compliance with requirements on completion of installation of underground duct, duct bank, and utility structures.
 2. Pull solid aluminum or wood test mandrel through duct to prove joint integrity and adequate bend radii, and test for out-of-round duct. Provide a minimum 12-inch-long mandrel equal to duct size minus 1/4 inch. If obstructions are indicated, remove obstructions and retest.

B. Correct deficiencies and retest as specified above to demonstrate compliance.

C. Prepare test and inspection reports.

3.9 CLEANING

A. Pull leather-washer-type duct cleaner, with graduated washer sizes, through full length of duct until duct cleaner indicates that duct is clear of dirt and debris. Follow with rubber duct swab for final cleaning and to assist in spreading lubricant throughout ducts.

B. Clean internal surfaces of manholes, including sump.
 1. Sweep floor, removing dirt and debris.
 2. Remove foreign material.

END OF SECTION
SECTION 260553
IDENTIFICATION FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Color and legend requirements for raceways, conductors, and warning labels and signs.
 2. Labels.
 4. Tapes and stencils.
 5. Tags.
 7. Cable ties.
 9. Fasteners for labels and signs.

1.3 ACTION SUBMITTALS
A. Product Data: For each type of product.
 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for electrical identification products.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS
B. Comply with NFPA 70.
D. Comply with ANSI Z535.4 for safety signs and labels.
E. Comply with NFPA 70E and Section 260573.19 "Arc-Flash Hazard Analysis" requirements for arc-flash warning labels.

F. Adhesive-attached labeling materials, including label stocks, laminating adhesives, and inks used by label printers, shall comply with UL 969.

G. Thermal Movements: Allow for thermal movements from ambient and surface temperature changes.
1. Temperature Change: 120 deg F, ambient; 180 deg F, material surfaces.

2.2 COLOR AND LEGEND REQUIREMENTS

A. Raceways and Cables Carrying Circuits at 600 V or Less:
1. Black letters on an orange field.
2. Legend: Indicate voltage.

B. Color-Coding for Phase- and Voltage-Level Identification, 600 V or Less: Use colors listed below for ungrounded, feeder, and branch-circuit conductors.
1. Color shall be factory applied.
2. Colors for 208/120-V Circuits:
 a. Phase A: Black.
 b. Phase B: Red.
 c. Phase C: Blue.
3. Colors for 240-V Circuits:
 a. Phase A: Black.
 b. Phase B: Red.
4. Colors for 480/277-V Circuits:
 b. Phase B: Orange.
 c. Phase C: Yellow.
7. Colors for Isolated Grounds: Green with two or more yellow stripes.

C. Raceways and Cables Carrying Circuits at More Than 600 V:
1. Black letters on an orange field.
2. Legend: "DANGER - CONCEALED HIGH VOLTAGE WIRING."

D. Warning Label Colors:
1. Identify system voltage with black letters on an orange background.

E. Warning labels and signs shall include, but are not limited to, the following legends:

1. Multiple Power Source Warning: "DANGER - ELECTRICAL SHOCK HAZARD - EQUIPMENT HAS MULTIPLE POWER SOURCES."

2. Workspace Clearance Warning: "WARNING - OSHA REGULATION - AREA IN FRONT OF ELECTRICAL EQUIPMENT MUST BE KEPT CLEAR FOR 36 INCHES."

F. Equipment Identification Labels:

1. Black letters on a white field.

2.3 LABELS

A. Vinyl Wraparound Labels: Preprinted, flexible labels laminated with a clear, weather- and chemical-resistant coating and matching wraparound clear adhesive tape for securing label ends.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Brady Corporation.
 b. emedco.
 c. Panduit Corp.

B. Self-Adhesive Wraparound Labels: Preprinted, 3-mil-thick, vinyl flexible label with acrylic pressure-sensitive adhesive.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Brady Corporation.
 b. emedco.
 c. Marking Services, Inc.
 d. Panduit Corp.

2. Self-Lamination: Clear; UV-, weather- and chemical-resistant; self-laminating, protective shield over the legend. Labels sized such that the clear shield overlaps the entire printed legend.

3. Marker for Labels: Machine-printed, permanent, waterproof, black ink recommended by printer manufacturer.

C. Self-Adhesive Labels: Vinyl, thermal, transfer-printed, 3-mil-thick, multicolor, weather- and UV-resistant, pressure-sensitive adhesive labels, configured for intended use and location.
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Brady Corporation.
 b. emedco.
 c. Ideal Industries, Inc.
 d. Marking Services, Inc.
 e. Panduit Corp.

2. Minimum Nominal Size:
 a. 1-1/2 by 6 inches for raceway and conductors.
 b. 3-1/2 by 5 inches for equipment.
 c. As required by authorities having jurisdiction.

2.4 TAPES AND STENCILS

A. Marker Tapes: Vinyl or vinyl-cloth, self-adhesive wraparound type, with circuit identification legend machine printed by thermal transfer or equivalent process.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Carlton Industries, LP.
 b. Ideal Industries, Inc.
 c. Marking Services, Inc.
 d. Panduit Corp.

B. Self-Adhesive Vinyl Tape: Colored, heavy duty, waterproof, fade resistant; not less than 3 mils thick by 1 to 2 inches wide; compounded for outdoor use.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Brady Corporation.
 b. Carlton Industries, LP.
 c. emedco.
 d. Marking Services, Inc.

C. Underground-Line Warning Tape:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Brady Corporation.
 b. Ideal Industries, Inc.
 c. Marking Services, Inc.

2. Tape:
a. Recommended by manufacturer for the method of installation and suitable to identify and locate underground electrical and communications utility lines.

b. Printing on tape shall be permanent and shall not be damaged by burial operations.

c. Tape material and ink shall be chemically inert and not subject to degradation when exposed to acids, alkalis, and other destructive substances commonly found in soils.

3. Color and Printing:

b. Inscriptions for Red-Colored Tapes: "ELECTRIC LINE, HIGH VOLTAGE"

c. Inscriptions for Orange-Colored Tapes: "TELEPHONE CABLE, CATV CABLE, COMMUNICATIONS CABLE, OPTICAL FIBER CABLE".

4. Warning tape shall have the following characteristics:

a. Multilayer laminate, consisting of high-density polyethylene scrim coated with pigmented polyolefin; bright colored, continuous-printed on one side with the inscription of the utility, compounded for direct-burial service.

b. Width: 3 inches.

c. Thickness: 12 mils.

d. Weight: 36.1 lb/1000 sq. ft.

e. Tensile according to ASTM D882: 400 lbf and 11,500 psi.

D. Stenciled Legend: In nonfading, waterproof, black ink or paint. Minimum letter height shall be 1 inch.

2.5 TAGS

A. Nonmetallic Preprinted Tags: Polyethylene tags, 0.023 inch thick, color-coded for phase and voltage level, with factory printed permanent designations; punched for use with self-locking cable tie fastener.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

a. Brady Corporation.

b. Carlton Industries, LP.

c. Marking Services, Inc.

d. Panduit Corp.

2.6 SIGNS

A. Baked-Enamel Signs:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Carlton Industries, LP.
 b. Champion America.
 c. emedco.
 d. Marking Services, Inc.

2. Preprinted aluminum signs, punched or drilled for fasteners, with colors, legend, and size required for application.

3. 1/4-inch grommets in corners for mounting.

B. Laminated Acrylic or Melamine Plastic Signs:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Brady Corporation.
 b. Carlton Industries, LP.
 c. emedco.
 d. Marking Services, Inc.

2. Engraved legend.

3. Thickness:

 a. For signs up to 20 sq. in., minimum 1/16 inch thick.
 b. For signs larger than 20 sq. in., 1/8 inch thick.
 c. Engraved legend with white letters on a dark gray background.
 d. Punched or drilled for mechanical fasteners with 1/4-inch grommets in corners for mounting.
 e. Framed with mitered acrylic molding and arranged for attachment at applicable equipment.

2.7 CABLE TIES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 1. HellermannTyton.
 2. Ideal Industries, Inc.
 3. Marking Services, Inc.
 4. Panduit Corp.

B. UV-Stabilized Cable Ties: Fungus inert, designed for continuous exposure to exterior sunlight, self-extinguishing, one piece, self-locking, and Type 6/6 nylon.

 2. Tensile Strength at 73 Deg F according to ASTM D638: 12,000 psi.
3. Temperature Range: Minus 40 to plus 185 deg F.

2.8 MISCELLANEOUS IDENTIFICATION PRODUCTS

A. Paint: Comply with requirements in painting Sections for paint materials and application requirements. Retain paint system applicable for surface material and location (exterior or interior).

B. Fasteners for Labels and Signs: Self-tapping, stainless-steel screws or stainless-steel machine screws with nuts and flat and lock washers.

PART 3 - EXECUTION

3.1 PREPARATION

A. Self-Adhesive Identification Products: Before applying electrical identification products, clean substrates of substances that could impair bond, using materials and methods recommended by manufacturer of identification product.

3.2 INSTALLATION

A. Verify and coordinate identification names, abbreviations, colors, and other features with requirements in other Sections requiring identification applications, Drawings, Shop Drawings, manufacturer's wiring diagrams, and operation and maintenance manual. Use consistent designations throughout Project.

B. Install identifying devices before installing acoustical ceilings and similar concealment.

C. Verify identity of each item before installing identification products.

D. Coordinate identification with Project Drawings, manufacturer's wiring diagrams, and operation and maintenance manual.

E. Apply identification devices to surfaces that require finish after completing finish work.

F. Install signs with approved legend to facilitate proper identification, operation, and maintenance of electrical systems and connected items.

G. System Identification for Raceways and Cables under 600 V: Identification shall completely encircle cable or conduit. Place identification of two-color markings in contact, side by side.

1. Secure tight to surface of conductor, cable, or raceway.

H. System Identification for Raceways and Cables over 600 V: Identification shall completely encircle cable or conduit. Place adjacent identification of two-color markings in contact, side by side.
1. Secure tight to surface of conductor, cable, or raceway.

J. Emergency Operating Instruction Signs: Install instruction signs with white legend on a red background with minimum 3/8-inch-high letters for emergency instructions at equipment used for power transfer.

K. Elevated Components: Increase sizes of labels, signs, and letters to those appropriate for viewing from the floor.

L. Accessible Fittings for Raceways: Identify the covers of each junction and pull box of the following systems with the wiring system legend and system voltage. System legends shall be as follows:
 1. "EMERGENCY POWER."
 2. "POWER."
 3. "UPS."

M. Vinyl Wraparound Labels:
 1. Secure tight to surface of raceway or cable at a location with high visibility and accessibility.
 2. Attach labels that are not self-adhesive type with clear vinyl tape, with adhesive appropriate to the location and substrate.

N. Snap-around Labels: Secure tight to surface at a location with high visibility and accessibility.

O. Self-Adhesive Wraparound Labels: Secure tight to surface at a location with high visibility and accessibility.

P. Self-Adhesive Labels:
 1. On each item, install unique designation label that is consistent with wiring diagrams, schedules, and operation and maintenance manual.
 2. Unless otherwise indicated, provide a single line of text with 1/2-inch-high letters on 1-1/2-inch-high label; where two lines of text are required, use labels 2 inches high.

Q. Marker Tapes: Secure tight to surface at a location with high visibility and accessibility.

R. Self-Adhesive Vinyl Tape: Secure tight to surface at a location with high visibility and accessibility.
 1. Field-Applied, Color-Coding Conductor Tape: Apply in half-lapped turns for a minimum distance of 6 inches where splices or taps are made. Apply last two turns of tape with no tension to prevent possible unwinding.
S. Underground Line Warning Tape:

1. During backfilling of trenches, install continuous underground-line warning tape directly above cable or raceway at 6 to 8 inches below finished grade. Use multiple tapes where width of multiple lines installed in a common trench [or concrete envelope] exceeds 16 inches overall.
2. Limit use of underground-line warning tape to direct-buried cables.
3. Install underground-line warning tape for direct-buried cables and cables in raceways.

T. Nonmetallic Preprinted Tags:

1. Place in a location with high visibility and accessibility.
2. Secure using UV-stabilized cable ties.

U. Baked-Enamel Signs:

1. Attach signs that are not self-adhesive type with mechanical fasteners appropriate to the location and substrate.
2. Unless otherwise indicated, provide a single line of text with 1/2-inch-high letters on minimum 1-1/2-inch-high sign; where two lines of text are required, use signs minimum 2 inches high.

V. Laminated Acrylic or Melamine Plastic Signs:

1. Attach signs that are not self-adhesive type with mechanical fasteners appropriate to the location and substrate.
2. Unless otherwise indicated, provide a single line of text with 1/2-inch-high letters on 1-1/2-inch-high sign; where two lines of text are required, use labels 2 inches high.

W. Cable Ties: General purpose, for attaching tags, except as listed below:

1. Outdoors: UV-stabilized nylon.
2. In Spaces Handling Environmental Air: Plenum rated.

3.3 IDENTIFICATION SCHEDULE

A. Install identification materials and devices at locations for most convenient viewing without interference with operation and maintenance of equipment. Install access doors or panels to provide view of identifying devices.

B. Identify conductors, cables, and terminals in enclosures and at junctions, terminals, pull points, and locations of high visibility. Identify by system and circuit designation.

1. Locate identification at changes in direction, at penetrations of walls and floors, and at 10-foot maximum intervals.

D. Accessible Raceways, Armored and Metal-Clad Cables, More Than 600 V: Vinyl wraparound labels.

1. Locate identification at changes in direction, at penetrations of walls and floors, at 50-foot maximum intervals in straight runs, and at 25-foot maximum intervals in congested areas.

E. Accessible Raceways and Metal-Clad Cables, 600 V or Less, for Service, Feeder, and Branch Circuits, More Than 30A and 120V to Ground: Identify with self-adhesive raceway labels.

1. Locate identification at changes in direction, at penetrations of walls and floors, at 50-foot maximum intervals in straight runs, and at 25-foot maximum intervals in congested areas.

F. Accessible Fittings for Raceways and Cables within Buildings: Identify the covers of each junction and pull box of the following systems with self-adhesive labels containing the wiring system legend and system voltage. System legends shall be as follows:

1. "EMERGENCY POWER."
2. "POWER."
3. "UPS."

G. Power-Circuit Conductor Identification, 600 V or Less: For conductors in vaults, pull and junction boxes, manholes, and handholes, use vinyl wraparound labels to identify the phase.

1. Locate identification at changes in direction, at penetrations of walls and floors, at 50-foot maximum intervals in straight runs, and at 25-foot maximum intervals in congested areas.

H. Power-Circuit Conductor Identification, More Than 600 V: For conductors in vaults, pull and junction boxes, manholes, and handholes, use write-on nonmetallic preprinted tags colored and marked to indicate phase, and a separate tag with the circuit designation.

I. Control-Circuit Conductor Identification: For conductors and cables in pull and junction boxes, manholes, and handholes, use self-adhesive labels with the conductor or cable designation, origin, and destination.

J. Control-Circuit Conductor Termination Identification: For identification at terminations, provide self-adhesive labels with the conductor designation.

K. Auxiliary Electrical Systems Conductor Identification: Self-adhesive vinyl tape that is uniform and consistent with system used by manufacturer for factory-installed connections.
1. Identify conductors, cables, and terminals in enclosures and at junctions, terminals, and pull points. Identify by system and circuit designation.

L. Locations of Underground Lines: Underground-line warning tape for power, lighting, communication, and control wiring and optical-fiber cable.

M. Concealed Raceways and Duct Banks, More Than 600 V, within Buildings: Apply floor marking tape to the following finished surfaces:

1. Floor surface directly above conduits running beneath and within 12 inches of a floor that is in contact with earth or is framed above unexcavated space.
2. Wall surfaces directly external to raceways concealed within wall.
3. Accessible surfaces of concrete envelope around raceways in vertical shafts, exposed in the building, or concealed above suspended ceilings.

N. Instructional Signs: Self-adhesive labels, including the color code for grounded and ungrounded conductors.

O. Warning Labels for Indoor Cabinets, Boxes, and Enclosures for Power and Lighting: Baked-enamel warning signs.

1. Apply to exterior of door, cover, or other access.
2. For equipment with multiple power or control sources, apply to door or cover of equipment, including, but not limited to, the following:
 a. Power-transfer switches.
 b. Controls with external control power connections.

Q. Operating Instruction Signs: Laminated acrylic or melamine plastic signs.

R. Emergency Operating Instruction Signs: Laminated acrylic or melamine plastic signs with white legend on a red background with minimum 3/8-inch-high letters for emergency instructions at equipment used for power transfer.

S. Equipment Identification Labels:

1. Indoor Equipment: Laminated acrylic or melamine plastic sign.
2. Outdoor Equipment: Laminated acrylic or melamine sign.
3. Equipment to Be Labeled:

 a. Panelboards: Typewritten directory of circuits in the location provided by panelboard manufacturer. Panelboard identification shall be in the form of a engraved, laminated acrylic or melamine label.
 b. Enclosures and electrical cabinets.
 c. Access doors and panels for concealed electrical items.
d. Transformers: Label that includes tag designation indicated on Drawings for the transformer, feeder, and panelboards or equipment supplied by the secondary.
e. Emergency system boxes and enclosures.
f. Enclosed switches.
g. Enclosed circuit breakers.
h. Enclosed controllers.
i. Variable-speed controllers.
j. Push-button stations.
k. Power-transfer equipment.
l. Contactors.
m. Remote-controlled switches, dimmer modules, and control devices.
n. Power-generating units.
o. UPS equipment.

END OF SECTION
SECTION 260573.13

SHORT-CIRCUIT STUDIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes a computer-based, fault-current study to determine the minimum interrupting capacity of circuit protective devices.

1.3 DEFINITIONS

A. Field Adjusting Agency: An independent electrical testing agency with full-time employees and the capability to adjust devices and conduct testing indicated and that is a member company of NETA.

B. One-Line Diagram: A diagram that shows, by means of single lines and graphic symbols, the course of an electric circuit or system of circuits and the component devices or parts used therein.

C. Power System Analysis Software Developer: An entity that commercially develops, maintains, and distributes computer software used for power system studies.

D. Power Systems Analysis Specialist: Professional engineer in charge of performing the study and documenting recommendations, licensed in the state where Project is located.

E. Protective Device: A device that senses when an abnormal current flow exists and then removes the affected portion of the circuit from the system.

F. SCCR: Short-circuit current rating.

G. Service: The conductors and equipment for delivering electric energy from the serving utility to the wiring system of the premises served.

1.4 ACTION SUBMITTALS

A. Product Data:

1. For computer software program to be used for studies.
2. Submit the following after the approval of system protective devices submittals. Submittals shall be in digital form.

 a. Short-circuit study input data, including completed computer program input data sheets.
 b. Short-circuit study and equipment evaluation report; signed, dated, and sealed by a qualified professional engineer.

 1) Submit study report for action prior to receiving final approval of distribution equipment submittals. If formal completion of studies will cause delay in equipment manufacturing, obtain approval from Architect for preliminary submittal of sufficient study data to ensure that selection of devices and associated characteristics is satisfactory.

 2) Revised one-line diagram, reflecting field investigation results and results of short-circuit study.

1.5 INFORMATIONAL SUBMITTALS

 A. Qualification Data:

 1. For Power Systems Analysis Software Developer.
 2. For Power System Analysis Specialist.
 3. For Field Adjusting Agency.

 B. Product Certificates: For short-circuit study software, certifying compliance with IEEE 399.

1.6 CLOSEOUT SUBMITTALS

 A. Operation and Maintenance Data:

 1. For overcurrent protective devices to include in emergency, operation, and maintenance manuals.
 2. The following are from the Short-Circuit Study Report:

 a. Final one-line diagram.
 b. Final Short-Circuit Study Report.
 c. Short-circuit study data files.
 d. Power system data.

1.7 QUALITY ASSURANCE

 A. Study shall be performed using commercially developed and distributed software designed specifically for power system analysis.

 B. Software algorithms shall comply with requirements of standards and guides specified in this Section.
C. Manual calculations are unacceptable.

1. Power System Analysis Software Qualifications: Computer program shall be designed to perform short-circuit studies or have a function, component, or add-on module designed to perform short-circuit studies.
2. Computer program shall be developed under the charge of a licensed professional engineer who holds IEEE Computer Society's Certified Software Development Professional certification.

D. Power Systems Analysis Specialist Qualifications: Professional engineer licensed in the state where Project is located. All elements of the study shall be performed under the direct supervision and control of this professional engineer.

E. Short-Circuit Study Certification: Short-Circuit Study Report shall be signed and sealed by Power Systems Analysis Specialist.

F. Field Adjusting Agency Qualifications:

1. Employer of a NETA ETT-Certified Technician Level III or NICET Electrical Power Testing Level III certification responsible for all field adjusting of the Work.
2. A member company of NETA.
3. Acceptable to authorities having jurisdiction.

PART 2 - PRODUCTS

2.1 POWER SYSTEM ANALYSIS SOFTWARE DEVELOPERS

A. Manufacturers: Subject to compliance with requirements, provide products by the following:

1. SKM Systems Analysis, Inc.

B. Comply with IEEE 399 and IEEE 551.

1. Analytical features of power systems analysis software program shall have capability to calculate "mandatory," "very desirable," and "desirable" features as listed in IEEE 399.

C. Computer software program shall be capable of plotting and diagramming time-current-characteristic curves as part of its output.

2.2 SHORT-CIRCUIT STUDY REPORT CONTENTS

A. Executive summary of study findings.

B. Study descriptions, purpose, basis, and scope. Include case descriptions, definition of terms, and guide for interpretation of results.
C. One-line diagram of modeled power system, showing the following:

1. Protective device designations and ampere ratings.
2. Conductor types, sizes, and lengths.
3. Transformer kilovolt ampere (kVA) and voltage ratings.
4. Motor and generator designations and kVA ratings.
5. Switchgear, switchboard, motor-control center, and panelboard designations and ratings.
6. Derating factors and environmental conditions.
7. Any revisions to electrical equipment required by the study.

D. Comments and recommendations for system improvements or revisions in a written document, separate from one-line diagram.

E. Protective Device Evaluation:

1. Evaluate equipment and protective devices and compare to available short-circuit currents. Verify that equipment withstand ratings exceed available short-circuit current at equipment installation locations.
2. Tabulations of circuit breaker, fuse, and other protective device ratings versus calculated short-circuit duties.
3. For 600-V overcurrent protective devices, ensure that interrupting ratings are equal to or higher than calculated 1/2-cycle symmetrical fault current.
4. For devices and equipment rated for asymmetrical fault current, apply multiplication factors listed in standards to 1/2-cycle symmetrical fault current.
5. Verify adequacy of phase conductors at maximum three-phase bolted fault currents; verify adequacy of equipment grounding conductors and grounding electrode conductors at maximum ground-fault currents. Ensure that short-circuit withstand ratings are equal to or higher than calculated 1/2-cycle symmetrical fault current.

F. Short-Circuit Study Input Data:

1. One-line diagram of system being studied.
2. Power sources available.
3. Manufacturer, model, and interrupting rating of protective devices.
4. Conductors.
5. Transformer data.

G. Short-Circuit Study Output Reports:

1. Low-Voltage Fault Report: Three-phase and unbalanced fault calculations, showing the following for each overcurrent device location:

 a. Voltage.
 b. Calculated fault-current magnitude and angle.
 c. Fault-point X/R ratio.
 d. Equivalent impedance.
2. Momentary Duty Report: Three-phase and unbalanced fault calculations, showing the following for each overcurrent device location:

 a. Voltage.
 b. Calculated symmetrical fault-current magnitude and angle.
 c. Fault-point X/R ratio.
 d. Calculated asymmetrical fault currents:

 1) Based on fault-point X/R ratio.
 2) Based on calculated symmetrical value multiplied by 1.6.
 3) Based on calculated symmetrical value multiplied by 2.7.

3. Interrupting Duty Report: Three-phase and unbalanced fault calculations, showing the following for each overcurrent device location:

 a. Voltage.
 b. Calculated symmetrical fault-current magnitude and angle.
 c. Fault-point X/R ratio.
 d. No AC Decrement (NACD) ratio.
 e. Equivalent impedance.
 f. Multiplying factors for 2-, 3-, 5-, and 8-cycle circuit breakers rated on a symmetrical basis.
 g. Multiplying factors for 2-, 3-, 5-, and 8-cycle circuit breakers rated on a total basis.

PART 3 - EXECUTION

3.1 POWER SYSTEM DATA

 A. Obtain all data necessary for conduct of the study.

 1. Verify completeness of data supplied on one-line diagram. Call any discrepancies to Architect's attention.
 2. For equipment included as Work of this Project, use characteristics submitted under provisions of action submittals and information submittals for this Project.
 3. For equipment that is existing to remain, obtain required electrical distribution system data by field investigation and surveys, conducted by qualified technicians and engineers. Qualifications of technicians and engineers shall be as defined by NFPA 70E.

 B. Gather and tabulate the required input data to support the short-circuit study. Comply with requirements in Section 017839 "Project Record Documents" for recording circuit protective device characteristics. Record data on a Record Document copy of one-line diagram. Comply with recommendations in IEEE 551 as to the amount of detail that is required to be acquired in the field. Field data gathering shall be under direct supervision and control of the engineer in charge of performing the study, and shall be by the engineer or its representative who holds NETA ETT-Certified Technician Level III or
NICET Electrical Power Testing Level III certification. Data include, but are not limited to, the following:

1. Product Data for Project's overcurrent protective devices involved in overcurrent protective device coordination studies. Use equipment designation tags that are consistent with electrical distribution system diagrams, overcurrent protective device submittals, input and output data, and recommended device settings.
2. Obtain electrical power utility impedance at the service.
3. Power sources and ties.
4. For transformers, include kVA, primary and secondary voltages, connection type, impedance, X/R ratio, taps measured in percent, and phase shift.
5. For reactors, provide manufacturer and model designation, voltage rating, and impedance.
6. For circuit breakers and fuses, provide manufacturer and model designation. List type of breaker, type of trip, SCCR, current rating, and breaker settings.
7. Generator short-circuit current contribution data, including short-circuit reactance, rated kVA, rated voltage, and X/R ratio.
8. Busway manufacturer and model designation, current rating, impedance, lengths, and conductor material.
9. Motor horsepower and NEMA MG 1 code letter designation.
10. Conductor sizes, lengths, number, conductor material and conduit material (magnetic or nonmagnetic).
11. Derating factors.

3.2 SHORT-CIRCUIT STUDY

A. Perform study following the general study procedures contained in IEEE 399.
B. Calculate short-circuit currents according to IEEE 551.
C. Base study on device characteristics supplied by device manufacturer.
D. Begin short-circuit current analysis at the service, extending down to system overcurrent protective devices as follows:
 1. To normal system low-voltage load buses where fault current is 10 kA or less.
E. Study electrical distribution system from normal and alternate power sources throughout electrical distribution system for Project. Study all cases of system-switching configurations and alternate operations that could result in maximum fault conditions.
F. Include the ac fault-current decay from induction motors, synchronous motors, and asynchronous generators and apply to low- and medium-voltage, three-phase ac systems. Also account for the fault-current dc decrement to address asymmetrical requirements of interrupting equipment.
G. Calculate short-circuit momentary and interrupting duties for a three-phase bolted fault and a single line-to-ground fault at each equipment indicated on one-line diagram.
1. For grounded systems, provide a bolted line-to-ground fault-current study for areas as defined for the three-phase bolted fault short-circuit study.

H. Include in the report identification of any protective device applied outside its capacity.

END OF SECTION
SECTION 260573.16
COORDINATION STUDIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes computer-based, overcurrent protective device coordination studies to determine overcurrent protective devices and to determine overcurrent protective device settings for selective tripping.

1.3 DEFINITIONS

A. Existing to Remain: Existing items of construction that are not to be removed and that are not otherwise indicated to be removed, removed and salvaged, or removed and reinstalled. Existing to remain items shall remain functional throughout the construction period.

B. Field Adjusting Agency: An independent electrical testing agency with full-time employees and the capability to adjust devices and conduct testing indicated and that is a member company of NETA.

C. One-Line Diagram: A diagram that shows, by means of single lines and graphic symbols, the course of an electric circuit or system of circuits and the component devices or parts used therein.

D. Power System Analysis Software Developer: An entity that commercially develops, maintains, and distributes computer software used for power system studies.

E. Power System Analysis Specialist: Professional engineer in charge of performing the study and documenting recommendations, licensed in the state where Project is located.

F. Protective Device: A device that senses when an abnormal current flow exists and then removes the affected portion of the circuit from the system.

G. SCCR: Short-circuit current rating.

H. Service: The conductors and equipment for delivering electric energy from the serving utility to the wiring system of the premises served.

1.4 ACTION SUBMITTALS

A. Product Data:

1. For computer software program to be used for studies.
2. Submit the following after the approval of system protective devices submittals. Submittals shall be in digital form.
 a. Coordination-study input data, including completed computer program input data sheets.
 b. Study and equipment evaluation reports.
3. Overcurrent protective device coordination study report; signed, dated, and sealed by a qualified professional engineer.
 a. Submit study report for action prior to receiving final approval of distribution equipment submittals. If formal completion of studies will cause delay in equipment manufacturing, obtain approval from Architect for preliminary submittal of sufficient study data to ensure that selection of devices and associated characteristics is satisfactory.

1.5 INFORMATIONAL SUBMITTALS

A. Qualification Data:

1. For Power System Analysis Software Developer.
2. For Power Systems Analysis Specialist.
3. For Field Adjusting Agency.

B. Product Certificates: For overcurrent protective device coordination study software, certifying compliance with IEEE 399.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For overcurrent protective devices to include in emergency, operation, and maintenance manuals.

1. The following are from the Coordination Study Report:
 a. Final one-line diagram.
 b. Final protective device coordination study.
 c. Coordination study data files.
 d. List of all protective device settings.
 e. Time-current coordination curves.
 f. Power system data.
1.7 QUALITY ASSURANCE

A. Studies shall be performed using commercially developed and distributed software designed specifically for power system analysis.

B. Software algorithms shall comply with requirements of standards and guides specified in this Section.

C. Manual calculations are unacceptable.

D. Power System Analysis Software Qualifications:
 1. Computer program shall be designed to perform coordination studies or have a function, component, or add-on module designed to perform coordination studies.
 2. Computer program shall be developed under the charge of a licensed professional engineer who holds IEEE Computer Society's Certified Software Development Professional certification.

E. Power Systems Analysis Specialist Qualifications: Professional engineer licensed in the state where Project is located. All elements of the study shall be performed under the direct supervision and control of this professional engineer.

F. Field Adjusting Agency Qualifications:
 1. Employer of a NETA ETT-Certified Technician Level III responsible for all field adjusting of the Work.
 2. A member company of NETA.
 3. Acceptable to authorities having jurisdiction.

PART 2 - PRODUCTS

2.1 POWER SYSTEM ANALYSIS SOFTWARE DEVELOPERS

A. Manufacturers: Subject to compliance with requirements, provide products by the following:
 1. SKM Systems Analysis, Inc.

B. Comply with IEEE 242 and IEEE 399.

C. Analytical features of device coordination study computer software program shall have the capability to calculate "mandatory," "very desirable," and "desirable" features as listed in IEEE 399.

D. Computer software program shall be capable of plotting and diagramming time-current-characteristic curves as part of its output. Computer software program shall report device
settings and ratings of all overcurrent protective devices and shall demonstrate selective coordination by computer-generated, time-current coordination plots.

1. Optional Features:
 a. Arcing faults.
 b. Simultaneous faults.
 c. Explicit negative sequence.
 d. Mutual coupling in zero sequence.

2.2 COORDINATION STUDY REPORT CONTENTS

A. Executive summary of study findings.

B. Study descriptions, purpose, basis, and scope. Include case descriptions, definition of terms, and guide for interpretation of results.

C. One-line diagram of modeled power system, showing the following:
 1. Protective device designations and ampere ratings.
 2. Conductor types, sizes, and lengths.
 3. Transformer kilovolt ampere (kVA) and voltage ratings.
 4. Motor and generator designations and kVA ratings.
 5. Switchgear, switchboard, motor-control center, and panelboard designations.
 6. Any revisions to electrical equipment required by the study.
 7. Study Input Data: As described in "Power System Data" Article.

D. Protective Device Coordination Study:

1. Report recommended settings of protective devices, ready to be applied in the field. Use manufacturer's data sheets for recording the recommended setting of overcurrent protective devices when available.

 a. Phase and Ground Relays:
 1) Device tag.
 2) Relay current transformer ratio and tap, time dial, and instantaneous pickup value.
 3) Recommendations on improved relaying systems, if applicable.

 b. Circuit Breakers:
 1) Adjustable pickups and time delays (long time, short time, and ground).
 2) Adjustable time-current characteristic.
3) Adjustable instantaneous pickup.
4) Recommendations on improved trip systems, if applicable.

c. Fuses: Show current rating, voltage, and class.

E. Time-Current Coordination Curves: Determine settings of overcurrent protective devices to achieve selective coordination. Graphically illustrate that adequate time separation exists between devices installed in series, including power utility company's upstream devices. Prepare separate sets of curves for the switching schemes and for emergency periods where the power source is local generation. Show the following information:

1. Device tag and title, one-line diagram with legend identifying the portion of the system covered.
2. Terminate device characteristic curves at a point reflecting maximum symmetrical or asymmetrical fault current to which the device is exposed.
3. Identify the device associated with each curve by manufacturer type, function, and, if applicable, tap, time delay, and instantaneous settings recommended.
4. Plot the following listed characteristic curves, as applicable:
 a. Power utility's overcurrent protective device.
 b. Medium-voltage equipment overcurrent relays.
 c. Medium- and low-voltage fuses including manufacturer's minimum melt, total clearing, tolerance, and damage bands.
 d. Low-voltage equipment circuit-breaker trip devices, including manufacturer's tolerance bands.
 e. Transformer full-load current, magnetizing inrush current, and ANSI through-fault protection curves.
 f. Cables and conductors damage curves.
 g. Ground-fault protective devices.
 h. Motor-starting characteristics and motor damage points.
 i. Generator short-circuit decrement curve and generator damage point.
 j. The largest feeder circuit breaker in each motor-control center and panelboard.

5. Maintain selectivity for tripping currents caused by overloads.
6. Maintain maximum achievable selectivity for tripping currents caused by overloads on series-rated devices.
7. Provide adequate time margins between device characteristics such that selective operation is achieved.
8. Comments and recommendations for system improvements.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine Project overcurrent protective device submittals for compliance with electrical distribution system coordination requirements and other conditions affecting performance of the Work. Devices to be coordinated are indicated on Drawings.
1. Proceed with coordination study only after relevant equipment submittals have been assembled. Overcurrent protective devices that have not been submitted and approved prior to coordination study may not be used in study.

3.2 POWER SYSTEM DATA

A. Obtain all data necessary for conduct of the overcurrent protective device study.

1. Verify completeness of data supplied in one-line diagram on Drawings. Call any discrepancies to Architect’s attention.
2. For equipment included as Work of this Project, use characteristics submitted under provisions of action submittals and information submittals for this Project.
3. For equipment that is existing to remain, obtain required electrical distribution system data by field investigation and surveys, conducted by qualified technicians and engineers. Qualifications of technicians and engineers shall be as defined by NFPA 70E.

B. Gather and tabulate all required input data to support the coordination study. List below is a guide. Comply with recommendations in IEEE 551 for the amount of detail required to be acquired in the field. Field data gathering shall be under direct supervision and control of the engineer in charge of performing the study, and shall be by the engineer or its representative who holds NETA ETT-Certified Technician Level III or NICET Electrical Power Testing Level III certification. Data include, but are not limited to, the following:

1. Product Data for overcurrent protective devices specified in other Sections and involved in overcurrent protective device coordination studies. Use equipment designation tags that are consistent with electrical distribution system diagrams, overcurrent protective device submittals, input and output data, and recommended device settings.
2. Electrical power utility impedance at the service.
3. Power sources and ties.
4. Short-circuit current at each system bus (three phase and line to ground).
5. Full-load current of all loads.
6. Voltage level at each bus.
7. For transformers, include kVA, primary and secondary voltages, connection type, impedance, X/R ratio, taps measured in percent, and phase shift.
8. For reactors, provide manufacturer and model designation, voltage rating, and impedance.
9. For circuit breakers and fuses, provide manufacturer and model designation. List type of breaker, type of trip and available range of settings, SCCR, current rating, and breaker settings.
10. Generator short-circuit current contribution data, including short-circuit reactance, rated kVA, rated voltage, and X/R ratio.
11. For relays, provide manufacturer and model designation, current transformer ratios, potential transformer ratios, and relay settings.
12. Maximum demands from service meters.
13. Busway manufacturer and model designation, current rating, impedance, lengths, size, and conductor material.
14. Motor horsepower and NEMA MG 1 code letter designation.
15. Low-voltage cable sizes, lengths, number, conductor material, and conduit material (magnetic or nonmagnetic).
16. Medium-voltage cable sizes, lengths, conductor material, cable construction, metallic shield performance parameters, and conduit material (magnetic or nonmagnetic).
17. Data sheets to supplement electrical distribution system one-line diagram, cross-referenced with tag numbers on diagram, showing the following:
 a. Special load considerations, including starting inrush currents and frequent starting and stopping.
 b. Transformer characteristics, including primary protective device, magnetic inrush current, and overload capability.
 c. Motor full-load current, locked rotor current, service factor, starting time, type of start, and thermal-damage curve.
 d. Generator thermal-damage curve.
 e. Ratings, types, and settings of utility company's overcurrent protective devices.
 f. Special overcurrent protective device settings or types stipulated by utility company.
 g. Time-current-characteristic curves of devices indicated to be coordinated.
 h. Manufacturer, frame size, interrupting rating in amperes root mean square (rms) symmetrical, ampere or current sensor rating, long-time adjustment range, short-time adjustment range, and instantaneous adjustment range for circuit breakers.
 i. Manufacturer and type, ampere-tap adjustment range, time-delay adjustment range, instantaneous attachment adjustment range, and current transformer ratio for overcurrent relays.
 j. Switchgear, switchboards, motor-control centers, and panelboards ampacity, and SCCR in amperes rms symmetrical.
 k. Identify series-rated interrupting devices for a condition where the available fault current is greater than the interrupting rating of downstream equipment. Obtain device data details to allow verification that series application of these devices complies with NFPA 70 and UL 489 requirements.

3.3 COORDINATION STUDY

A. Comply with IEEE 242 for calculating short-circuit currents and determining coordination time intervals.

B. Comply with IEEE 399 for general study procedures.

C. Base study on device characteristics supplied by device manufacturer.

D. Begin analysis at the service, extending down to system overcurrent protective devices as follows:
1. To normal system low-voltage load buses where fault current is 10 kA or less.

E. Study electrical distribution system from normal and alternate power sources throughout electrical distribution system for Project. Study all cases of system-switching configurations and alternate operations that could result in maximum fault conditions.

F. Transformer Primary Overcurrent Protective Devices:
1. Device shall not operate in response to the following:
 a. Inrush current when first energized.
 b. Self-cooled, full-load current or forced-air-cooled, full-load current, whichever is specified for that transformer.
 c. Permissible transformer overloads according to IEEE C57.96 if required by unusual loading or emergency conditions.
2. Device settings shall protect transformers according to IEEE C57.12.00, for fault currents.

G. Motor Protection:
1. Select protection for low-voltage motors according to IEEE 242 and NFPA 70.
2. Select protection for motors served at voltages more than 600 V according to IEEE 620.

H. Conductor Protection: Protect cables against damage from fault currents according to ICEA P-32-382, ICEA P-45-482, and protection recommendations in IEEE 242. Demonstrate that equipment withstands the maximum short-circuit current for a time equivalent to the tripping time of the primary relay protection or total clearing time of the fuse. To determine temperatures that damage insulation, use curves from cable manufacturers or from listed standards indicating conductor size and short-circuit current.

I. Generator Protection: Select protection according to manufacturer's written instructions and to IEEE 242.

J. Include the ac fault-current decay from induction motors, synchronous motors, and asynchronous generators and apply to low- and medium-voltage, three-phase ac systems. Also account for fault-current dc decrement, to address asymmetrical requirements of interrupting equipment.

K. Calculate short-circuit momentary and interrupting duties for a three-phase bolted fault and a single line-to-ground fault at each equipment indicated on one-line diagram.
 1. For grounded systems, provide a bolted line-to-ground fault-current study for areas as defined for the three-phase bolted fault short-circuit study.

L. Protective Device Evaluation:
1. Evaluate equipment and protective devices and compare to short-circuit ratings.
2. Adequacy of switchgear, motor-control centers, and panelboard bus bars to withstand short-circuit stresses.
3. Any application of series-rated devices shall be recertified, complying with requirements in NFPA 70.
4. Include in the report identification of any protective device applied outside its capacity.

3.4 FIELD ADJUSTING

A. Adjust relay and protective device settings according to recommended settings provided by the coordination study. Field adjustments shall be completed by the engineering service division of equipment manufacturer under the "Startup and Acceptance Testing" contract portion.

B. Make minor modifications to equipment as required to accomplish compliance with short-circuit and protective device coordination studies.

C. Testing and adjusting shall be by a full-time employee of the Field Adjusting Agency, who holds NETA ETT-Certified Technician Level III or NICET Electrical Power Testing Level III certification.

1. Perform each visual and mechanical inspection and electrical test stated in NETA ATS. Certify compliance with test parameters. Perform NETA tests and inspections for all adjustable overcurrent protective devices.

3.5 DEMONSTRATION

A. Engage Power Systems Analysis Specialist to train Owner's maintenance personnel in the following:

1. Acquaint personnel in fundamentals of operating the power system in normal and emergency modes.
2. Hand-out and explain the coordination study objectives, study descriptions, purpose, basis, and scope. Include case descriptions, definition of terms, and guide for interpreting time-current coordination curves.
3. For Owner's maintenance staff certified as NETA ETT-Certified Technicians Level III or NICET Electrical Power Testing Level III Technicians, teach how to adjust, operate, and maintain overcurrent protective device settings.

END OF SECTION
SECTION 260573.19
ARC-FLASH HAZARD ANALYSIS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section includes a computer-based, arc-flash study to determine the arc-flash hazard distance and the incident energy to which personnel could be exposed during work on or near electrical equipment.

1.3 DEFINITIONS
A. Existing to Remain: Existing items of construction that are not to be removed and that are not otherwise indicated to be removed, removed and salvaged, or removed and reinstalled.
B. Field Adjusting Agency: An independent electrical testing agency with full-time employees and the capability to adjust devices and conduct testing indicated and that is a member company of NETA.
C. One-Line Diagram: A diagram that shows, by means of single lines and graphic symbols, the course of an electric circuit or system of circuits and the component devices or parts used therein.
D. Power System Analysis Software Developer: An entity that commercially develops, maintains, and distributes computer software used for power system studies.
E. Power Systems Analysis Specialist: Professional engineer in charge of performing the study and documenting recommendations, licensed in the state where Project is located.
F. Protective Device: A device that senses when an abnormal current flow exists and then removes the affected portion from the system.
G. SCCR: Short-circuit current rating.
H. Service: The conductors and equipment for delivering electric energy from the serving utility to the wiring system of the premises served.
1.4 ACTION SUBMITTALS

A. Product Data: For computer software program to be used for studies.

B. Study Submittals: Submit the following submittals after the approval of system protective devices submittals. Submittals shall be in digital form:

1. Arc-flash study input data, including completed computer program input data sheets.
2. Arc-flash study report; signed, dated, and sealed by Power Systems Analysis Specialist.
3. Submit study report for action prior to receiving final approval of distribution equipment submittals. If formal completion of studies will cause delay in equipment manufacturing, obtain approval from Architect for preliminary submittal of sufficient study data to ensure that selection of devices and associated characteristics is satisfactory.

1.5 INFORMATIONAL SUBMITTALS

A. Qualification Data:

1. For Power Systems Analysis Software Developer.
2. For Power System Analysis Specialist.
3. For Field Adjusting Agency.

B. Product Certificates: For arc-flash hazard analysis software, certifying compliance with IEEE 1584 and NFPA 70E.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data:

1. Provide maintenance procedures in equipment manuals according to requirements in NFPA 70E.
2. Operation and Maintenance Procedures: In addition to items specified in Section 017823 "Operation and Maintenance Data," provide maintenance procedures for use by Owner's personnel that comply with requirements in NFPA 70E.

1.7 QUALITY ASSURANCE

A. Study shall be performed using commercially developed and distributed software designed specifically for power system analysis.

B. Software algorithms shall comply with requirements of standards and guides specified in this Section.

C. Manual calculations are unacceptable.
D. Power System Analysis Software Qualifications: An entity that owns and markets computer software used for studies, having performed successful studies of similar magnitude on electrical distribution systems using similar devices.

1. Computer program shall be designed to perform arc-flash analysis or have a function, component, or add-on module designed to perform arc-flash analysis.
2. Computer program shall be developed under the charge of a licensed professional engineer who holds IEEE Computer Society's Certified Software Development Professional certification.

E. Power Systems Analysis Specialist Qualifications: Professional engineer in charge of performing the arc-flash study, analyzing the arc flash, and documenting recommendations, licensed in the state where Project is located. All elements of the study shall be performed under the direct supervision and control of this professional engineer.

F. Arc-Flash Study Certification: Arc-Flash Study Report shall be signed and sealed by Power Systems Analysis Specialist.

G. Field Adjusting Agency Qualifications:

1. Employer of a NETA ETT-Certified Technician Level III or NICET Electrical Power Testing Level III certification responsible for all field adjusting of the Work.
2. A member company of NETA.
3. Acceptable to authorities having jurisdiction.

PART 2 - PRODUCTS

2.1 COMPUTER SOFTWARE DEVELOPERS

A. Manufacturers: Subject to compliance with requirements, provide products by the following:

1. SKM Systems Analysis, Inc.

B. Comply with IEEE 1584 and NFPA 70E.

C. Analytical features of device coordination study computer software program shall have the capability to calculate "mandatory," "very desirable," and "desirable" features as listed in IEEE 399.

2.2 ARC-FLASH STUDY REPORT CONTENT

A. Executive summary of study findings.

B. Study descriptions, purpose, basis, and scope. Include case descriptions, definition of terms, and guide for interpretation of results.
C. One-line diagram, showing the following:

1. Protective device designations and ampere ratings.
2. Conductor types, sizes, and lengths.
3. Transformer kilovolt ampere (kVA) and voltage ratings, including derating factors and environmental conditions.
4. Motor and generator designations and kVA ratings.
5. Switchgear, switchboard, motor-control center, panelboard designations, and ratings.

D. Study Input Data: As described in "Power System Data" Article.

E. Short-Circuit Study Output Data: As specified in "Short-Circuit Study Output Reports" Paragraph in "Short-Circuit Study Report Contents" Article in Section 260573.13 "Short-Circuit Studies."

F. Protective Device Coordination Study Report Contents: As specified in "Coordination Study Report Contents" Article in Section 260573.16 "Coordination Studies."

G. Arc-Flash Study Output Reports:

1. Interrupting Duty Report: Three-phase and unbalanced fault calculations, showing the following for each equipment location included in the report:

 a. Voltage.
 b. Calculated symmetrical fault-current magnitude and angle.
 c. Fault-point X/R ratio.
 d. No AC Decrement (NACD) ratio.
 e. Equivalent impedance.
 f. Multiplying factors for 2-, 3-, 5-, and 8-cycle circuit breakers rated on a symmetrical basis.
 g. Multiplying factors for 2-, 3-, 5-, and 8-cycle circuit breakers rated on a total basis.

H. Incident Energy and Flash Protection Boundary Calculations:

1. Arcing fault magnitude.
2. Protective device clearing time.
3. Duration of arc.
5. Restricted approach boundary.
7. Working distance.
8. Incident energy.

I. Fault study input data, case descriptions, and fault-current calculations including a definition of terms and guide for interpretation of computer printout.
2.3 ARC-FLASH WARNING LABELS

A. Comply with requirements in Section 260553 "Identification for Electrical Systems" for self-adhesive equipment labels. Produce a 3.5-by-5-inch self-adhesive equipment label for each work location included in the analysis.

B. Label shall have an orange header with the wording, "WARNING, ARC-FLASH HAZARD," and shall include the following information taken directly from the arc-flash hazard analysis:

1. Location designation.
2. Nominal voltage.
3. Protection boundaries.
 a. Arc-flash boundary.
 b. Restricted approach boundary.
 c. Limited approach boundary.
4. Arc flash PPE category.
5. Required minimum arc rating of PPE in Cal/cm squared.
6. Available incident energy.
7. Working distance.
8. Engineering report number, revision number, and issue date.

C. Labels shall be machine printed, with no field-applied markings.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine Project overcurrent protective device submittals. Proceed with arc-flash study only after relevant equipment submittals have been assembled. Overcurrent protective devices that have not been submitted and approved prior to arc-flash study may not be used in study.

3.2 ARC-FLASH HAZARD ANALYSIS

A. Comply with NFPA 70E and its Annex D for hazard analysis study.

B. Preparatory Studies: Perform the Short-Circuit and Protective Device Coordination studies prior to starting the Arc-Flash Hazard Analysis.

2. Coordination Study Report Contents: As specified in "Coordination Study Report Contents" Article in Section 260573.16 "Coordination Studies."
C. Calculate maximum and minimum contributions of fault-current size.

1. Maximum calculation shall assume a maximum contribution from the utility and shall assume motors to be operating under full-load conditions.
2. Calculate arc-flash energy at 85 percent of maximum short-circuit current according to IEEE 1584 recommendations.

D. Calculate the arc-flash protection boundary and incident energy at locations in electrical distribution system where personnel could perform work on energized parts.

E. Include medium- and low-voltage equipment locations, except equipment rated 240 V ac or less fed from transformers less than 125 kVA.

F. Calculate the limited, restricted, and prohibited approach boundaries for each location.

G. Incident energy calculations shall consider the accumulation of energy over time when performing arc-flash calculations on buses with multiple sources. Iterative calculations shall take into account the changing current contributions, as the sources are interrupted or decremented with time. Fault contribution from motors and generators shall be decremented as follows:

1. Fault contribution from induction motors shall not be considered beyond three to five cycles.
2. Fault contribution from synchronous motors and generators shall be decayed to match the actual decrement of each as closely as possible (for example, contributions from permanent magnet generators will typically decay from 10 per unit to three per unit after 10 cycles).

H. Arc-flash energy shall generally be reported for the maximum of line or load side of a circuit breaker. However, arc-flash computation shall be performed and reported for both line and load side of a circuit breaker as follows:

1. When the circuit breaker is in a separate enclosure.
2. When the line terminals of the circuit breaker are separate from the work location.

I. Base arc-flash calculations on actual overcurrent protective device clearing time. Cap maximum clearing time at two seconds based on IEEE 1584, Section B.1.2.

3.3 POWER SYSTEM DATA

A. Obtain all data necessary for conduct of the arc-flash hazard analysis.

1. Verify completeness of data supplied on one-line diagram on Drawings and under "Preparatory Studies" Paragraph in "Arc-Flash Hazard Analysis" Article. Call discrepancies to Architect's attention.
2. For new equipment, use characteristics from approved submittals under provisions of action submittals and information submittals for this Project.
3. For existing equipment, whether or not relocated, obtain required electrical
distribution system data by field investigation and surveys conducted by qualified
technicians and engineers.

3.4 LABELING

A. Apply one arc-flash label on the front cover of each section of the equipment and on side
or rear covers with accessible live parts and hinged doors or removable plates for each
equipment included in the study. Base arc-flash label data on highest values calculated at
each location.

B. Each piece of equipment listed below shall have an arc-flash label applied to it:

1. Medium voltage transformers
2. Low voltage transformers.
3. Panelboard and safety switches.
4. Control panel.

C. Note on record Drawings the location of equipment where the personnel could be
exposed to arc-flash hazard during their work.

1. Indicate arc-flash energy.
2. Indicate protection level required.

3.5 APPLICATION OF WARNING LABELS

A. Install arc-flash warning labels under the direct supervision and control of Power System
Analysis Specialist.

3.6 DEMONSTRATION

A. Engage Power Systems Analysis Specialist to train Owner's maintenance personnel in
potential arc-flash hazards associated with working on energized equipment and the
significance of arc-flash warning labels.

END OF SECTION
SECTION 260923
LIGHTING CONTROL DEVICES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Time switches.
 2. Photoelectric switches.
 3. Daylight controls.
 4. Indoor occupancy and vacancy sensors.
 5. Switchbox-mounted occupancy sensors.

B. Related Requirements:
 1. Section 262726 "Wiring Devices" for wall-box dimmers, non-networkable wall-switch occupancy sensors, and manual light switches.

1.3 ACTION SUBMITTALS
A. Product Data: For each type of product.

B. Shop Drawings:
 1. Show installation details for the following:
 a. Occupancy sensors.
 b. Vacancy sensors.
 2. Interconnection diagrams showing field-installed wiring.
 3. Include diagrams for power, signal, and control wiring.

1.4 INFORMATIONAL SUBMITTALS
A. Coordination Drawings: Reflected ceiling plan(s) and elevations, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
1. Suspended ceiling components.
2. Structural members to which equipment will be attached.
3. Items penetrating finished ceiling, including the following:
 a. Luminaires.
 b. Air outlets and inlets.
 c. Speakers.
 d. Sprinklers.
 e. Access panels.
 f. Control modules.

B. Field quality-control reports.

C. Sample Warranty: For manufacturer's warranties.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For each type of lighting control device to include in operation and maintenance manuals.

1.6 WARRANTY

A. Manufacturer's Warranty: Manufacturer and Installer agree to repair or replace lighting control devices that fail(s) in materials or workmanship within specified warranty period.

 1. Failures include, but are not limited to, the following:
 a. Faulty operation of lighting control software.
 b. Faulty operation of lighting control devices.

 2. Warranty Period: Two year(s) from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 TIME SWITCHES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 1. Cooper Industries, Inc.
 2. Intermatic, Inc.
 3. Leviton Manufacturing Co., Inc.
 4. NSi Industries LLC.

B. Electronic Time Switches: Solid state, programmable, with alphanumeric display; complying with UL 917.
1. Listed and labeled as defined in NFPA 70 and marked for intended location and application.
2. Contact Configuration: SPST.
3. Contact Rating: 20-A ballast load, 120-/240-V ac.
4. Programs: Two on-off set points on a 24-hour schedule, allowing different set points for each day of the week and an annual holiday schedule that overrides the weekly operation on holidays.
5. Circuitry: Allow connection of a photoelectric relay as substitute for on-off function of a program.
6. Astronomic Time: All channels.
7. Automatic daylight savings time changeover.
8. Battery Backup: Not less than seven days reserve, to maintain schedules and time clock.

2.2 OUTDOOR PHOTOELECTRIC SWITCHES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Cooper Industries, Inc.
2. Intermatic, Inc.
3. Leviton Manufacturing Co., Inc.
4. NSi Industries LLC.

B. Description: Solid state, with SPST dry contacts rated for 1000 W incandescent or 1800 VA inductive, to operate connected relay, contactor coils, or microprocessor input; complying with UL 773A, and compatible with ballasts and LED lamps.

1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
2. Light-Level Monitoring Range: 1.5 to 10 fc (16.14 to 108 lux), with an adjustment for turn-on and turn-off levels within that range.
3. Time Delay: Fifteen-second minimum, to prevent false operation.
5. Mounting: Twist lock complies with NEMA C136.10, with base-and-stem mounting or stem-and-swivel mounting accessories as required to direct sensor to the north sky exposure.
6. Failure Mode: Luminaire stays ON.

2.3 DAYLIGHT CONTROLS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Cooper Industries, Inc.
2. Hubbell Building Automation, Inc.
3. Leviton Manufacturing Co., Inc.
4. Lithonia Lighting; Acuity Brands Lighting, Inc.
5. WattStopper; a Legrand® Group brand.
B. System Description: Sensing daylight and electrical lighting levels, the system adjusts the indoor electrical lighting levels. As daylight increases, the lights are dimmed.

1. Lighting control set point is based on two lighting conditions:
 a. When no daylight is present (target level).
 b. When significant daylight is present.

2. System programming is done with two hand-held, remote-control tools.
 a. Initial setup tool.
 b. Tool for occupants to adjust the target levels by increasing the set point up to 25 percent, or by minimizing the electric lighting level.

C. Ceiling-Mounted Dimming Controls: Solid-state, light-level sensor unit, with separate controller unit, to detect changes in lighting levels that are perceived by the eye.

1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
2. Sensor Output: 0- to 10-V dc to operate electronic dimming ballasts. Sensor is powered by controller unit.
3. Power Pack: Sensor has 24-V dc, Class 2 power source, as defined by NFPA 70.
4. Light-Level Sensor Set-Point Adjustment Range: 20 to 60 fc.

2.4 INDOOR OCCUPANCY SENSORS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Cooper Industries, Inc.
2. Hubbell Building Automation, Inc.
3. Leviton Manufacturing Co., Inc.

B. General Requirements for Sensors:

2. Dual technology.
3. Integrated or separate power pack.
4. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
5. Operation:
 a. Occupancy Sensor: Unless otherwise indicated, turn lights on when coverage area is occupied, and turn them off when unoccupied; with a time delay for turning lights off, adjustable over a minimum range of 1 to 15 minutes.
6. Sensor Output: Contacts rated to operate the connected relay, complying with UL 773A. Sensor is powered from the power pack.
7. Power Pack: Dry contacts rated for 20-A LED load at 120- and 277-V ac, for 13-A tungsten at 120-V ac, and for 1 hp at 120-V ac. Sensor has 24-V dc, 150-mA, Class 2 power source, as defined by NFPA 70.

8. Mounting:
 a. Sensor: Suitable for mounting in any position on a standard outlet box.
 b. Relay: Externally mounted through a 1/2-inch knockout in a standard electrical enclosure.
 c. Time-Delay and Sensitivity Adjustments: Recessed and concealed behind hinged door.

9. Indicator: Digital display, to show when motion is detected during testing and normal operation of sensor.

10. Bypass Switch: Override the "on" function in case of sensor failure.

C. Dual-Technology Type: Ceiling mounted; detect occupants in coverage area using PIR and ultrasonic detection methods. The particular technology or combination of technologies that control on-off functions is selectable in the field by operating controls on unit.

1. Sensitivity Adjustment: Separate for each sensing technology.
2. Detector Sensitivity: Detect occurrences of 6-inch-minimum movement of any portion of a human body that presents a target of not less than 36 sq. in., and detect a person of average size and weight moving not less than 12 inches in either a horizontal or a vertical manner at an approximate speed of 12 inches/s.
3. Detection Coverage (Standard Room): Detect occupancy anywhere within a circular area of 1000 sq. ft. when mounted on a 96-inch high ceiling.
4. Detection Coverage (Room, Wall Mounted): Detect occupancy anywhere within a 180-degree pattern centered on the sensor over an area of 1000 square feet when mounted 96 inches above finished floor.

2.5 SWITCHBOX-MOUNTED OCCUPANCY SENSORS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 1. Cooper Industries, Inc.
 2. Hubbell Building Automation, Inc.
 3. Leviton Manufacturing Co., Inc.
 4. Philips Lighting Controls.

 1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 2. Occupancy Sensor Operation: Unless otherwise indicated, turn lights on when coverage area is occupied, and turn lights off when unoccupied; with a time delay for turning lights off, adjustable over a minimum range of 1 to 15 minutes.
3. Operating Ambient Conditions: Dry interior conditions, 32 to 120 deg F.
4. Switch Rating: Not less than 800-VA LED load at 120 V, 1200-VA LED load at 277 V, and 800-W incandescent.

C. Wall-Switch Sensor:

1. Standard Range: 180-degree field of view, field adjustable from 180 to 40 degrees; with a minimum coverage area of 900 sq. ft.
2. Sensing Technology: PIR.
3. Switch Type: SP, field-selectable automatic "on," or manual "on," automatic "off."
5. Voltage: Match the circuit voltage.
6. Concealed, field-adjustable, "off" time-delay selector at up to 30 minutes.
7. Adaptive Technology: Self-adjusting circuitry detects and memorizes usage patterns of the space and helps eliminate false "off" switching.

2.6 EMERGENCY LIGHTING CONTROL RELAY

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Lighting Control and Design.
2. WattStopper; a Legrand® Group brand.

B. The device shall be capable of bypassing the local switching means when normal utility power has been lost. The device shall consist of relay switching circuitry, a test switch, a normal power indicator light and an alternate power indicator light contained in one 9” x 6” x 3.5” enclosure; shall sense normal power at 120 through 277 VAC, 50/60 Hz; shall be rated for 120 through 277 VAC, 50/60 Hz at up to 20 amps of lighting load; shall draw 45 mA and 4.0 Watts during normal sensing operation; and shall comply with the current NEC. The device shall be UL Listed for field installation in indoor or damp locations and shall be warranted for a full five years from date of purchase.

2.7 CONDUCTORS AND CABLES

A. Power Wiring to Supply Side of Remote-Control Power Sources: Not smaller than No. 12 AWG. Comply with requirements in Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

B. Classes 2 and 3 Control Cable: Multiconductor cable with stranded-copper conductors not smaller than No. 18 AWG. Comply with requirements in Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

C. Class 1 Control Cable: Multiconductor cable with stranded-copper conductors not smaller than No. 14 AWG. Comply with requirements in Section 260519 "Low-Voltage Electrical Power Conductors and Cables."
PART 3 - EXECUTION

3.1 EXAMINATION
 A. Examine lighting control devices before installation. Reject lighting control devices that are wet, moisture damaged, or mold damaged.
 B. Examine walls and ceilings for suitable conditions where lighting control devices will be installed.
 C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 SENSOR INSTALLATION
 A. Comply with NECA 1.
 B. Coordinate layout and installation of ceiling-mounted devices with other construction that penetrates ceilings or is supported by them, including light fixtures, HVAC equipment, smoke detectors, fire-suppression systems, and partition assemblies.
 C. Install and aim sensors in locations to achieve not less than 90-percent coverage of areas indicated. Do not exceed coverage limits specified in manufacturer's written instructions.

3.3 CONTACTOR INSTALLATION
 A. Comply with NECA 1.
 B. Mount electrically held lighting contactors with elastomeric isolator pads to eliminate structure-borne vibration unless contactors are installed in an enclosure with factory-installed vibration isolators.

3.4 WIRING INSTALLATION
 A. Comply with NECA 1.
 C. Wiring within Enclosures: Comply with NECA 1. Separate power-limited and nonpower-limited conductors according to conductor manufacturer's written instructions.
 D. Size conductors according to lighting control device manufacturer's written instructions unless otherwise indicated.
 E. Splices, Taps, and Terminations: Make connections only on numbered terminal strips in junction, pull, and outlet boxes; terminal cabinets; and equipment enclosures.
3.5 IDENTIFICATION

A. Identify components and power and control wiring according to Section 260553 "Identification for Electrical Systems."
 1. Identify controlled circuits in lighting contactors.
 2. Identify circuits or luminaires controlled by photoelectric and occupancy sensors at each sensor.

B. Label time switches and contactors with a unique designation.

3.6 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to evaluate lighting control devices and perform tests and inspections.

B. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.

C. Perform the following tests and inspections with the assistance of a factory-authorized service representative:
 1. Operational Test: After installing time switches and sensors, and after electrical circuitry has been energized, start units to confirm proper unit operation.
 2. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

D. Lighting control devices will be considered defective if they do not pass tests and inspections.

E. Prepare test and inspection reports.

3.7 ADJUSTING

A. Occupancy Adjustments: When requested within 12 months from date of Substantial Completion, provide on-site assistance in adjusting lighting control devices to suit actual occupied conditions. Provide up to two visits to Project during other-than-normal occupancy hours for this purpose.
 1. For occupancy and motion sensors, verify operation at outer limits of detector range. Set time delay to suit Owner's operations.
 2. For daylighting controls, adjust set points and deadband controls to suit Owner's operations.
 3. Align high-bay occupancy sensors using manufacturer's laser aiming tool.

3.8 DEMONSTRATION

A. Coordinate demonstration of products specified in this Section with demonstration requirements for low-voltage, programmable lighting control systems specified in
Section 260943.16 "Addressable-Luminaire Lighting Controls" and Section 260943.23 "Relay-Based Lighting Controls."

B. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain lighting control devices.

END OF SECTION
SECTION 261219

PAD-MOUNTED, LIQUID-FILLED, MEDIUM-VOLTAGE TRANSFORMERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes pad-mounted, liquid-filled, medium-voltage distribution transformers, with primary and secondary bushings within or without air-terminal enclosures.

1.3 DEFINITIONS

A. BIL: Basic Impulse Insulation Level.

B. Bushing: An insulating structure including a central conductor, or providing a central passage for a conductor, with provision for mounting on a barrier, conducting or otherwise, for the purpose of insulating the conductor from the barrier and conducting current from one side of the barrier to the other.

C. Bushing Elbow: An insulated device used to connect insulated conductors to separable insulated connectors on dead-front, pad-mounted transformers and to provide a fully insulated connection. This is also called an "elbow connector."

D. Bushing Insert: That component of a separable insulated connector that is inserted into a bushing well to complete a dead-front, load break or nonload break, separable insulated connector (bushing).

E. Bushing Well: A component of a separable insulated connector, either permanently welded or clamped to an enclosure wall or barrier, having a cavity that receives a replaceable component (bushing insert) to complete the separable insulated connector (bushing).

F. Elbow Connector: See "bushing elbow" above.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product.

 1. Include rated capacities, operating characteristics, and furnished specialties and accessories.
B. Shop Drawings: For pad-mounted, liquid-filled, medium-voltage transformers.

1. Include plans and elevations showing major components and features.
 a. Include a plan view and cross section of equipment base, showing clearances, required workspace, and locations of penetrations for grounding and conduits.

2. Include details of equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.

3. Include single-line diagram.

4. Include list of materials.

5. Include nameplate data.

6. Manufacturer's published time-current curves of the transformer high-voltage fuses, with transformer damage curve, inrush curve, and thru fault current indicated.

1.5 INFORMATIONAL SUBMITTALS

A. Qualification Data: For testing agency.

B. Product Certificates: For transformers, signed by product manufacturer.

C. Source quality-control reports.

D. Field quality-control reports.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For transformer and accessories to include in emergency, operation, and maintenance manuals.

1.7 QUALITY ASSURANCE

A. Testing Agency Qualifications: Member company of NETA or an NRTL.

1. Testing Agency's Field Supervisor: Certified by NETA to supervise on-site testing.

PART 2 - PRODUCTS

2.1 SYSTEM DESCRIPTION

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
B. Comply with IEEE C2.

C. Comply with IEEE C57.12.00.

2.2 PERFORMANCE REQUIREMENTS

A. Windings Material: Copper.

B. Surge Arresters: Comply with IEEE C62.11, Distribution Class; metal-oxide-varistor type, fully shielded, separable-elbow type, suitable for plugging into the inserts provided in the high-voltage section of the transformer. Connected in each phase of incoming circuit and ahead of any disconnecting device.

C. Winding Connections: The connection of windings and terminal markings shall comply with IEEE C57.12.70.

D. Efficiency: Comply with 10 CFR 431, Subpart K.

E. Insulation: Transformer kVA rating shall be as follows: The average winding temperature rise above a 30 deg C ambient temperature shall not exceed 65 deg C and 80 deg C hottest-spot temperature rise at rated kVA when tested according to IEEE C57.12.90, using combination of connections and taps that give the highest average winding temperature rise.

F. Tap Changer: External handle, for de-energized operation.

G. Tank: Sealed, with welded-on cover

H. Enclosure Integrity: Comply with IEEE C57.12.28 for pad-mounted enclosures that contain energized electrical equipment in excess of 600 V that may be exposed to the public.

I. Mounting: An integral skid mounting frame, suitable to allow skidding or rolling of transformer in any direction, and with provision for anchoring frame to pad.

J. Insulating Liquids:

1. Less-Flammable Liquids:
 a. Edible-Seed-Oil-Based Dielectric: Listed and labeled by an NRTL as complying with NFPA 70 requirements for fire point of not less than 300 deg C when tested according to ASTM D92. Liquid shall be biodegradable and nontoxic, having passed the Organization for Economic Co-operation and Development G.L.203 with zero mortality, and shall be certified by the U.S. Environmental Protection Agency as biodegradable, meeting Environmental Technology Verification requirements.

K. Sound level shall comply with NEMA TR 1 requirements.
L. Corrosion Protection:

1. Transformer coating system shall be factory applied, complying with requirements of IEEE C57.12.28, in manufacturer's standard color green.

2.3 THREE-PHASE TRANSFORMERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Square D
2. Eaton.

B. Description:

1. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

C. Compartment Construction:

1. Double-Compartment Construction: Individual compartments for high- and low-voltage sections, formed by steel isolating barriers that extend full height and depth of compartments, with hinged, lift-off doors and three-point latching, with a stop in the open position and provision for padlocking.

D. Primary Fusing: Designed and rated to provide thermal protection of transformer by sensing overcurrent and high liquid temperature.

1. 150-kV BIL current-limiting fuses, conforming to requirements of IEEE C37.47.
2. Interrupting Rating: 50,000 rms A symmetrical at system voltage.
3. Fuse Assembly: Bayonet-type, liquid-immersed, expulsion fuses in series with liquid-immersed, partial-range, current-limiting fuses. Bayonet fuse shall sense both high currents and high oil temperature to provide thermal protection to the transformer.
4. Provide bayonet fuse assembly with an oil retention valve and an external drip shield inside the housing to eliminate or minimize oil spills. Valve shall close when fuse holder is removed and an external drip shield is installed.
5. Provide a conspicuously displayed warning adjacent to bayonet fuse(s), cautioning against removing or inserting fuses unless transformer has been de-energized and tank pressure has been released.

E. High-Voltage Section: Dead-front design.

1. To connect primary cable, use separable insulated connectors; coordinated with and complying with requirements of Section 260513 "Medium-Voltage Cables."
Bushings shall be one-piece units, with ampere and BIL ratings the same as connectors.

2. Bushing inserts:
 a. Conform to the requirements of IEEE 386.
 b. Rated at 200 A, with voltage class matching connectors. Provide a parking stand near each bushing well.
 c. Provide insulated protective caps for insulating and sealing out moisture from unused bushing inserts.

3. Bushing wells configured for loop-feed application.
5. Dead-front surge arresters.
6. Tap-changer operator.
7. Load-Break Switch:
 a. Radial-feed, liquid-immersed type with voltage class and BIL matching that of separable connectors, with a continuous current rating and load-break rating of 200 amperes, and a make-and-latch rating of 12 kA rms symmetrical.

8. Ground pad.

F. Low-Voltage Section:

1. Bushings with spade terminals drilled for terminating the number of conductors indicated on the Drawings, and the lugs that comply with requirements of Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

G. Capacities and Characteristics:

2. Voltage Ratings: 12,470 V - 480Y/277 V.
3. Taps: Comply with IEEE C57.12.26 requirements.
4. Transformer BIL (kV): Comply with IEEE C57.12.26 requirements.
5. Minimum Tested Impedance (Percent at 85 deg C): 4.03.
6. Comply with UL listing requirements for combination classification and listing for transformer and less-flammable insulating liquid.

H. Transformer Accessories:

1. Drain and filter connection.
2. Filling and top filter press connections.
3. Pressure-vacuum gauge.
4. Dial-type analog thermometer with alarm contacts.
5. Magnetic liquid level indicator with high and low alarm contacts.
6. Automatically resetting pressure-relief device. Device flow shall be as recommended by manufacturer.
7. Stainless-steel ground connection pads.
9. Sudden pressure relay for remote alarm or trip when internal transformer pressure rises at field-set rate. Provide with seal-in delay.

2.4 SERVICE CONDITIONS

A. Transformers shall be suitable for operation under service conditions specified as usual service conditions in IEEE C57.12.00, except for the following:

1. Altitudes above 3300 feet.
2. Cooling air temperature exceeds limits.
3. Excessive load current harmonic factor.
4. Operation above rated voltage or below rated frequency.
5. Exposure to fumes, vapors, or dust.
6. Exposure to hot and humid climate or to excessive moisture, including steam, salt spray, and dripping water.
7. Exposure to excessively high or low temperatures.

2.5 WARNING LABELS AND SIGNS

A. Comply with requirements for labels and signs specified in Section 260553 "Identification for Electrical Systems."

1. High-Voltage Warning Label: Provide self-adhesive warning signs on outside of high-voltage compartment door(s). Sign legend shall be "DANGER HIGH VOLTAGE" printed in two lines of nominal 2-inch-high letters. The word "DANGER" shall be in white letters on a red background and the words "HIGH VOLTAGE" shall be in black letters on a white background.
2. Arc Flash Warning Label: Provide self-adhesive warning signs on outside of high-voltage compartment door(s), warning of potential electrical arc flash hazards and appropriate personal protective equipment required.

2.6 SOURCE QUALITY CONTROL

A. Provide manufacturer's certificate that the transformer design tests comply with IEEE C57.12.90.

1. Perform the following factory-certified routine tests on each transformer for this Project:
 a. Resistance.
 b. Turns ratio, polarity, and phase relation.
 c. Transformer no-load losses and excitation current at 100 percent of ratings.
 d. Transformer impedance voltage and load loss.
 e. Operation of all devices.
 f. Lightning impulse.
 g. Low frequency.
 h. Leak.
i. Transformer no-load losses and excitation current at 110 percent of ratings.

j. Applied potential, except that this test is not required for single-phase transformers or for three-phase Y-Y-connected transformers.

k. Induced potential.

l. Resistance measurements of all windings on rated voltage connection and at tap extreme connections.

m. Ratios on rated voltage connection and at tap extreme connections.

n. Polarity and phase relation on rated voltage connection.

o. No-load loss at rated voltage on rated voltage connection.

p. Exciting current at rated voltage on rated voltage connection.

q. Impedance.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine pad-mounted, liquid-filled, medium-voltage transformers upon delivery.

1. Upon delivery of transformers and prior to unloading, inspect equipment for any damage that may have occurred during shipment or storage.

2. Verify that tie rods and chains are undamaged and tight, and that all blocking and bracing is tight. Verify that there is no evidence of load shifting in transit, and that readings from transportation shock recorders, if equipped, are within manufacturer's recommendations.

3. Verify that there is no indication of external damage and no dents or scratches in doors and sill, tank walls, radiators and fins, or termination provisions.

4. Verify that there is no evidence of insulating-liquid leakage on transformer surfaces, at weld seams, on high- or low-voltage bushing parts, and at transformer base.

5. Verify that there is positive pressure or vacuum on tank. Check pressure gauge; it is required to read other than zero.

6. Compare transformers and accessories received with bill of materials to verify that shipment is complete. Verify that transformers and accessories conform with manufacturer's quotation and shop drawings. If shipment is incomplete or does not comply with Project requirements, notify manufacturer in writing immediately.

7. Verify presence of polychlorinated biphenyl content labeling.

8. Unload transformers carefully, observing all packing label warnings and handling instructions.

9. Open termination compartment doors and inspect components for damage or displaced parts, loose or broken connections, cracked or chipped insulators, bent mounting flanges, dirt or foreign material, and water or moisture.

B. Handling:

1. Handle transformers carefully, in accordance with manufacturer recommendations, to avoid damage to enclosure, termination compartments,
base, frame, tank, and internal components. Do not subject transformers to impact, jolting, jarring, or rough handling.

2. Protect transformer termination compartments against entrance of dust, rain, and snow.

3. Transport transformers upright, to avoid internal stresses on core and coil mounting assembly and to prevent trapping air in windings. Do not tilt or tip transformers.

4. Verify that transformer weights are within rated capacity of handling equipment.

5. Use only manufacturer-recommended points for lifting, jacking, and pulling. Use all lifting lugs when lifting transformers.

6. Use jacks only at corners of tank base plate.

7. Use nylon straps of same length to balance and distribute weight when handling transformers with a crane.

8. Use spreaders or a lifting beam to obtain a vertical lift and to protect transformer from straps bearing against enclosure. Lifting cable pull angles may not be greater than 15 degrees from vertical.

9. Exercise care not to damage tank base structure when handling transformer using skids or rollers. Use skids to distribute stresses over tank base when using rollers under large transformers.

C. Storage:

1. Store transformers in accordance with manufacturer's recommendations.

2. Transformers may be stored outdoors. If possible, store transformers at final installation locations on concrete pads. If dry concrete surfaces are unavailable, use pallets of adequate strength to protect transformers from direct contact with ground. Ensure transformer is level.

3. Ensure that transformer storage location is clean and protected from severe conditions. Protect transformers from dirt, water, contamination, and physical damage. Do not store transformers in presence of corrosive or explosive gases. Protect transformers from weather when stored for more than three months.

4. Store transformers with compartment doors closed.

5. Regularly inspect transformers while in storage and maintain documentation of storage conditions, noting any discrepancies or adverse conditions. Verify that an effective pressure seal is maintained using pressure gauges. Visually check for insulating-liquid leaks and rust spots.

D. Examine areas and space conditions for compliance with requirements for pad-mounted, liquid-filled, medium-voltage transformers and other conditions affecting performance of the Work.

E. Examine roughing-in of conduits and grounding systems to verify the following:

1. Wiring entries comply with layout requirements.

2. Entries are within conduit-entry tolerances specified by manufacturer, and no feeders will cross section barriers to reach load or line lugs.

F. Examine concrete bases for suitable conditions for transformer installation.
G. Pre-Installation Checks:

2. Remove a sample of insulating liquid according to ASTM D923. Insulating-liquid values shall comply with NETA ATS, Table 100.4. Sample shall be tested for the following:
 b. Acid Neutralization Number: ASTM D974.
 c. Interfacial Tension: ASTM D971.
 g. Power Factor or Dissipation Factor: ASTM D924.

H. Verify that ground connections are in place and that requirements in Section 260526 "Grounding and Bonding for Electrical Systems" have been met. Maximum ground resistance shall be 5 ohms at transformer location.

I. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Install transformers on cast-in-place concrete equipment base(s). Comply with requirements for equipment bases and foundations specified in Section 033000 "Cast-in-Place Concrete."

B. Transformer shall be installed level and plumb and shall tilt less than 1.5 degrees while energized.

C. Comply with requirements for vibration isolation and seismic control devices specified in Section 260529 "Hangers and Supports for Electrical Systems".

D. Maintain minimum clearances and workspace at equipment according to manufacturer's written instructions and IEEE C2.

3.3 CONNECTIONS

A. Ground equipment according to Section 260526 "Grounding and Bonding for Electrical Systems."
 1. For counterpoise, use tinned bare copper cable not smaller than No. 4/0 AWG, buried not less than 30 inches below grade interconnecting the grounding electrodes. Bond surge arrester and neutrals directly to transformer enclosure and then to grounding electrode system with bare copper conductors, sized as shown. Keep lead lengths as short as practicable, with no kinks or sharp bends.
 2. Make joints in grounding conductors and loops by exothermic weld or compression connector.
3. Terminate all grounding and bonding conductors on a common equipment grounding terminal on transformer enclosure.
4. Complete transformer tank grounding and lightning arrester connections prior to making any other electrical connections.

B. Connect wiring according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables."
 1. Maintain air clearances between energized live parts and between live parts and ground for exposed connections in accordance with manufacturer recommendations.
 2. Bundle associated phase, neutral, and equipment grounding conductors together within transformer enclosure. Arrange conductors such that there is not excessive strain that could cause loose connections. Allow adequate slack for expansion and contraction of conductors.

C. Terminate medium-voltage cables in incoming section of transformers according to Section 260513 "Medium-Voltage Cables."

3.4 SIGNS AND LABELS

A. Comply with installation requirements for labels and signs specified in Section 260553 "Identification for Electrical Systems."

B. Install warning signs as required to comply with 29 CFR 1910.269.

3.5 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

B. Perform the following tests and inspections:

1. General Field-Testing Requirements:
 b. Perform each visual and mechanical inspection and electrical test. Certify compliance with test parameters.
 c. After installing transformer but before primary is energized, verify that grounding system at the transformer is tested at specified value or less.
 d. After installing transformer and after electrical circuitry has been energized, test for compliance with requirements.
 e. Visual and Mechanical Inspection:
 1) Verify equipment nameplate data complies with Contract Documents.
 2) Inspect bolted electrical connections for high resistance using one of the following two methods:
a) Use a low-resistance ohmmeter to compare bolted connection resistance values to values of similar connections. Investigate values that deviate from those of similar bolted connections by more than 50 percent of the lowest value.

b) Verify tightness of accessible bolted electrical connections by calibrated torque-wrench method according to manufacturer's published data or NETA ATS, Table 100.12. Bolt-torque levels shall be according to manufacturer's published data. In absence of manufacturer's published data, use NETA ATS, Table 100.12.

d. Remove and replace malfunctioning units and retest.

e. Prepare test and inspection reports. Record as-left set points of all adjustable devices.

2. Medium-Voltage Surge Arrester Field Tests:

a. Visual and Mechanical Inspection:

1) Inspect physical and mechanical condition.
2) Verify arresters are clean.
3) Verify that ground lead on each device is individually attached to a ground bus or ground electrode.

b. Electrical Test:

1) Perform an insulation-resistance test on each arrester, phase terminal-to-ground. Apply voltage according to manufacturer's published data. In the absence of manufacturer's published data, comply with NETA ATS, Table 100.1. Replace units that fail to comply with recommended minimum insulation resistance listed in that table.

2) Perform a watts-loss test. Evaluate watts-loss values by comparison with similar units and test equipment manufacturer's published data.

3. Liquid-Filled Transformer Field Tests:

a. Visual and Mechanical Inspection:

1) Test dew point of tank gases if applicable.
2) Inspect anchorage, alignment, and grounding.
3) Verify bushings are clean.
4) Verify that alarm, control, and trip settings on temperature and level indicators are set and operate within manufacturer's recommended settings.
5) Verify that liquid level in tanks is within manufacturer's published tolerances.
6) Perform specific inspections and mechanical tests recommended by manufacturer.
7) Verify presence of transformer surge arresters and that their ratings are as specified.
8) Verify that as-left tap connections are as specified.

b. Electrical Tests:

1) Perform insulation-resistance tests winding-to-winding and each winding-to-ground. Apply voltage according to manufacturer's published data. In the absence of manufacturer's published data, comply with NETA ATS, Table 100.5. Calculate polarization index; the value of the index shall not be less than 1.0.
2) Perform power-factor or dissipation-factor tests on all windings according to test equipment manufacturer's published data. Maximum winding insulation power-factor/dissipation-factor values shall be according to manufacturer's published data. In the absence of manufacturer's published data, comply with NETA ATS, Table 100.3.
3) Measure core insulation resistance at 500-V dc if the core is insulated and the core ground strap is removable. Core insulation-resistance values shall not be less than 1 megohm at 500-V dc.
4) Perform a power-factor or dissipation-factor tip-up test on windings greater than 2.5 kV.
5) Perform turns-ratio tests at tap positions. Turns-ratio test results shall not deviate by more than one-half percent from either adjacent coils or calculated ratio. If test fails, replace transformer.
6) Perform an excitation-current test on each phase. The typical excitation-current test data pattern for a three-legged core transformer is two similar current readings and one lower current reading. Investigate and correct if test shows a different pattern.
7) Measure resistance of each winding at each tap connection, and record temperature-corrected winding-resistance values in the Operations and Maintenance Manual.
8) Perform an applied-voltage test on high- and low-voltage windings-to-ground. Comply with IEEE C57.12.91, Sections 10.2 and 10.9. This test is not required for single-phase transformers and for three-phase Y-Y-connected transformers.
9) Verify correct secondary voltage, phase-to-phase and phase-to-neutral, after energization and prior to loading.
10) Remove a sample of insulating liquid according to ASTM D923, and perform dissolved-gas analysis according to IEEE C57.104 or ASTM D3612.
3.6 FOLLOW-UP SERVICE

A. Voltage Monitoring and Adjusting: After Substantial Completion, if requested by Owner, but not more than six months after Final Acceptance, perform the following voltage monitoring:

1. During a period of normal load cycles as evaluated by Owner, perform seven days of three-phase voltage recording at the outgoing section of each transformer. Use voltmeters with calibration traceable to the National Institute of Science and Technology standards and with a chart speed of not less than 1 inch per hour. Voltage unbalance greater than 1 percent between phases, or deviation of any phase voltage from the nominal value by more than plus or minus 5 percent during test period, is unacceptable.

2. Corrective Action: If test results are unacceptable, perform the following corrective action, as appropriate:
 a. Adjust transformer taps.
 b. Prepare written request for voltage adjustment by electric utility.

3. Retests: Repeat monitoring, after corrective action is performed, until satisfactory results are obtained.

4. Report:
 a. Prepare a written report covering monitoring performed and corrective action taken.

B. Infrared Inspection: Perform survey during periods of maximum possible loading. Remove all necessary covers prior to inspection.

1. After Substantial Completion, but not more than 60 days after Final Acceptance, perform infrared inspection of transformer's electrical power connections.

2. Instrument: Inspect distribution systems with imaging equipment capable of detecting a minimum temperature difference of 1-degree C at 30-degree C.

3. Record of Infrared Inspection: Prepare a certified report that identifies testing technician and equipment used, and lists results as follows:
 a. Description of equipment to be tested.
 b. Discrepancies.
 c. Temperature difference between area of concern and reference area.
 d. Probable cause of temperature difference.
 e. Areas inspected. Identify inaccessible and unobservable areas and equipment.
 f. Identify load conditions at time of inspection.
 g. Provide photographs and thermograms of deficient area.

4. Act on inspection results according to recommendations of NETA ATS, Table 100.18. Correct possible and probable deficiencies as soon as Owner's operations permit. Retest until deficiencies are corrected.
3.7 DEMONSTRATION

A. Train Owner's maintenance personnel to adjust, operate, and maintain systems.

END OF SECTION
SECTION 262213

LOW-VOLTAGE DISTRIBUTION TRANSFORMERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary
 Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section includes distribution, dry-type transformers with a nominal primary and
 secondary rating of 600 V and less, with capacities up to 1500 kVA.

1.3 ACTION SUBMITTALS
 A. Product Data: For each type of product.
 1. Include construction details, material descriptions, dimensions of individual
 components and profiles, and finishes for each type and size of transformer.
 2. Include rated nameplate data, capacities, weights, dimensions, minimum
 clearances, installed devices and features, and performance for each type and size
 of transformer.
 B. Shop Drawings:
 1. Detail equipment assemblies and indicate dimensions, weights, loads, required
 clearances, method of field assembly, components, and location and size of each
 field connection.
 2. Vibration Isolation Base Details: Detail fabrication including anchorages and
 attachments to structure and to supported equipment.
 3. Include diagrams for power, signal, and control wiring.

1.4 INFORMATIONAL SUBMITTALS
 A. Qualification Data: For testing agency.
 B. Source quality-control reports.
 C. Field quality-control reports.

1.5 CLOSEOUT SUBMITTALS
 A. Operation and Maintenance Data: For transformers to include in emergency, operation,
 and maintenance manuals.
1.6 QUALITY ASSURANCE

A. Testing Agency Qualifications: Accredited by NETA.

1. Testing Agency's Field Supervisor: Certified by NETA to supervise on-site testing.

1.7 DELIVERY, STORAGE, AND HANDLING

A. Inspection: On receipt, inspect for and note any shipping damage to packaging and transformer.

1. If manufacturer packaging is removed for inspection, and transformer will be stored after inspection, re-package transformer using original or new packaging materials that provide protection equivalent to manufacturer's packaging.

B. Storage: Store in a warm, dry, and temperature-stable location in original shipping packaging.

C. Temporary Heating: Apply temporary heat according to manufacturer's written instructions within the enclosure of each ventilated-type unit, throughout periods during which equipment is not energized and when transformer is not in a space that is continuously under normal control of temperature and humidity.

D. Handling: Follow manufacturer's instructions for lifting and transporting transformers.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Eaton.
2. General Electric Company.
3. Square D; by Schneider Electric.

B. Source Limitations: Obtain each transformer type from single source from single manufacturer.

2.2 GENERAL TRANSFORMER REQUIREMENTS

A. Description: Factory-assembled and -tested, air-cooled units for 60-Hz service.

B. Comply with NFPA 70.
1. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and use.

C. Transformers Rated 15 kVA and Larger:
 1. Comply with 10 CFR 431 (DOE 2016) efficiency levels.
 2. Marked as compliant with DOE 2016 efficiency levels by an NRTL.

D. Shipping Restraints: Paint or otherwise color-code bolts, wedges, blocks, and other restraints that are to be removed after installation and before energizing. Use fluorescent colors that are easily identifiable inside the transformer enclosure.

2.3 DISTRIBUTION TRANSFORMERS

A. Comply with NFPA 70, and list and label as complying with UL 1561.

B. Provide transformers that are constructed to withstand seismic forces specified in Section 260548.16 "Seismic Controls for Electrical Systems."

C. Cores: Electrical grade, non-aging silicon steel with high permeability and low hysteresis losses.
 1. One leg per phase.
 2. Grounded to enclosure.

D. Coils: Continuous windings except for taps.
 1. Coil Material: Copper.
 2. Internal Coil Connections: Brazed or pressure type.

E. Enclosure: Ventilated.
 1. NEMA 250, Type 2: Core and coil shall be encapsulated within resin compound to seal out moisture and air.
 2. KVA Ratings: Based on convection cooling only and not relying on auxiliary fans.
 3. Wiring Compartment: Sized for conduit entry and wiring installation.
 4. Finish: Comply with NEMA 250.
 a. Finish Color: Gray weather-resistant enamel.

F. Taps for Transformers 25 kVA and Larger: Two 2.5 percent taps above and two 2.5 percent taps below normal full capacity.

G. Insulation Class, Smaller Than 30 kVA: 180 deg C, UL-component-recognized insulation system with a maximum of 115 deg C rise above 40 deg C ambient temperature.
H. Insulation Class, 30 kVA and Larger: 220 deg C, UL-component-recognized insulation system with a maximum of 150 deg C rise above 40 deg C ambient temperature.

I. Grounding: Provide ground-bar kit or a ground bar installed on the inside of the transformer enclosure.

J. Low-Sound-Level Requirements: Maximum sound levels when factory tested according to IEEE C57.12.91, as follows:

1. 9.01 to 30.00 kVA: 45 dBA.
2. 30.01 to 50.00 kVA: 45 dBA.
3. 50.01 to 150.00 kVA: 50 dBA.

2.4 IDENTIFICATION

A. Nameplates: Engraved, laminated-acrylic or melamine plastic signs for each distribution transformer, mounted with corrosion-resistant screws. Nameplates and label products are specified in Section 260553 "Identification for Electrical Systems."

2.5 SOURCE QUALITY CONTROL

A. Test and inspect transformers according to IEEE C57.12.01 and IEEE C57.12.91.

1. Resistance measurements of all windings at rated voltage connections and at all tap connections.
2. Ratio tests at rated voltage connections and at all tap connections.
3. Phase relation and polarity tests at rated voltage connections.
4. No load losses, and excitation current and rated voltage at rated voltage connections.
5. Impedance and load losses at rated current and rated frequency at rated voltage connections.
6. Applied and induced tensile tests.
7. Regulation and efficiency at rated load and voltage.
8. Insulation-Resistance Tests:
 a. High-voltage to ground.
 b. Low-voltage to ground.
 c. High-voltage to low-voltage.
9. Temperature tests.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine conditions for compliance with enclosure- and ambient-temperature requirements for each transformer.
B. Verify that field measurements are as needed to maintain working clearances required by NFPA 70 and manufacturer's written instructions.

C. Examine walls, floors, roofs, and concrete bases for suitable mounting conditions where transformers will be installed.

D. Verify that ground connections are in place and requirements in Section 260526 "Grounding and Bonding for Electrical Systems" have been met. Maximum ground resistance shall be 5 ohms at location of transformer.

E. Environment: Enclosures shall be rated for the environment in which they are located. Covers for NEMA 250, Type 4X enclosures shall not cause accessibility problems.

F. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Install transformers level and plumb on a concrete base with vibration-dampening supports. Locate transformers away from corners and not parallel to adjacent wall surface.

B. Construct concrete bases according to Section 033000 "Cast-in-Place Concrete" and anchor floor-mounted transformers according to manufacturer's written instructions and requirements in Section 260529 "Hangers and Supports for Electrical Systems."

 1. Coordinate size and location of concrete bases with actual transformer provided. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified with concrete.

C. Secure transformer to concrete base according to manufacturer's written instructions.

D. Secure covers to enclosure and tighten all bolts to manufacturer-recommended torques to reduce noise generation.

E. Remove shipping bolts, blocking, and wedges.

3.3 CONNECTIONS

A. Ground equipment according to Section 260526 "Grounding and Bonding for Electrical Systems."

B. Connect wiring according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

C. Tighten electrical connectors and terminals according to manufacturer's published torque-tightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A-486B.
D. Provide flexible connections at all conduit and conductor terminations and supports to eliminate sound and vibration transmission to the building structure.

3.4 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

B. Perform tests and inspections.

C. Small (Up to 167-kVA Single-Phase or 500-kVA Three-Phase) Dry-Type Transformer Field Tests:

1. Visual and Mechanical Inspection.
 a. Inspect physical and mechanical condition.
 b. Inspect anchorage, alignment, and grounding.
 c. Verify that resilient mounts are free and that any shipping brackets have been removed.
 d. Verify the unit is clean.
 e. Perform specific inspections and mechanical tests recommended by manufacturer.
 f. Verify that as-left tap connections are as specified.
 g. Verify the presence of surge arresters and that their ratings are as specified.

2. Electrical Tests:
 a. Measure resistance at each winding, tap, and bolted connection.
 b. Perform insulation-resistance tests winding-to-winding and each winding-to-ground. Apply voltage according to manufacturer's published data. In the absence of manufacturer's published data, comply with NETA ATS, Table 100.5. Calculate polarization index: the value of the index shall not be less than 1.0.
 c. Perform turns-ratio tests at all tap positions. Test results shall not deviate by more than one-half percent from either the adjacent coils or the calculated ratio. If test fails, replace the transformer.
 d. Verify correct secondary voltage, phase-to-phase and phase-to-neutral, after energization and prior to loading.

D. Remove and replace units that do not pass tests or inspections and retest as specified above.

E. Infrared Scanning: Two months after Substantial Completion, perform an infrared scan of transformer connections.

1. Use an infrared-scanning device designed to measure temperature or detect significant deviations from normal values. Provide documentation of device calibration.
2. Perform two follow-up infrared scans of transformers, one at four months and the other at 11 months after Substantial Completion.

3. Prepare a certified report identifying transformer checked and describing results of scanning. Include notation of deficiencies detected, remedial action taken, and scanning observations after remedial action.

F. Test Labeling: On completion of satisfactory testing of each unit, attach a dated and signed "Satisfactory Test" label to tested component.

3.5 ADJUSTING

A. Record transformer secondary voltage at each unit for at least 48 hours of typical occupancy period. Adjust transformer taps to provide optimum voltage conditions at secondary terminals. Optimum is defined as not exceeding nameplate voltage plus 5 percent and not being lower than nameplate voltage minus 3 percent at maximum load conditions. Submit recording and tap settings as test results.

B. Output Settings Report: Prepare a written report recording output voltages and tap settings.

3.6 CLEANING

A. Vacuum dirt and debris; do not use compressed air to assist in cleaning.

END OF SECTION
SECTION 262416
PANELBOARDS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Distribution panelboards.
 2. Lighting and appliance branch-circuit panelboards.
 3. Load centers.
 4. Electronic-grade panelboards.

1.3 DEFINITIONS
A. ATS: Acceptance testing specification.
B. GFCI: Ground-fault circuit interrupter.
C. GFEP: Ground-fault equipment protection.
D. HID: High-intensity discharge.
E. MCCB: Molded-case circuit breaker.
F. SPD: Surge protective device.
G. VPR: Voltage protection rating.

1.4 ACTION SUBMITTALS
A. Product Data: For each type of panelboard.
 1. Include materials, switching and overcurrent protective devices, SPDs, accessories, and components indicated.
 2. Include dimensions and manufacturers' technical data on features, performance, electrical characteristics, ratings, and finishes.
B. Shop Drawings: For each panelboard and related equipment.
1. Include dimensioned plans, elevations, sections, and details.
2. Show tabulations of installed devices with nameplates, conductor termination sizes, equipment features, and ratings.
3. Detail enclosure types including mounting and anchorage, environmental protection, knockouts, corner treatments, covers and doors, gaskets, hinges, and locks.
4. Detail bus configuration, current, and voltage ratings.
5. Short-circuit current rating of panelboards and overcurrent protective devices.
6. Include evidence of NRTL listing for series rating of installed devices.
7. Include evidence of NRTL listing for SPD as installed in panelboard.
8. Detail features, characteristics, ratings, and factory settings of individual overcurrent protective devices and auxiliary components.
9. Include wiring diagrams for power, signal, and control wiring.
10. Key interlock scheme drawing and sequence of operations.
11. Include time-current coordination curves for each type and rating of overcurrent protective device included in panelboards. Submit on translucent log-log graf paper; include selectable ranges for each type of overcurrent protective device. Include an Internet link for electronic access to downloadable PDF of the coordination curves.

1.5 INFORMATIONAL SUBMITTALS

A. Qualification Data: For testing agency.

B. Panelboard Schedules: For installation in panelboards,[Submit final versions after load balancing.]

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For panelboards and components to include in emergency, operation, and maintenance manuals. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:

1. Manufacturer's written instructions for testing and adjusting overcurrent protective devices.
2. Time-current curves, including selectable ranges for each type of overcurrent protective device that allows adjustments.

1.7 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Keys: [Two] <Insert number> spares for each type of panelboard cabinet lock.
2. Circuit Breakers Including GFCI and GFEP Types: [Two] <Insert number> spares for each panelboard.
3. Fuses for Fused Switches: Equal to 10 percent of quantity installed for each size and type, but no fewer than three of each size and type.
4. Fuses for Fused Power-Circuit Devices: Equal to 10 percent of quantity installed for each size and type, but no fewer than three of each size and type.

5. <Insert extra materials>.

1.8 QUALITY ASSURANCE

A. Manufacturer Qualifications: ISO 9001 or 9002 certified.

1.9 DELIVERY, STORAGE, AND HANDLING

A. Remove loose packing and flammable materials from inside panelboards; install temporary electric heating (250 W per panelboard) to prevent condensation.

B. Handle and prepare panelboards for installation according to [NECA 407] [NEMA PB 1].

1.10 FIELD CONDITIONS

A. Environmental Limitations:
 1. Do not deliver or install panelboards until spaces are enclosed and weathertight, wet work in spaces is complete and dry, work above panelboards is complete, and temporary HVAC system is operating and maintaining ambient temperature and humidity conditions at occupancy levels during the remainder of the construction period.
 2. Rate equipment for continuous operation under the following conditions unless otherwise indicated:
 a. Ambient Temperature: Not exceeding [minus 22 deg F] [23 deg F] to plus 104 deg F.
 b. Altitude: Not exceeding 6600 feet.

B. Service Conditions: NEMA PB 1, usual service conditions, as follows:
 1. Ambient temperatures within limits specified.
 2. Altitude not exceeding 6600 feet.

C. Interruption of Existing Electric Service: Do not interrupt electric service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary electric service according to requirements indicated:
 1. Notify [Architect] [Construction Manager] [Owner] no fewer than [two] <Insert number> days in advance of proposed interruption of electric service.
 2. Do not proceed with interruption of electric service without [Architect's] [Construction Manager's] [Owner's] written permission.
 3. Comply with NFPA 70E.
1.11 WARRANTY

A. Manufacturer's Warranty: Manufacturer agrees to repair or replace panelboards that fail in materials or workmanship within specified warranty period.

1. Panelboard Warranty Period: [18] <Insert number> months from date of Substantial Completion.

B. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace SPD that fails in materials or workmanship within specified warranty period.

1. SPD Warranty Period: [Five] <Insert number> years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PANELBOARDS AND LOAD CENTERS COMMON REQUIREMENTS

A. Fabricate and test panelboards according to IEEE 344 to withstand seismic forces defined in Section 260548.16 "Seismic Controls for Electrical Systems."

B. Product Selection for Restricted Space: Drawings indicate maximum dimensions for panelboards including clearances between panelboards and adjacent surfaces and other items. Comply with indicated maximum dimensions.

C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

D. Comply with NEMA PB 1.

E. Comply with NFPA 70.

F. Enclosures: [Flush] [and] [Surface]-mounted, dead-front cabinets.

1. Rated for environmental conditions at installed location.

 a. Indoor Dry and Clean Locations: NEMA 250, [Type 1] <Insert type>.
 b. Outdoor Locations: NEMA 250, [Type 3R] <Insert type>.
 d. Other Wet or Damp Indoor Locations: NEMA 250, [Type 4] <Insert type>.
 e. Indoor Locations Subject to Dust, Falling Dirt, and Dripping Noncorrosive Liquids: NEMA 250, [Type 5] [Type 12].

2. Height: 84 inches maximum.
3. Front: Secured to box with concealed trim clamps. For surface-mounted fronts, match box dimensions; for flush-mounted fronts, overlap box. Trims shall cover all live parts and shall have no exposed hardware.
4. Hinged Front Cover: Entire front trim hinged to box and with standard door within hinged trim cover. Trims shall cover all live parts and shall have no exposed hardware.
5. Skirt for Surface-Mounted Panelboards: Same gage and finish as panelboard front with flanges for attachment to panelboard, wall, and ceiling or floor.
6. Gutter Extension and Barrier: Same gage and finish as panelboard enclosure; integral with enclosure body. Arrange to isolate individual panel sections.
7. Finishes:
 a. Panels and Trim: [Steel] [and] [galvanized steel], factory finished immediately after cleaning and pretreating with manufacturer’s standard two-coat, baked-on finish consisting of prime coat and thermosetting topcoat.
 b. Back Boxes: [Galvanized steel] [Same finish as panels and trim].
 c. Fungus Proofing: Permanent fungicidal treatment for overcurrent protective devices and other components.
8. <Insert optional features>.

G. Incoming Mains:
1. Location: [Top] [Bottom] [Convertible between top and bottom].
2. Main Breaker: Main lug interiors up to 400 amperes shall be field convertible to main breaker.

H. Phase, Neutral, and Ground Buses:
1. Material: [Tin-plated aluminum] [Hard-drawn copper, 98 percent conductivity].
 a. Plating shall run entire length of bus.
 b. Bus shall be fully rated the entire length.
2. Interiors shall be factory assembled into a unit. Replacing switching and protective devices shall not disturb adjacent units or require removing the main bus connectors.
3. Equipment Ground Bus: Adequate for feeder and branch-circuit equipment grounding conductors; bonded to box.
4. Isolated Ground Bus: Adequate for branch-circuit isolated ground conductors; insulated from box.
5. Full-Sized Neutral: Equipped with full-capacity bonding strap for service entrance applications. Mount electrically isolated from enclosure. Do not mount neutral bus in gutter.
6. Extra-Capacity Neutral Bus: Neutral bus rated 200 percent of phase bus and listed and labeled by an NRTL acceptable to authority having jurisdiction, as suitable for nonlinear loads in electronic-grade panelboards and others designated.
on Drawings. Connectors shall be sized for double-sized or parallel conductors as indicated on Drawings. Do not mount neutral bus in gutter.

7. Split Bus: Vertical buses divided into individual vertical sections.
8. <Insert optional features>.

I. Conductor Connectors: Suitable for use with conductor material and sizes.

1. Material: [Tin-plated aluminum] [Hard-drawn copper, 98 percent conductivity].
2. Terminations shall allow use of 75 deg C rated conductors without derating.
3. Size: Lugs suitable for indicated conductor sizes, with additional gutter space, if required, for larger conductors.
4. Main and Neutral Lugs: [Compression] [Mechanical] type, with a lug on the neutral bar for each pole in the panelboard.
5. Ground Lugs and Bus-Configured Terminators: [Compression] [Mechanical] type, with a lug on the bar for each pole in the panelboard.
6. Feed-Through Lugs: [Compression] [Mechanical] type, suitable for use with conductor material. Locate at opposite end of bus from incoming lugs or main device.
7. Subfeed (Double) Lugs: [Compression] [Mechanical] type suitable for use with conductor material. Locate at same end of bus as incoming lugs or main device.
8. Gutter-Tap Lugs: [Compression] [Mechanical] type suitable for use with conductor material and with matching insulating covers. Locate at same end of bus as incoming lugs or main device.
10. <Insert optional features>.

J. NRTL Label: Panelboards or load centers shall be labeled by an NRTL acceptable to authority having jurisdiction for use as service equipment with one or more main service disconnecting and overcurrent protective devices. Panelboards or load centers shall have meter enclosures, wiring, connections, and other provisions for utility metering. Coordinate with utility company for exact requirements.

K. Future Devices: Panelboards or load centers shall have mounting brackets, bus connections, filler plates, and necessary appurtenances required for future installation of devices.

1. Percentage of Future Space Capacity: [Five] [Ten] [20] <Insert number> percent.

L. Panelboard Short-Circuit Current Rating: Rated for series-connected system with integral or remote upstream overcurrent protective devices and labeled by an NRTL. Include label or manual with size and type of allowable upstream and branch devices listed and labeled by an NRTL for series-connected short-circuit rating.

1. Panelboards rated 240 V or less shall have short-circuit ratings as shown on Drawings, but not less than 10,000 A rms symmetrical.
2. Panelboards rated above 240 V and less than 600 V shall have short-circuit ratings as shown on Drawings, but not less than 14,000 A rms symmetrical.

M. Panelboard Short-Circuit Current Rating: Fully rated to interrupt symmetrical short-circuit current available at terminals. Assembly listed by an NRTL for 100 percent interrupting capacity.

1. Panelboards and overcurrent protective devices rated 240 V or less shall have short-circuit ratings as shown on Drawings, but not less than 10,000 A rms symmetrical.
2. Panelboards and overcurrent protective devices rated above 240 V and less than 600 V shall have short-circuit ratings as shown on Drawings, but not less than 14,000 A rms symmetrical.

2.2 PERFORMANCE REQUIREMENTS

A. Seismic Performance: Panelboards shall withstand the effects of earthquake motions determined according to [ASCE/SEI 7] <Insert requirement>.
 1. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified."

B. Surge Suppression: Factory installed as an integral part of indicated panelboards, complying with UL 1449 SPD [Type 1] [Type 2].

2.3 POWER PANELBOARDS

A. <Double click here to find, evaluate, and insert list of manufacturers and products.>

B. Panelboards: NEMA PB 1, distribution type.

C. Doors: Secured with vault-type latch with tumbler lock; keyed alike.
 1. For doors more than [36 inches] <Insert dimension> high, provide two latches, keyed alike.

D. Mains: [Circuit breaker] [Fused switch] [Lugs only].

E. Branch Overcurrent Protective Devices for Circuit-Breaker Frame Sizes 125 A and Smaller: [Plug-in circuit breakers] [Bolt-on circuit breakers] [Plug-in circuit breakers where individual positive-locking device requires mechanical release for removal].

F. Branch Overcurrent Protective Devices for Circuit-Breaker Frame Sizes Larger Than 125 A: [Bolt-on circuit breakers] [Plug-in circuit breakers where individual positive-locking device requires mechanical release for removal].

G. Branch Overcurrent Protective Devices: Fused switches.
H. Contactors in Main Bus: NEMA ICS 2, Class A, [electrically] [mechanically] held, general-purpose controller, with same short-circuit interrupting rating as panelboard.

1. Internal Control-Power Source: Control-power transformer, with fused primary and secondary terminals, connected to main bus ahead of contactor connection.
2. External Control-Power Source: [120-V branch circuit] [24-V control circuit] <Insert requirement>.

2.4 LIGHTING AND APPLIANCE BRANCH-CIRCUIT PANELBOARDS

A. <Double click here to find, evaluate, and insert list of manufacturers and products.>

B. Panelboards: NEMA PB 1, lighting and appliance branch-circuit type.

C. Mains: [Circuit breaker] [or] [lugs only].

D. Branch Overcurrent Protective Devices: [Plug-in] [Bolt-on] circuit breakers, replaceable without disturbing adjacent units.

E. Contactors in Main Bus: NEMA ICS 2, Class A, [electrically] [mechanically] held, general-purpose controller, with same short-circuit interrupting rating as panelboard.

1. Internal Control-Power Source: Control-power transformer, with fused primary and secondary terminals, connected to main bus ahead of contactor connection.
2. External Control-Power Source: [120-V branch circuit] [24-V control circuit] <Insert requirement>.

F. Doors: Concealed hinges; secured with flush latch with tumbler lock; keyed alike.

G. Doors: Door-in-door construction with concealed hinges; secured with multipoint latch with tumbler lock; keyed alike. Outer door shall permit full access to the panel interior. Inner door shall permit access to breaker operating handles and labeling, but current carrying terminals and bus shall remain concealed.

H. Column-Type Panelboards: Single row of overcurrent devices [with narrow gutter extension] [and] [overhead junction box equipped with ground and neutral terminal buses].

1. Doors: Concealed hinges secured with multipoint latch with tumbler lock; keyed alike.

2.5 LOAD CENTERS

A. <Double click here to find, evaluate, and insert list of manufacturers and products.>

B. Load Centers: Comply with UL 67.

C. Mains: [Circuit breaker] [or] [lugs only].
D. Branch Overcurrent Protective Devices: Plug-in circuit breakers, replaceable without disturbing adjacent units.
E. Doors: Concealed hinges secured with flush latch with tumbler lock; keyed alike.
F. Conductor Connectors: Mechanical type for main, neutral, and ground lugs and buses.

2.6 ELECTRONIC-GRADE PANELBOARDS

A. Panelboards: NEMA PB 1; with factory-installed, integral SPD; labeled by an NRTL for compliance with UL 67 and UL 1449 after installing SPD.
B. Doors: Secured with vault-type latch with tumbler lock; keyed alike.
C. Main Overcurrent Protective Devices: Bolt-on thermal-magnetic circuit breakers.
D. Branch Overcurrent Protective Devices: Bolt-on thermal-magnetic circuit breakers.

1. Protection modes and UL 1449 VPR for grounded wye circuits with [480Y/277 V] [208Y/120 V], three-phase, four-wire circuits shall not exceed the following:
 a. Line to Neutral: [1200 V for 480Y/277 V] [700 V for 208Y/120 V].
 b. Line to Ground: [1200 V for 480Y/277 V] [700 V for 208Y/120 V].
 c. Neutral to Ground: [1200 V for 480Y/277 V] [700 V for 208Y/120 V].
 d. Line to Line: [2000 V for 480Y/277 V] [1200 V for 208Y/120 V].

2. Protection modes and UL 1449 VPR for 240/120-V, single-phase, three-wire circuits shall not exceed the following:
 a. Line to Neutral: 700 V.
 b. Line to Ground: 700 V.
 c. Neutral to Ground: 700 V.
 d. Line to Line: 1200 V.

3. SCCR: Equal to [the SCCR of the panelboard in which installed] [or exceed 100 kA] [or exceed 200 kA] [or exceed <Insert value>].
4. Innominal Rating: [20 kA] [10 kA].

G. Buses:
1. Copper phase and neutral buses; 200 percent capacity neutral bus and lugs.
2. Copper equipment and isolated ground buses.

2.7 DISCONNECTING AND OVERCURRENT PROTECTIVE DEVICES

A. <Double click here to find, evaluate, and insert list of manufacturers and products.>

B. MCCB: Comply with UL 489, with [series-connected rating] [interrupting capacity] to meet available fault currents.

1. Thermal-Magnetic Circuit Breakers:
 a. Inverse time-current element for low-level overloads.
 b. Instantaneous magnetic trip element for short circuits.
 c. Adjustable magnetic trip setting for circuit-breaker frame sizes 250 A and larger.

3. Electronic Trip Circuit Breakers:
 a. RMS sensing.
 b. Field-replaceable rating plug or electronic trip.
 c. Digital display of settings, trip targets, and indicated metering displays.
 d. Multi-button keypad to access programmable functions and monitored data.
 e. Ten-event, trip-history log. Each trip event shall be recorded with type, phase, and magnitude of fault that caused the trip.
 f. Integral test jack for connection to portable test set or laptop computer.
 g. Field-Adjustable Settings:
 1) Instantaneous trip.
 2) Long- and short-time pickup levels.
 3) Long and short time adjustments.
 4) Ground-fault pickup level, time delay, and I squared T response.

4. Current-Limiting Circuit Breakers: Frame sizes 400 A and smaller; let-through ratings less than NEMA FU 1, RK-5.

5. GFCI Circuit Breakers: Single- and double-pole configurations with Class A ground-fault protection (6-mA trip).

6. GFEP Circuit Breakers: Class B ground-fault protection (30-mA trip).

9. MCCB Features and Accessories:
 a. Standard frame sizes, trip ratings, and number of poles.
 b. Breaker handle indicates tripped status.
 c. UL listed for reverse connection without restrictive line or load ratings.
d. Lugs: [Compression] [Mechanical] style, suitable for number, size, trip ratings, and conductor materials.

e. Application Listing: Appropriate for application; Type SWD for switching fluorescent lighting loads; Type HID for feeding fluorescent and HID lighting circuits.

f. Ground-Fault Protection: [Integrally mounted] [Remote-mounted] relay and trip unit with adjustable pickup and time-delay settings, push-to-test feature, and ground-fault indicator.

g. Communication Capability: [Circuit-breaker-mounted] [Universal-mounted] [Integral] [Din-rail-mounted] communication module with functions and features compatible with power monitoring and control system specified in Section 260913 "Electrical Power Monitoring and Control."

h. Shunt Trip: [120-V] [24-V] <Insert voltage> trip coil energized from separate circuit, set to trip at [55] [75] percent of rated voltage.

i. Undervoltage Trip: Set to operate at 35 to 75 percent of rated voltage [without intentional] [with field-adjustable 0.1- to 0.6-second] time delay.

j. Rating Plugs: Three-pole breakers with ampere ratings greater than [150] <Insert value> amperes shall have interchangeable rating plugs or electronic adjustable trip units.

k. Auxiliary Contacts: [One, SPDT switch] [Two, SPDT switches] with "a" and "b" contacts; "a" contacts mimic circuit-breaker contacts and "b" contacts operate in reverse of circuit-breaker contacts.

l. Alarm Switch: Single-pole, normally open contact that actuates only when circuit breaker trips.

m. Key Interlock Kit: Externally mounted to prohibit circuit-breaker operation; key shall be removable only when circuit breaker is in off position.

n. Zone-Selective Interlocking: Integral with electronic trip unit; for interlocking ground-fault protection function with other upstream or downstream devices.

o. Multipole units enclosed in a [single housing with a single handle] [or] [factory assembled to operate as a single unit].

p. Handle Padlocking Device: Fixed attachment, for locking circuit-breaker handle in [on] [off] [on or off] position.

q. Handle Clamp: Loose attachment, for holding circuit-breaker handle in on position.

C. Fused Switch: NEMA KS 1, Type HD; clips to accommodate specified fuses; lockable handle.

1. Fuses and Spare-Fuse Cabinet: Comply with requirements specified in Section 262813 "Fuses."

2. Fused Switch Features and Accessories:

 a. Standard ampere ratings and number of poles.
b. Mechanical cover interlock with a manual interlock override, to prevent the opening of the cover when the switch is in the on position. The interlock shall prevent the switch from being turned on with the cover open. The operating handle shall have lock-off means with provisions for three padlocks.

c. Auxiliary Contacts: [One] [Two] normally open and normally closed contact(s) that operate with switch handle operation.

2.8 IDENTIFICATION

A. Panelboard Label: Manufacturer's name and trademark, voltage, amperage, number of phases, and number of poles shall be located on the interior of the panelboard door.

B. Breaker Labels: Faceplate shall list current rating, UL and IEC certification standards, and AIC rating.

C. Circuit Directory: Directory card inside panelboard door, mounted in [transparent card holder] [metal frame with transparent protective cover].

1. Circuit directory shall identify specific purpose with detail sufficient to distinguish it from all other circuits.

D. Circuit Directory: Computer-generated circuit directory mounted inside panelboard door with transparent plastic protective cover.

1. Circuit directory shall identify specific purpose with detail sufficient to distinguish it from all other circuits.

2.9 ACCESSORY COMPONENTS AND FEATURES

A. Accessory Set: Include tools and miscellaneous items required for overcurrent protective device test, inspection, maintenance, and operation.

B. Portable Test Set: For testing functions of solid-state trip devices without removing from panelboard. Include relay and meter test plugs suitable for testing panelboard meters and switchboard class relays.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Verify actual conditions with field measurements prior to ordering panelboards to verify that equipment fits in allocated space in, and comply with, minimum required clearances specified in NFPA 70.

B. Receive, inspect, handle, and store panelboards according to [NECA 407] [NEMA PB 1.1].
C. Examine panelboards before installation. Reject panelboards that are damaged, rusted, or have been subjected to water saturation.

D. Examine elements and surfaces to receive panelboards for compliance with installation tolerances and other conditions affecting performance of the Work.

E. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Coordinate layout and installation of panelboards and components with other construction that penetrates walls or is supported by them, including electrical and other types of equipment, raceways, piping, encumbrances to workspace clearance requirements, and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.

B. Comply with NECA 1.

C. Install panelboards and accessories according to [NECA 407] [NEMA PB 1.1].

D. Equipment Mounting:
 1. Install panelboards on cast-in-place concrete equipment base(s). Comply with requirements for equipment bases and foundations specified in [Section 033000 "Cast-in-Place Concrete."] [Section 033053 "Miscellaneous Cast-in-Place Concrete."]
 2. Attach panelboard to the vertical finished or structural surface behind the panelboard.
 3. Comply with requirements for seismic control devices specified in Section 260548.16 "Seismic Controls for Electrical Systems."

E. Temporary Lifting Provisions: Remove temporary lifting eyes, channels, and brackets and temporary blocking of moving parts from panelboards.

F. Comply with mounting and anchoring requirements specified in Section 260548.16 "Seismic Controls for Electrical Systems."

G. Mount top of trim [90 inches] <Insert height> above finished floor unless otherwise indicated.

H. Mount panelboard cabinet plumb and rigid without distortion of box.

I. Mount recessed panelboards with fronts uniformly flush with wall finish and mating with back box.

K. Install overcurrent protective devices and controllers not already factory installed.
1. Set field-adjustable, circuit-breaker trip ranges.
2. Tighten bolted connections and circuit breaker connections using calibrated torque wrench or torque screwdriver per manufacturer's written instructions.

L. Make grounding connections and bond neutral for services and separately derived systems to ground. Make connections to grounding electrodes, separate grounds for isolated ground bars, and connections to separate ground bars.

M. Install filler plates in unused spaces.

N. Stub four 1-inch empty conduits from panelboard into accessible ceiling space or space designated to be ceiling space in the future. Stub four 1-inch empty conduits into raised floor space or below slab not on grade.

O. Arrange conductors in gutters into groups and bundle and wrap with wire ties after completing load balancing.

P. Mount spare fuse cabinet in accessible location.

3.3 IDENTIFICATION

A. Identify field-installed conductors, interconnecting wiring, and components; install warning signs complying with requirements in Section 260553 "Identification for Electrical Systems."

B. Create a directory to indicate installed circuit loads after balancing panelboard loads; incorporate Owner's final room designations. Obtain approval before installing. Handwritten directories are not acceptable. Install directory inside panelboard door.

C. Panelboard Nameplates: Label each panelboard with a nameplate complying with requirements for identification specified in Section 260553 "Identification for Electrical Systems."

D. Device Nameplates: Label each branch circuit device in power panelboards with a nameplate complying with requirements for identification specified in Section 260553 "Identification for Electrical Systems."

E. Install warning signs complying with requirements in Section 260553 "Identification for Electrical Systems" identifying source of remote circuit.

3.4 FIELD QUALITY CONTROL

A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections.

B. Perform tests and inspections.
1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

C. Acceptance Testing Preparation:

1. Test insulation resistance for each panelboard bus, component, connecting supply, feeder, and control circuit.
2. Test continuity of each circuit.

D. Tests and Inspections:

2. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.
3. Perform the following infrared scan tests and inspections and prepare reports:
 a. Initial Infrared Scanning: After Substantial Completion, but not more than 60 days after Final Acceptance, perform an infrared scan of each panelboard. Remove front panels so joints and connections are accessible to portable scanner.
 b. Follow-up Infrared Scanning: Perform an additional follow-up infrared scan of each panelboard 11 months after date of Substantial Completion.
 c. Instruments and Equipment:
 1) Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.

E. Panelboards will be considered defective if they do not pass tests and inspections.

F. Prepare test and inspection reports, including a certified report that identifies panelboards included and that describes scanning results, with comparisons of the two scans. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

3.5 ADJUSTING

A. Adjust moving parts and operable components to function smoothly, and lubricate as recommended by manufacturer.

B. Set field-adjustable circuit-breaker trip ranges [as indicated.] [as specified in Section 260573.16 "Coordination Studies."
C. Load Balancing: After Substantial Completion, but not more than 60 days after Final Acceptance, measure load balancing and make circuit changes. Prior to making circuit changes to achieve load balancing, inform Architect of effect on phase color coding.

1. Measure loads during period of normal facility operations.
2. Perform circuit changes to achieve load balancing outside normal facility operation schedule or at times directed by the Architect. Avoid disrupting services such as fax machines and on-line data processing, computing, transmitting, and receiving equipment.
3. After changing circuits to achieve load balancing, recheck loads during normal facility operations. Record load readings before and after changing circuits to achieve load balancing.
4. Tolerance: Maximum difference between phase loads, within a panelboard, shall not exceed 20 percent.

3.6 PROTECTION

A. Temporary Heating: Prior to energizing panelboards, apply temporary heat to maintain temperature according to manufacturer's written instructions.

END OF SECTION
SECTION 262726
WIRING DEVICES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Standard-grade receptacles, 125 V, 20 A.
2. USB receptacles.
3. GFCI receptacles, 125 V, 20 A.
4. Toggle switches, 120/277 V, 20 A.
5. Decorator-style devices, 20 A.
6. Occupancy sensors.
7. Digital timer light switches.
8. Wall-box dimmers.
9. Wall plates.
10. Floor service fittings.

1.3 DEFINITIONS

A. AFCI: Arc-fault circuit interrupter.
B. BAS: Building automation system.
C. EMI: Electromagnetic interference.
D. GFCI: Ground-fault circuit interrupter.
E. Pigtail: Short lead used to connect a device to a branch-circuit conductor.
F. RFI: Radio-frequency interference.
G. SPD: Surge protective device.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product.
B. Shop Drawings: List of legends and description of materials and process used for premarking wall plates.

1.5 INFORMATIONAL SUBMITTALS
A. Field quality-control reports.

1.6 CLOSEOUT SUBMITTALS
A. Operation and Maintenance Data: For wiring devices to include in all manufacturers' packing-label warnings and instruction manuals that include labeling conditions.

1.7 MAINTENANCE MATERIAL SUBMITTALS
A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

PART 2 - PRODUCTS

2.1 GENERAL WIRING-DEVICE REQUIREMENTS
A. Wiring Devices, Components, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and use.
B. Comply with NFPA 70.
C. RoHS compliant.
D. Comply with NEMA WD 1.
E. Devices for Owner-Furnished Equipment:
 1. Receptacles: Match plug configurations.
F. Device Color:
 1. Wiring Devices Connected to Normal Power System: White unless otherwise indicated or required by NFPA 70 or device listing.
G. Wall Plate Color: For plastic covers, match device color.
H. Source Limitations: Obtain each type of wiring device and associated wall plate from single source from single manufacturer.

2.2 STANDARD-GRAGE RECEPTACLES, 125 V, 20 A
A. Duplex Receptacles, 125 V, 20 A:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Eaton (Arrow Hart).
 b. Hubbell Incorporated; Wiring Device-Kellems.
 c. Leviton Manufacturing Co., Inc.
 d. Pass & Seymour/Legrand (Pass & Seymour).

2. Description: Two pole, three wire, and self-grounding.
3. Configuration: NEMA WD 6, Configuration 5-20R.
4. Standards: Comply with UL 498 and FS W-C-596.

B. Weather-Resistant Duplex Receptacle, 125 V, 20 A:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Eaton (Arrow Hart).
 b. Hubbell Incorporated; Wiring Device-Kellems.
 c. Leviton Manufacturing Co., Inc.
 d. Pass & Seymour/Legrand (Pass & Seymour).

2. Description: Two pole, three wire, and self-grounding. Integral shutters that operate only when a plug is inserted in the receptacle. Square face.
3. Configuration: NEMA WD 6, Configuration 5-20R.
5. Marking: Listed and labeled as complying with NFPA 70, "Receptacles in Damp or Wet Locations" Article.

2.3 USB RECEPTACLES

A. USB Charging Receptacles:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Eaton (Arrow Hart).
 b. Hubbell Incorporated; Wiring Device-Kellems.
 c. Leviton Manufacturing Co., Inc.
 d. Pass & Seymour/Legrand (Pass & Seymour).

3. USB Receptacles: Dual, USB Type A, 5 V dc, and 2.1 A per receptacle (minimum).
4. Standards: Comply with UL 1310 and USB 3.0 devices.
2.4 GFCI RECEPTACLES, 125 V, 20 A

A. Tamper- and Weather-Resistant, GFCI Duplex Receptacles, 125 V, 20 A:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Eaton (Arrow Hart).
 b. Hubbell Incorporated; Wiring Device-Kellems.
 c. Leviton Manufacturing Co., Inc.
 d. Pass & Seymour/Legrand (Pass & Seymour).

2. Description: Integral GFCI with "Test" and "Reset" buttons and LED indicator light. Two pole, three wire, and self-grounding. Integral shutters that operate only when a plug is inserted in the receptacle. Square face.

3. Configuration: NEMA WD 6, Configuration 5-15R.

4. Type: Non-feed through.

5. Standards: Comply with UL 498 and UL 943 Class A.

6. Marking: Listed and labeled as complying with NFPA 70, "Tamper-Resistant Receptacles" and "Receptacles in Damp or Wet Locations" articles.

2.5 TOGGLE SWITCHES, 120/277 V, 20 A

A. Single-Pole Switches, 120/277 V, 20 A:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Eaton (Arrow Hart).
 b. Hubbell Incorporated; Wiring Device-Kellems.
 c. Leviton Manufacturing Co., Inc.
 d. Pass & Seymour/Legrand (Pass & Seymour).

2. Standards: Comply with UL 20 and FS W-S-896.

B. Three-Way Switches, 120/277 V, 20 A:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Eaton (Arrow Hart).
 b. Hubbell Incorporated; Wiring Device-Kellems.
 c. Leviton Manufacturing Co., Inc.
 d. Pass & Seymour/Legrand (Pass & Seymour).

2. Comply with UL 20 and FS W-S-896.
2.6 OCCUPANCY SENSORS

A. Wall Switch Sensor Light Switch, Dual Technology <Insert drawing designation>:
 1. <Double click here to find, evaluate, and insert list of manufacturers and products.>
 2. Description: Switchbox-mounted, combination lighting-control sensor and conventional switch lighting-control unit using dual (ultrasonic and passive infrared) technology.
 4. Rated 960 W at 120 V ac for tungsten lighting, 10 A at 120 V ac or 10 A at 277 V ac for fluorescent or LED lighting, and 1/4 hp at 120 V ac.
 5. Adjustable time delay of [five] [10] [15] [20] minutes.
 6. Able to be locked to [Automatic] [Manual]-On mode.
 8. Connections: Provisions for connection to BAS.

B. Wall Sensor Light Switch, Passive Infrared <Insert drawing designation>:
 1. <Double click here to find, evaluate, and insert list of manufacturers and products.>
 2. Description: Switchbox-mounted, combination lighting-control sensor and conventional switch lighting-control unit using passive infrared technology.
 4. Connections: Provisions for connection to BAS.
 7. Rated 960 W at 120 V ac for tungsten lighting, 10 A at 120 V ac or 10 A at 277 V ac for fluorescent or LED lighting, and 1/4 hp at 120 V ac.
 8. Integral relay for connection to BAS.
 10. Able to be locked to [Automatic] [Manual]-On mode.

C. Wall Sensor Light Switch, Ultrasonic <Insert drawing designation>:
 1. <Double click here to find, evaluate, and insert list of manufacturers and products.>
 2. Description: Switchbox-mounted, combination lighting-control sensor and conventional switch lighting-control unit using ultrasonic technology.
 4. Connections: Provisions for connection to BAS.
 7. Rated 960 W at 120 V ac for tungsten lighting, 10 A at 120 V ac or 10 A at 277 V ac for fluorescent or LED lighting, and 1/4 hp at 120 V ac.
 8. Integral relay for connection to BAS.
10. Able to be locked to [Automatic] [Manual]-On mode.

2.7 TIMER LIGHT SWITCH

A. Digital Timer Light Switch <Insert drawing designation>:
 1. <Double click here to find, evaluate, and insert list of manufacturers and products.>
 2. Description: Switchbox-mounted, combination digital timer and conventional switch lighting-control unit, with backlit digital display, with selectable time interval in [10] [20]-minute increments.
 4. Rated 960 W at 120 V ac for tungsten lighting, 10 A at 120 V ac or 10 A at 277 V ac for fluorescent or LED lighting, and 1/4 hp at 120 V ac.
 5. Integral relay for connection to BAS.

2.8 DIMMERS

A. Wall-Box Dimmers:
 1. <Double click here to find, evaluate, and insert list of manufacturers and products.>
 2. Description: Modular, full-wave, solid-state dimmer switch with integral, quiet on-off switches, with audible frequency and EMI/RFI suppression filters.
 3. Control: Continuously adjustable [slider] [toggle switch] [rotary knob]; with single-pole or three-way switching.
 5. Incandescent Lamp Dimmers: 120 V; control shall follow square-law dimming curve. On-off switch positions shall bypass dimmer module.
 a. 600 W; dimmers shall require no derating when ganged with other devices.[Illuminated when "off."]
 b. <Insert wattage ratings and descriptions>.
 6. Fluorescent Lamp Dimmer Switches: Modular; compatible with dimmer ballasts; trim potentiometer to adjust low-end dimming; dimmer-ballast combination capable of consistent dimming with low end not greater than 20 percent of full brightness.
 7. LED Lamp Dimmer Switches: Modular; compatible with LED lamps; trim potentiometer to adjust low-end dimming; capable of consistent dimming with low end not greater than 20 percent of full brightness.

2.9 WALL PLATES

A. Single Source: Obtain wall plates from same manufacturer of wiring devices.
B. Single and combination types shall match corresponding wiring devices.
1. Plate-Securing Screws: Metal with head color to match plate finish.
2. Material for Finished Spaces: Steel with white baked enamel.
4. Material for Damp Locations: Cast aluminum with spring-loaded lift cover, and listed and labeled for use in wet and damp locations.

C. Wet-Location, Weatherproof Cover Plates: NEMA 250, complying with Type 3R, weather-resistant thermoplastic with lockable cover.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Comply with NECA 1, including mounting heights listed in that standard, unless otherwise indicated.

B. Coordination with Other Trades:

1. Protect installed devices and their boxes. Do not place wall finish materials over device boxes, and do not cut holes for boxes with routers that are guided by riding against outside of boxes.
2. Keep outlet boxes free of plaster, drywall joint compound, mortar, cement, concrete, dust, paint, and other material that may contaminate the raceway system, conductors, and cables.
3. Install device boxes in brick or block walls so that the cover plate does not cross a joint unless the joint is troweled flush with the face of the wall.
4. Install wiring devices after all wall preparation, including painting, is complete.

C. Conductors:

1. Do not strip insulation from conductors until right before they are spliced or terminated on devices.
2. Strip insulation evenly around the conductor using tools designed for the purpose. Avoid scoring or nicking of solid wire or cutting strands from stranded wire.
3. The length of free conductors at outlets for devices shall comply with NFPA 70, Article 300, without pigtails.
4. Existing Conductors:
 a. Cut back and pigtail, or replace all damaged conductors.
 b. Straighten conductors that remain and remove corrosion and foreign matter.
 c. Pigtailing existing conductors is permitted, provided the outlet box is large enough.

D. Device Installation:
1. Replace devices that have been in temporary use during construction and that were installed before building finishing operations were complete.
2. Keep each wiring device in its package or otherwise protected until it is time to connect conductors.
3. Do not remove surface protection, such as plastic film and smudge covers, until the last possible moment.
4. Connect devices to branch circuits using pigtailed that are not less than 6 inches in length.
5. When there is a choice, use side wiring with binding-head screw terminals. Wrap solid conductor tightly clockwise, two-thirds to three-fourths of the way around terminal screw.
6. Use a torque screwdriver when a torque is recommended or required by manufacturer.
7. When conductors larger than No. 12 AWG are installed on 15- or 20-A circuits, splice No. 12 AWG pigtailed for device connections.
8. Tighten unused terminal screws on the device.
9. When mounting into metal boxes, remove the fiber or plastic washers used to hold device-mounting screws in yokes, allowing metal-to-metal contact.

E. Receptacle Orientation:

1. Install ground pin of vertically mounted receptacles up, and on horizontally mounted receptacles to the right.

F. Device Plates: Do not use oversized or extra-deep plates. Repair wall finishes and remount outlet boxes when standard device plates do not fit flush or do not cover rough wall opening.

G. Dimmers:

1. Install dimmers within terms of their listing.
2. Verify that dimmers used for fan-speed control are listed for that application.
3. Install unshared neutral conductors on line and load side of dimmers according to manufacturers' device, listing conditions in the written instructions.

H. Arrangement of Devices: Unless otherwise indicated, mount flush, with long dimension vertical and with grounding terminal of receptacles on top. Group adjacent switches under single, multigang wall plates.

I. Adjust locations of floor service outlets and service poles to suit arrangement of partitions and furnishings.

3.2 GFCI RECEPTACLES

A. Install non-feed-through GFCI receptacles where protection of downstream receptacles is not required.
3.3 IDENTIFICATION

A. Comply with Section 260553 "Identification for Electrical Systems."

B. Identify each receptacle with panelboard identification and circuit number. Use hot, stamped, or engraved machine printing with black-filled lettering on face of plate, and durable wire markers or tags inside outlet boxes.

C. Essential Electrical System: Mark receptacles supplied from the essential electrical system to allow easy identification using a self-adhesive label.

3.4 FIELD QUALITY CONTROL

A. Test Instruments: Use instruments that comply with UL 1436.

B. Perform the following tests and inspections:
 1. In healthcare facilities, prepare reports that comply with NFPA 99.
 2. Test Instruments: Use instruments that comply with UL 1436.
 3. Test Instrument for Receptacles: Digital wiring analyzer with digital readout or illuminated digital-display indicators of measurement.

C. Tests for Receptacles:
 1. Line Voltage: Acceptable range is 105 to 132 V.
 2. GFCI Trip: Test for tripping values specified in UL 1436 and UL 943.
 3. Using the test plug, verify that the device and its outlet box are securely mounted.
 4. Tests shall be diagnostic, indicating damaged conductors, high resistance at the circuit breaker, poor connections, inadequate fault-current path, defective devices, or similar problems. Correct circuit conditions, remove malfunctioning units and replace with new ones, and retest as specified above.

D. Wiring device will be considered defective if it does not pass tests and inspections.

E. Prepare test and inspection reports.

END OF SECTION
SECTION 262743

ELECTRIC-VEHICLE SERVICE EQUIPMENT - AC LEVEL 1 AND LEVEL 2

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes EVSE that provides AC Level 2 EV charging.

1.3 DEFINITIONS

A. EV: Electric vehicle.

B. EV Cable: The off-board cable containing the conductor(s) to connect the EV power controller to the EV that provides both power and communications during energy transfer.

C. EV Charger or EV Charging Equipment: See "EVSE."

D. EV Connector: A conductive device that, when electrically coupled to an EV inlet, establishes an electrical connection to the EV for the purpose of power transfer and information exchange. This device is part of the EV coupler.

E. EV Coupler: A mating EV inlet and connector set.

F. EV Inlet: The device in the vehicle into which the EV connector is inserted, and a conductive connection is made for the transfer of power and communication. This device is part of the EV coupler.

G. EVSE: Electric-Vehicle Supply Equipment. It includes the EV charging equipment and conductors, including the ungrounded, grounded, and equipment grounding conductors and EV cables, attachment plugs, and all other fittings, devices, power outlets, or apparatus installed specifically for transferring energy between the premise wiring and the EV.

1.4 PREINSTALLATION MEETINGS

1.5 ACTION SUBMITTALS

A. Product Data: For each type of product.
1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for EV charging equipment.
2. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.

B. Shop Drawings: For EVSE.
 1. Include plans, elevations, sections, and mounting details.
 2. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 3. Detail fabrication and assembly of mounting assemblies for EV charging equipment.
 4. Include diagrams for power, signal, and control wiring.
 5. Include verification of wireless communications service at each location of EVSE.

1.6 INFORMATIONAL SUBMITTALS
A. Coordination Drawings: Area plans and details, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 1. Structural members to which equipment will be attached.
 2. Electrical service.
 3. Communications service, including wireless communications equipment

B. Qualification Data: For Installer.

C. Field quality-control reports.

D. Sample Warranty: For manufacturer's warranty.

1.7 CLOSEOUT SUBMITTALS
A. Operation and Maintenance Data: For EVSE to include in operation and maintenance manuals.

B. Software and Firmware Operational Documentation:
 1. Software operating manuals.
 2. Program Software Backup: On USB, CD, Cloud, or approved media, complete with configuration files.
 3. Device address and password list.
 4. Printout of software application and graphic screens.
1.8 QUALITY ASSURANCE

A. Installer Qualifications: An authorized representative who is trained and approved by manufacturer.

1.9 FIELD CONDITIONS

A. Wireless Survey: Complete wireless survey to determine if wireless provider signals meet or exceed manufacturer's recommended minimum values.

B. Rate equipment for continuous operation under the following conditions unless otherwise indicated:
 1. Ambient Temperature: Not exceeding minus 22 to plus 122 deg F.
 2. Altitude: Not exceeding 6600 feet.

C. Interruption of Existing Electric Service: Do not interrupt electric service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary electric service according to requirements indicated:
 1. Notify Construction Manager no fewer than two days in advance of proposed interruption of electric service.
 2. Do not proceed with interruption of electric service without Construction Manager's written permission.

1.10 WARRANTY

A. Manufacturer's Warranty: Manufacturer and Installer agree to repair or replace components of EVSE that fail(s) in materials or workmanship within specified warranty period.
 1. Warranty Period: Two year(s) from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. SemaConnect
 2. ChargePoint.
 3. Eaton.

B. Source Limitations: Obtain EVSE from single manufacturer.
2.2 PERFORMANCE REQUIREMENTS

A. Operating Temperature: -22 to 122 deg F.
B. Operating Humidity: Zero to 95 percent.
C. Altitude: Sea level to 1000 feet.
D. Thermal Movements: Allow for thermal movements from ambient and surface temperature changes.
E. Surge Withstand: 6 kV at 3000 A.
F. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and use.
G. EV Charging Levels:
 1. Single vehicle, AC Level 2 at up to 5.8 kW per vehicle.

2.3 EVSE DESCRIPTION

A. Comply with NFPA 70.
B. Comply with:
 1. UL 2231-1.
 2. UL 2594.
 3. SAE J1772 for SAE combo chargers.
C. Comply with ADA-ABA Accessibility Guidelines.
D. Metering: Revenue grade meter.
E. Control Power: 20 A, 110/120-V ac, 60 Hz, single phase per charger.
F. Input Power:
 1. 40 A, 208/240-V ac, 60 Hz, single-phase services per charger.
G. Integral GFCI.
H. Auto-GFCI fault retry.
I. EVSE Mounting: Pedestal mount.
J. Enclosures:
 1. Rated for environmental conditions at installed location.
a. Outdoor Locations: NEMA 250, Type 3R.
b. Lockable.
c. Tamper resistant.

K. EV Cable and Connectors:
1. SAE J1772 connector.
2. Single connectors.
3. 18-foot cable with cable management system.
4. Field-replaceable connector and cable assembly.

L. Status Indicators:
1. LEDs to indicate power, charging, and faults.

M. Display Screen:
1. Daylight viewable, UV-protected display with human-machine interface capability.
2. Displays power, charging, charging complete, remote control, system status, faults, and service.

N. Networking:
1. WAN Communications: Cellular GPRS or CDMA

O. Payment System:
1. PCI Compliant
2. Capable of remote control and authorization
3. RFID reader

P. Charging Network: Compatible with the SemaConnect EV charging network.
1. Multiple units shall independently connect to charging network.
2. Individual units shall be capable of indicating station status and availability.

2.4 GENERAL FINISH REQUIREMENTS

A. Protect mechanical finishes on exposed surfaces from damage by utilizing cushioning materials or foam or by applying a strippable, temporary protective covering before shipping.

B. Appearance of Finished Work: Noticeable variations in same piece are unacceptable. Variations in appearance of adjoining components are acceptable if they are within the range of approved Samples and are assembled or installed to minimize contrast.
PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.

B. Examine roughing-in for EVSE electrical conduit to verify actual locations of conduit connections before equipment installation.

C. Examine pavement for suitable conditions where EVSE will be installed.

D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Comply with NECA 1 and NECA 413.

B. Concrete Base Mounting:

1. Install EVSE on 6-inch nominal-thickness concrete base. Comply with requirements for concrete base specified in Section 033000 "Cast-in-Place Concrete."

 a. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch centers around the full perimeter of concrete base.

 b. For supported equipment, install epoxy-coated anchor bolts that extend through concrete base and anchor into structural concrete floor.

 c. Place and secure anchorage devices. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.

 d. Install anchor bolts to elevations required for proper attachment to supported equipment.

 e. Secure EVSE to concrete base according to manufacturer's written instructions.

 1. Comply with requirements for raceways and boxes specified in Section 260533 "Raceways and Boxes for Electrical Systems."

 2. Comply with requirements for underground raceways and enclosures specified in Section 260543 "Underground Ducts and Raceways for Electrical Systems."

D. Wiring Method: Conceal conductors and cables in accessible ceilings, walls, and floors where possible.
E. Wiring within Enclosures: Bundle, lace, and train conductors to terminal points with no excess and without exceeding manufacturer's limitations on bending radii. Install lacing bars and distribution spools.

F. Disconnect: Install disconnect in a readily accessible location according to Section 262816 "Enclosed Switches and Circuit Breakers."

G. Circuit Breakers: Comply with Section 262816 "Enclosed Switches and Circuit Breakers."

H. Temporary Lifting Provisions: Remove temporary lifting eyes, channels, and brackets and temporary blocking from enclosures and components.

I. Secure covers to enclosure.

3.3 CONNECTIONS

A. Connect wiring according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

B. Comply with grounding requirements in Section 260526 "Grounding and Bonding for Electrical Systems."

C. Comply with requirements for installation of conduit in Section 260533 "Raceways and Boxes for Electrical Systems." Drawings indicate general arrangement of conduit, fittings, and specialties.

D. Tighten electrical connectors and terminals according to manufacturer's published torque-tightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A-486B.

E. Verify that all electrical connections have been made according to the manufacturer's instructions. Remove all burrs, shavings, and detritus from inside the enclosure.

F. After confirming all connections, install covers and tighten fasteners to according to manufacturer's instructions.

3.4 IDENTIFICATION

A. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems."

3.5 FIELD QUALITY CONTROL

A. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.

B. Perform tests and inspections.
C. Tests and Inspections:

1. For each unit of EVSE, perform the following tests and inspections:
 a. Unit self-test.
 b. Operation test with load bank.
 c. Operation test with EV.

D. EVSE will be considered defective if it does not pass tests and inspections.

E. Prepare test and inspection reports.

3.6 STARTUP SERVICE

A. Perform startup service.

1. Complete installation and startup checks according to manufacturer's written instructions.

3.7 SOFTWARE SERVICE AGREEMENT

A. Technical Support: Beginning at Substantial Completion, service agreement shall include software support for two years.

B. Upgrade Service: At Substantial Completion, update software to latest version. Install and program software upgrades that become available within two years from date of Substantial Completion. Upgrading software shall include operating system and new or revised licenses for using software.

1. Upgrade Notice: At least 30 days to allow Owner to schedule and access the system and to upgrade computer equipment if necessary.

3.8 DEMONSTRATION

A. Train Owner's maintenance personnel to adjust, operate, and maintain EV charging equipment.

END OF SECTION
SECTION 262813

FUSES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Cartridge fuses rated 600 V ac and less for use in the following:
 a. Control circuits.
 b. Enclosed controllers.
 c. Enclosed switches.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for spare-fuse cabinets. Include the following for each fuse type indicated:

1. Dimensions and manufacturer's technical data on features, performance, electrical characteristics, and ratings.
2. Current-limitation curves for fuses with current-limiting characteristics.
3. Time-current coordination curves (average melt) and current-limitation curves (instantaneous peak let-through current) for each type and rating of fuse. Submit in PDF format.
4. Coordination charts and tables and related data.
5. Fuse sizes for elevator feeders and elevator disconnect switches.

1.4 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For fuses to include in emergency, operation, and maintenance manuals. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:

1. Ambient temperature adjustment information.
2. Current-limitation curves for fuses with current-limiting characteristics.
3. Time-current coordination curves (average melt) and current-limitation curves (instantaneous peak let-through current) for each type and rating of fuse used on the Project. Submit in PDF format.
4. Coordination charts and tables and related data.

1.5 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Fuses: Equal to 10 percent of quantity installed for each size and type, but no fewer than three of each size and type.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Bussmann, an Eaton business.
2. Edison; a brand of Bussmann by Eaton.
3. Littelfuse, Inc.
4. Mersen USA.

B. Source Limitations: Obtain fuses, for use within a specific product or circuit, from single source from single manufacturer.

2.2 CARTRIDGE FUSES

A. Characteristics: NEMA FU 1, current-limiting, nonrenewable cartridge fuses with voltage ratings consistent with circuit voltages.

1. Type RK-1: 600-V, zero- to 600-A rating, 200 kAIC, time delay.
2. Type RK-5: 600-V, zero- to 600-A rating, 200 kAIC, time delay.
3. Type CC: 600-V, zero- to 30-A rating, 200 kAIC, time delay.
4. Type L: 600-V, 601- to 6000-A rating, 200 kAIC, time delay.

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

C. Comply with NEMA FU 1 for cartridge fuses.

D. Comply with NFPA 70.

E. Coordinate fuse ratings with utilization equipment nameplate limitations of maximum fuse size and with system short-circuit current levels.
PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine fuses before installation. Reject fuses that are moisture damaged or physically damaged.

B. Examine holders to receive fuses for compliance with installation tolerances and other conditions affecting performance, such as rejection features.

C. Examine utilization equipment nameplates and installation instructions. Install fuses of sizes and with characteristics appropriate for each piece of equipment.

D. Evaluate ambient temperatures to determine if fuse rating adjustment factors must be applied to fuse ratings.

E. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 FUSE APPLICATIONS

A. Cartridge Fuses:
 1. Service Entrance: Class L, time delay.
 2. Feeders: Class RK5, time delay.
 3. Motor Branch Circuits: Class RK5, time delay.
 4. Large Motor Branch (601-4000 A): Class L, time delay.
 5. Power Electronics Circuits: Class J, high speed.
 6. Other Branch Circuits: Class RK5, time delay.
 7. Control Transformer Circuits: Class CC, time delay, control transformer duty.

3.3 INSTALLATION

A. Install fuses in fusible devices. Arrange fuses so rating information is readable without removing fuse.

3.4 IDENTIFICATION

A. Install labels complying with requirements for identification specified in Section 260553 "Identification for Electrical Systems" and indicating fuse replacement information inside of door of each fused switch and adjacent to each fuse block, socket, and holder.

END OF SECTION
SECTION 262816

ENCLOSED SWITCHES AND CIRCUIT BREAKERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Fusible switches.
 2. Nonfusible switches.
 3. Shunt trip switches.
 4. Molded-case circuit breakers (MCCBs).
 5. Enclosures.

1.3 DEFINITIONS

A. NC: Normally closed.
B. NO: Normally open.
C. SPDT: Single pole, double throw.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of enclosed switch, circuit breaker, accessory, and component indicated. Include nameplate ratings, dimensioned elevations, sections, weights, and manufacturers’ technical data on features, performance, electrical characteristics, ratings, accessories, and finishes.
 1. Enclosure types and details for types other than NEMA 250, Type 1.
 2. Current and voltage ratings.
 3. Short-circuit current ratings (interrupting and withstand, as appropriate).
 4. Detail features, characteristics, ratings, and factory settings of individual overcurrent protective devices, accessories, and auxiliary components.

B. Shop Drawings: For enclosed switches and circuit breakers.
 1. Include plans, elevations, sections, details, and attachments to other work.
 2. Include wiring diagrams for power, signal, and control wiring.
1.5 INFORMATIONAL SUBMITTALS

A. Qualification Data: For qualified testing agency.

B. Field quality-control reports.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For enclosed switches and circuit breakers to include in emergency, operation, and maintenance manuals.

1. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:

a. Manufacturer's written instructions for testing and adjusting enclosed switches and circuit breakers.

b. Time-current coordination curves (average melt) for each type and rating of overcurrent protective device; include selectable ranges for each type of overcurrent protective device. Provide in PDF electronic format.

1.7 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Fuses: Equal to 10 percent of quantity installed for each size and type, but no fewer than three of each size and type.

2. Fuse Pullers: Two for each size and type.

1.8 QUALITY ASSURANCE

A. Testing Agency Qualifications: Accredited by NETA.

1. Testing Agency's Field Supervisor: Currently certified by NETA to supervise on-site testing.

1.9 WARRANTY

A. Manufacturer's Warranty: Manufacturer and Installer agree to repair or replace components that fail in materials or workmanship within specified warranty period.

1. Warranty Period: One year(s) from date of Substantial Completion.
PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS

A. Source Limitations: Obtain enclosed switches and circuit breakers, overcurrent protective devices, components, and accessories, within same product category, from single manufacturer.

B. Product Selection for Restricted Space: Drawings indicate maximum dimensions for enclosed switches and circuit breakers, including clearances between enclosures, and adjacent surfaces and other items. Comply with indicated maximum dimensions.

C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by an NRTL, and marked for intended location and application.

D. Comply with NFPA 70.

2.2 FUSIBLE SWITCHES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Eaton.
2. General Electric Company.
3. Square D; by Schneider Electric.

B. Type HD, Heavy Duty:

1. Single throw.
2. Three pole.
3. 240 or 600-V ac. as indicated on plan.
4. 1200 A and smaller.
5. UL 98 and NEMA KS 1, horsepower rated, with clips or bolt pads to accommodate specified fuses.
6. Lockable handle with capability to accept three padlocks, and interlocked with cover in closed position.

C. Accessories:

1. Equipment Ground Kit: Internally mounted and labeled for copper and aluminum ground conductors.
2. Neutral Kit: Internally mounted; insulated, capable of being grounded and bonded; labeled for copper and aluminum neutral conductors.
3. Class R Fuse Kit: Provides rejection of other fuse types when Class R fuses are specified.
4. Auxiliary Contact Kit: Two NO/NC (Form "C") auxiliary contact(s), arranged to activate before switch blades open. Contact rating - 120-V ac.
5. Lugs: Mechanical type, suitable for number, size, and conductor material.
2.3 NONFUSIBLE SWITCHES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Eaton.
 2. General Electric Company.
 3. Square D; by Schneider Electric.

B. Type HD, Heavy Duty, Three Pole, Single Throw, 600-V ac, 1200 A and Smaller: UL 98 and NEMA KS 1, horsepower rated, lockable handle with capability to accept three padlocks, and interlocked with cover in closed position.

C. Accessories:
 1. Equipment Ground Kit: Internally mounted and labeled for copper and aluminum ground conductors.
 2. Neutral Kit: Internally mounted; insulated, capable of being grounded and bonded; labeled for copper and aluminum neutral conductors.
 3. Auxiliary Contact Kit: Two NO/NC (Form "C") auxiliary contact(s), arranged to activate before switch blades open. Contact rating - 120-V ac.
 4. Lugs: Mechanical type, suitable for number, size, and conductor material.
 5. Service-Rated Switches: Labeled for use as service equipment.

2.4 SHUNT TRIP SWITCHES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Bussmann, an Eaton business.
 2. Littelfuse, Inc.
 3. Mersen USA.

B. General Requirements: Comply with ASME A17.1, UL 50, and UL 98, with Class J fuse block and 200-kA interrupting and short-circuit current rating.

C. Type HD, Heavy-Duty, Three Pole, Single-Throw Fusible Switch: 600-V ac, 100 A; UL 98 and NEMA KS 1; integral shunt trip mechanism; horsepower rated, with clips or bolt pads to accommodate specified fuses; lockable handle with capability to accept three padlocks; interlocked with cover in closed position.

D. Control Circuit: 120-V ac; obtained from integral control power transformer, with primary and secondary fuses, with a control power transformer of enough capacity to operate shunt trip, pilot, indicating and control devices.

E. Accessories:
 1. Oiltight key switch for key-to-test function.
 2. Oiltight red ON pilot light.
3. Mechanically interlocked auxiliary contacts that change state when switch is opened and closed.
4. Three-pole, double-throw, fire-safety and alarm relay; 120-V ac coil voltage.
5. Three-pole, double-throw, fire-alarm voltage monitoring relay complying with NFPA 72.
6. Neutral Kit: Internally mounted; insulated, capable of being grounded and bonded; labeled for copper and aluminum neutral conductors.
7. Class R Fuse Kit: Provides rejection of other fuse types when Class R fuses are specified.
8. Auxiliary Contact Kit: Two] NO/NC (Form "C") auxiliary contact(s), arranged to activate before switch blades open. Contact rating - 120-V ac.
9. Lugs: Mechanical type, suitable for number, size, and conductor material.
10. Service-Rated Switches: Labeled for use as service equipment.

2.5 MOLDED-CASE CIRCUIT BREAKERS

A. Manufacturers: Subject to compliance with requirements, provide products by the following:

1. Eaton.
2. General Electric Company.
3. Square D; by Schneider Electric.

B. Circuit breakers shall be constructed using glass-reinforced insulating material. Current carrying components shall be completely isolated from the handle and the accessory mounting area.

C. Circuit breakers shall have a toggle operating mechanism with common tripping of all poles, which provides quick-make, quick-break contact action. The circuit-breaker handle shall be over center, be trip free, and reside in a tripped position between on and off to provide local trip indication. Circuit-breaker escutcheon shall be clearly marked on and off in addition to providing international I/O markings. Equip circuit breaker with a push-to-trip button, located on the face of the circuit breaker to mechanically operate the circuit-breaker tripping mechanism for maintenance and testing purposes.

D. The maximum ampere rating and UL, IEC, or other certification standards with applicable voltage systems and corresponding interrupting ratings shall be clearly marked on face of circuit breaker. Circuit breakers shall be 100 percent rated.

E. MCCBs shall be equipped with a device for locking in the isolated position.

F. Lugs shall be suitable for 140 deg F rated wire on 125-A circuit breakers and below.

G. Standard: Comply with UL 489 with interrupting capacity to comply with available fault currents.

I. Adjustable, Instantaneous-Trip Circuit Breakers: Magnetic trip element with front-mounted, field-adjustable trip setting.

J. Electronic Trip Circuit Breakers: Field-replaceable rating plug, rms sensing, with the following field-adjustable settings:
 1. Instantaneous trip.
 2. Long- and short-time pickup levels.
 3. Long- and short-time time adjustments.
 4. Ground-fault pickup level, time delay, and I-squared t response.

K. Current-Limiting Circuit Breakers: Frame sizes 400 A and smaller, and let-through ratings less than NEMA FU 1, RK-5.

L. Features and Accessories:
 1. Standard frame sizes, trip ratings, and number of poles.
 2. Lugs: Mechanical type, suitable for number, size, trip ratings, and conductor material.
 3. Auxiliary Contacts: One SPDT switch with "a" and "b" contacts; "a" contacts mimic circuit-breaker contacts, "b" contacts operate in reverse of circuit-breaker contacts.
 4. Alarm Switch: One NO contact that operates only when circuit breaker has tripped.

2.6 ENCLOSURES

A. Enclosed Switches and Circuit Breakers: UL 489, NEMA KS 1, NEMA 250, and UL 50, to comply with environmental conditions at installed location.

B. Enclosure Finish: The enclosure shall be finished with gray baked enamel paint, electrodeposited on cleaned, phosphatized steel (NEMA 250 Type 1).

C. Conduit Entry: NEMA 250 Types 4, 4X, and 12 enclosures shall contain no knockouts. NEMA 250 Types 7 and 9 enclosures shall be provided with threaded conduit openings in both endwalls.

D. Operating Mechanism: The circuit-breaker operating handle shall be externally operable with the operating mechanism being an integral part of the box, not the cover. The cover interlock mechanism shall have an externally operated override. The override shall not permanently disable the interlock mechanism, which shall return to the locked position once the override is released. The tool used to override the cover interlock mechanism shall not be required to enter the enclosure in order to override the interlock.

E. Enclosures designated as NEMA 250 Type 4, 4X stainless steel, 12, or 12K shall have a dual cover interlock mechanism to prevent unintentional opening of the enclosure cover when the circuit breaker is ON and to prevent turning the circuit breaker ON when the enclosure cover is open.
PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine elements and surfaces to receive enclosed switches and circuit breakers for compliance with installation tolerances and other conditions affecting performance of the Work.

B. Proceed with installation only after unsatisfactory conditions have been corrected.
 1. Commencement of work shall indicate Installer's acceptance of the areas and conditions as satisfactory.

3.2 PREPARATION

A. Interruption of Existing Electric Service: Do not interrupt electric service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary electric service according to requirements indicated:
 1. Notify Owner no fewer than seven days in advance of proposed interruption of electric service.
 2. Indicate method of providing temporary electric service.
 3. Do not proceed with interruption of electric service without Owner's written permission.
 4. Comply with NFPA 70E.

3.3 ENCLOSURE ENVIRONMENTAL RATING APPLICATIONS

A. Enclosed Switches and Circuit Breakers: Provide enclosures at installed locations with the following environmental ratings.
 1. Indoor, Dry and Clean Locations: NEMA 250, Type 1.
 2. Outdoor Locations: NEMA 250, Stainless Steel.
 3. Other Wet or Damp, Indoor Locations: NEMA 250, Type 4.
 4. Indoor Locations Subject to Dust, Falling Dirt, and Dripping Noncorrosive Liquids: NEMA 250, Type 12.

3.4 INSTALLATION

A. Coordinate layout and installation of switches, circuit breakers, and components with equipment served and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.

B. Install individual wall-mounted switches and circuit breakers with tops at uniform height unless otherwise indicated.

C. Temporary Lifting Provisions: Remove temporary lifting of eyes, channels, and brackets and temporary blocking of moving parts from enclosures and components.
D. Install fuses in fusible devices.
E. Comply with NFPA 70 and NECA 1.

3.5 IDENTIFICATION

A. Comply with requirements in Section 260553 "Identification for Electrical Systems."
 1. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs.
 2. Label each enclosure with engraved metal or laminated-plastic nameplate.

3.6 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
B. Perform tests and inspections.
C. Tests and Inspections for Switches:
 1. Visual and Mechanical Inspection:
 a. Inspect physical and mechanical condition.
 b. Inspect anchorage, alignment, grounding, and clearances.
 c. Verify that the unit is clean.
 d. Verify blade alignment, blade penetration, travel stops, and mechanical operation.
 e. Verify that fuse sizes and types match the Specifications and Drawings.
 f. Verify that each fuse has adequate mechanical support and contact integrity.
 g. Inspect bolted electrical connections for high resistance using one of the two following methods:
 1) Use a low-resistance ohmmeter.
 a) Compare bolted connection resistance values to values of similar connections. Investigate values that deviate from those of similar bolted connections by more than 50 percent of the lowest value.
 2) Verify tightness of accessible bolted electrical connections by calibrated torque-wrench method in accordance with manufacturer's published data or NETA ATS Table 100.12.
 a) Bolt-torque levels shall be in accordance with manufacturer's published data. In the absence of manufacturer's published data, use NETA ATS Table 100.12.
h. Verify that operation and sequencing of interlocking systems is as described in the Specifications and shown on the Drawings.

i. Verify correct phase barrier installation.

j. Verify lubrication of moving current-carrying parts and moving and sliding surfaces.

2. Electrical Tests:

a. Perform resistance measurements through bolted connections with a low-resistance ohmmeter. Compare bolted connection resistance values to values of similar connections. Investigate values that deviate from adjacent poles or similar switches by more than 50 percent of the lowest value.

b. Measure contact resistance across each switchblade fuseholder. Drop values shall not exceed the high level of the manufacturer's published data. If manufacturer's published data are not available, investigate values that deviate from adjacent poles or similar switches by more than 50 percent of the lowest value.

c. Perform insulation-resistance tests for one minute on each pole, phase-to-phase and phase-to-ground with switch closed, and across each open pole. Apply voltage in accordance with manufacturer's published data. In the absence of manufacturer's published data, use Table 100.1 from the NETA ATS. Investigate values of insulation resistance less than those published in Table 100.1 or as recommended in manufacturer's published data.

d. Measure fuse resistance. Investigate fuse-resistance values that deviate from each other by more than 15 percent.

e. Perform ground fault test according to NETA ATS 7.14 "Ground Fault Protection Systems, Low-Voltage."

D. Enclosed switches and circuit breakers will be considered defective if they do not pass tests and inspections.

E. Prepare test and inspection reports.

1. Test procedures used.

2. Include identification of each enclosed switch and circuit breaker tested and describe test results.

3. List deficiencies detected, remedial action taken, and observations after remedial action.

3.7 ADJUSTING

A. Adjust moving parts and operable components to function smoothly, and lubricate as recommended by manufacturer.

END OF SECTION
THIS PAGE INTENTIONALLY LEFT BLANK
PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 2. Enclosed full-voltage magnetic motor controllers.
 3. Combination full-voltage magnetic motor controllers.
 4. Enclosures.
 5. Accessories.
 6. Identification.

1.3 DEFINITIONS
A. CPT: Control power transformer.
B. MCCB: Molded-case circuit breaker.
C. NC: Normally closed.
D. OCPD: Overcurrent protective device.
E. SCCR: Short-circuit current rating.
F. SCPD: Short-circuit protective device.

1.4 ACTION SUBMITTALS
A. Product Data: For each type of product.
 1. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.
B. Shop Drawings: For each type of magnetic controller.
 1. Include plans, elevations, sections, and mounting details.
2. Indicate dimensions, weights, required clearances, and location and size of each field connection.

3. Wire Termination Diagrams and Schedules: Include diagrams for signal, and control wiring. Identify terminals and wiring designations and color-codes to facilitate installation, operation, and maintenance. Indicate recommended types, wire sizes, and circuiting arrangements for field-installed wiring, and show circuit protection features. Differentiate between manufacturer-installed and field-installed wiring.

4. Include features, characteristics, ratings, and factory settings of individual overcurrent protective devices and auxiliary components.

1.5 INFORMATIONAL SUBMITTALS

A. Qualification Data: For testing agency.

B. Field quality-control reports.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For magnetic controllers to include in operation and maintenance manuals.

1. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:

 a. Routine maintenance requirements for magnetic controllers and installed components.
 b. Manufacturer's written instructions for testing and adjusting circuit breaker and MCP trip settings.
 c. Manufacturer's written instructions for setting field-adjustable overload relays.
 d. Load-Current and Overload-Relay Heater List: Compile after motors have been installed, and arrange to demonstrate that selection of heaters suits actual motor nameplate full-load currents.
 e. Load-Current and List of Settings of Adjustable Overload Relays: Compile after motors have been installed, and arrange to demonstrate that switch settings for motor-running overload protection suit actual motors to be protected.

1.7 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Fuses for Fused Switches: Equal to 10 percent of quantity installed for each size and type, but no fewer than three of each size and type.

2. Control Power Fuses: Equal to 10 percent of quantity installed for each size and type, but no fewer than two of each size and type.

3. Indicating Lights: Two of each type and color installed.
4. Auxiliary Contacts: Furnish one spare(s) for each size and type of magnetic controller installed.
5. Power Contacts: Furnish three spares for each size and type of magnetic contactor installed.

1.8 QUALITY ASSURANCE

A. Testing Agency Qualifications: Accredited by NETA.

1. Testing Agency's Field Supervisor: Certified by NETA to supervise on-site testing.

1.9 DELIVERY, STORAGE, AND HANDLING

A. Store controllers indoors in clean, dry space with uniform temperature to prevent condensation. Protect controllers from exposure to dirt, fumes, water, corrosive substances, and physical damage.

1.10 FIELD CONDITIONS

A. Ambient Environment Ratings: Rate equipment for continuous operation under the following conditions unless otherwise indicated:

1. Ambient Temperature: Not less than 23 deg F and not exceeding 104 deg F.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and use.

B. UL Compliance: Fabricate and label magnetic motor controllers to comply with UL 508 and UL 60947-4-1.

C. NEMA Compliance: Fabricate motor controllers to comply with ICS 2.

2.2 MANUAL MOTOR CONTROLLERS

A. Motor-Starting Switches (MSS): "Quick-make, quick-break" toggle or push-button action; marked to show whether unit is off or on.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Eaton.
 b. General Electric Company.
c. Square D; by Schneider Electric.

2. Standard: Comply with NEMA ICS 2, general purpose, Class A.
3. Configuration: Nonreversing.
4. Surface mounting.
5. Red pilot light.

B. Fractional Horsepower Manual Controllers (FHPMC): "Quick-make, quick-break" toggle or push-button action; marked to show whether unit is off, on, or tripped.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Eaton.
 b. General Electric Company
 c. Square D; by Schneider Electric.

2. Configuration: Nonreversing.
3. Overload Relays: Inverse-time-current characteristics; NEMA ICS 2, Class 10 tripping characteristics; heaters matched to nameplate full-load current of actual protected motor; external reset push button; bimetallic type.

2.3 ENCLOSED FULL-VOLTAGE MAGNETIC MOTOR CONTROLLERS

A. Description: Across-the-line start, electrically held, for nominal system voltage of 600-V ac and less.

B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Eaton.
2. General Electric Company.
3. Square D; by Schneider Electric.

C. Standard: Comply with NEMA ICS 2, general purpose, Class A.

D. Configuration: Nonreversing.

E. Contactor Coils: Pressure-encapsulated type.

1. Operating Voltage: Manufacturer's standard, unless indicated.

F. Control Power:

1. For on-board control power, obtain from line circuit or from integral CPT. The CPT shall have capacity to operate integral devices and remotely located pilot, indicating, and control devices.
a. Spare CPT Capacity as Indicated on Drawings: 50 VA.

G. Overload Relays:

1. Solid-State Overload Relay:
 a. Switch or dial selectable for motor-running overload protection.
 b. Sensors in each phase.
 c. Class 10 tripping characteristic selected to protect motor against voltage and current unbalance and single phasing.

2.4 COMBINATION FULL-VOLTAGE MAGNETIC MOTOR CONTROLLER

A. Description: Factory-assembled, combination full-voltage magnetic motor controller consisting of the controller described in this article, indicated disconnecting means, SCPD and OCPD, in a single enclosure.

B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Eaton.
2. General Electric Company.
3. Square D; by Schneider Electric.

C. Standard: Comply with NEMA ICS 2, general purpose, Class A.

D. Configuration: Nonreversing.

E. Contactor Coils: Pressure-encapsulated type.

1. Operating Voltage: Manufacturer's standard, unless indicated.

F. Control Power:

1. For on-board control power, obtain from line circuit or from integral CPT. The CPT shall have capacity to operate integral devices and remotely located pilot, indicating, and control devices.

 a. Spare CPT Capacity as Indicated on Drawings: 50 VA.

G. Overload Relays:

1. Solid-State Overload Relay:

 a. Switch or dial selectable for motor-running overload protection.
 b. Sensors in each phase.
 c. Class 10 tripping characteristic selected to protect motor against voltage and current unbalance and single phasing.
H. Fusible Disconnecting Means:
 1. NEMA KS 1, heavy-duty, horsepower-rated, fusible switch with clips or bolt pads to accommodate indicated fuses.
 2. Lockable Handle: Accepts three padlocks and interlocks with cover in closed position.

2.5 ENCLOSURES

A. Comply with NEMA 250, type designations as indicated on Drawings, complying with environmental conditions at installed location.

B. The construction of the enclosures shall comply with NEMA ICS 6.

C. Controllers in hazardous (classified) locations shall comply with UL 1203.

2.6 ACCESSORIES

A. General Requirements for Control Circuit and Pilot Devices: NEMA ICS 5; factory installed in controller enclosure cover unless otherwise indicated.

1. Push Buttons, Pilot Lights, and Selector Switches: Standard-duty, except as needed to match enclosure type. Heavy-duty or oil-tight where indicated in the controller schedule.
 a. Push Buttons: As indicated in the controller schedule.
 b. Pilot Lights: As indicated in the controller schedule.

2. Elapsed Time Meters: Heavy duty with digital readout in hours; nonresettable.

B. Motor protection relays shall be with solid-state sensing circuit and isolated output contacts for hardwired connections.

1. Phase-failure.
2. Phase-reversal, with bicolor LED to indicate normal and fault conditions. Automatic reset when phase reversal is corrected.
3. Under/overvoltage, operate when the circuit voltage reaches a preset value, and drop out when the operating voltage drops to a level below the preset value. Include adjustable time-delay setting.

2.7 IDENTIFICATION

A. Controller Nameplates: Baked enamel signs, as described in Section 260553 "Identification for Electrical Systems," for each compartment, mounted with corrosion-resistant screws.

B. Arc-Flash Warning Labels:
1. Comply with requirements in Section 260573.19 "Arc-Flash Hazard Analysis." Produce a 3.5-by-5-inch self-adhesive equipment label for each work location included in the analysis.

2. Comply with requirements in Section 260553 "Identification for Electrical Systems." Produce a 3.5-by-5-inch self-adhesive equipment label for each work location included in the analysis. Labels shall be machine printed, with no field-applied markings.

 a. The label shall have an orange header with the wording, "WARNING, ARC-FLASH HAZARD," and shall include the following information taken directly from the arc-flash hazard analysis:

 1) Location designation.
 2) Nominal voltage.
 3) Flash protection boundary.
 4) Hazard risk category.
 5) Incident energy.
 6) Working distance.
 7) Engineering report number, revision number, and issue date.

 b. Labels shall be machine printed, with no field-applied markings.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas and space conditions for compliance with requirements for motor controllers, their relationship with the motors, and other conditions affecting performance of the Work.

3.2 INSTALLATION

A. Comply with NECA 1.

B. Wall-Mounted Controllers: Install magnetic controllers on walls with tops at uniform height indicated, and by bolting units to wall or mounting on lightweight structural-steel channels bolted to wall. For controllers not at walls, provide freestanding racks complying with Section 260529 "Hangers and Supports for Electrical Systems" unless otherwise indicated.

C. Maintain minimum clearances and workspace at equipment according to manufacturer's written instructions and NFPA 70.

D. Wiring within Enclosures: Bundle, lace, and train conductors to terminal points with no excess and without exceeding manufacturer's limitations on bending radii. Install lacing bars and distribution spools.
E. Setting of Overload Relays: Select and set overloads on the basis of full-load current rating as shown on motor nameplate. Adjust setting value for special motors as required by NFPA 70 for motors that are high-torque, high-efficiency, and so on.

3.3 IDENTIFICATION

A. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems."

3.4 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

B. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.

C. Perform tests and inspections.

D. Tests and Inspections:

2. Visual and Mechanical Inspection:

 a. Compare equipment nameplate data with drawings and specifications.

 b. Inspect physical and mechanical condition.

 c. Inspect anchorage, alignment, and grounding.

 d. Verify the unit is clean.

 e. Inspect contactors:

 1) Verify mechanical operation.

 2) Verify contact gap, wipe, alignment, and pressure are according to manufacturer's published data.

 f. Motor-Running Protection:

 1) Verify overload element rating is correct for its application.

 2) If motor-running protection is provided by fuses, verify correct fuse rating.

 g. Inspect bolted electrical connections for high resistance using one of the two following methods:

 1) Use a low-resistance ohmmeter. Compare bolted connection resistance values with values of similar connections. Investigate values that deviate from those of similar bolted connections by more than 50 percent of the lowest value.

 2) Verify tightness of accessible bolted electrical connections by calibrated torque-wrench method according to manufacturer's published data or NETA ATS Table 100.12. Bolt-torque levels
shall be according to manufacturer's published data. In the absence of manufacturer's published data, use NETA ATS Table 100.12.

h. Verify appropriate lubrication on moving current-carrying parts and on moving and sliding surfaces.

3. Electrical Tests:

a. Perform insulation-resistance tests for one minute on each pole, phase-to-phase and phase-to-ground with switch closed, and across each open pole. Insulation-resistance values shall be according to manufacturer's published data or NETA ATS Table 100.1. In the absence of manufacturer's published data, use Table 100.5. Values of insulation resistance less than those of this table or manufacturer's recommendations shall be investigated and corrected.

b. Measure fuse resistance. Investigate fuse-resistance values that deviate from each other by more than 15 percent.

c. Test motor protection devices according to manufacturer's published data.

d. Test circuit breakers as follows:

1) Operate the circuit breaker to ensure smooth operation.
2) For adjustable circuit breakers, adjust protective device settings according to the coordination study. Comply with coordination study recommendations.

e. Perform operational tests by initiating control devices.

4. Infrared Inspection: Perform the survey during periods of maximum possible loading. Remove all necessary covers prior to the inspection.

b. After Substantial Completion, but not more than 60 days after Final Acceptance, perform infrared inspection of the electrical power connections of each motor controller.

c. Report of Infrared Inspection: Prepare a certified report that identifies the testing technician and equipment used, and lists the following results:

1) Description of equipment to be tested.
2) Discrepancies.
3) Temperature difference between the area of concern and the reference area.
4) Probable cause of temperature difference.
5) Areas inspected. Identify inaccessible and unobservable areas and equipment.
6) Load conditions at time of inspection.
7) Photographs and thermograms of the deficient area.
8) Recommended action.

 d. Equipment: Inspect distribution systems with imaging equipment capable of detecting a minimum temperature difference of 1°C at 30°C. The equipment shall detect emitted radiation and convert detected radiation to a visual signal.

 e. Act on inspection results and recommended action, and considering the recommendations of NETA ATS, Table 100.18. Correct possible and probable deficiencies as soon as Owner's operations permit. Retest until deficiencies are corrected.

E. Motor controller will be considered defective if it does not pass tests and inspections.

F. Prepare test and inspection reports.

3.5 SYSTEM FUNCTION TESTS

 A. System function tests shall prove the correct interaction of sensing, processing, and action devices. Perform system function tests after field quality control tests have been completed and all components have passed specified tests.

 1. Develop test parameters and perform tests for the purpose of evaluating performance of integral components and their functioning as a complete unit within design requirements and manufacturer's published data.

 2. Verify the correct operation of interlock safety devices for fail-safe functions in addition to design function.

 3. Verify the correct operation of sensing devices, alarms, and indicating devices.

B. Motor controller will be considered defective if it does not pass the system function tests and inspections.

C. Prepare test and inspection reports.

3.6 DEMONSTRATION

 A. Train Owner's maintenance personnel to adjust, operate, and maintain switchgear.

END OF SECTION
PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section includes separately enclosed, preassembled, combination VFCs, rated 600 V and less, for speed control of three-phase, squirrel-cage induction motors.

1.3 DEFINITIONS
A. CPT: Control power transformer.
B. DDC: Direct digital control.
C. EMI: Electromagnetic interference.
D. LED: Light-emitting diode.
E. NC: Normally closed.
F. NO: Normally open.
G. OCPD: Overcurrent protective device.
H. PID: Control action, proportional plus integral plus derivative.
I. RFI: Radio-frequency interference.
J. VFC: Variable-frequency motor controller.

1.4 ACTION SUBMITTALS
A. Product Data: For each type and rating of VFC indicated.
 1. Include dimensions and finishes for VFCs.
 2. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.
B. Shop Drawings: For each VFC indicated.
1. Include mounting and attachment details.
2. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
3. Include diagrams for power, signal, and control wiring.

1.5 INFORMATIONAL SUBMITTALS
A. Qualification Data: For testing agency.
B. Product Certificates: For each VFC from manufacturer.
C. Source quality-control reports.
D. Field quality-control reports.
E. Sample Warranty: For special warranty.

1.6 CLOSEOUT SUBMITTALS
A. Operation and Maintenance Data: For VFCs to include in emergency, operation, and maintenance manuals.
 1. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:
 a. Manufacturer's written instructions for setting field-adjustable overload relays.
 b. Manufacturer's written instructions for testing, adjusting, and reprogramming microprocessor control modules.
 c. Manufacturer's written instructions for setting field-adjustable timers, controls, and status and alarm points.
 d. Load-Current and List of Settings of Adjustable Overload Relays: Compile after motors have been installed, and arrange to demonstrate that switch settings for motor-running overload protection suit actual motors to be protected.

1.7 MAINTENANCE MATERIAL SUBMITTALS
A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Power Fuses: Equal to 10 percent of quantity installed for each size and type, but no fewer than three of each size and type.
 2. Control Power Fuses: Equal to 10 percent of quantity installed for each size and type, but no fewer than two of each size and type.
 3. Indicating Lights: Two of each type and color installed.
 4. Auxiliary Contacts: Furnish one spare for each size and type of magnetic controller installed.
5. Power Contacts: Furnish three spares for each size and type of magnetic contactor installed.

1.8 QUALITY ASSURANCE
A. Testing Agency Qualifications: Accredited by NETA.
 1. Testing Agency's Field Supervisor: Currently certified by NETA to supervise on-site testing.

1.9 DELIVERY, STORAGE, AND HANDLING
A. If stored in space that is not permanently enclosed and air conditioned, remove loose packing and flammable materials from inside controllers and install temporary electric heating, with at least 250 W per controller.

1.10 WARRANTY
A. Special Warranty: Manufacturer agrees to repair or replace VFCs that fail in materials or workmanship within specified warranty period.
 1. Warranty Period: Five years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 MANUFACTURERS
A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. ABB Low Voltage HVAC Drives.
 2. Eaton.
 3. Schneider Electric USA, Inc.

2.2 SYSTEM DESCRIPTION
A. General Requirements for VFCs:
 1. VFCs and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 2. Comply with NEMA ICS 7, NEMA ICS 61800-2, and UL 508A.

B. Application: variable torque.

C. VFC Description: Variable-frequency motor controller, consisting of power converter that employs pulse-width-modulated inverter, factory built and tested in an enclosure, with integral disconnecting means and overcurrent and overload protection; listed and labeled by an NRTL as a complete unit; arranged to provide self-protection, protection,
and variable-speed control of one or more three-phase induction motors by adjusting output voltage and frequency.

1. Units suitable for operation of inverter-duty motors as defined by NEMA MG 1, Section IV, Part 31, "Definite-Purpose Inverter-Fed Polyphase Motors."
2. Listed and labeled for integrated short-circuit current (withstand) rating by an NRTL acceptable to authorities having jurisdiction.

D. Design and Rating: Match load type, such as fans, blowers, and pumps; and type of connection used between motor and load such as direct or through a power-transmission connection.

E. Output Rating: Three phase; 10 to 60 Hz, with voltage proportional to frequency throughout voltage range; maximum voltage equals input voltage.

F. Unit Operating Requirements:

1. Input AC Voltage Tolerance: Plus 10 and minus 10 percent of VFC input voltage rating.
2. Input AC Voltage Unbalance: Not exceeding 3 percent.
3. Input Frequency Tolerance: Plus or minus 3 percent of VFC frequency rating.
4. Minimum Efficiency: 97 percent at 60 Hz, full load.
5. Minimum Displacement Primary-Side Power Factor: 98 percent under any load or speed condition.
6. Minimum Short-Circuit Current (Withstand) Rating: 22 kA.
7. Ambient Temperature Rating: Not less than 32 deg F and not exceeding 104 deg F.
8. Humidity Rating: Less than 95 percent (noncondensing).
10. Overload Capability: 1.1 times the base load current for 60 seconds; minimum of 1.8 times the base load current for three seconds.
11. Starting Torque: Minimum 100 percent of rated torque from 3 to 60 Hz.
12. Speed Regulation: Plus or minus 5 percent.
13. Output Carrier Frequency: Selectable; 0.5 to 15 kHz.
14. Stop Modes: Programmable; includes fast, free-wheel, and dc injection braking.

G. Inverter Logic: Microprocessor based, 32 bit, isolated from all power circuits.

H. Isolated Control Interface: Allows VFCs to follow remote-control signal over a minimum 40:1 speed range.

I. Internal Adjustability Capabilities:

1. Minimum Speed: 5 to 25 percent of maximum rpm.
2. Maximum Speed: 80 to 100 percent of maximum rpm.
3. Acceleration: 0.1 to 999.9 seconds.
4. Deceleration: 0.1 to 999.9 seconds.
5. Current Limit: 30 to minimum of 150 percent of maximum rating.

J. Self-Protection and Reliability Features:
 1. Surge Suppression: Factory installed as an integral part of the VFC, complying with UL 1449 SPD, Type 1 or Type 2.
 2. Loss of Input Signal Protection: Selectable response strategy, including speed default to a percent of the most recent speed, a preset speed, or stop; with alarm.
 4. Inverter overcurrent trips.
 5. VFC and Motor-Overload/Overtemperature Protection: Microprocessor-based thermal protection system for monitoring VFCs and motor thermal characteristics, and for providing VFC overtemperature and motor-overload alarm and trip; settings selectable via the keypad.
 6. Critical frequency rejection, with three selectable, adjustable deadbands.
 7. Instantaneous line-to-line and line-to-ground overcurrent trips.
 10. Short-circuit protection.
 11. Motor-overtemperature fault.

K. Automatic Reset/Restart: Attempt three restarts after drive fault or on return of power after an interruption and before shutting down for manual reset or fault correction; adjustable delay time between restart attempts.

L. Bidirectional Autospeed Search: Capable of starting VFC into rotating loads spinning in either direction and returning motor to set speed in proper direction, without causing damage to drive, motor, or load.

M. Torque Boost: Automatically varies starting and continuous torque to at least 1.5 times the minimum torque to ensure high-starting torque and increased torque at slow speeds.

N. Motor Temperature Compensation at Slow Speeds: Adjustable current fall-back based on output frequency for temperature protection of self-cooled, fan-ventilated motors at slow speeds.

O. Integral Input Disconnecting Means and OCPD: UL 489, thermal-magnetic circuit breaker with pad-lockable, door-mounted handle mechanism.
 1. Disconnect Rating: Not less than 115 percent of NFPA 70 motor full-load current rating or VFC input current rating, whichever is larger.
 2. Auxiliary Contacts: NO or NC, arranged to activate before switch blades open.
 3. Auxiliary contacts "a" and "b" arranged to activate with circuit-breaker handle.

2.3 CONTROLS AND INDICATION

A. Status Lights: Door-mounted LED indicators displaying the following conditions:
 1. Power on.
2. Run.
3. Overvoltage.
4. Line fault.
5. Overcurrent.

B. Panel-Mounted Operator Station: Manufacturer's standard front-accessible, sealed keypad and plain-English-language digital display; allows complete programming, program copying, operating, monitoring, and diagnostic capability.

1. Keypad: In addition to required programming and control keys, include keys for HAND, OFF, and AUTO modes.
2. Security Access: Provide electronic security access to controls through identification and password with at least three levels of access: View only; view and operate; and view, operate, and service.
 a. Control Authority: Supports at least four conditions: Off, local manual control at VFC, local automatic control at VFC, and automatic control through a remote source.

C. Historical Logging Information and Displays:

1. Real-time clock with current time and date.
2. Running log of total power versus time.
3. Total run time.
4. Fault log, maintaining last four faults with time and date stamp for each.

D. Indicating Devices: Digital display mounted flush in VFC door and connected to display VFC parameters including, but not limited to:

1. Output frequency (Hz).
5. Motor torque (percent).
6. Fault or alarming status (code).
7. PID feedback signal (percent).
8. DC-link voltage (V dc).
9. Set point frequency (Hz).
10. Motor output voltage (V ac).

E. Control Signal Interfaces:

1. Electric Input Signal Interface:
 a. A minimum of two programmable analog inputs: 0- to 10-V dc.
 b. A minimum of six multifunction programmable digital inputs.
2. Remote Signal Inputs: Capability to accept any of the following speed-setting input signals from the DDC system for HVAC or other control systems:
 a. 0- to 10-V dc.
 b. 4- to 20-mA dc.
 c. Potentiometer using up/down digital inputs.
 d. Fixed frequencies using digital inputs.

3. Output Signal Interface: A minimum of one programmable analog output signal(s) 0- to 10-V dc, which can be configured for any of the following:
 a. Output frequency (Hz).
 b. Output current (load).
 c. DC-link voltage (V dc).
 d. Motor torque (percent).
 e. Motor speed (rpm).
 f. Set point frequency (Hz).

4. Remote Indication Interface: A minimum of two programmable dry-circuit relay outputs (120-V ac, 1 A) for remote indication of the following:
 a. Motor running.
 b. Set point speed reached.
 c. Fault and warning indication (overtemperature or overcurrent).
 d. PID high- or low-speed limits reached.

F. Interface with DDC System for HVAC: Factory-installed hardware and software shall interface with DDC system for HVAC to monitor, control, display, and record data for use in processing reports. VFC settings shall be retained within VFC’s nonvolatile memory.

1. Communication Interface: Comply with ASHRAE 135. Communication shall interface with DDC system for HVAC to remotely control and monitor lighting from a DDC system for HVAC operator workstation. Control features and monitoring points displayed locally at lighting panel shall be available through the DDC system for HVAC.

2.4 BYPASS SYSTEMS

A. Bypass Operation: Safely transfers motor between power converter output and bypass circuit, manually, automatically, or both. Selector switches set modes and indicator lights indicate mode selected. Unit is capable of stable operation (starting, stopping, and running) with motor completely disconnected from power converter.

B. Bypass Mode: Manual operation only; requires local operator selection at VFC. Transfer between power converter and bypass contactor, and retransfer shall only be allowed with the motor at zero speed.
C. Bypass Controller: Three-contactor-style bypass allows motor operation via the power converter or the bypass controller arranged to isolate the power converter input and output and permit safe testing and troubleshooting of the power converter, both energized and de-energized, while motor is operating in bypass mode.

2. Input and Output Isolating Contactors: Non-load-break, NEMA-rated contactors.
3. Isolating Switch: Non-load-break switch arranged to isolate power converter and permit safe troubleshooting and testing of the power converter, both energized and de-energized, while motor is operating in bypass mode; pad-lockable, door-mounted handle mechanism.

D. Bypass Contactor Configuration: Full-voltage (across-the-line) type.

1. NORMAL/BYPASS selector switch.
2. HAND/OFF/AUTO selector switch.
3. NORMAL/TEST Selector Switch: Allows testing and adjusting of VFC while the motor is running in the bypass mode.
 a. Operating Voltage: Depending on contactor NEMA size and line-voltage rating, manufacturer's standard matching control power or line voltage.
 b. Power Contacts: Totally enclosed, double break, and silver-cadmium oxide; assembled to allow inspection and replacement without disturbing line or load wiring.
5. Control Circuits: 120-V ac; obtained from integral CPT, with primary and secondary fuses, with CPT of sufficient capacity to operate all integral devices and remotely located pilot, indicating, and control devices.
 a. CPT Spare Capacity: 100 VA.

 a. Solid-State Overload Relays:
 1) Switch or dial selectable for motor-running overload protection.
 2) Sensors in each phase.
 3) Class 10/20 selectable tripping characteristic selected to protect motor against voltage and current unbalance and single phasing.
 b. NO isolated overload alarm contact.
 c. External overload, reset push button.
2.5 OPTIONAL FEATURES

2.6 ENCLOSURES

A. VFC Enclosures: NEMA 250, to comply with environmental conditions at installed location.
 1. Dry and Clean Indoor Locations: Type 1.
 2. Outdoor Locations: Type 3R.

2.7 ACCESSORIES

A. General Requirements for Control-Circuit and Pilot Devices: NEMA ICS 5; factory installed in VFC enclosure cover unless otherwise indicated.
 1. Push Buttons: Covered.
 4. Stop and Lockout Push-Button Station: Momentary-break, push-button station with a factory-applied hasp arranged so padlock can be used to lock push button in depressed position with control circuit open.

B. NC bypass contactor auxiliary contact(s).

C. Control Relays: Auxiliary and adjustable solid-state time-delay relays.

D. Supplemental Digital Meters:
 1. Elapsed-time meter.
 2. Kilowatt meter.

2.8 SOURCE QUALITY CONTROL

A. Testing: Test and inspect VFCs according to requirements in NEMA ICS 61800-2.
 1. Test each VFC while connected to its specified motor.
 2. Verification of Performance: Rate VFCs according to operation of functions and features specified.

B. VFCs will be considered defective if they do not pass tests and inspections.

C. Prepare test and inspection reports.
PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas, surfaces, and substrates to receive VFCs, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.

B. Examine VFC before installation. Reject VFCs that are wet, moisture damaged, or mold damaged.

C. Examine roughing-in for conduit systems to verify actual locations of conduit connections before VFC installation.

D. Prepare written report, endorsed by Installer, listing conditions detrimental to performance of the Work

E. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Wall-Mounting Controllers: Install with tops at uniform height and with disconnect operating handles not higher than 79 inches above finished floor, unless otherwise indicated, and by bolting units to wall or mounting on lightweight structural-steel channels bolted to wall. For controllers not on walls, provide freestanding racks complying with Section 260529 "Hangers and Supports for Electrical Systems."

B. Floor-Mounting Controllers: Install VFCs on 4-inch nominal thickness concrete base. Comply with requirements for concrete base specified in Section 033000 "Cast-in-Place Concrete."
 1. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch centers around the full perimeter of concrete base.
 2. For supported equipment, install epoxy-coated anchor bolts that extend through concrete base and anchor into structural concrete floor.
 3. Place and secure anchorage devices. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
 4. Install anchor bolts to elevations required for proper attachment to supported equipment.

C. Temporary Lifting Provisions: Remove temporary lifting eyes, channels, and brackets and temporary blocking of moving parts from enclosures and components.

D. Install fuses in each fusible-switch VFC.

E. Install fuses in control circuits if not factory installed. Comply with requirements in Section 262813 "Fuses."
F. Install, connect, and fuse thermal-protector monitoring relays furnished with motor-driven equipment.

G. Comply with NECA 1.

3.3 CONTROL WIRING INSTALLATION

A. Install wiring between VFCs and remote devices.
B. Bundle, train, and support wiring in enclosures.
C. Connect selector switches and other automatic-control devices where applicable.
 1. Connect selector switches to bypass only those manual- and automatic-control devices that have no safety functions when switches are in manual-control position.
 2. Connect selector switches with control circuit in both manual and automatic positions for safety-type control devices such as low- and high-pressure cutouts, high-temperature cutouts, and motor-overload protectors.

3.4 IDENTIFICATION

A. Identify VFCs, components, and control wiring. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems."
 1. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs.
 2. Label each VFC with engraved nameplate.
 3. Label each enclosure-mounted control and pilot device.
B. Operating Instructions: Frame printed operating instructions for VFCs, including control sequences and emergency procedures. Fabricate frame of finished metal, and cover instructions with clear acrylic plastic. Mount on front of VFC units.

3.5 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
B. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.
C. Perform tests and inspections with the assistance of a factory-authorized service representative.
D. Acceptance Testing Preparation:
 1. Test insulation resistance for each VFC element, bus, component, connecting supply, feeder, and control circuit.
 2. Test continuity of each circuit.
E. Tests and Inspections:

1. Inspect VFC, wiring, components, connections, and equipment installation. Test and adjust controllers, components, and equipment.
2. Test insulation resistance for each VFC element, component, connecting motor supply, feeder, and control circuits.
3. Test continuity of each circuit.
4. Verify that voltages at VFC locations are within 10 percent of motor nameplate rated voltages. If outside this range for any motor, notify Owner before starting the motor(s).
5. Test each motor for proper phase rotation.
7. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.
8. Perform the following infrared (thermographic) scan tests and inspections, and prepare reports:
 a. Initial Infrared Scanning: After Substantial Completion, but not more than 60 days after Final Acceptance, perform an infrared scan of each VFC. Remove front panels so joints and connections are accessible to portable scanner.
 b. Instruments and Equipment: Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.
9. Test and adjust controls, remote monitoring, and safeties. Replace damaged and malfunctioning controls and equipment.

F. VFCs will be considered defective if they do not pass tests and inspections.

G. Prepare test and inspection reports, including a certified report that identifies the VFC and describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations made after remedial action.

3.6 STARTUP SERVICE

A. Engage a factory-authorized service representative to perform startup service.
 1. Complete installation and startup checks according to manufacturer's written instructions.

3.7 ADJUSTING

A. Program microprocessors for required operational sequences, status indications, alarms, event recording, and display features. Clear events memory after final acceptance testing and prior to Substantial Completion.
B. Set field-adjustable switches, auxiliary relays, time-delay relays, timers, and overload-relay pickup and trip ranges.

C. Adjust the trip settings of instantaneous-only circuit breakers and thermal-magnetic circuit breakers with adjustable, instantaneous trip elements. Initially adjust to 6 times the motor nameplate full-load amperes and attempt to start motors several times, allowing for motor cool-down between starts. If tripping occurs on motor inrush, adjust settings in increments until motors start without tripping. Do not exceed 8 times the motor full-load amperes (or 11 times for NEMA Premium Efficient motors if required). Where these maximum settings do not allow starting of a motor, notify Owner before increasing settings.

D. Set field-adjustable pressure switches.

3.8 PROTECTION

A. Temporary Heating: Apply temporary heat to maintain temperature according to manufacturer's written instructions until controllers are ready to be energized and placed into service.

B. Replace VFCs whose interiors have been exposed to water or other liquids prior to Substantial Completion.

3.9 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, reprogram, and maintain VFCs.

END OF SECTION
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes packaged engine generators used to supply non-emergency power, with the following features:

1. Diesel engine.
2. Diesel fuel-oil system.
3. Control and monitoring.
4. Generator overcurrent and fault protection.
5. Generator, exciter, and voltage regulator.
6. Outdoor engine generator enclosure.
8. Finishes.

B. Related Requirements:

1. Section 263600 "Transfer Switches" for transfer switches including sensors and relays to initiate automatic-starting and-stopping signals for engine generators.

1.3 DEFINITIONS

A. Operational Bandwidth: The total variation from the lowest to highest value of a parameter over the range of conditions indicated, expressed as a percentage of the nominal value of the parameter.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product.

1. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.
2. Include thermal damage curve for generator.
3. Include time-current characteristic curves for generator protective device.
4. Include fuel consumption in gallons per hour at 0.8 power factor at 0.5, 0.75, and 1.0 times generator capacity.
5. Include generator efficiency at 0.8 power factor at 0.5, 0.75, and 1.0 times generator capacity.
6. Include airflow requirements for cooling and combustion air in cubic feet per minute at 0.8 power factor, with air-supply temperature of 95, 80, 70, and 50 deg F. Provide Drawings indicating requirements and limitations for location of air intake and exhausts.
7. Include generator characteristics, including, but not limited to, kilowatt rating, efficiency, reactances, and short-circuit current capability.

B. Shop Drawings:
 1. Include plans and elevations for engine generator and other components specified. Indicate access requirements affected by height of subbase fuel tank.
 2. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 3. Identify fluid drain ports and clearance requirements for proper fluid drain.
 4. Design calculations for selecting vibration isolators and seismic restraints and for designing vibration isolation bases.
 5. Vibration Isolation Base Details: Detail fabrication including anchorages and attachments to structure and to supported equipment. Include base weights.
 6. Include diagrams for power, signal, and control wiring. Complete schematic, wiring, and interconnection diagrams showing terminal markings for engine generators and functional relationship between all electrical components.

1.5 INFORMATIONAL SUBMITTALS
 A. Qualification Data: For Installer, manufacturer, and testing agency.
 B. Source Quality-Control Reports: Including, but not limited to, the following:
 1. Certified summary of prototype-unit test report.
 2. Certified Test Reports: For components and accessories that are equivalent, but not identical, to those tested on prototype unit.
 4. Report of factory test on units to be shipped for this Project, showing evidence of compliance with specified requirements.
 6. Report of exhaust emissions showing compliance with applicable regulations.
 C. Field quality-control reports.

1.6 CLOSEOUT SUBMITTALS
 A. Operation and Maintenance Data: For packaged engine generators to include in emergency, operation, and maintenance manuals.
1. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:

a. List of tools and replacement items recommended to be stored at Project for ready access. Include part and drawing numbers, current unit prices, and source of supply.

b. Operating instructions laminated and mounted adjacent to generator location.

c. Training plan.

1.7 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Fuses: One for every 10 of each type and rating, but no fewer than one of each.

2. Indicator Lamps: Two for every six of each type used, but no fewer than two of each.

3. Filters: One set each of lubricating oil, fuel, and combustion-air filters.

4. Tools: Each tool listed by part number in operations and maintenance manual.

1.8 QUALITY ASSURANCE

A. Installer Qualifications: An authorized representative who is trained and approved by manufacturer.

B. Testing Agency Qualifications: Accredited by NETA.

1. Testing Agency's Field Supervisor: Certified by NETA to supervise on-site testing.

1.9 WARRANTY

A. Manufacturer's Warranty: Manufacturer agrees to repair or replace components of packaged engine generators and associated auxiliary components that fail in materials or workmanship within specified warranty period.

1. Warranty Period: 2 years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Basis of design is Caterpillar or approved equal by:

B. Source Limitations: Obtain packaged engine generators and auxiliary components from single source from single manufacturer.

2.2 PERFORMANCE REQUIREMENTS

A. NFPA Compliance:
 2. Comply with NFPA 70.

B. UL Compliance: Comply with UL 2200.

C. Engine Exhaust Emissions: Comply with EPA Tier 4 requirements and applicable state and local government requirements.

D. Noise Emission: Comply with applicable state and local government requirements for maximum noise level at adjacent property boundaries due to sound emitted by engine generator including engine, engine exhaust, engine cooling-air intake and discharge, and other components of installation.

E. Environmental Conditions: Engine generator system shall withstand the following environmental conditions without mechanical or electrical damage or degradation of performance capability:
 1. Ambient Temperature: 5 to 104 deg F.
 2. Relative Humidity: Zero to 95 percent.
 3. Altitude: Sea level to 1000 feet.

2.3 ASSEMBLY DESCRIPTION

A. Factory-assembled and -tested, water-cooled engine, with brushless generator and accessories.

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and use.

C. Power Rating: Industrial.

D. Overload Capacity: 110 percent of service load for 1 hour in 12 consecutive hours.

E. Power Factor: 0.8, lagging.

F. Frequency: 60 Hz.

G. Voltage: 480/277-V ac.

H. Phase: Three-phase, four wire, wye.

I. Induction Method: Turbocharged and aftercooled.
J. Governor: Adjustable isochronous, with speed sensing.

K. Mounting Frame: Structural steel framework to maintain alignment of mounted components without depending on concrete foundation. Provide lifting attachments sized and spaced to prevent deflection of base during lifting and moving.

1. Rigging Diagram: Inscribed on metal plate permanently attached to mounting frame to indicate location and lifting capacity of each lifting attachment and engine generator center of gravity.

L. Capacities and Characteristics:

1. Power Output Ratings: Nominal ratings as indicated excluding power required for the continued and repeated operation of the unit and auxiliaries.
2. Nameplates: For each major system component to identify manufacturer's name and address, and model and serial number of component.

M. Engine Generator Performance:

1. Steady-State Voltage Operational Bandwidth: 3 percent of rated output voltage from no load to full load.
2. Transient Voltage Performance: Not more than 20 percent variation for 50 percent step-load increase or decrease. Voltage shall recover and remain within the steady-state operating band within three seconds.
3. Steady-State Frequency Operational Bandwidth: 0.5 percent of rated frequency from no load to full load.
4. Steady-State Frequency Stability: When system is operating at any constant load within the rated load, there shall be no random speed variations outside the steady-state operational band and no hunting or surging of speed.
5. Transient Frequency Performance: Less than 5 percent variation for 50 percent step-load increase or decrease. Frequency shall recover and remain within the steady-state operating band within five seconds.
6. Output Waveform: At no load, harmonic content measured line to line or line to neutral shall not exceed 5 percent total and 3 percent for single harmonics. Telephone influence factor, determined according to NEMA MG 1, shall not exceed 50 percent.
7. Sustained Short-Circuit Current: For a three-phase, bolted short circuit at system output terminals, system shall supply a minimum of 250 percent of rated full-load current for not less than 10 seconds and then clear the fault automatically, without damage to generator system components.
8. Start Time: 10 seconds.

2.4 DIESEL ENGINE

A. Fuel: ASTM D975, diesel fuel oil, Grade 2-D S15.

B. Rated Engine Speed: 1800 rpm.

C. Lubrication System: Engine or skid-mounted.
1. Filter and Strainer: Rated to remove 90 percent of particles 5 micrometers and smaller while passing full flow.

2. Thermostatic Control Valve: Control flow in system to maintain optimum oil temperature. Unit shall be capable of full flow and is designed to be fail-safe.

3. Crankcase Drain: Arranged for complete gravity drainage to an easily removable container with no disassembly and without use of pumps, siphons, special tools, or appliances.

E. Cooling System: Closed loop, liquid cooled, with radiator factory mounted on engine generator set mounting frame and integral engine-driven coolant pump.

 1. Coolant: Solution of 50 percent ethylene-glycol-based antifreeze and 50 percent water, with anticorrosion additives as recommended by engine manufacturer.
 2. Size of Radiator: Adequate to contain expansion of total system coolant from cold start to 110 percent load condition.
 3. Expansion Tank: Constructed of welded steel plate and rated to withstand maximum closed-loop coolant system pressure for engine used. Equip with gage glass and petcock.
 4. Temperature Control: Self-contained, thermostatic-control valve modulates coolant flow automatically to maintain optimum constant coolant temperature as recommended by engine manufacturer.

 a. Rating: 50-psi maximum working pressure with coolant at 180 deg F, and noncollapsible under vacuum.
 b. End Fittings: Flanges or steel pipe nipples with clamps to suit piping and equipment connections.

F. Muffler/Silencer: Critical type, sized as recommended by engine manufacturer and selected with exhaust piping system to not exceed engine manufacturer's engine backpressure requirements.

 1. Minimum sound attenuation of 25 dB at 500 Hz.
 2. Sound level measured at a distance of 25 feet from exhaust discharge after installation is complete shall be 78 dBA or less.

G. Air-Intake Filter: Heavy-duty, engine-mounted air cleaner with replaceable dry-filter element and "blocked filter" indicator.

H. Starting System: 24-V electric, with negative ground.

 1. Components: Sized so they are not damaged during a full engine-cranking cycle with ambient temperature at maximum specified in "Performance Requirements" Article.
2. Cranking Motor: Heavy-duty unit that automatically engages and releases from engine flywheel without binding.
4. Battery: Lead acid, with capacity within ambient temperature range specified in "Performance Requirements" Article to provide specified cranking cycle at least three times without recharging.
5. Battery Cable: Size as recommended by engine manufacturer for cable length indicated. Include required interconnecting conductors and connection accessories.
6. Battery Rack: Factory fabricated of metal with acid-resistant finish. Include accessories required to support and fasten batteries in place. Provide ventilation to exhaust battery gas.
8. Battery Charger: Current-limiting, automatic-equalizing, and float-charging type designed for lead-acid batteries. Unit shall comply with UL 1236 and include the following features:
 a. Operation: Equalizing-charging rate of 10 A shall be initiated automatically after battery has lost charge until an adjustable equalizing voltage is achieved at battery terminals. Unit shall then be automatically switched to a lower float-charging mode and shall continue to operate in that mode until battery is discharged again.
 b. Automatic Temperature Compensation: Adjust float and equalize voltages for variations in ambient temperature from minus 40 to 140 deg F to prevent overcharging at high temperatures and undercharging at low temperatures.
 c. Automatic Voltage Regulation: Maintain constant output voltage regardless of input voltage variations up to plus or minus 10 percent.
 e. Safety Functions: Sense abnormally low battery voltage and close contacts providing low battery voltage indication on control and monitoring panel. Sense high battery voltage and loss of ac input or dc output of battery charger. Either condition shall close contacts that provide a battery-charger malfunction indication at system control and monitoring panel.
 f. Enclosure and Mounting: NEMA 250, Type 1, wall-mounted cabinet.

2.5 DIESEL FUEL-OIL SYSTEM

A. Comply with NFPA 30.
B. Piping: Fuel-oil piping shall be Schedule 40 black steel, complying with requirements in Section 231113 "Facility Fuel-Oil Piping." Cast iron, aluminum, copper, and galvanized steel shall not be used in the fuel-oil system.
C. Main Fuel Pump: Mounted on engine to provide primary fuel flow under starting and load conditions.
D. Fuel Filtering: Remove water and contaminants larger than 1 micron.

E. Relief-Bypass Valve: Automatically regulates pressure in fuel line and returns excess fuel to source.

F. Subbase-Mounted, Double-Wall, Fuel-Oil Tank: Factory installed and piped, complying with UL 142 fuel-oil tank. Features include the following:

1. Tank level indicator.
2. Fuel-Tank Capacity: Provide fuel tank sized for 48 hours of operation at 100 percent of rated power output of engine generator system without being refilled.
3. Leak detection in interstitial space.
4. Vandal-resistant fill cap.

2.6 CONTROL AND MONITORING

A. Automatic Starting System Sequence of Operation: When mode-selector switch on the control and monitoring panel is in the automatic position, remote-control contacts in one or more separate automatic transfer switches initiate starting and stopping of engine generator. When mode-selector switch is switched to the on position, engine generator starts. The off position of same switch initiates engine generator shutdown. When engine generator is running, specified system or equipment failures or derangements automatically shut down engine generator and initiate alarms.

B. Manual Starting System Sequence of Operation: Switching on-off switch on the generator control panel to the on position starts engine generator. The off position of same switch initiates engine generator shutdown. When engine generator is running, specified system or equipment failures or derangements automatically shut down engine generator and initiate alarms.

C. Provide minimum run time control set for 15 minutes with override only by operation of a remote emergency-stop switch.

D. Comply with UL 508A.

E. Configuration: Operating and safety indications, protective devices, basic system controls, and engine gages shall be grouped in a common control and monitoring panel mounted on the engine generator. Mounting method shall isolate the control panel from engine generator vibration. Panel shall be powered from the engine generator battery.

F. Control and Monitoring Panel:

1. Digital engine generator controller with integrated LCD display, controls, and microprocessor, capable of local and remote control, monitoring, and programming, with battery backup.
2. Analog control panel with dedicated gages and indicator lights for the instruments and alarms indicated below.
3. Instruments: Located on the control and monitoring panel and viewable during operation.

 a. Engine lubricating-oil pressure gage.
 b. Engine-coolant temperature gage.
 c. DC voltmeter (alternator battery charging).
 d. Running-time meter.
 e. AC voltmeter, for each phase.
 f. AC ammeter, for each phase.
 g. AC frequency meter.
 h. Generator-voltage adjusting rheostat.

4. Controls and Protective Devices: Controls, shutdown devices, and common alarm indication, including the following:

 a. Cranking control equipment.
 c. Control switch not in automatic position alarm.
 d. Overcrank alarm.
 e. Overcrank shutdown device.
 f. Low-water temperature alarm.
 g. High engine temperature pre-alarm.
 h. High engine temperature.
 i. High engine temperature shutdown device.
 j. Overspeed alarm.
 k. Overspeed shutdown device.
 l. Low fuel main tank.

 1) Low-fuel-level alarm shall be initiated when the level falls below that required for operation for duration required in "Fuel Tank Capacity" Subparagraph in "Diesel Fuel-Oil System" Article.

 m. Coolant low-level alarm.
 n. Coolant low-level shutdown device.
 o. Coolant high-temperature prealarm.
 p. Coolant high-temperature alarm.
 q. Coolant low-temperature alarm.
 r. Coolant high-temperature shutdown device.
 s. Battery high-voltage alarm.
 t. Low cranking voltage alarm.
 u. Battery-charger malfunction alarm.
 v. Battery low-voltage alarm.
 w. Lamp test.
 x. Contacts for local and remote common alarm.
 y. Remote manual stop shutdown device.
 z. Generator overcurrent-protective-device not-closed alarm.
 aa. Hours of operation.
 bb. Engine generator metering, including voltage, current, hertz, kilowatt, kilovolt ampere, and power factor.
G. Remote Alarm Annunciator: An LED indicator light labeled with proper alarm conditions shall identify each alarm event, and a common audible signal shall sound for each alarm condition. Silencing switch in face of panel shall silence signal without altering visual indication. Connect so that after an alarm is silenced, clearing of initiating condition will reactivate alarm until silencing switch is reset. Cabinet and faceplate are surface- or flush-mounting type to suit mounting conditions indicated.

1. Overcrank alarm.
2. Low water-temperature alarm.
3. High engine temperature pre-alarm.
4. High engine temperature alarm.
5. Low lube oil pressure alarm.
6. Overspeed alarm.
7. Low fuel main tank alarm.
8. Low coolant level alarm.
9. Low cranking voltage alarm.
10. Contacts for local and remote common alarm.
12. Air shutdown damper when used.
14. Control switch not in automatic position alarm.
15. Fuel tank high-level shutdown of fuel supply alarm.
16. Lamp test.

H. Supporting Items: Include sensors, transducers, terminals, relays, and other devices and include wiring required to support specified items. Locate sensors and other supporting items on engine or generator unless otherwise indicated.

I. Remote Emergency-Stop Switch: Flush; wall mounted unless otherwise indicated; and labeled. Push button shall be protected from accidental operation.

J. Remote and control system: Provide generator wireless remote and control system equal to the Trueguard-Pro manufactured by Omnimetrix with all necessary accessories for complete and functional system.

2.7 GENERATOR OVERCURRENT AND FAULT PROTECTION

A. Overcurrent protective devices shall be coordinated to optimize selective tripping when a short circuit occurs.

B. Provide a generator mounted UL listed 100% rated circuit breaker, insulated case, electrically operated, sized as indicated on drawings. The breaker shall utilize a solid state trip unit with LSI functions and shall be tied in to the control panel safety shutdowns. The circuit breaker shall be housed in an extension terminal box which is isolated from engine vibration.

C. Overcurrent protective device shall be coordinated to optimize selective tripping when a short circuit occurs.
2.8 GENERATOR, EXCITER, AND VOLTAGE REGULATOR

A. Comply with NEMA MG 1.

B. Drive: Generator shaft shall be directly connected to engine shaft. Exciter shall be rotated integrally with generator rotor.

C. Electrical Insulation: Class H.

D. Stator-Winding Leads: Brought out to terminal box to permit future reconnection for other voltages if required. Provide six-lead alternator.

E. Range: Provide broad range of output voltage by adjusting the excitation level.

F. Construction shall prevent mechanical, electrical, and thermal damage due to vibration, overspeed up to 125 percent of rating, and heat during operation at 110 percent of rated capacity.

G. Enclosure: Dripproof.

H. Instrument Transformers: Mounted within generator enclosure.

I. Voltage Regulator: Solid-state type, separate from exciter, providing performance as specified.
 1. Adjusting Rheostat on Control and Monitoring Panel: Provide plus or minus 5 percent adjustment of output-voltage operating band.
 2. Maintain voltage within 20 percent on one step, full load.
 3. Provide anti-hunt provision to stabilize voltage.
 4. Maintain frequency within 10 percent and stabilize at rated frequency within 2 seconds.

J. Strip Heater: Thermostatically controlled unit arranged to maintain stator windings above dew point.

K. Windings: Two-thirds pitch stator winding and fully linked amortisseur winding.

L. Subtransient Reactance: 15 percent, maximum.

2.9 OUTDOOR ENGINE GENERATOR ENCLOSURE

A. Description: Vandal-resistant, sound-attenuating, weatherproof steel housing; wind resistant up to 100 mph. Multiple panels shall be lockable and provide adequate access to components requiring maintenance. Panels shall be removable by one person without tools. Instruments and control shall be mounted within enclosure.

 1. Sound Attenuation Level: 75 dBA at 23’ from the enclosure.
B. Description: Prefabricated or pre-engineered, galvanized-steel-clad, integral structural-steel-framed, walk-in enclosure; erected on concrete foundation.

C. Structural Design and Anchorage: Comply with ASCE/SEI 7 for wind loads up to 150 mph.

D. Hinged Doors: With padlocking provisions.

E. Thermal Insulation: Manufacturer's standard materials and thickness selected in coordination with space heater to maintain winter interior temperature within operating limits required by engine generator components.

F. Muffler Location: Within enclosure.

G. Engine-Cooling Airflow through Enclosure: Maintain temperature rise of system components within required limits when unit operates at 110 percent of rated load for two hours with ambient temperature at top of range specified in system service conditions.

1. Automatic Dampers: At engine cooling-air inlet and discharge. Dampers shall be closed to reduce enclosure heat loss in cold weather when unit is not operating.
2. Ventilation: Provide temperature-controlled exhaust fan interlocked to prevent operation when engine is running.

H. Enclosure Load Center: Factory installed 125 Amp, 120/208V load center in the sound attenuated enclosure. Factory shall wire jacket water heater, battery charger, generator heater and lighting to load center prior to shipment.

I. Enclosure lighting: Factory installed and wired AC lighting in the enclosure to facilitate operation and maintenance.

J. Convenience Outlets: Factory-wired, GFCI. Arrange for external electrical connection.

2.10 VIBRATION ISOLATION DEVICES

A. Provide integral vibration isolators installed between the generator set and the support base. Isolators shall be selected and installed by the manufacturer.

B. Vibration isolation devices shall not be used to accommodate misalignments or to make bends.

2.11 FINISHES

A. Indoor and Outdoor Enclosures and Components: Manufacturer's standard finish over corrosion-resistant pretreatment and compatible primer.

2.12 SOURCE QUALITY CONTROL

A. Prototype Testing: Factory test engine generator using same engine model, constructed of identical or equivalent components and equipped with identical or equivalent accessories.

B. Project-Specific Equipment Tests: Before shipment, factory test engine generator and other system components and accessories manufactured specifically for this Project. Perform tests at rated load and power factor. Include the following tests:

1. Test components and accessories furnished with installed unit that are not identical to those on tested prototype to demonstrate compatibility and reliability.
2. Test generator, exciter, and voltage regulator as a unit.
3. Full load run.
4. Maximum power.
5. Voltage regulation.
6. Transient and steady-state governing.
8. Safety shutdown.
9. Provide 14 days' advance notice of tests and opportunity for observation of tests by Owner's representative.
10. Report factory test results within 10 days of completion of test.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas, equipment bases, and conditions, with Installer present, for compliance with requirements for installation and other conditions affecting packaged engine generator performance.

B. Examine roughing-in for piping systems and electrical connections. Verify actual locations of connections before packaged engine generator installation.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Interruption of Existing Electrical Service: Do not interrupt electrical service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary electrical service according to requirements indicated:

1. Notify Owner no fewer than five working days in advance of proposed interruption of electrical service.
2. Do not proceed with interruption of electrical service without Owner's written permission.

3.3 INSTALLATION

A. Comply with NECA 1 and NECA 404.
B. Comply with packaged engine generator manufacturers' written installation and alignment instructions.

C. Equipment Mounting:
 1. Install packaged engine generators on cast-in-place concrete equipment bases. Comply with requirements for equipment bases and foundations specified in Section 033000 "Cast-in-Place Concrete."
 2. Coordinate size and location of concrete bases for packaged engine generators. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified with concrete.

D. Install packaged engine generator to provide access, without removing connections or accessories, for periodic maintenance.

E. Install electrical devices furnished by equipment manufacturers but not specified to be factory mounted.

3.4 CONNECTIONS

A. Piping installation requirements are specified in other Sections. Drawings indicate general arrangement of piping and specialties.

B. Connect fuel, cooling-system, and exhaust-system piping adjacent to packaged engine generator to allow space for service and maintenance.

C. Connect engine exhaust pipe to engine with flexible connector.

D. Connect fuel piping to engines with a gate valve and union and flexible connector.

E. Ground equipment according to Section 260526 "Grounding and Bonding for Electrical Systems."

F. Connect wiring according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables." Provide a minimum of one 90-degree bend in flexible conduit routed to the engine generator from a stationary element.

G. Balance single-phase loads to obtain a maximum of 10 percent unbalance between any two phases.

3.5 IDENTIFICATION

A. Identify system components according to Section 230553 "Identification for HVAC Piping and Equipment" and Section 260553 "Identification for Electrical Systems."

B. Install a sign indicating the generator neutral is bonded to the main service neutral at the main service location.
3.6 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

B. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.

C. Perform tests and inspections with the assistance of a factory-authorized service representative.

D. Tests and Inspections:

1. Perform tests recommended by manufacturer and each visual and mechanical inspection and electrical and mechanical test listed in first two subparagraphs below, as specified in NETA ATS. Certify compliance with test parameters.

 a. Visual and Mechanical Inspection:

 1) Compare equipment nameplate data with Drawings and the Specifications.
 2) Inspect physical and mechanical condition.
 3) Inspect anchorage, alignment, and grounding.
 4) Verify that the unit is clean.

 b. Electrical and Mechanical Tests:

 1) Perform insulation-resistance tests according to IEEE 43.

 a) Machines Larger Than 200 hp Test duration shall be 10 minutes. Calculate polarization index.
 b) Machines 200 hp or Less: Test duration shall be one minute. Calculate the dielectric-absorption ratio.

 2) Test protective relay devices.
 3) Verify phase rotation, phasing, and synchronized operation as required by the application.
 4) Functionally test engine shutdown for low oil pressure, overtemperature, overspeed, and other protection features as applicable.
 5) Perform vibration test for each main bearing cap.
 6) Verify correct functioning of the governor and regulator.

2. Battery Tests: Equalize charging of battery cells according to manufacturer's written instructions. Record individual cell voltages.

 a. Measure charging voltage and voltages between available battery terminals for full-charging and float-charging conditions. Check electrolyte level and specific gravity under both conditions.
b. Test for contact integrity of all connectors. Perform an integrity load test and a capacity load test for the battery.
c. Verify acceptance of charge for each element of the battery after discharge.
d. Verify that measurements are within manufacturer's specifications.

3. Battery-Charger Tests: Verify specified rates of charge for both equalizing and float-charging conditions.

4. System Integrity Tests: Methodically verify proper installation, connection, and integrity of each element of engine generator system before and during system operation. Check for air, exhaust, and fluid leaks.

5. Noise Level Tests: Measure A-weighted level of noise emanating from engine generator installation, including engine exhaust and cooling-air intake and discharge, at four locations 25 feet from edge of the generator enclosure, and compare measured levels with required values.

E. Coordinate tests with tests for transfer switches and run them concurrently.

F. Test instruments shall have been calibrated within the past 12 months, traceable to NIST Calibration Services, and adequate for making positive observation of test results. Make calibration records available for examination on request.

G. Leak Test: After installation, charge exhaust, coolant, and fuel systems and test for leaks. Repair leaks and retest until no leaks exist.

H. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation for generator and associated equipment.

I. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

J. Remove and replace malfunctioning units and retest as specified above.

K. Retest: Correct deficiencies identified by tests and observations, and retest until specified requirements are met.

L. Report results of tests and inspections in writing. Record adjustable relay settings and measured insulation resistances, time delays, and other values and observations. Attach a label or tag to each tested component indicating satisfactory completion of tests.

M. Infrared Scanning: After Substantial Completion, but not more than 60 days after final acceptance, perform an infrared scan of each power wiring termination and each bus connection while running with maximum load. Remove all access panels so terminations and connections are accessible to portable scanner.

1. Follow-up Infrared Scanning: Perform an additional follow-up infrared scan 11 months after date of Substantial Completion.
2. Instrument: Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.

3. Record of Infrared Scanning: Prepare a certified report that identifies terminations and connections checked and that describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

3.7 MAINTENANCE SERVICE

A. Initial Maintenance Service: Beginning at Substantial Completion, maintenance service shall include 24 months' full maintenance by skilled employees of manufacturer's authorized service representative. Include quarterly preventive maintenance and exercising to check for proper starting, load transfer, and running under load. Include routine preventive maintenance as recommended by manufacturer and adjusting as required for proper operation. Parts shall be manufacturer's authorized replacement parts and supplies.

3.8 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain packaged engine generators.

END OF SECTION
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes automatic transfer switches rated 600 V and less.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for transfer switches.

2. Include rated capacities, operating characteristics, electrical characteristics, and accessories.

B. Shop Drawings:

1. Include plans, elevations, sections, details showing minimum clearances, conductor entry provisions, gutter space, and installed features and devices.

2. Include material lists for each switch specified.

3. Single-Line Diagram: Show connections between transfer switch, power sources, and load; and show interlocking provisions for each combined transfer switch and bypass/isolation switch.

1.4 INFORMATIONAL SUBMITTALS

A. Qualification Data: For testing agency.

B. Field quality-control reports.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For each type of product to include in emergency, operation, and maintenance manuals.

1. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:
a. Features and operating sequences, both automatic and manual.
b. List of all factory settings of relays; provide relay-setting and calibration instructions, including software, where applicable.

1.6 QUALITY ASSURANCE

A. Testing Agency Qualifications:

1. Member company of NETA.
 a. Testing Agency's Field Supervisor: Certified by NETA to supervise on-site testing.

1.7 FIELD CONDITIONS

A. Interruption of Existing Electrical Service: Do not interrupt electrical service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary electrical service:

 1. Notify Owner no fewer than five days in advance of proposed interruption of electrical service.
 2. Do not proceed with interruption of electrical service without Owner's written permission.

1.8 WARRANTY

A. Manufacturer's Warranty: Manufacturer agrees to repair or replace components of transfer switch or transfer switch components that fail in materials or workmanship within specified warranty period.

 1. Warranty Period: 12 months from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. Comply with NEMA ICS 1.

C. Comply with NFPA 110.

D. Comply with UL 1008 unless requirements of these Specifications are stricter.
E. Tested Fault-Current Closing and Short-Circuit Ratings: Adequate for duty imposed by protective devices at installation locations in Project under the fault conditions indicated, based on testing according to UL 1008.
 1. Short-time withstand capability for three cycles.

F. Repetitive Accuracy of Solid-State Controls: All settings shall be plus or minus 2 percent or better over an operating temperature range of minus 20 to plus 70 deg C.

G. Resistance to Damage by Voltage Transients: Components shall meet or exceed voltage-surge withstand capability requirements when tested according to IEEE C62.62. Components shall meet or exceed voltage-impulse withstand test of NEMA ICS 1.

H. Electrical Operation: Accomplish by a nonfused, momentarily energized solenoid or electric-motor-operated mechanism. Switches for emergency or standby purposes shall be mechanically and electrically interlocked in both directions to prevent simultaneous connection to both power sources unless closed transition.

I. Neutral Switching: Where four-pole switches are indicated, provide neutral pole switched simultaneously with phase poles.

J. Factory Wiring: Train and bundle factory wiring and label, consistent with Shop Drawings, by color-code or by numbered or lettered wire and cable with printed markers at terminations. Color-coding and wire and cable markers are specified in Section 260553 "Identification for Electrical Systems."
 1. Designated Terminals: Pressure type, suitable for types and sizes of field wiring indicated.
 2. Power-Terminal Arrangement and Field-Wiring Space: Suitable for top, side, or bottom entrance of feeder conductors as indicated.
 3. Control Wiring: Equipped with lugs suitable for connection to terminal strips.
 4. Accessible via front access.

K. Enclosures: General-purpose NEMA 250, Type 1, complying with NEMA ICS 6 and UL 508, unless otherwise indicated.

2.2 CONTACTOR-TYPE AUTOMATIC TRANSFER SWITCHES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. ASCO
 2. Eaton.
 3. Emerson.
 4. Russelectric, Inc.

B. Comply with Level 1 equipment according to NFPA 110.
C. Switch Characteristics: Designed for continuous-duty repetitive transfer of full-rated current between active power sources.

1. Limitation: Switches using molded-case switches or circuit breakers or insulated-case circuit-breaker components are unacceptable.
2. Switch Action: Double throw; mechanically held in both directions.
3. Contacts: Silver composition or silver alloy for load-current switching. Contactor-style automatic transfer-switch units, rated 600 A and higher, shall have separate arcing contacts.
4. Conductor Connectors: Suitable for use with conductor material and sizes.
6. Main and Neutral Lugs: Mechanical type.
7. Ground Lugs and Bus-Configured Terminators: Mechanical type.
8. Ground bar.
9. Connectors shall be marked for conductor size and type according to UL 1008.

D. Automatic Delayed-Transition Transfer Switches: Pauses or stops in intermediate position to momentarily disconnect both sources, with transition controlled by programming in the automatic transfer-switch controller. Interlocked to prevent the load from being closed on both sources at the same time.

1. Adjustable Time Delay: For override of normal-source voltage sensing to delay transfer and engine start signals for alternative source. Adjustable from zero to six seconds, and factory set for one second.
2. Sources shall be mechanically and electrically interlocked to prevent closing both sources on the load at the same time.
3. Fully automatic break-before-make operation with center off position.

E. Manual Switch Operation: Under load, with door closed and with either or both sources energized. Transfer time is same as for electrical operation. Control circuit automatically disconnects from electrical operator during manual operation.

F. Electric Nonautomatic Switch Operation: Electrically actuated by push buttons designated "Normal Source" and "Alternative Source." Switch shall be capable of transferring load in either direction with either or both sources energized.

G. Signal-Before-Transfer Contacts: A set of normally open/normally closed dry contacts operates in advance of retransfer to normal source. Interval shall be adjustable from 1 to 30 seconds.

H. Automatic Transfer-Switch Controller Features:

1. Controller operates through a period of loss of control power.
2. Undervoltage Sensing for Each Phase of Normal and Alternate Source: Sense low phase-to-ground voltage on each phase. Pickup voltage shall be adjustable from 85 to 100 percent of nominal, and dropout voltage shall be adjustable from 75 to 98 percent of pickup value. Factory set for pickup at 90 percent and dropout at 85 percent.
3. **Voltage/Frequency Lockout Relay:** Prevent premature transfer to generator. Pickup voltage shall be adjustable from 85 to 100 percent of nominal. Factory set for pickup at 90 percent. Pickup frequency shall be adjustable from 90 to 100 percent of nominal. Factory set for pickup at 95 percent.

4. **Time Delay for Retransfer to Normal Source:** Adjustable from zero to 30 minutes, and factory set for 10 minutes. Override shall automatically defeat delay on loss of voltage or sustained undervoltage of emergency source, provided normal supply has been restored.

5. **Test Switch:** Simulate normal-source failure.

6. **Switch-Position Pilot Lights:** Indicate source to which load is connected.

7. **Source-Available Indicating Lights:** Supervise sources via transfer-switch normal- and emergency-source sensing circuits.

 a. **Normal Power Supervision:** Green light with nameplate engraved "Normal Source Available."

 b. **Emergency Power Supervision:** Red light with nameplate engraved "Emergency Source Available."

8. **Unassigned Auxiliary Contacts:** Two normally open, single-pole, double-throw contacts for each switch position, rated 10 A at 240-V ac.

9. **Transfer Override Switch:** Overrides automatic retransfer control so transfer switch will remain connected to emergency power source regardless of condition of normal source. Pilot light indicates override status.

10. **Engine Starting Contacts:** One isolated and normally closed, and one isolated and normally open; rated 10 A at 32-V dc minimum.

11. **Engine Shutdown Contacts:** Time delay adjustable from zero to five minutes, and factory set for five minutes. Contacts shall initiate shutdown at remote engine-generator controls after retransfer of load to normal source.

12. **Engine-Generator Exerciser:** Solid-state, programmable-time switch starts engine generator and transfers load to it from normal source for a preset time, then retransfers and shuts down engine after a preset cool-down period. Initiates exercise cycle at preset intervals adjustable from 7 to 30 days. Running periods shall be adjustable from 10 to 30 minutes. Factory settings shall be for 7-day exercise cycle, 20-minute running period, and 5-minute cool-down period. Exerciser features include the following:

 a. **Exerciser Transfer Selector Switch:** Permits selection of exercise with and without load transfer.

 b. **Push-button programming control with digital display of settings.**

 c. **Integral battery operation of time switch when normal control power is unavailable.**

I. **Large-Motor-Load Power Transfer:**

1. **In-Phase Monitor:** Factory-wired, internal relay controls transfer so contacts close only when the two sources are synchronized in phase and frequency. Relay shall compare phase relationship and frequency difference between normal and emergency sources and initiate transfer when both sources are within 15 electrical degrees, and only if transfer can be completed within 60
2. Transfer shall be initiated only if both sources are within 2 Hz of nominal frequency and 70 percent or more of nominal voltage.

2. Programmed Neutral Switch Position: Switch operator with programmed neutral position arranged to provide a midpoint between the two working switch positions, with an intentional, time-controlled pause at midpoint during transfer. Adjustable pause from 0.5 to 30 seconds minimum, and factory set for 0.5 second unless otherwise indicated. Time delay occurs for both transfer directions. Disable pause unless both sources are live.

2.3 TRANSFER SWITCH ACESSORIES

2.4 SOURCE QUALITY CONTROL

A. Factory Tests: Test and inspect components, assembled switches, and associated equipment according to UL 1008. Ensure proper operation. Check transfer time and voltage, frequency, and time-delay settings for compliance with specified requirements. Perform dielectric strength test complying with NEMA ICS 1.

B. Prepare test and inspection reports.

1. For each of the tests required by UL 1008, performed on representative devices, for standby systems. Include results of test for the following conditions:
 a. Overvoltage.
 b. Undervoltage.
 c. Loss of supply voltage.
 d. Reduction of supply voltage.
 e. Alternative supply voltage or frequency is at minimum acceptable values.
 f. Temperature rise.
 g. Dielectric voltage-withstand; before and after short-circuit test.
 h. Overload.
 i. Contact opening.
 j. Endurance.
 k. Short circuit.
 l. Short-time current capability.
 m. Receptacle withstand capability.
 n. Insulating base and supports damage.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Floor-Mounting Switch: Anchor to floor by bolting.

1. Install transfer switches on cast-in-place concrete equipment base(s). Comply with requirements for equipment bases and foundations specified in Section 033000 "Cast-in-Place Concrete."
2. Coordinate size and location of concrete bases. Cast anchor-bolt inserts into bases.
3. Provide workspace and clearances required by NFPA 70.

B. Identify components according to Section 260553 "Identification for Electrical Systems."

C. Set field-adjustable intervals and delays, relays, and engine exerciser clock.

D. Comply with NECA 1.

3.2 CONNECTIONS

A. Wiring Method: Install cables in raceways and cable trays except within electrical enclosures. Conceal raceway and cables except in unfinished spaces.

1. Comply with requirements for raceways and boxes specified in Section 260533 "Raceways and Boxes for Electrical Systems."

B. Wiring within Enclosures: Bundle, lace, and train conductors to terminal points with no excess and without exceeding manufacturer's limitations on bending radii.

C. Ground equipment according to Section 260526 "Grounding and Bonding for Electrical Systems."

D. Connect wiring according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

E. Route and brace conductors according to manufacturer's written instructions and Section 260529 "Hangers and Supports for Electrical Systems." Do not obscure manufacturer's markings and labels.

F. Final connections to equipment shall be made with liquidtight, flexible metallic conduit no more than 18 inches in length.

3.3 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

B. Perform the following tests and inspections with the assistance of a factory-authorized service representative:

1. After installing equipment, test for compliance with requirements according to NETA ATS.
2. Visual and Mechanical Inspection:

 a. Compare equipment nameplate data with Drawings and Specifications.
 b. Inspect physical and mechanical condition.
 c. Inspect anchorage, alignment, grounding, and required clearances.
d. Verify that the unit is clean.

e. Verify appropriate lubrication on moving current-carrying parts and on moving and sliding surfaces.

f. Verify that manual transfer warnings are attached and visible.

g. Verify tightness of all control connections.

h. Inspect bolted electrical connections for high resistance using one of the following methods, or both:

1) Use of low-resistance ohmmeter.
2) Verify tightness of accessible bolted electrical connections by calibrated torque-wrench method according to manufacturer's published data.

i. Perform manual transfer operation.

j. Verify positive mechanical interlocking between normal and alternate sources.

k. Perform visual and mechanical inspection of surge arresters.

l. Inspect control power transformers.

1) Inspect for physical damage, cracked insulation, broken leads, tightness of connections, defective wiring, and overall general condition.
2) Verify that primary and secondary fuse or circuit-breaker ratings match Drawings.
3) Verify correct functioning of drawout disconnecting contacts, grounding contacts, and interlocks.

3. Electrical Tests:

a. Perform insulation-resistance tests on all control wiring with respect to ground.

b. Perform a contact/pole-resistance test. Compare measured values with manufacturer's acceptable values.

c. Verify settings and operation of control devices.

d. Calibrate and set all relays and timers.

e. Verify phase rotation, phasing, and synchronized operation.

f. Perform automatic transfer tests.

g. Verify correct operation and timing of the following functions:

1) Normal source voltage-sensing and frequency-sensing relays.
2) Engine start sequence.
3) Time delay on transfer.
4) Alternative source voltage-sensing and frequency-sensing relays.
5) Automatic transfer operation.
6) Interlocks and limit switch function.
7) Time delay and retransfer on normal power restoration.
8) Engine cool-down and shutdown feature.
 a. Check for electrical continuity of circuits and for short circuits.
 b. Inspect for physical damage, proper installation and connection, and integrity of barriers, covers, and safety features.
 c. Verify that manual transfer warnings are properly placed.
 d. Perform manual transfer operation.

5. After energizing circuits, perform each electrical test for transfer switches stated in NETA ATS and demonstrate interlocking sequence and operational function for each switch at least three times.
 a. Simulate power failures of normal source to automatic transfer switches and retransfer from emergency source with normal source available.
 b. Simulate loss of phase-to-ground voltage for each phase of normal source.
 c. Verify time-delay settings.
 d. Verify pickup and dropout voltages by data readout or inspection of control settings.
 e. Perform contact-resistance test across main contacts and correct values exceeding 500 microhms and values for one pole deviating by more than 50 percent from other poles.
 f. Verify proper sequence and correct timing of automatic engine starting, transfer time delay, retransfer time delay on restoration of normal power, and engine cool-down and shutdown.

C. Coordinate tests with tests of generator and run them concurrently.

D. Report results of tests and inspections in writing. Record adjustable relay settings and measured insulation and contact resistances and time delays. Attach a label or tag to each tested component indicating satisfactory completion of tests.

E. Transfer switches will be considered defective if they do not pass tests and inspections.

F. Remove and replace malfunctioning units and retest as specified above.

G. Prepare test and inspection reports.

H. Infrared Scanning: After Substantial Completion, but not more than 60 days after Final Acceptance, perform an infrared scan of each switch. Remove all access panels so joints and connections are accessible to portable scanner.

1. Instrument: Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.
2. Record of Infrared Scanning: Prepare a certified report that identifies switches checked and that describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

3. Follow-up Infrared Scanning: Perform an additional follow-up infrared scan of each switch 11 months after date of Substantial Completion.

3.4 DEMONSTRATION

A. Train Owner's maintenance personnel to adjust, operate, and maintain transfer switches and related equipment.

B. Training shall include testing ground-fault protective devices and instructions to determine when the ground-fault system shall be retested. Include instructions on where ground-fault sensors are located and how to avoid negating the ground-fault protection scheme during testing and circuit modifications.

C. Coordinate this training with that for generator equipment.

END OF SECTION
SECTION 265119
LED INTERIOR LIGHTING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section includes the following types of LED luminaires:
 1. Interior LED lights
B. Related Requirements:
 1. Section 260923 "Lighting Control Devices" for automatic control of lighting, including time switches, photoelectric relays, occupancy sensors, and multipole lighting relays and contactors.

1.3 DEFINITIONS
A. CCT: Correlated color temperature.
B. CRI: Color Rendering Index.
C. Fixture: See "Luminaire."
D. IP: International Protection or Ingress Protection Rating.
E. LED: Light-emitting diode.
F. Lumen: Measured output of lamp and luminaire, or both.
G. Luminaire: Complete lighting unit, including lamp, reflector, and housing.

1.4 ACTION SUBMITTALS
A. Product Data: For each type of product.
 1. Arrange in order of luminaire designation.
 2. Include data on features, accessories, and finishes.
 3. Include physical description and dimensions of luminaires.
 4. Include emergency lighting units, including batteries and chargers.
5. Include life, output (lumens, CCT, and CRI), and energy-efficiency data.

6. Photometric data and adjustment factors based on laboratory tests, complying with IES "Lighting Measurements Testing and Calculation Guides" for each luminaire type. The adjustment factors shall be for lamps and accessories identical to those indicated for the luminaire as applied in this Project.

 a. Manufacturers' Certified Data: Photometric data certified by manufacturer's laboratory with a current accreditation under the National Voluntary Laboratory Accreditation Program for Energy Efficient Lighting Products.

1.5 INFORMATIONAL SUBMITTALS

A. Qualification Data: For testing laboratory providing photometric data for luminaires.

B. Product Certificates: For each type of luminaire.

C. Product Test Reports: For each type of luminaire, for tests performed by a qualified testing agency.

D. Sample warranty.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For luminaires and lighting systems to include in operation and maintenance manuals.

 1. Provide a list of all lamp types used on Project; use ANSI and manufacturers' codes.

1.7 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

 1. Lamps: Ten for every 100 of each type and rating installed. Furnish at least one of each type.

 2. Diffusers and Lenses: One for every 100 of each type and rating installed. Furnish at least one of each type.

 3. Globes and Guards: One for every 20 of each type and rating installed. Furnish at least one of each type.

1.8 QUALITY ASSURANCE

A. Luminaire Photometric Data Testing Laboratory Qualifications: Provided by an independent agency, with the experience and capability to conduct the testing indicated, that is an NRTL as defined by OSHA in 29 CFR 1910.7, accredited under the NVLAP for Energy Efficient Lighting Products, and complying with the applicable IES testing standards.
B. Provide luminaires from a single manufacturer for each luminaire type.

C. Each luminaire type shall be binned within a three-step MacAdam Ellipse to ensure color consistency among luminaires.

1.9 DELIVERY, STORAGE, AND HANDLING

A. Protect finishes of exposed surfaces by applying a strippable, temporary protective covering before shipping.

1.10 WARRANTY

A. Warranty: Manufacturer and Installer agree to repair or replace components of luminaires that fail in materials or workmanship within specified warranty period.

B. Warranty Period: Five year(s) from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Ambient Temperature: 41 to 104 deg F.
 1. Relative Humidity: Zero to 95 percent.

B. Altitude: Sea level to 1000 feet.

2.2 LUMINAIRE REQUIREMENTS

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. Factory-Applied Labels: Comply with UL 1598. Include recommended lamps. Locate labels where they will be readily visible to service personnel, but not seen from normal viewing angles when lamps are in place.
 1. Label shall include the following lamp characteristics:
 a. "USE ONLY" and include specific lamp type.
 b. Lamp diameter, shape, size, wattage, and coating.
 c. CCT and CRI.

C. Recessed luminaires shall comply with NEMA LE 4.

D. Manufacturers: Subject to compliance with requirements, provide products by manufacturers listed in the lighting fixture schedule.
E. Provide fixture voltages, minimum lumens, maximum wattages, CRI, and CCT as specified on the lighting fixture schedule.

F. Rated Lamp Life: 50,000 hours to L70.

G. Dimmable from 100 percent to 0 percent of maximum light output.

H. Internal driver.

I. Lens thickness: At least 0.125-inch minimum unless otherwise indicated.

J. Housings:
 1. Extruded-aluminum housing and heat sink.
 2. Powder-coat finish.

K. Doors, Frames, and Other Internal Access: Smooth operating, free of light leakage under operating conditions, and designed to permit relamping without use of tools. Components are designed to prevent doors, frames, lenses, diffusers, and other components from falling accidentally during relamping and when secured in operating position.

L. Diffusers and Globes:
 1. Acrylic Diffusers: One hundred percent virgin acrylic plastic, with high resistance to yellowing and other changes due to aging, exposure to heat, and UV radiation.
 2. Glass: Annealed crystal glass unless otherwise indicated.
 3. Lens Thickness: At least 0.125-inch minimum unless otherwise indicated.

M. With integral mounting provisions.

N. Standards:
 1. ENERGY STAR certified.
 2. RoHS compliant.
 3. UL Listing: Listed for damp location.

2.3 MATERIALS

A. Metal Parts:
 1. Free of burrs and sharp corners and edges.
 2. Sheet metal components shall be steel unless otherwise indicated.
 3. Form and support to prevent warping and sagging.

B. Steel:
 1. ASTM A36/A36M for carbon structural steel.
2. ASTM A568/A568M for sheet steel.

C. Stainless Steel:
 1. Manufacturer's standard grade.
 2. Manufacturer's standard type, ASTM A240/240M.

D. Galvanized Steel: ASTM A653/A653M.

E. Aluminum: ASTM B209.

2.4 METAL FINISHES

A. Variations in finishes are unacceptable in the same piece. Variations in finishes of adjoining components are acceptable if they are within the range of approved Samples and if they can be and are assembled or installed to minimize contrast.

2.5 LUMINAIRE SUPPORT

A. Comply with requirements in Section 260529 "Hangers and Supports for Electrical Systems" for channel and angle iron supports and nonmetallic channel and angle supports.

B. Single-Stem Hangers: 1/2-inch steel tubing with swivel ball fittings and ceiling canopy. Finish same as luminaire.

D. Rod Hangers: 3/16-inch minimum diameter, cadmium-plated, threaded steel rod.

E. Hook Hangers: Integrated assembly matched to luminaire, line voltage, and equipment with threaded attachment, cord, and locking-type plug.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.

B. Examine roughing-in for luminaire to verify actual locations of luminaire and electrical connections before luminaire installation.

C. Proceed with installation only after unsatisfactory conditions have been corrected.
3.2 INSTALLATION

A. Comply with NECA 1.

B. Install luminaires level, plumb, and square with ceilings and walls unless otherwise indicated.

C. Install lamps in each luminaire.

D. Supports:
 1. Sized and rated for luminaire weight.
 2. Able to maintain luminaire position after cleaning and relamping.
 3. Provide support for luminaire without causing deflection of ceiling or wall.
 4. Luminaire-mounting devices shall be capable of supporting a horizontal force of 100 percent of luminaire weight and a vertical force of 400 percent of luminaire weight.

E. Flush-Mounted Luminaires:
 1. Secured to outlet box.
 2. Attached to ceiling structural members at four points equally spaced around circumference of luminaire.
 3. Trim ring flush with finished surface.

F. Wall-Mounted Luminaires:
 1. Attached to structural members in walls.
 2. Do not attach luminaires directly to gypsum board.

G. Suspended Luminaires:
 1. Ceiling Mount:
 a. Pendant mount with 5/32-inch-diameter aircraft cable supports.
 4. Continuous Rows of Luminaires: Use tubing or stem for wiring at one point and tubing or rod for suspension for each unit length of luminaire chassis, including one at each end.
 5. Do not use ceiling grid as support for pendant luminaires. Connect support wires or rods to building structure.

H. Ceiling-Grid-Mounted Luminaires:
1. Secure to any required outlet box.
2. Secure luminaire to the luminaire opening using approved fasteners in a minimum of four locations, spaced near corners of luminaire.
3. Use approved devices and support components to connect luminaire to ceiling grid and building structure in a minimum of four locations, spaced near corners of luminaire.

I. Comply with requirements in Section 260519 "Low-Voltage Electrical Power Conductors and Cables" for wiring connections.

3.3 IDENTIFICATION

A. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems."

3.4 FIELD QUALITY CONTROL

A. Perform the following tests and inspections:

1. Operational Test: After installing luminaires, switches, and accessories, and after electrical circuitry has been energized, test units to confirm proper operation.
2. Test for Emergency Lighting: Interrupt power supply to demonstrate proper operation. Verify transfer from normal power to battery power and retransfer to normal.

B. Luminaire will be considered defective if it does not pass operation tests and inspections.

C. Prepare test and inspection reports.

3.5 ADJUSTING

A. Occupancy Adjustments: When requested within 12 months of date of Substantial Completion, provide on-site assistance in adjusting the direction of aim of luminaires to suit occupied conditions. Make up to two visits to Project during other-than-normal hours for this purpose. Some of this work may be required during hours of darkness.

1. During adjustment visits, inspect all luminaires. Replace lamps or luminaires that are defective.
2. Parts and supplies shall be manufacturer's authorized replacement parts and supplies.
3. Adjust the aim of luminaires in the presence of the Architect.

END OF SECTION
SECTION 265613
LIGHTING POLES AND STANDARDS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Poles and accessories for support of luminaires.
 2. Luminaire-lowering devices.

1.3 DEFINITIONS
A. EPA: Equivalent projected area.
B. Luminaire: Complete luminaire.
C. Pole: Luminaire-supporting structure, including tower used for large-area illumination.
D. Standard: See "Pole."

1.4 ACTION SUBMITTALS
A. Product Data: For each pole, accessory, and luminaire-supporting and -lowering device, arranged as indicated.
 1. Include data on construction details, profiles, EPA, cable entrances, materials, dimensions, weight, rated design load, and ultimate strength of individual components.
 2. Include finishes for lighting poles and luminaire-supporting devices.
 3. Anchor bolts.

1.5 INFORMATIONAL SUBMITTALS
A. Pole and Support Component Certificates: Signed by manufacturers of poles, certifying that products are designed for indicated load requirements according to AASHTO LTS-6-M and that load imposed by luminaire and attachments has been included in design. The certification shall be based on design calculations signed and sealed by a professional engineer.
B. Qualification Data: For Installer.

C. Material Test Reports:
 1. For each foundation component, by a qualified testing agency.
 2. For each pole, by a qualified testing agency.

D. Source quality-control reports.

E. Field quality-control reports.

F. Sample Warranty: Manufacturer's standard warranty.

G. Soil test reports

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For poles to include in emergency, operation, and maintenance manuals.
 1. In addition to items specified in Section 017823 "Operation and Maintenance Data," include pole inspection and repair procedures.

1.7 MAINTENANCE MATERIAL SUBMITTALS

A. Pole repair materials.

1.8 QUALITY ASSURANCE

A. Testing Agency Qualifications: Qualified according to ASTM C1093 for foundation testing.

1.9 DELIVERY, STORAGE, AND HANDLING

A. Package aluminum poles for shipping according to ASTM B660.

B. Store poles on decay-resistant skids at least 12 inches above grade and vegetation. Support poles to prevent distortion and arrange to provide free air circulation.

C. Retain factory-applied pole wrappings on metal poles until right before pole installation. Handle poles with web fabric straps.

1.10 WARRANTY

A. Special Warranty: Manufacturer agrees to repair or replace components of pole(s) that fail in materials or workmanship; that corrode; or that fade, stain, perforate, erode, or chalk due to effects of weather or solar radiation within a specified warranty period. Manufacturer may exclude lightning damage, hail damage, vandalism, abuse, or unauthorized repairs from special warranty period.
1. Warranty Period: Five years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Structural Characteristics: Comply with AASHTO LTS-6-M.

B. Dead Load: Weight of luminaire and its horizontal and vertical supports, lowering devices, and supporting structure, applied according to AASHTO LTS-6-M.

C. Ice Load: Load of 3 lbf/sq. ft., applied according to AASHTO LTS-6-M for applicable areas on the Ice Load Map.

D. Wind Load: Pressure of wind on pole and luminaire, calculated and applied according to AASHTO LTS-6-M.

1. Basic wind speed for calculating wind load for poles 50 feet high or less is 100 mph.
 a. Wind Importance Factor: 1.0
 c. Velocity Conversion Factor: 1.0.

E. Strength Analysis: For each pole, multiply the actual EPA of luminaires and brackets by a factor of 1.1 to obtain the EPA to be used in pole selection strength analysis.

F. Luminaire Attachment Provisions: Comply with luminaire manufacturers’ mounting requirements. Use stainless-steel fasteners and mounting bolts unless otherwise indicated.

2.2 ALUMINUM POLES

A. Poles shall be by manufacturer as listed on the lighting fixture schedule.

B. Poles: Seamless, extruded structural tube complying with ASTM B221, Alloy 6061-T6, with access handhole in in pole wall.

1. Shape: Round, tapered.
2. Mounting Provisions: Butt flange for bolted mounting on foundation or breakaway support.

C. Mast Arms: Aluminum type, continuously welded to pole attachment plate. Material and finish same as plate.

D. Brackets for Luminaires: Detachable, cantilever, without underbrace.
1. Adaptor fitting welded to pole, allowing the bracket to be bolted to the pole-mounted adapter, then bolted together with stainless-steel bolts.

2. Cross Section: Tapered oval, with straight tubular end section to accommodate luminaire. Match pole material and finish.

E. Pole-Top Tenons: Fabricated to support luminaire or luminaires and brackets indicated, and securely fastened to pole top.

F. Grounding and Bonding Lugs: Bolted 1/2-inch threaded lug, complying with requirements in Section 260526 "Grounding and Bonding for Electrical Systems," listed for attaching grounding and bonding conductors of type and size listed in that Section, and accessible through handhole.

G. Fasteners: Stainless steel, size and type as determined by manufacturer. Corrosion-resistant items compatible with support components.

1. Materials: Compatible with poles and standards as well as to substrates to which poles and standards are fastened and shall not cause galvanic action at contact points.

H. Handhole: Oval shaped, with minimum clear opening of 2-1/2 by 5 inches, with cover secured by stainless-steel captive screws.

I. Aluminum Finish: Comply with NAAMM's "Metal Finishes Manual for Architectural and Metal Products" recommendations for applying and designating finishes.

1. Finish designations prefixed by AA comply with the system established by the Aluminum Association for designating aluminum finishes.

J. Powder-Coat Finish: Comply with NAAMM's "Metal Finishes Manual for Architectural and Metal Products" recommendations for applying and designating finishes.

1. Surface Preparation: Clean surfaces to comply with SSPC-SP 1 to remove dirt, oil, grease, and other contaminants that could impair powder coat bond. Grind welds and polish surfaces to a smooth, even finish. Remove mill scale and rust, if present, from uncoated steel, according to SSPC-SP 5/NACE No. 1 or SSPC-SP 8.

2. Powder coat shall comply with AAMA 2604.

a. Electrostatic applied powder coating; single application with a minimum 2.5- to 3.5-mils dry film thickness; cured according to manufacturer's instructions. Coat interior and exterior of pole for equal corrosion protection.

b. Color: As indicated on the lighting fixture schedule.
2.3 MOUNTING HARDWARE

A. Anchor Bolts: Manufactured to ASTM F1554, Grade 55, with a minimum yield strength of 55,000 psi.
 1. Galvanizing: Hot dip galvanized according to ASTM A153, Class C.
 2. Bent rods.
 3. Threading: Uniform National Coarse, Class 2A.

B. Nuts: ASTM A563, Grade A, Heavy-Hex
 1. Galvanizing: Hot dip galvanized according to ASTM A153, Class C.
 2. Two nuts provided per anchor bolt, shipped with nuts pre-assembled to the anchor bolts.

C. Washers: ASTM F436, Type 1.
 1. Galvanizing: Hot dip galvanized according to ASTM A153, Class C.
 2. Two washers provided per anchor bolt.

2.4 GENERAL FINISH REQUIREMENTS

A. Protect mechanical finishes on exposed surfaces from damage by applying a strippable, temporary protective covering before shipping.

B. Appearance of Finished Work: Noticeable variations in same piece are unacceptable. Variations in appearance of adjoining components are acceptable if they are within the range of approved Samples and are assembled or installed to minimize contrast.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.

B. Examine poles, luminaire-mounting devices, lowering devices, and pole accessories before installation. Components that are scratched, dented, marred, wet, moisture damaged, or visibly damaged are considered defective.

C. Examine roughing-in for foundation and conduit to verify actual locations of installation.

D. Proceed with installation only after unsatisfactory conditions have been corrected.
3.2 POLE FOUNDATION

A. Concrete Pole Foundations: Cast in place, with anchor bolts to match pole-base flange. Structural steel complying with ASTM A36/A36M and hot-dip galvanized according to ASTM A123/A123M; and with top-plate and mounting bolts to match pole-base flange and strength required to support pole, luminaire, and accessories. Concrete, reinforcement, and formwork are specified in Section 033000 "Cast-in-Place Concrete."

B. Anchor Bolts: Install plumb using manufacturer-supplied steel template, uniformly spaced.

3.3 POLE INSTALLATION

A. Alignment: Align pole foundations and poles for optimum directional alignment of luminaires and their mounting provisions on pole.

B. Clearances: Maintain the following minimum horizontal distances of poles from surface and underground features unless otherwise indicated on drawing.
 1. Fire Hydrants and Water Piping: 60 inches.

C. Concrete Pole Foundations: Set anchor bolts according to anchor-bolt templates furnished by pole manufacturer. Concrete materials, installation, and finishing requirements are specified in Section 033000 "Cast-in-Place Concrete."

D. Foundation-Mounted Poles: Mount pole with leveling nuts and tighten top nuts to torque level according to pole manufacturer's written instructions.
 1. Grout void between pole base and foundation. Use nonshrink or expanding concrete grout firmly packed to fill space.
 2. Install base covers unless otherwise indicated.
 3. Use a short piece of 1/2-inch diameter pipe to make a drain hole through grout. Arrange to drain condensation from interior of pole.

E. Poles and Pole Foundations Set in Concrete-Paved Areas: Install poles with a minimum 6-inch-wide, unpaved gap between the pole or pole foundation and the edge of the adjacent concrete slab. Fill unpaved ring with pea gravel. Insert material to a level 1 inch below top of concrete slab.

F. Raise and set pole using web fabric slings (not chain or cable) at locations indicated by manufacturer.

3.4 CORROSION PREVENTION

A. Aluminum: Do not use in contact with earth or concrete. When in direct contact with a dissimilar metal, protect aluminum using insulating fittings or treatment.
B. Steel Conduits: Comply with requirements in Section 260533 "Raceways and Boxes for Electrical Systems." In concrete foundations, wrap conduit with 0.010-inch-thick, pipe-wrapping plastic tape applied with a 50-percent overlap.

3.5 GROUNDING

A. Ground Metal Poles and Support Structures: Comply with requirements in Section 260526 "Grounding and Bonding for Electrical Systems."

1. Install grounding electrode for each pole unless otherwise indicated.
2. Install grounding conductor pigtail in the base for connecting luminaire to grounding system.

3.6 IDENTIFICATION

A. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems."

3.7 FIELD QUALITY CONTROL

A. Special Inspections: Engage a qualified special inspector to perform the following special inspections:

1. Inspect poles for nicks, mars, dents, scratches, and other damage.
2. System function tests.

END OF SECTION
SECTION 265619
LED EXTERIOR LIGHTING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Exterior solid-state luminaires that are designed for and exclusively use LED lamp technology.
 2. Luminaire supports.
 3. Luminaire-mounted photoelectric relays.
B. Related Requirements:
 1. Section 260923 "Lighting Control Devices" for automatic control of lighting, including time switches, photoelectric relays, occupancy sensors, and multipole lighting relays and contactors.
 2. Section 265613 "Lighting Poles and Standards" for poles and standards used to support exterior lighting equipment.

1.3 DEFINITIONS
A. CCT: Correlated color temperature.
B. CRI: Color rendering index.
C. Fixture: See "Luminaire."
D. IP: International Protection or Ingress Protection Rating.
E. Lumen: Measured output of lamp and luminaire, or both.
F. Luminaire: Complete lighting unit, including lamp, reflector, and housing.

1.4 ACTION SUBMITTALS
A. Product Data: For each type of luminaire.
 1. Arrange in order of luminaire designation.
2. Include data on features, accessories, and finishes.
3. Include physical description and dimensions of luminaire.
4. Lamps, include life, output (lumens, CCT, and CRI), and energy-efficiency data.
5. Photometric data and adjustment factors based on laboratory tests, complying with IES Lighting Measurements Testing and Calculation Guides, of each luminaire type. The adjustment factors shall be for lamps and accessories identical to those indicated for the luminaire as applied in this Project.
 a. Testing Agency Certified Data: For indicated luminaires, photometric data certified by a qualified independent testing agency. Photometric data for remaining luminaires shall be certified by manufacturer.
6. Wiring diagrams for power, control, and signal wiring.
7. Photoelectric relays.
8. Means of attaching luminaires to supports and indication that the attachment is suitable for components involved.

B. Delegated-Design Submittal: For luminaire supports.
 1. Include design calculations for luminaire supports.

1.5 INFORMATIONAL SUBMITTALS

A. Product Certificates: For each type of the following:
 1. Luminaire.
 2. Photoelectric relay.

B. Product Test Reports: For each luminaire, for tests performed by manufacturer and witnessed by a qualified testing agency.

C. Source quality-control reports.

D. Sample warranty.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For luminaires and photoelectric relays to include in operation and maintenance manuals.
 1. Provide a list of all lamp types used on Project. Use ANSI and manufacturers' codes.
 2. Provide a list of all photoelectric relay types used on Project; use manufacturers' codes.
1.7 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

 1. Lamps: Ten for every 100 of each type and rating installed. Furnish at least one of each type.
 2. Glass, Acrylic, and Plastic Lenses, Covers, and Other Optical Parts: One for every 100 of each type and rating installed. Furnish at least one of each type.
 3. Diffusers and Lenses: One for every 100 of each type and rating installed. Furnish at least one of each type.
 4. Globes and Guards: One for every 20 of each type and rating installed. Furnish at least one of each type.

1.8 QUALITY ASSURANCE

A. Luminaire Photometric Data Testing Laboratory Qualifications: Provided by an independent agency, with the experience and capability to conduct the testing indicated, that is an NRTL as defined by OSHA in 29 CFR 1910.7, accredited under the NVLAP for Energy Efficient Lighting Products and complying with applicable IES testing standards.

B. Provide luminaires from a single manufacturer for each luminaire type.

C. Each luminaire type shall be binned within a three-step MacAdam Ellipse to ensure color consistency among luminaires.

D. Installer Qualifications: An authorized representative who is trained and approved by manufacturer.

1.9 DELIVERY, STORAGE, AND HANDLING

A. Protect finishes of exposed surfaces by applying a strippable, temporary protective covering prior to shipping.

1.10 FIELD CONDITIONS

A. Verify existing and proposed utility structures prior to the start of work associated with luminaire installation.

B. Mark locations of exterior luminaires for approval by Architect prior to the start of luminaire installation.

1.11 WARRANTY

A. Warranty: Manufacturer and Installer agree to repair or replace components of luminaires that fail in materials or workmanship within specified warranty period.

 1. Failures include, but are not limited to, the following:
PART 1 - ASSUMPTIONS

a. Structural failures, including luminaire support components.
b. Faulty operation of luminaires and accessories.
c. Deterioration of metals, metal finishes, and other materials beyond normal weathering.

2. Warranty Period: 2 year(s) from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 LUMINAIRE REQUIREMENTS

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. NRTL Compliance: Luminaires shall be listed and labeled for indicated class and division of hazard by an NRTL.

C. UL Compliance: Comply with UL 1598 and listed for wet location.

D. Lamp base complying with ANSI C81.6.

E. Bulb shape complying with ANSI C79.1.

F. Luminaire Manufacturer, Nominal Operating Voltage, CRI, and CCT shall be as indicated on the lighting fixture schedule.

G. L70 lamp life of 50,000 hours.

H. Lamps dimmable from 100 percent to 0 percent of maximum light output.

I. Internal driver.

J. In-line Fusing: On the primary for each luminaire.

K. Lamp Rating: Lamp marked for outdoor use and in enclosed locations.

L. Source Limitations: Obtain luminaires from single source from a single manufacturer.

2.2 MATERIALS

A. Metal Parts: Free of burrs and sharp corners and edges.

B. Sheet Metal Components: Corrosion-resistant aluminum. Form and support to prevent warping and sagging.

C. Doors, Frames, and Other Internal Access: Smooth operating, free of light leakage under operating conditions, and designed to permit relamping without use of tools.
Designed to prevent doors, frames, lenses, diffusers, and other components from falling accidentally during relamping and when secured in operating position. Doors shall be removable for cleaning or replacing lenses.

D. Diffusers and Globes:
 1. Acrylic Diffusers: 100 percent virgin acrylic plastic, with high resistance to yellowing and other changes due to aging, exposure to heat, and UV radiation.
 2. Glass: Annealed crystal glass unless otherwise indicated.
 3. Lens Thickness: At least 0.125 inch minimum unless otherwise indicated.

E. Lens and Refractor Gaskets: Use heat- and aging-resistant resilient gaskets to seal and cushion lenses and refractors in luminaire doors.

F. Reflecting surfaces shall have minimum reflectance as follows unless otherwise indicated:
 1. White Surfaces: 85 percent.
 2. Specular Surfaces: 83 percent.
 3. Diffusing Specular Surfaces: 75 percent.

G. Housings:
 1. Rigidly formed, weather- and light-tight enclosure that will not warp, sag, or deform in use.
 2. Provide filter/breather for enclosed luminaires.

H. Factory-Applied Labels: Comply with UL 1598. Include recommended lamps. Labels shall be located where they will be readily visible to service personnel, but not seen from normal viewing angles when lamps are in place.
 1. Label shall include the following lamp characteristics:
 a. "USE ONLY" and include specific lamp type.
 b. Lamp diameter, shape, size, wattage and coating.
 c. CCT and CRI for all luminaires.

2.3 FINISHES

A. Variations in Finishes: Noticeable variations in same piece are unacceptable. Variations in appearance of adjoining components are acceptable if they are within the range of approved Samples and are assembled or installed to minimize contrast.

 1. Finish designations prefixed by AA comply with the system established by the Aluminum Association for designating aluminum finishes.
C. Factory-Applied Finish for Steel Luminaires: Comply with NAAMM's "Metal Finishes Manual for Architectural and Metal Products" for recommendations for applying and designating finishes.

1. Surface Preparation: Clean surfaces to comply with SSPC-SP 1, to remove dirt, oil, grease, and other contaminants that could impair paint bond. Grind welds and polish surfaces to a smooth, even finish. Remove mill scale and rust, if present, from uncoated steel, complying with SSPC-SP 5/NACE No. 1 or SSPC-SP 8.

2. Exterior Surfaces: Manufacturer's standard finish consisting of one or more coats of primer and two finish coats of high-gloss, high-build polyurethane enamel.

 a. Color: As selected from manufacturer's standard catalog of colors.

2.4 LUMINAIRE SUPPORT COMPONENTS

 A. Comply with requirements in Section 260529 "Hangers and Supports for Electrical Systems" for channel and angle iron supports and nonmetallic channel and angle supports.

PART 3 - EXECUTION

3.1 EXAMINATION

 A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.

 B. Examine roughing-in for luminaire electrical conduit to verify actual locations of conduit connections before luminaire installation.

 C. Examine walls, roofs, canopy ceilings, and overhang ceilings for suitable conditions where luminaires will be installed.

 D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 GENERAL INSTALLATION REQUIREMENTS

 A. Comply with NECA 1.

 B. Use fastening methods and materials selected to resist seismic forces defined for the application and approved by manufacturer.

 C. Install lamps in each luminaire.

 D. Fasten luminaire to structural support.
E. Supports:

1. Sized and rated for luminaire weight.
2. Able to maintain luminaire position after cleaning and relamping.
3. Support luminaires without causing deflection of finished surface.
4. Luminaire-mounting devices shall be capable of supporting a horizontal force of 100 percent of luminaire weight and a vertical force of 400 percent of luminaire weight.

F. Wall-Mounted Luminaire Support:

1. Attached to structural members in walls.

H. Install luminaires level, plumb, and square with finished grade unless otherwise indicated.

I. Install luminaires at height and aiming angle as indicated on Drawings.

J. Coordinate layout and installation of luminaires with other construction.

K. Adjust luminaires that require field adjustment or aiming. Include adjustment of photoelectric device to prevent false operation of relay by artificial light sources, favoring a north orientation.

L. Comply with requirements in Section 260519 "Low-Voltage Electrical Power Conductors and Cables" and Section 260533 "Raceways and Boxes for Electrical Systems" for wiring connections and wiring methods.

3.3 BOLLARD LUMINAIRE INSTALLATION:

A. Align units for optimum directional alignment of light distribution.

3.4 CORROSION PREVENTION

A. Aluminum: Do not use in contact with earth or concrete. When in direct contact with a dissimilar metal, protect aluminum by insulating fittings or treatment.

B. Steel Conduits: Comply with Section 260533 "Raceways and Boxes for Electrical Systems." In concrete foundations, wrap conduit with 0.010-inch-thick, pipe-wrapping plastic tape applied with a 50 percent overlap.

3.5 IDENTIFICATION

A. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems."
3.6 FIELD QUALITY CONTROL

A. Inspect each installed luminaire for damage. Replace damaged luminaires and components.

B. Perform the following tests and inspections:

1. Operational Test: After installing luminaires, switches, and accessories, and after electrical circuitry has been energized, test units to confirm proper operation.
2. Verify operation of photoelectric controls.

C. Illumination Tests:

1. Measure light intensities at night. Use photometers with calibration referenced to NIST standards. Comply with the following IES testing guide(s):
 a. IES LM-64.
2. Operational Test: After installing luminaires, switches, and accessories, and after electrical circuitry has been energized, test units to confirm proper operation.

D. Luminaire will be considered defective if it does not pass tests and inspections.

E. Prepare a written report of tests, inspections, observations, and verifications indicating and interpreting results. If adjustments are made to lighting system, retest to demonstrate compliance with standards.

3.7 DEMONSTRATION

A. Train Owner's maintenance personnel to adjust, operate, and maintain luminaires and photocell relays.

3.8 ADJUSTING

A. Occupancy Adjustments: When requested within 12 months of date of Substantial Completion, provide on-site assistance in adjusting the direction of aim of luminaires to suit occupied conditions. Make up to two visits to Project during other-than-normal hours for this purpose. Some of this work may be required during hours of darkness.

1. During adjustment visits, inspect all luminaires. Replace lamps or luminaires that are defective.
2. Parts and supplies shall be manufacturer's authorized replacement parts and supplies.
3. Adjust the aim of luminaires in the presence of the Architect.

END OF SECTION
SECTION 270536
CABLE TRAYS FOR COMMUNICATIONS SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Ladder cable tray (Provide in Server Room).
 2. Center spine cable trays.
 3. Serving electrical systems.

1.3 ACTION SUBMITTALS
 A. Product Data: For each type of cable tray.
 1. Include data indicating dimensions and finishes for each type of cable tray indicated.
 B. Shop Drawings: For each type of cable tray.
 1. Show fabrication and installation details of cable trays, including plans, elevations, and sections of components and attachments to other construction elements. Designate components and accessories, including clamps, brackets, hanger rods, splice-plate connectors, expansion-joint assemblies, straight lengths, and fittings.
 C. Delegated-Design Submittal: For seismic restraints.
 1. Detail fabrication, including anchorages and attachments to structure and to supported cable trays.

1.4 INFORMATIONAL SUBMITTALS
 A. Coordination Drawings: Floor plans and sections, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 1. Scaled cable tray layout and relationships between components and adjacent structural, electrical, and mechanical elements.
2. Vertical and horizontal offsets and transitions.
3. Clearances for access above and to side of cable trays.
4. Vertical elevation of cable trays above the floor or below bottom of ceiling structure.
5. Suspended ceiling components.
6. Other building services including but not limited to mechanical piping and duct work, fire protection piping, and domestic water piping.

B. Field quality-control reports.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Delegated Design: Engage a qualified professional engineer, as defined in Section 014000 "Quality Requirements," to design cable tray supports.

B. Thermal Movements: Allow for thermal movements from ambient and surface temperature changes in cable tray installed outdoors.

1. Temperature Change: 120 deg F, ambient; 180 deg F, material surfaces.

2.2 GENERAL REQUIREMENTS FOR CABLE TRAYS

A. Cable Trays and Accessories: Identified as defined in NFPA 70 and marked for intended location, application, and grounding.

1. Source Limitations: Obtain cable trays and components from single manufacturer.

B. Sizes and Configurations: As indicated in this specification section.

C. Structural Performance: See articles for individual cable tray types for specific values for the following parameters:

1. Uniform Load Distribution: Capable of supporting a uniformly distributed load on the indicated support span when supported as a simple span and tested according to NEMA VE 1.
2. Concentrated Load: A load applied at midpoint of span and centerline of tray.
3. Load and Safety Factors: Applicable to both side rails and rung capacities.

2.3 LADDER CABLE TRAY

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. B-line, an Eaton business.
2. Chalfant Manufacturing Company.
3. MonoSystems, Inc.
4. MP Husky USA Cable Tray & Cable Bus.
5. Niedax Inc.

B. Description:

1. Configuration: Two I-beam side rails with transverse rungs welded to side rails.
2. Width: 18 inches unless otherwise indicated on Drawings.
4. Straight Section Lengths: 10 feet, except where shorter lengths are required to facilitate tray assembly.
5. Rung Spacing: 6 inches o.c.
6. Radius-Fitting Rung Spacing: 9 inches at center of tray's width.
7. Minimum Cable-Bearing Surface for Rungs: 7/8-inch width with radius edges.
8. No portion of the rungs shall protrude below the bottom plane of side rails.
9. Structural Performance of Each Rung: Capable of supporting a maximum cable load, with a safety factor of 1.5, plus a 200-lb concentrated load, when tested according to NEMA VE 1.
11. Class Designation: Comply with NEMA VE 1, Class 12C.
12. Splicing Assemblies: Bolted type using serrated flange locknuts.
13. Splice-Plate Capacity: Splices located within support span shall not diminish rated loading capacity of cable tray.

2.4 CENTER SPINE CABLE TRAYS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Allied Tube & Conduit; a Tyco International Ltd. Co.
2. B-line, an Eaton business.
3. MonoSystems, Inc.
4. MP Husky USA Cable Tray & Cable Bus.

B. Description:

1. Configuration: Center rail with extruded-aluminum rungs arranged symmetrically about the center rail.
2. Construction: Aluminum rungs mechanically connected to aluminum center rail in at least two places, with ends finished to protect installers and cables.
3. Rung Spacing: 6 inches o.c.
4. Radius Fitting Rung Spacing: 9 inches at center of tray’s width.
5. Straight Section Length: 10 feet except where shorter lengths are required to facilitate tray assembly.
7. Support Point: Splice fittings shall be hanger support point.
8. Support Spacing: Support each section at midpoint. Support wall-mounted sections a maximum of one-sixth of the section length from each end.
9. Loading Depth: 4 inches.
11. Unbalanced Loads: Maintain cable tray rungs within six degrees of horizontal under all loading conditions.
12. Splicing Assemblies: Bolted type using serrated flange locknuts.
13. Splicing Assembly Capacity: Splices located within support span shall not diminish rated loading capacity of cable tray.
15. Splices and Connectors: Protect cables from edges of center rail and do not intrude into cable fill area.

2.5 MATERIALS AND FINISHES:

A. Stainless Steel:
 1. Materials: Low carbon, passivated, stainless steel, Type 304L and Type 316L, ASTM F 593 and ASTM F 594.

2.6 CABLE TRAY ACCESSORIES

A. Fittings: Tees, crosses, risers, elbows, and other fittings as indicated, of same materials and finishes as cable tray.
B. Barrier Strips: Same materials and finishes as for cable tray.
C. Cable tray supports and connectors, including bonding jumpers, as recommended by cable tray manufacturer.

2.7 WARNING SIGNS

A. Lettering: 1-1/2-inch high, black letters on yellow background with legend "Warning! Not To Be Used as Walkway, Ladder, or Support for Ladders or Personnel."

2.8 SOURCE QUALITY CONTROL

A. Testing: Test and inspect cable trays according to NEMA VE 1.

PART 3 - EXECUTION

3.1 CABLE TRAY INSTALLATION

A. Install cable trays according to NEMA VE 2.
B. Install cable trays as a complete system, including fasteners, hold-down clips, support systems, barrier strips, adjustable horizontal and vertical splice plates, elbows, reducers, tees, crosses, cable dropouts, adapters, covers, and bonding.
C. Install cable trays so that the tray is accessible for cable installation and all splices are accessible for inspection and adjustment.

D. Remove burrs and sharp edges from cable trays.

E. Join aluminum cable tray with splice plates; use four square neck-carriage bolts and locknuts.

F. Fasten cable tray supports to building structure.

G. Design fasteners and supports to carry cable tray, the cables, and a concentrated load of 200 lb. Comply with requirements in Section 260529 "Hangers and Supports for Electrical Systems."

H. Place supports so that spans do not exceed maximum spans on schedules and provide clearances shown on Drawings. Install intermediate supports when cable weight exceeds the load-carrying capacity of the tray rungs.

I. Construct supports from channel members, threaded rods, and other appurtenances furnished by cable tray manufacturer. Arrange supports in trapeze or wall-bracket form as required by application.

J. Support bus assembly to prevent twisting from eccentric loading.

K. Install center-hung supports for single-rail trays designed for 60 versus 40 percent eccentric loading condition, with a safety factor of 3.

L. Locate and install supports according to NEMA VE 2. Do not install more than one cable tray splice between supports.

M. Support wire-basket cable trays with center support hangers.

N. Support center support hangers for wire-basket trays with 3/8-inch-] diameter rods.

O. Make connections to equipment with flanged fittings fastened to cable trays and to equipment. Support cable trays independent of fittings. Do not carry weight of cable trays on equipment enclosure.

P. Install expansion connectors where cable trays cross building expansion joints and in cable tray runs that exceed dimensions recommended in NEMA VE 2. Space connectors and set gaps according to applicable standard.

Q. Make changes in direction and elevation using manufacturer's recommended fittings.

R. Make cable tray connections using manufacturer's recommended fittings.

S. Seal penetrations through fire and smoke barriers. Comply with requirements in Section 078413 "Penetration Firestopping."

270536-5
T. Install capped metal sleeves for future cables through firestop-sealed cable tray penetrations of fire and smoke barriers.

U. Install cable trays with enough workspace to permit access for installing cables.

V. Install barriers to separate cables of different systems, such as power, communications, and data processing; or of different insulation levels, such as 600, 5000, and 15000 V.

W. Install permanent covers, if used, after installing cable. Install cover clamps according to NEMA VE 2.

X. Clamp covers on cable trays installed outdoors with heavy-duty clamps.

Y. Install warning signs in visible locations on or near cable trays after cable tray installation.

3.2 CABLE TRAY GROUNDING

A. Ground cable trays according to NFPA 70 unless additional grounding is specified. Comply with requirements in Section 260526 "Grounding and Bonding for Electrical Systems."

B. Cable trays shall be bonded together with splice plates listed for grounding purposes or with listed bonding jumpers.

C. When using epoxy- or powder-coat painted cable trays as a grounding conductor, completely remove coating at all splice contact points or ground connector attachment. After completing splice-to-grounding bolt attachment, repair the coated surfaces with coating materials recommended by cable tray manufacturer.

D. Bond cable trays to power source for cables contained within with bonding conductors sized according to NFPA 70, Article 250.122, "Size of Equipment Grounding Conductors."

3.3 CONNECTIONS

A. Remove paint from all connection points before making connections. Repair paint after the connections are completed.

B. Connect pathways to cable trays according to requirements in NEMA VE.

3.4 FIELD QUALITY CONTROL

A. Perform the following tests and inspections with the assistance of a factory-authorized service representative:

1. After installing cable trays and after electrical circuitry has been energized, survey for compliance with requirements.
2. Visually inspect cable insulation for damage. Correct sharp corners, protuberances in cable trays, vibrations, and thermal expansion and contraction conditions, which may cause or have caused damage.
3. Verify that the number, size, and voltage of cables in cable trays do not exceed that permitted by NFPA 70. Verify that communications or data-processing circuits are separated from power circuits by barriers or are installed in separate cable trays.
4. Verify that there are no intruding items such as pipes, hangers, or other equipment in the cable tray.
5. Remove dust deposits, industrial process materials, trash of any description, and any blockage of tray ventilation.
6. Visually inspect each cable tray joint and each ground connection for mechanical continuity. Check bolted connections between sections for corrosion. Clean and retorque in suspect areas.
7. Check for improperly sized or installed bonding jumpers.
8. Check for missing, incorrect, or damaged bolts, bolt heads, or nuts. When found, replace with specified hardware.
9. Perform visual and mechanical checks for adequacy of cable tray grounding; verify that all takeoff raceways are bonded to cable trays. Test entire cable tray system for continuity. Maximum allowable resistance is 1 ohm.

B. Prepare test and inspection reports.

3.5 PROTECTION

A. Protect installed cable trays and cables.

1. Install temporary protection for cables in open trays to safeguard exposed cables against falling objects or debris during construction. Temporary protection for cables and cable tray can be constructed of wood or metal materials and shall remain in place until the risk of damage is over.
2. Repair damage to galvanized finishes with zinc-rich paint recommended by cable tray manufacturer.
3. Repair damage to paint finishes with matching touchup coating recommended by cable tray manufacturer.

END OF SECTION
SECTION 270553
IDENTIFICATION FOR COMMUNICATIONS SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Color and legend requirements for labels and signs.
2. Labels.
4. Tapes.
5. Signs.
6. Cable ties.
7. Fasteners for labels and signs.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for communications identification products.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Comply with NFPA 70 and TIA 606-B.

B. Comply with ANSI Z535.4 for safety signs and labels.

C. Adhesive-attached labeling materials, including label stocks, laminating adhesives, and inks used by label printers, shall comply with UL 969.

D. Thermal Movements: Allow for thermal movements from ambient and surface temperature changes.

 1. Temperature Change: 120 deg F, ambient; 180 deg F, material surfaces.
2.2 COLOR AND LEGEND REQUIREMENTS

A. Equipment Identification Labels:
 1. Black letters on a white field.

2.3 LABELS

A. Vinyl Wraparound Labels: Preprinted, flexible labels laminated with a clear, weather- and chemical-resistant coating and matching wraparound clear adhesive tape for securing label ends.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Brady Corporation.
 b. Panduit Corp.

B. Self-Adhesive Labels: Vinyl, thermal, transfer-printed, 3-mil-thick, multicolor, weather- and UV-resistant, pressure-sensitive adhesive labels, configured for intended use and location.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Brady Corporation.
 b. Ideal Industries, Inc.
 c. Marking Services, Inc.
 d. Panduit Corp.
 2. Minimum Nominal Size:
 a. 1-1/2 by 6 inches for raceway and conductors.
 b. 3-1/2 by 5 inches for equipment.
 c. As required by authorities having jurisdiction.

2.4 SIGNS

A. Baked-Enamel Signs:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Carlton Industries, LP.
 b. Champion America.
 c. emedco.
 d. Marking Services, Inc.
2. Preprinted aluminum signs, high-intensity reflective, punched or drilled for fasteners, with colors, legend, and size required for application.
3. 1/4-inch grommets in corners for mounting.

B. Metal-Backed Butyrate Signs:
 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. Brady Corporation.
 b. Champion America.
 c. emedco.
 d. Marking Services, Inc.
 2. Weather-resistant, nonfading, preprinted, cellulose-acetate butyrate signs, with 0.0396-inch galvanized-steel backing, punched and drilled for fasteners, and with colors, legend, and size required for application.
 3. 1/4-inch grommets in corners for mounting.
 4. Nominal Size: 10 by 14 inches.

C. Laminated-Acrylic or Melamine-Plastic Signs:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Brady Corporation.
 b. Carlton Industries, LP.
 c. emedco.
 d. Marking Services, Inc.
 2. Engraved legend.
 3. Thickness:
 a. For signs up to 20 sq. in., minimum 1/16 inch thick.
 b. For signs larger than 20 sq. in., 1/8 inch thick.
 c. Punched or drilled for mechanical fasteners with 1/4-inch grommets in corners for mounting.
 d. Framed with mitered acrylic molding and arranged for attachment at applicable equipment.

2.5 CABLE TIES
 A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. HellermannTyton.
 2. Ideal Industries, Inc.
 3. Marking Services, Inc.
4. Panduit Corp.

B. General-Purpose Cable Ties: Fungus inert, self-extinguishing, one piece, self-locking, and Type 6/6 nylon.
 2. Tensile Strength at 73 deg F according to ASTM D638: 12,000 psi.
 3. Temperature Range: Minus 40 to plus 185 deg F.

2.6 MISCELLANEOUS IDENTIFICATION PRODUCTS

A. Paint: Comply with requirements in painting Sections for paint materials and application requirements. Retain paint system applicable for surface material and location (exterior or interior).

B. Fasteners for Labels and Signs: Self-tapping, stainless-steel screws or stainless-steel machine screws with nuts and flat and lock washers.

PART 3 - EXECUTION

3.1 PREPARATION

A. Self-Adhesive Identification Products: Before applying communications identification products, clean substrates of substances that could impair bond, using materials and methods recommended by manufacturer of identification product.

3.2 INSTALLATION

A. Verify and coordinate identification names, abbreviations, colors, and other features with requirements in other Sections requiring identification applications, Drawings, Shop Drawings, manufacturer's wiring diagrams, and operation and maintenance manual. Use consistent designations throughout Project.

B. Install identifying devices before installing acoustical ceilings and similar concealment.

C. Verify identity of each item before installing identification products.

D. Coordinate identification with Project Drawings, manufacturer's wiring diagrams, and operation and maintenance manual.

E. Apply identification devices to surfaces that require finish after completing finish work.

F. Install signs with approved legend to facilitate proper identification, operation, and maintenance of communications systems and connected items.

G. Elevated Components: Increase sizes of labels, signs, and letters to those appropriate for viewing from the floor.
H. Vinyl Wraparound Labels:
 1. Secure tight to surface of raceway or cable at a location with high visibility and accessibility.
 2. Attach labels that are not self-adhesive type with clear vinyl tape, with adhesive appropriate to the location and substrate.
 3. Provide label 6 inches from cable end.

I. Snap-Around Labels:
 1. Secure tight to surface at a location with high visibility and accessibility.
 2. Provide label 6 inches from cable end.

J. Self-Adhesive Wraparound Labels:
 1. Secure tight to surface at a location with high visibility and accessibility.
 2. Provide label 6 inches from cable end.

K. Self-Adhesive Labels:
 1. On each item, install unique designation label that is consistent with wiring diagrams, schedules, and operation and maintenance manual.
 2. Unless otherwise indicated, provide a single line of text with 1/2-inch-high letters on 1-1/2-inch-high label; where two lines of text are required, use labels 2 inches high.

L. Snap-Around, Color-Coding Bands: Secure tight to surface at a location with high visibility and accessibility.

M. Cable Ties: General purpose, except as listed below:
 1. Outdoors: UV-stabilized nylon.
 2. In Spaces Handling Environmental Air: Plenum rated.

3.3 Identification Schedule

A. Install identification materials and devices at locations for most convenient viewing without interference with operation and maintenance of equipment. Install access doors or panels to provide view of identifying devices.

B. Identify conductors, cables, and terminals in enclosures and at junctions, terminals, pull points, and locations with high visibility. Identify by system and circuit designation.

C. Accessible Fittings for Raceways and Cables within Buildings: Identify covers of each junction and pull box with self-adhesive labels containing wiring system legend.
 1. System legends shall be as follows:
 a. Telecommunications.
D. Faceplates: Label individual faceplates with self-adhesive labels. Place label at top of faceplate. Each faceplate shall be labeled with its individual, sequential designation, composed of the following, in the order listed:

1. Wiring closet designation.
2. Colon.
3. Faceplate number.

E. Instructional Signs: Self-adhesive labels.

F. Warning Labels for Indoor Cabinets, Boxes, and Enclosures: Baked-enamel warning signs.

1. Apply to exterior of door, cover, or other access.

G. Equipment Identification Labels:

1. Indoor Equipment: Laminated-acrylic or melamine-plastic sign.
2. Outdoor Equipment: Laminated-acrylic or melamine-plastic sign.
3. Equipment to Be Labeled:

 a. Communications cabinets.
 b. Uninterruptible power supplies.
 c. Computer room air conditioners.
 d. Fire-alarm and suppression equipment.
 e. Egress points.
 f. Power distribution components.

END OF SECTION
SECTION 284621.11
ADDRESSABLE FIRE-ALARM SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Fire-alarm control unit.
 3. Smoke detectors.
 7. Graphic annunciator.
 8. Addressable interface device.

1.3 DEFINITIONS
 A. EMT: Electrical Metallic Tubing.
 B. FACP: Fire Alarm Control Panel.
 C. HLI: High Level Interface.
 E. PC: Personal computer.
 F. VESDA: Very Early Smoke-Detection Apparatus.

1.4 ACTION SUBMITTALS
 A. Product Data: For each type of product, including furnished options and accessories.
 1. Include construction details, material descriptions, dimensions, profiles, and finishes.
 2. Include rated capacities, operating characteristics, and electrical characteristics.
B. Shop Drawings: For fire-alarm system.

1. Comply with recommendations and requirements in the "Documentation" section of the "Fundamentals" chapter in NFPA 72.
2. Include plans, elevations, sections, details, and attachments to other work.
3. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and locations. Indicate conductor sizes, indicate termination locations and requirements, and distinguish between factory and field wiring.
4. Detail assembly and support requirements.
5. Include voltage drop calculations for notification-appliance circuits.
6. Include battery-size calculations.
7. Include input/output matrix.
8. Include statement from manufacturer that all equipment and components have been tested as a system and meet all requirements in this Specification and in NFPA 72.
9. Include performance parameters and installation details for each detector.
10. Verify that each duct detector is listed for complete range of air velocity, temperature, and humidity possible when air-handling system is operating.
11. Provide program report showing that air-sampling detector pipe layout balances pneumatically within the airflow range of the air-sampling detector.
12. Include plans, sections, and elevations of heating, ventilating, and air-conditioning ducts, drawn to scale; coordinate location of duct smoke detectors and access to them.

 a. Show critical dimensions that relate to placement and support of sampling tubes, detector housing, and remote status and alarm indicators.
 b. Show field wiring required for HVAC unit shutdown on alarm.
 c. Locate detectors according to manufacturer's written recommendations.
 d. Show air-sampling detector pipe routing.

C. General Submittal Requirements:

1. Submittals shall be approved by authorities having jurisdiction prior to submitting them to Architect.
2. Shop Drawings shall be prepared by persons with the following qualifications:

 a. Trained and certified by manufacturer in fire-alarm system design.
 b. NICET-certified, fire-alarm technician; Level III minimum.

1.5 INFORMATIONAL SUBMITTALS

A. Qualification Data: For Installer.

B. Field quality-control reports.
1.6 SAMPLE WARRANTY: FOR SPECIAL WARRANTY.

1.7 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For fire-alarm systems and components to include in emergency, operation, and maintenance manuals.

1. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:

 a. Comply with the "Records" section of the "Inspection, Testing and Maintenance" chapter in NFPA 72.
 b. Provide "Fire Alarm and Emergency Communications System Record of Completion Documents" according to the "Completion Documents" Article in the "Documentation" section of the "Fundamentals" chapter in NFPA 72.
 c. Complete wiring diagrams showing connections between all devices and equipment. Each conductor shall be numbered at every junction point with indication of origination and termination points.
 d. Riser diagram.
 e. Device addresses.
 f. Air-sampling system sample port locations and modeling program report showing layout meets performance criteria.
 g. Record copy of site-specific software.
 h. Provide "Inspection and Testing Form" according to the "Inspection, Testing and Maintenance" chapter in NFPA 72, and include the following:

 1) Equipment tested.
 2) Frequency of testing of installed components.
 3) Frequency of inspection of installed components.
 4) Requirements and recommendations related to results of maintenance.
 5) Manufacturer's user training manuals.
 i. Manufacturer's required maintenance related to system warranty requirements.
 j. Abbreviated operating instructions for mounting at fire-alarm control unit and each annunciator unit.

B. Software and Firmware Operational Documentation:

1. Software operating and upgrade manuals.
2. Program Software Backup: On magnetic media or compact disk, complete with data files.
3. Device address list.
4. Printout of software application and graphic screens.
1.8 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Lamps for Remote Indicating Lamp Units: Quantity equal to 10 percent of amount installed, but no fewer than one unit.
2. Lamps for Strobe Units: Quantity equal to 10 percent of amount installed, but no fewer than one unit.
3. Smoke Detectors, Fire Detectors: Quantity equal to 10 percent of amount of each type installed, but no fewer than one unit of each type.
4. Detector Bases: Quantity equal to two percent of amount of each type installed, but no fewer than one unit of each type.
5. Keys and Tools: One extra set for access to locked or tamperproofed components.
6. Audible and Visual Notification Appliances: One of each type installed.
7. Fuses: Two of each type installed in the system. Provide in a box or cabinet with compartments marked with fuse types and sizes.

1.9 QUALITY ASSURANCE

A. Installer Qualifications: Personnel shall be trained and certified by manufacturer for installation of units required for this Project.

B. NFPA Certification: Obtain certification according to NFPA 72 by an NRTL (nationally recognized testing laboratory).

1.10 PROJECT CONDITIONS

A. Perform a full test of the existing system prior to starting work. Document any equipment or components not functioning as designed.

B. Interruption of Existing Fire-Alarm Service: Do not interrupt fire-alarm service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary guard service according to requirements indicated:

1. Notify Owner no fewer than seven days in advance of proposed interruption of fire-alarm service.
2. Do not proceed with interruption of fire-alarm service without Owner's written permission.

C. Use of Devices during Construction: Protect devices during construction unless devices are placed in service to protect the facility during construction.

1.11 SEQUENCING AND SCHEDULING

A. Existing Fire-Alarm Equipment: Maintain existing equipment fully operational until new equipment has been tested and accepted. As new equipment is installed, label it "NOT IN
SERVICE" until it is accepted. Remove labels from new equipment when put into service, and label existing fire-alarm equipment "NOT IN SERVICE" until removed from the building.

B. Equipment Removal: After acceptance of new fire-alarm system, remove existing disconnected fire-alarm equipment and wiring.

1.12 WARRANTY

A. Special Warranty: Manufacturer agrees to repair or replace fire-alarm system equipment and components that fail in materials or workmanship within specified warranty period.

1. Warranty Extent: All equipment and components not covered in the Maintenance Service Agreement.
2. Warranty Period: Five years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 SYSTEM DESCRIPTION

A. Noncoded, UL-certified addressable system, with multiplexed signal transmission and horn/strobe evacuation.

B. Automatic sensitivity control of certain smoke detectors.

C. All components provided shall be listed for use with the selected system.

D. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

2.2 SYSTEMS OPERATIONAL DESCRIPTION

A. Fire-alarm signal initiation shall be by one or more of the following devices and systems:

2. Heat detectors.
3. Smoke detectors.
4. Duct smoke detectors.
5. Carbon monoxide detectors.
6. Automatic sprinkler system water flow.

B. Fire-alarm signal shall initiate the following actions:

1. Continuously operate alarm notification appliances.
2. Identify alarm and specific initiating device at fire-alarm control unit and remote annunciators.
3. Transmit an alarm signal to the remote alarm receiving station.
4. Unlock electric door locks in designated egress paths.
5. Switch heating, ventilating, and air-conditioning equipment controls to fire-alarm mode.
6. Recall elevators to primary or alternate recall floors.
7. Activate elevator power shunt trip.
8. Activate emergency shutoffs for gas and fuel supplies.
9. Record events in the system memory.

C. Supervisory signal initiation shall be by one or more of the following devices and actions:

1. Valve supervisory switch.
2. Elevator shunt-trip supervision.
3. Clean Agent Fire Suppression System.

D. System trouble signal initiation shall be by one or more of the following devices and actions:

1. Open circuits, shorts, and grounds in designated circuits.
2. Opening, tampering with, or removing alarm-initiating and supervisory signal-initiating devices.
3. Loss of communication with any addressable sensor, input module, relay, control module, remote annunciator, printer interface, or Ethernet module.
4. Loss of primary power at fire-alarm control unit.
5. Ground or a single break in internal circuits of fire-alarm control unit.
6. Abnormal ac voltage at fire-alarm control unit.
7. Break in standby battery circuitry.
8. Failure of battery charging.
9. Abnormal position of any switch at fire-alarm control unit or annunciator.

E. System Supervisory Signal Actions:

1. Initiate notification appliances.
2. After a time delay of 200 seconds, transmit a trouble or supervisory signal to the remote alarm receiving station.

2.3 FIRE-ALARM CONTROL UNIT

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Fire-Lite Alarms, Inc.; a Honeywell International company.
2. GE UTC Fire & Security; A United Technologies Company.
4. Silent Knight.
5. Edwards.

B. General Requirements for Fire-Alarm Control Unit:
1. Field-programmable, microprocessor-based, modular, power-limited design with electronic modules, complying with UL 864.

 a. System software and programs shall be held in nonvolatile flash, electrically erasable, programmable, read-only memory, retaining the information through failure of primary and secondary power supplies.
 b. Include a real-time clock for time annotation of events on the event recorder and printer.
 c. Provide communication between the FACP and remote circuit interface panels, annunciators, and displays.
 d. The FACP shall be listed for connection to a central-station signaling system service.
 e. Provide nonvolatile memory for system database, logic, and operating system and event history. The system shall require no manual input to initialize in the event of a complete power down condition. The FACP shall provide a minimum 500-event history log.

2. Addressable Initiation Device Circuits: The FACP shall indicate which communication zones have been silenced and shall provide selective silencing of alarm notification appliance by building communication zone.

3. Addressable Control Circuits for Operation of Notification Appliances and Mechanical Equipment: The FACP shall be listed for releasing service.

C. Alphanumeric Display and System Controls: Arranged for interface between human operator at fire-alarm control unit and addressable system components including annunciation and supervision. Display alarm, supervisory, and component status messages and the programming and control menu.

 1. Annunciator and Display: Liquid-crystal type, three line(s) of 80 characters, minimum.
 2. Keypad: Arranged to permit entry and execution of programming, display, and control commands and to indicate control commands to be entered into the system for control of smoke-detector sensitivity and other parameters.

D. Initiating-Device, Notification-Appliance, and Signaling-Line Circuits:

 1. Pathway Class Designations: NFPA 72, Class A.
 3. Install no more than 100 addressable devices on each signaling-line circuit.
 4. Serial Interfaces:

 a. One dedicated RS 485 port for central-station operation using point ID DACT.
 b. One RS 485 port for remote annunciators, Ethernet module, or multi-interface module (printer port).
 c. One USB port for PC configuration.
 d. One RS 232 port for VESDA HLI connection.

E. Notification-Appliance Circuit:
1. Audible appliances shall sound in a three-pulse temporal pattern, as defined in NFPA 72.
2. Where notification appliances provide signals to sleeping areas, the alarm signal shall be a 520-Hz square wave with an intensity 15 dB above the average ambient sound level or 5 dB above the maximum sound level, or at least 75 dBA, whichever is greater, measured at the pillow.
3. Visual alarm appliances shall flash in synchronization where multiple appliances are in the same field of view, as defined in NFPA 72.

F. Elevator Recall:
1. Elevator recall shall be initiated only by one of the following alarm-initiating devices:
 a. Elevator lobby detectors except the lobby detector on the designated floor.
 b. Smoke detector in elevator machine room.
 c. Smoke detectors in elevator hoistway.
2. Elevator controller shall be programmed to move the cars to the alternate recall floor if lobby detectors located on the designated recall floors are activated.
3. Water-flow alarm connected to sprinkler in an elevator shaft and elevator machine room shall shut down elevators associated with the location without time delay.
 a. Water-flow switch associated with the sprinkler in the elevator pit may have a delay to allow elevators to move to the designated floor.

G. Door Controls: Door hold-open devices that are controlled by smoke detectors at doors in smoke-barrier walls shall be connected to fire-alarm system.

H. Transmission to Remote Alarm Receiving Station: Automatically transmit alarm, supervisory, and trouble signals to a remote alarm station.

I. Primary Power: 24-V dc obtained from 120-V ac service and a power-supply module. Initiating devices, notification appliances, signaling lines, trouble signals, supervisory and digital alarm communicator transmitters shall be powered by 24-V dc source.
 1. Alarm current draw of entire fire-alarm system shall not exceed 80 percent of the power-supply module rating.

J. Secondary Power: 24-V dc supply system with batteries, automatic battery charger, and automatic transfer switch.

K. Instructions: Computer printout or typewritten instruction card mounted behind a plastic or glass cover in a stainless-steel or aluminum frame. Include interpretation and describe
appropriate response for displays and signals. Briefly describe the functional operation of the system under normal, alarm, and trouble conditions.

2.4 PREACTION SYSTEM

A. Initiate Presignal Alarm: This function shall cause an audible and visual alarm and indication to be provided at the FACP. Activation of an initiation device connected as part of a preaction system shall be annunciated at the FACP only, without activation of the general evacuation alarm.

2.5 MANUAL FIRE-ALARM BOXES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Fire-Lite Alarms, Inc.; a Honeywell International company.
2. GE UTC Fire & Security; A United Technologies Company.
4. Silent Knight.
5. Wheelock; a brand of Eaton.

B. General Requirements for Manual Fire-Alarm Boxes: Comply with UL 38. Boxes shall be finished in red with molded, raised-letter operating instructions in contrasting color; shall show visible indication of operation; and shall be mounted on recessed outlet box. If indicated as surface mounted, provide manufacturer's surface back box.

1. Double-action mechanism requiring two actions to initiate an alarm, pull-lever] type; wth integral addressable module arranged to communicate manual-station status (normal, alarm, or trouble) to fire-alarm control unit.
2. Station Reset: Key- or wrench-operated switch.

2.6 SYSTEM SMOKE DETECTORS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Fire-Lite Alarms, Inc.; a Honeywell International company.
2. GE UTC Fire & Security; A United Technologies Company.
4. Silent Knight.

B. General Requirements for System Smoke Detectors:

1. Comply with UL 268; operating at 24-V dc, nominal.
2. Detectors shall be four-wire type.
3. Base Mounting: Detector and associated electronic components shall be mounted in a twist-lock module that connects to a fixed base. Provide terminals in the fixed base for connection to building wiring.
4. Self-Restoring: Detectors do not require resetting or readjustment after actuation to restore them to normal operation.
5. Integral Visual-Indicating Light: LED type, indicating detector has operated and power-on status.

C. Photoelectric Smoke Detectors:
1. Detector address shall be accessible from fire-alarm control unit and shall be able to identify the detector's location within the system and its sensitivity setting.
2. An operator at fire-alarm control unit, having the designated access level, shall be able to manually access the following for each detector:
 a. Primary status.
 b. Device type.
 c. Present average value.
 d. Present sensitivity selected.
 e. Sensor range (normal, dirty, etc.).

D. Duct Smoke Detectors: Photoelectric type complying with UL 268A.
1. Detector address shall be accessible from fire-alarm control unit and shall be able to identify the detector's location within the system and its sensitivity setting.
2. An operator at fire-alarm control unit, having the designated access level, shall be able to manually access the following for each detector:
 a. Primary status.
 b. Device type.
 c. Present average value.
 d. Present sensitivity selected.
 e. Sensor range (normal, dirty, etc.).
3. Weatherproof Duct Housing Enclosure: NEMA 250, Type 4X; NRTL listed for use with the supplied detector for smoke detection in HVAC system ducts.
4. Sampling Tubes: Design and dimensions as recommended by manufacturer for specific duct size, air velocity, and installation conditions where applied.

2.7 CARBON MONOXIDE DETECTORS

A. General: Carbon monoxide detector listed for connection to fire-alarm system.
1. Mounting: Adapter plate for outlet box mounting.
2. Testable by introducing test carbon monoxide into the sensing cell.
3. Detector shall provide alarm contacts and trouble contacts.
4. Detector shall send trouble alarm when nearing end-of-life, power supply problems, or internal faults.
5. Comply with UL 2075.
6. Locate, mount, and wire according to manufacturer's written instructions.
7. Provide means for addressable connection to fire-alarm system.
8. Test button simulates an alarm condition.

2.8 HEAT DETECTORS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Fire-Lite Alarms, Inc.; a Honeywell International company.
 2. GE UTC Fire & Security; A United Technologies Company.
 4. Silent Knight.

B. General Requirements for Heat Detectors: Comply with UL 521.
 1. Temperature sensors shall test for and communicate the sensitivity range of the device.

C. Heat Detector, Combination Type: Actuated by either a fixed temperature of 135 deg F or a rate of rise that exceeds 15 deg F per minute unless otherwise indicated.
 1. Mounting: Twist-lock base interchangeable with smoke-detector bases.
 2. Integral Addressable Module: Arranged to communicate detector status (normal, alarm, or trouble) to fire-alarm control unit.

2.9 NOTIFICATION APPLIANCES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. GE UTC Fire & Security; A United Technologies Company.
 3. Wheelock; a brand of Eaton.

B. General Requirements for Notification Appliances: Connected to notification-appliance signal circuits, zoned as indicated, equipped for mounting as indicated, and with screw terminals for system connections.
 1. Combination Devices: Factory-integrated audible and visible devices in a single-mounting assembly, equipped for mounting as indicated, and with screw terminals for system connections.

C. Horns: Electric-vibrating-polarized type, 24-V dc; with provision for housing the operating mechanism behind a grille. Comply with UL 464. Horns shall produce a sound-pressure level of 90 dBA, measured 10 feet from the horn, using the coded signal prescribed in UL 464 test protocol.
D. Visible Notification Appliances: Xenon strobe lights complying with UL 1971, with clear or nominal white polycarbonate lens mounted on an aluminum faceplate. The word ‘FIRE’ is engraved in minimum 1-inch-high letters on the lens.

1. Rated Light Output:
 a. 15/30/75/110 cd, selectable in the field.

2. Mounting: Wall mounted unless otherwise indicated.

3. Flashing shall be in a temporal pattern, synchronized with other units.

5. Mounting Faceplate: Factory finished, [red] [white].

2.10 REMOTE ANNUNCIATOR

A. Description: Annunciator functions shall match those of fire-alarm control unit for alarm, supervisory, and trouble indications. Manual switching functions shall match those of fire-alarm control unit, including acknowledging, silencing, resetting, and testing.

1. Mounting: Surface cabinet, NEMA 250, Type 1.

B. Display Type and Functional Performance: Alphanumeric display and LED indicating lights shall match those of fire-alarm control unit. Provide controls to acknowledge, silence, reset, and test functions for alarm, supervisory, and trouble signals.

2.11 ADDRESSABLE INTERFACE DEVICE

A. General:

1. Include address-setting means on the module.

2. Store an internal identifying code for control panel use to identify the module type.

3. Listed for controlling HVAC fan motor controllers.

B. Monitor Module: Microelectronic module providing a system address for alarm-initiating devices for wired applications with normally open contacts.

C. Integral Relay: Capable of providing a direct signal to elevator controller to initiate elevator recall and to circuit-breaker shunt trip for power shutdown.

1. Allow the control panel to switch the relay contacts on command.

2. Have a minimum of two normally open and two normally closed contacts available for field wiring.

D. Control Module:

1. Operate notification devices.

2. Operate solenoids for use in sprinkler service.
2.12 WIRE AND WIRING SYSTEM

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. West Penn Wire/COT; a division of Cable Design Technologies
2. Comtran Corporation
3. Helix/HiTemp Cables, Inc, a Draka USA Company
4. Rockbestos-Suprenant Cable Corporation, a Mamlon Group Company

B. Non-power-limited circuits: Solid-copper conductors with 600-V rated, 75 deg. C, color coded insulation

1. Low voltage circuits: No. 16 AWG minimum
2. Line-voltage circuits: No. 12 AWG, minimum

C. Power-limited circuits: NFPA 70, Types FPL, FPLR, or FPLP as recommended by manufacturer

D. Wiring System: Class A in accordance with NFPA 72.

2.13 DIGITAL ALARM COMMUNICATOR TRANSMITTER

A. Digital alarm communicator transmitter shall be acceptable to the remote central station and shall comply with UL 632.

B. Functional Performance: Unit shall receive an alarm, supervisory, or trouble signal from fire-alarm control unit and automatically capture two telephone line(s) and dial a preset number for a remote central station. When contact is made with central station(s), signals shall be transmitted. If service on either line is interrupted for longer than 45 seconds, transmitter shall initiate a local trouble signal and transmit the signal indicating loss of telephone line to the remote alarm receiving station over the remaining line. Transmitter shall automatically report telephone service restoration to the central station. If service is lost on both telephone lines, transmitter shall initiate the local trouble signal.

C. Local functions and display at the digital alarm communicator transmitter shall include the following:

1. Verification that both telephone lines are available.
2. Programming device.
3. LED display.
5. Communications failure with the central station or fire-alarm control unit.

D. Digital data transmission shall include the following:

1. Address of the alarm-initiating device.
2. Address of the supervisory signal.
3. Address of the trouble-initiating device.
4. Loss of ac supply.
5. Loss of power.
6. Low battery.
7. Abnormal test signal.

E. Secondary Power: Integral rechargeable battery and automatic charger.

F. Self-Test: Conducted automatically every 24 hours with report transmitted to central station.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas and conditions for compliance with requirements for ventilation, temperature, humidity, and other conditions affecting performance of the Work.

1. Verify that manufacturer's written instructions for environmental conditions have been permanently established in spaces where equipment and wiring are installed, before installation begins.

B. Examine roughing-in for electrical connections to verify actual locations of connections before installation.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 EQUIPMENT INSTALLATION

A. Comply with NFPA 72, NFPA 101, and requirements of authorities having jurisdiction for installation and testing of fire-alarm equipment. Install all electrical wiring to comply with requirements in NFPA 70 including, but not limited to, Article 760, "Fire Alarm Systems."

1. Devices placed in service before all other trades have completed cleanup shall be replaced.
2. Devices installed but not yet placed in service shall be protected from construction dust, debris, dirt, moisture, and damage according to manufacturer's written storage instructions.

B. Install wall-mounted equipment, with tops of cabinets not more than 78 inches above the finished floor.

C. Manual Fire-Alarm Boxes:

1. Install manual fire-alarm box in the normal path of egress within 60 inches of the exit doorway.
3. The operable part of manual fire-alarm box shall be between 42 inches and 48 inches above floor level. All devices shall be mounted at the same height unless otherwise indicated.

D. Smoke- or Heat-Detector Spacing:

1. Comply with the "Smoke-Sensing Fire Detectors" section in the "Initiating Devices" chapter in NFPA 72, for smoke-detector spacing.
2. Comply with the "Heat-Sensing Fire Detectors" section in the "Initiating Devices" chapter in NFPA 72, for heat-detector spacing.
3. Smooth ceiling spacing shall not exceed 30 feet.
4. Spacing of detectors for irregular areas, for irregular ceiling construction, and for high ceiling areas shall be determined according to Annex A in NFPA 72.
5. HVAC: Locate detectors not closer than 36 inches from air-supply diffuser or return-air opening.
6. Lighting Fixtures: Locate detectors not closer than 12 inches from any part of a lighting fixture and not directly above pendant mounted or indirect lighting.

E. Install a cover on each smoke detector that is not placed in service during construction. Cover shall remain in place except during system testing. Remove cover prior to system turnover.

F. Duct Smoke Detectors: Comply with NFPA 72 and NFPA 90A. Install sampling tubes so they extend the full width of duct. Tubes more than 36 inches long shall be supported at both ends.

1. Do not install smoke detector in duct smoke-detector housing during construction. Install detector only during system testing and prior to system turnover.

G. Elevator Shafts: Coordinate temperature rating and location with sprinkler rating and location. Do not install smoke detectors in sprinklered elevator shafts.

H. Remote Status and Alarm Indicators: Install in a visible location near each smoke detector, sprinkler water-flow switch, and valve-tamper switch that is not readily visible from normal viewing position.

I. Audible Alarm-Indicating Devices: Install not less than 6 inches below the ceiling. Install bells and horns on flush-mounted back boxes with the device-operating mechanism concealed behind a grille. Install all devices at the same height unless otherwise indicated.

J. Visible Alarm-Indicating Devices: Install adjacent to each alarm bell or alarm horn and at least 6 inches below the ceiling. Install all devices at the same height unless otherwise indicated.

3.3 PATHWAYS

A. Pathways above recessed ceilings and in nonaccessible locations may be routed exposed.
1. Exposed pathways located less than 96 inches above the floor shall be installed in EMT.

B. Pathways shall be installed in EMT.

C. Exposed EMT shall be painted red enamel.

3.4 CONNECTIONS

A. Make addressable connections with a supervised interface device to the following devices and systems. Install the interface device less than 36 inches from the device controlled. Make an addressable confirmation connection when such feedback is available at the device or system being controlled.

1. Alarm-initiating connection to smoke-control system (smoke management) at firefighters' smoke-control system panel.
2. Alarm-initiating connection to elevator recall system and components.
3. Alarm-initiating connection to activate emergency shutoffs for gas and fuel supplies.
4. Supervisory connections at valve supervisory switches.
5. Supervisory connections at elevator shunt-trip breaker.

3.5 IDENTIFICATION

A. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification specified in Section 270553 "Identification for Communications Systems."

B. Install framed instructions in a location visible from fire-alarm control unit.

3.6 GROUNDING

A. Ground fire-alarm control unit and associated circuits; comply with IEEE 1100. Install a ground wire from main service ground to fire-alarm control unit.

B. Ground shielded cables at the control panel location only. Insulate shield at device location.

3.7 FIELD QUALITY CONTROL

A. Field tests shall be witnessed by authorities having jurisdiction and Owner’s Representative.

B. Manufacturer’s Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.

C. Perform tests and inspections.
D. Perform the following tests and inspections with the assistance of a factory-authorized service representative:

1. Visual Inspection: Conduct visual inspection prior to testing.
 a. Inspection shall be based on completed record Drawings and system documentation that is required by the "Completion Documents, Preparation" table in the "Documentation" section of the "Fundamentals" chapter in NFPA 72.
 b. Comply with the "Visual Inspection Frequencies" table in the "Inspection" section of the "Inspection, Testing and Maintenance" chapter in NFPA 72; retain the "Initial/Reacceptance" column and list only the installed components.

3. Factory-authorized service representative shall prepare the "Fire Alarm System Record of Completion" in the "Documentation" section of the "Fundamentals" chapter in NFPA 72 and the "Inspection and Testing Form" in the "Records" section of the "Inspection, Testing and Maintenance" chapter in NFPA 72.

E. Reacceptance Testing: Perform reacceptance testing to verify the proper operation of added or replaced devices and appliances.

F. Fire-alarm system will be considered defective if it does not pass tests and inspections.

G. Prepare test and inspection reports.

H. Maintenance Test and Inspection: Perform tests and inspections listed for weekly, monthly, quarterly, and semiannual periods. Use forms developed for initial tests and inspections.

I. Annual Test and Inspection: One year after date of Substantial Completion, test fire-alarm system complying with visual and testing inspection requirements in NFPA 72. Use forms developed for initial tests and inspections.

3.8 MAINTENANCE SERVICE

A. Initial Maintenance Service: Beginning at Substantial Completion, maintenance service shall include 12 months' full maintenance by skilled employees of manufacturer's designated service organization. Include preventive maintenance, repair or replacement of worn or defective components, lubrication, cleaning, and adjusting as required for proper operation. Parts and supplies shall be manufacturer's authorized replacement parts and supplies.

1. Include visual inspections according to the "Visual Inspection Frequencies" table in the "Testing" paragraph of the "Inspection, Testing and Maintenance" chapter in NFPA 72.

3.9 SOFTWARE SERVICE AGREEMENT

A. Comply with UL 864.

B. Technical Support: Beginning at Substantial Completion, service agreement shall include software support for two years.

C. Upgrade Service: At Substantial Completion, update software to latest version. Install and program software upgrades that become available within two years from date of Substantial Completion. Upgrading software shall include operating system and new or revised licenses for using software.

1. Upgrade Notice: At least 30 days to allow Owner to schedule access to system and to upgrade computer equipment if necessary.

3.10 DEMONSTRATION

A. Train Owner's maintenance personnel to adjust, operate, and maintain fire-alarm system.

END OF SECTION
SECTION 323300
SITE FURNISHINGS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Trash Receptacle.

1.3 ACTION SUBMITTALS
A. Product Data: Submit manufacturer’s information for product to include, but not limited to, catalog cuts and installation instructions.

1.4 CLOSEOUT SUBMITTALS
A. Maintenance Data: For site furnishings to include in maintenance manuals.

1.5 DELIVERY, STORAGE, AND HANDLING
A. Deliver materials to site in manufacturer’s original, unopened containers and packaging, with labels clearly identifying product name and manufacturer.

B. Store materials in clean, dry area in accordance with manufacturer’s instructions. Keep materials in manufacturer’s original, unopened containers and packaging until installation.

C. Protect materials and finish during handling and installation to prevent damage.

PART 2 - PRODUCTS

2.1 TRASH RECEPTACLE

B. Model: Select Litter Receptacles, Triple Side Opening, 75 Gallon, Powder Coated Metal.
C. Size: 42 inch height x 17 inch depth x 50 1/4 inch width.

D. Body Panel Style: All solid panels.

E. Door #1: Solid panel, no lock, 5 inch diameter hole opening, recycling bottles and cans medallion.

F. Door #2: Solid panel, no lock, oval slot opening measuring 10 inches x 4 inches, recycling paper medallion.

G. Door #3: Solid panel, no lock, multi-use opening measuring 8 inches x 8 inches square, waste only medallion.

H. All Doors: Powdercoated aluminum medallion for vinyl text measuring 4 inches x 4 inches square.

I. Color: Silver

J. Mounting: Surface mounted and freestanding with adjustable glides.

2.2 MATERIALS

A. Base: Welded carbon steel. Base is bolted to unit body with stainless steel 1/4-20 hex head screws.

B. Unit body: Formed of 14 gauge carbon steel sheet.

C. Door panel: Formed of 14 gauge carbon steel sheet.

D. Liner: Rotomolded low density polyethylene.

E. Door opening trim and sign medallion: Cast 319 or A413 aluminum. Secured to door panel with black nylon cup washers and carbon steel #8-32 x 1/4” socket button head cap screws with magni-coat. Vinyl graphics factory-applied to medallion.

F. Adjustable glides: Black nylon base, 2-3/16” diameter, with 3/8-16 thread on stainless steel stem.

G. Hinge: Stainless steel hinges (2) per door, attached to door and unit body with stainless steel screws.

H. Cross braces, bin dividers: Carbon steel sheet. Bin dividers on double and triple units only.

2.3 FINISHES

A. Finish on Carbon Steel: Landscape Forms, Inc. “Pangard II”.
 1. Primer: Rust inhibitor.
 2. Topcoat: Thermosetting polyester powdercoat. UV, chip, and flake resistant.
3. Test Results: “Pangard II”.
 b. UV Resistance, Color and Gloss, ASTM G 155, Cycle 7: Delta E less than 2 at 2.0 mils and less than 20 percent loss.
 c. Cross-Hatch Adhesion, ASTM D 3359, Method B: 100 percent pass.
 d. Flexibility Test, Mandrel, ASTM D 522: 3 mm at 2 mils.
 e. Erichsen Cupping, ISO 1520: 8 mm.
 g. Impact Test, ASTM D 2794: 60 inches/pound at 2.5 mils.
 h. Pencil Hardness, ASTM D 3363: 2H minimum.
 i. Corrosion Resistance, 1,500-Hour Test, ASTM B 117: Max undercutting 1 mm.
 j. Humidity Resistance, 1,500-Hour Test, ASTM D 2247: Max blisters 1 mm.

PART 3 - EXECUTION

3.1 EXAMINATION
 A. Examine areas to receive litter receptacles.
 B. Notify Architect of conditions that would adversely affect installation or subsequent use.
 C. Do not begin installation until unacceptable conditions are corrected.

3.2 INSTALLATION, GENERAL
 A. Install litter receptacles in accordance with manufacturer’s instructions at locations indicated on the Drawings.
 B. Install litter receptacles level.

3.3 ADJUSTING
 A. Finish Damage: Repair minor damages to finish in accordance with manufacturer’s instructions and as approved by Architect.
 B. Component Damage: Remove and replace damaged components that cannot be successfully repaired as determined by Architect.

3.4 CLEANING
 A. Clean litter receptacles promptly after installation in accordance with manufacturer’s instructions.
 B. Do not use harsh cleaning materials or methods that could damage finish.

3.5 PROTECTION
A. Protect installed litter receptacles to ensure that, except for normal weathering, litter receptacles will be without damage or deterioration at time of Substantial Completion.

END OF SECTION