January 9, 2019

NORTH DISTRICT MAINTENANCE YARD - PHASE 1 SITE DESIGN

APPENDIX A: TECHNICAL SPECIFICATIONS

CONTRACT NO. T201880103

Submitted to:
THE DELAWARE DEPARTMENT OF TRANSPORTATION
North District Maintenance Yard

This specification is for the work associated with Phase 1 Site Design for DelDOT’s Chapman Yard.

<table>
<thead>
<tr>
<th>SECTION</th>
<th>SECTION TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIVISION 01</td>
<td>GENERAL REQUIREMENTS</td>
</tr>
<tr>
<td>011000</td>
<td>Summary</td>
</tr>
<tr>
<td>012500</td>
<td>Substitution Procedures</td>
</tr>
<tr>
<td>012600</td>
<td>Contract Modification Procedures</td>
</tr>
<tr>
<td>012900</td>
<td>Payment Procedures</td>
</tr>
<tr>
<td>013100</td>
<td>Project Management and Coordination</td>
</tr>
<tr>
<td>013300</td>
<td>Submittal Procedures</td>
</tr>
<tr>
<td>017300</td>
<td>Execution</td>
</tr>
<tr>
<td>017700</td>
<td>Closeout Procedures</td>
</tr>
<tr>
<td>017823</td>
<td>Operation and Maintenance Data</td>
</tr>
<tr>
<td>017839</td>
<td>Project Record Documents</td>
</tr>
<tr>
<td>018200</td>
<td>Demonstration and Training</td>
</tr>
<tr>
<td>DIVISION 03</td>
<td>CONCRETE</td>
</tr>
<tr>
<td>033000</td>
<td>Cast-In-Place Concrete</td>
</tr>
<tr>
<td>DIVISION 05</td>
<td>METALS</td>
</tr>
<tr>
<td>055000</td>
<td>Metal Fabrications</td>
</tr>
<tr>
<td>DIVISION 06</td>
<td>WOOD, PLASTICS, AND COMPOSITES</td>
</tr>
<tr>
<td>061000</td>
<td>Rough Carpentry</td>
</tr>
<tr>
<td>061600</td>
<td>Sheathing</td>
</tr>
<tr>
<td>061753</td>
<td>Shop-Fabricated Wood Trusses</td>
</tr>
<tr>
<td>061800</td>
<td>Glued-Laminated Construction</td>
</tr>
<tr>
<td>064116</td>
<td>Plastic-Laminate-Faced Architectural Cabinets</td>
</tr>
<tr>
<td>066100</td>
<td>Structural Fiberglass Columns</td>
</tr>
<tr>
<td>DIVISION 07</td>
<td>THERMAL AND MOISTURE PROTECTION</td>
</tr>
<tr>
<td>071113</td>
<td>Bituminous Dampproofing</td>
</tr>
<tr>
<td>072100</td>
<td>Thermal Insulation</td>
</tr>
<tr>
<td>072500</td>
<td>Weather Barriers</td>
</tr>
<tr>
<td>073113</td>
<td>Asphalt Shingles</td>
</tr>
<tr>
<td>074646</td>
<td>Fiber Cement Siding</td>
</tr>
<tr>
<td>076200</td>
<td>Sheet Metal Flashing and Trim</td>
</tr>
<tr>
<td>079200</td>
<td>Joint Sealants</td>
</tr>
</tbody>
</table>
DIVISION 08 OPENINGS

081113 Hollow Metal Doors and Frames
081416 Flush Wood Doors
085413 Fiberglass Windows
087100 Door Hardware

DIVISION 09 FINISHES

092900 Gypsum Board
093000 Tiling
095113 Acoustical Panel Ceilings
096519 Resilient Tile Flooring
099113 Exterior Painting
099123 Interior Painting

DIVISION 10 SPECIALTIES

102113 Toilet Compartments
102239 Folding Panel Partitions
102800 Toilet, Bath, and Laundry Accessories

DIVISION 22 PLUMBING

220500 Common Work Results for Plumbing
220513 Common Motor Requirements for Plumbing Equipment
220517 Sleeves and Sleeve Seals for Plumbing Piping
220518 Escutcheons for Plumbing Piping
220519 Meters and Gages for Plumbing Piping
220523 Ball Valves for Plumbing Piping
220524 Check Valves for Plumbing Piping
220529 Hangers and Supports for Plumbing Piping and Equipment
220553 Identification for Plumbing Piping and Equipment
220719 Plumbing Piping Insulation
221116 Domestic Water Piping
221119 Domestic Water Piping Specialties
221316 Sanitary Waste and Vent Piping
221319 Sanitary Waster Piping Specialties
221429 Plumbing Pumps
223400 Domestic Water Heaters
223620 Diesel Fuel System
224000 Plumbing Fixtures
DIVISION 23 HEATING VENTILATION AND AIR CONDITIONING

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>230000</td>
<td>Basic Mechanical Materials and Methods</td>
</tr>
<tr>
<td>230513</td>
<td>Common Motor Requirements for Mechanical Equipment</td>
</tr>
<tr>
<td>230519</td>
<td>Meters and Gages for Mechanical Piping</td>
</tr>
<tr>
<td>230523</td>
<td>Valves</td>
</tr>
<tr>
<td>230529</td>
<td>Hangers and Supports for Mechanical Piping and Equipment</td>
</tr>
<tr>
<td>230548</td>
<td>Vibration Controls for Mechanical Piping and Equipment</td>
</tr>
<tr>
<td>230553</td>
<td>Identification for Mechanical Piping and Equipment</td>
</tr>
<tr>
<td>230593</td>
<td>Testing, Adjusting, and Balancing for HVAC</td>
</tr>
<tr>
<td>230719</td>
<td>Mechanical Insulation</td>
</tr>
<tr>
<td>230923</td>
<td>Direct Digital Control (DDC) System for HVAC</td>
</tr>
<tr>
<td>231113</td>
<td>Mechanical Piping</td>
</tr>
<tr>
<td>232113.13</td>
<td>Ground-Loop Heat-Pump Piping</td>
</tr>
<tr>
<td>232116</td>
<td>Mechanical Piping Specialties</td>
</tr>
<tr>
<td>232123</td>
<td>Hydronic Pumps</td>
</tr>
<tr>
<td>232300</td>
<td>Refrigerant Piping</td>
</tr>
<tr>
<td>232500</td>
<td>HVAC Water Treatment</td>
</tr>
<tr>
<td>233113</td>
<td>Metal Ducts</td>
</tr>
<tr>
<td>233300</td>
<td>Duct Accessories</td>
</tr>
<tr>
<td>233423</td>
<td>HVAC Power Ventilators</td>
</tr>
<tr>
<td>233713</td>
<td>Diffusers, Registers, and Grilles</td>
</tr>
<tr>
<td>233723</td>
<td>HVAC Gravity Ventilators</td>
</tr>
<tr>
<td>238129</td>
<td>Variable Refrigerant Volume (VRV) HVAC System</td>
</tr>
<tr>
<td>238146</td>
<td>Water-Source Unitary Heat Pumps</td>
</tr>
<tr>
<td>238239.16</td>
<td>Propeller Unit Heaters</td>
</tr>
</tbody>
</table>

DIVISION 26 ELECTRICAL

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>260000</td>
<td>Basic Electrical Requirements</td>
</tr>
<tr>
<td>260001</td>
<td>Basic Electrical Materials and Methods</td>
</tr>
<tr>
<td>260519</td>
<td>Low-Voltage Electrical Power Conductors and Cables</td>
</tr>
<tr>
<td>260526</td>
<td>Grounding and Bonding for Electrical Systems</td>
</tr>
<tr>
<td>260529</td>
<td>Hangers and Supports for Electrical Systems</td>
</tr>
<tr>
<td>260533</td>
<td>Raceways and Boxes for Electrical Systems</td>
</tr>
<tr>
<td>260543</td>
<td>Underground Ducts and Handholes</td>
</tr>
<tr>
<td>260544</td>
<td>Sleeves and Sleeve Seals for Electrical Raceways and Cabling</td>
</tr>
<tr>
<td>260553</td>
<td>Identification for Electrical Systems</td>
</tr>
<tr>
<td>260573</td>
<td>Overcurrent Protective Device Coordination Study</td>
</tr>
<tr>
<td>262213</td>
<td>Low-Voltage Distribution Transformers</td>
</tr>
<tr>
<td>262413</td>
<td>Switchboards</td>
</tr>
<tr>
<td>262416</td>
<td>Panelboards</td>
</tr>
<tr>
<td>262726</td>
<td>Wiring Devices</td>
</tr>
<tr>
<td>262813</td>
<td>Fuses</td>
</tr>
<tr>
<td>262816</td>
<td>Enclosed Switches and Circuit Breakers</td>
</tr>
<tr>
<td>262913</td>
<td>Enclosed Controllers</td>
</tr>
<tr>
<td>263213.14</td>
<td>Diesel Engine Generators</td>
</tr>
<tr>
<td>Code</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>263600</td>
<td>Automatic Transfer Switch</td>
</tr>
<tr>
<td>265100</td>
<td>Interior Lighting</td>
</tr>
<tr>
<td>265600</td>
<td>Exterior Lighting</td>
</tr>
</tbody>
</table>

DIVISION 28 **ELECTRONIC SAFETY AND SECURITY**

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>283111</td>
<td>Digital, Addressable Fire Alarm System</td>
</tr>
</tbody>
</table>
PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Project information.
 2. Work covered by Contract Documents.
 3. Access to site.
 4. Coordination with occupants.
 5. Work restrictions.
 7. Miscellaneous provisions.

1.3 PROJECT INFORMATION
 A. Project Identification: North District Improvements – Phase 1.
 1. Project Location: Newark, Delaware.
 B. Owner: Delaware Department of Transportation.
 1. Owner's Representative: Taylor King
 C. Architect/Engineer: Johnson Mirmiran & Thompson.

1.4 WORK COVERED BY CONTRACT DOCUMENTS
 A. The Work of Project is defined by the Contract Documents and consists of construction of a new Crew Operations facility along with associated site improvements.
 1. This work is to include the new structures and associated site and utility work as shown on the contract drawings.
 B. Type of Contract:
 1. Project will be constructed under a single prime contract.
1.5 ACCESS TO SITE

A. General: Contractor shall have limited use of Project site for construction operations as indicated by the Contract limits and as indicated by requirements of this Section.

B. Use of Site: Limit use of Project site to areas within the Contract limits indicated. Do not disturb portions of Project site beyond areas in which the Work is indicated.

 1. Limits: Confine construction operations to the indoor and outdoor areas as designated on the contract drawings.
 2. Driveways, Walkways and Entrances: Keep driveways loading areas, and entrances serving premises clear and available to Owner, Owner's employees, and emergency vehicles at all times. Do not use these areas for parking or storage of materials.

 a. Schedule deliveries to minimize use of driveways and entrances by construction operations.
 b. Schedule deliveries to minimize space and time requirements for storage of materials and equipment on-site.

C. Condition of Existing Buildings: Maintain access to the existing buildings throughout construction.

1.6 WORK RESTRICTIONS

A. Work Restrictions, General: Comply with restrictions on construction operations.

 1. Comply with limitations on use of public streets and with other requirements of authorities having jurisdiction.

B. On-Site Work Hours: Limit work to normal business working hours, Monday through Friday, unless otherwise indicated.

C. Existing Utility Interruptions: For the interruption of utility services to this facility, notify the owner not less than two days in advance of the proposed utility interruption.

D. Noise, Vibration, and Odors: Coordinate operations that may result in high levels of noise and vibration, odors, or other disruption to Owner occupancy with Owner.

1.7 SPECIFICATION AND DRAWING CONVENTIONS

A. Specification Content: The Specifications use certain conventions for the style of language and the intended meaning of certain terms, words, and phrases when used in particular situations. These conventions are as follows:

 1. Imperative mood and streamlined language are generally used in the Specifications. The words "shall," "shall be," or "shall comply with," depending on the context, are implied where a colon (:) is used within a sentence or phrase.
2. Specification requirements are to be performed by Contractor unless specifically stated otherwise.

B. Division 01 General Requirements: Requirements of Sections in Division 01 apply to the Work of all Sections in the Specifications.

C. Drawing Coordination: Requirements for materials and products identified on Drawings are described in detail in the Specifications. One or more of the following are used on Drawings to identify materials and products:

1. Terminology: Materials and products are identified by the typical generic terms used in the individual Specifications Sections.
2. Abbreviations: Materials and products are identified by abbreviations.
3. Keynoting: Materials and products are identified by reference keynotes referencing Specification Section numbers found in this Project Manual.

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION (Not Used)

END OF SECTION
SECTION 012500
SUBSTITUTION PROCEDURES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes administrative and procedural requirements for substitutions.

1.3 DEFINITIONS

A. Substitutions: Changes in products, materials, equipment, and methods of construction from those required by the Contract Documents and proposed by Contractor.

1. Substitutions for Cause: Changes proposed by Contractor that are required due to changed Project conditions, such as unavailability of product, regulatory changes, or unavailability of required warranty terms.

2. Substitutions for Convenience: Changes proposed by Contractor or Owner that are not required in order to meet other Project requirements but may offer advantage to Contractor or Owner.

1.4 ACTION SUBMITTALS

A. Substitution Requests: Submit three copies of each request for consideration. Identify product or fabrication or installation method to be replaced. Include Specification Section number and title and Drawing numbers and titles.

1. Substitution Request Form: Use CSI Form 13.1A.
2. Documentation: Show compliance with requirements for substitutions and the following, as applicable:

 a. Statement indicating why specified product or fabrication, or installation cannot be provided, if applicable.
 b. Coordination information, including a list of changes or revisions needed to other parts of the Work and to construction performed by Owner and separate contractors that will be necessary to accommodate proposed substitution.
 c. Detailed comparison of significant qualities of proposed substitution with those of the Work specified. Include annotated copy of applicable Specification Section. Significant qualities may include attributes such as performance, weight, size, durability, visual effect, sustainable design...
characteristics, warranties, and specific features and requirements indicated. Indicate deviations, if any, from the Work specified.

d. Product Data, including drawings and descriptions of products and fabrication and installation procedures.

e. Certificates and qualification data, where applicable or requested.

f. List of similar installations for completed projects with project names and addresses and names and addresses of architects and owners.

g. Material test reports from a qualified testing agency indicating and interpreting test results for compliance with requirements indicated.

h. Detailed comparison of Contractor's construction schedule using proposed substitution with products specified for the Work, including effect on the overall Contract Time. If specified, product or method of construction cannot be provided within the Contract Time, include letter from manufacturer, on manufacturer's letterhead, stating date of receipt of purchase order, lack of availability, or delays in delivery.

i. Cost information, including a proposal of change, if any, in the Contract Sum.

j. Contractor's certification that proposed substitution complies with requirements in the Contract Documents except as indicated in substitution request, is compatible with related materials, and is appropriate for applications indicated.

k. Contractor's waiver of rights to additional payment or time that may subsequently become necessary because of failure of proposed substitution to produce indicated results.

3. Owner's Action: If necessary, the Owner will request additional information or documentation for evaluation. The Owner will notify Contractor of acceptance or rejection of proposed substitution within 15 days of receipt of request, or seven days of receipt of additional information or documentation, whichever is later.

b. Use product specified if Owner does not issue a decision on use of a proposed substitution within time allocated.

1.5 QUALITY ASSURANCE

A. Compatibility of Substitutions: Investigate and document compatibility of proposed substitution with related products and materials. Engage a qualified testing agency to perform compatibility tests recommended by manufacturers.

1.6 PROCEDURES

A. Coordination: Revise or adjust affected work as necessary to integrate work of the approved substitutions.
PART 2 - PRODUCTS

2.1 SUBSTITUTIONS

A. Substitutions for Cause: Submit requests for substitution immediately on discovery of need for change, but not later than 15 days prior to time required for preparation and review of related submittals.

1. Conditions: Owner will consider Contractor's request for substitution when the following conditions are satisfied. If the following conditions are not satisfied, Owner will return requests without action, except to record noncompliance with these requirements:

 a. Requested substitution is consistent with the Contract Documents and will produce indicated results.
 b. Substitution request is fully documented and properly submitted.
 c. Requested substitution will not adversely affect Contractor's construction schedule.
 d. Requested substitution has received necessary approvals of authorities having jurisdiction.
 e. Requested substitution is compatible with other portions of the Work.
 f. Requested substitution has been coordinated with other portions of the Work.
 g. Requested substitution provides specified warranty.
 h. Requested substitution has been coordinated with other portions of the Work, is uniform and consistent, is compatible with other products, and is acceptable to all contractors involved.

B. Substitutions for Convenience: Not allowed unless otherwise indicated by the Owner.

PART 3 - EXECUTION (Not Used)

END OF SECTION
SECTION 012600

CONTRACT MODIFICATION PROCEDURES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes administrative and procedural requirements for handling and processing Contract modifications.

B. Related Requirements:

1. Section 012500 "Substitution Procedures" for administrative procedures for handling requests for substitutions made after the Contract award.

1.3 MINOR CHANGES IN THE WORK

A. Engineer will issue supplemental instructions authorizing minor changes in the Work, not involving adjustment to the Contract Sum or the Contract Time.

1.4 PROPOSAL REQUESTS

A. Owner-Initiated Proposal Requests: Owner will issue a detailed description of proposed changes in the Work that may require adjustment to the Contract Sum or the Contract Time. If necessary, the description will include supplemental or revised Drawings and Specifications.

1. Work Change Proposal Requests issued by the Owner are not instructions either to stop work in progress or to execute the proposed change.

2. Within time specified in Proposal Request after receipt of Proposal Request, submit a quotation estimating cost adjustments to the Contract Sum and the Contract Time necessary to execute the change.

a. Include a list of quantities of products required or eliminated and unit costs, with total amount of purchases and credits to be made. If requested, furnish survey data to substantiate quantities.

b. Indicate applicable taxes, delivery charges, equipment rental, and amounts of trade discounts.

c. Include costs of labor and supervision directly attributable to the change.

d. Include an updated Contractor's construction schedule that indicates the effect of the change, including, but not limited to, changes in activity.
duration, start and finish times, and activity relationship. Use available total float before requesting an extension of the Contract Time.

e. Quotation Form: Use forms provided by Owner.

B. Contractor-Initiated Proposals: If latent or changed conditions require modifications to the Contract, Contractor may initiate a claim by submitting a request for a change to the Owner.

1. Include a statement outlining reasons for the change and the effect of the change on the Work. Provide a complete description of the proposed change. Indicate the effect of the proposed change on the Contract Sum and the Contract Time.

2. Include a list of quantities of products required or eliminated and unit costs, with total amount of purchases and credits to be made. If requested, furnish survey data to substantiate quantities.

3. Indicate applicable taxes, delivery charges, equipment rental, and amounts of trade discounts.

4. Include costs of labor and supervision directly attributable to the change.

5. Include an updated Contractor's construction schedule that indicates the effect of the change, including, but not limited to, changes in activity duration, start and finish times, and activity relationship. Use available total float before requesting an extension of the Contract Time.

6. Comply with requirements in Section 012500 "Substitution Procedures" if the proposed change requires substitution of one product or system for product or system specified.

7. Proposal Request Form: Use form provided by Owner.

1.5 CHANGE ORDER PROCEDURES

A. On Owner's approval of a Work Changes Proposal Request, the Owner will issue a Change Order for signatures of Owner and Contractor.

1.6 CONSTRUCTION CHANGE DIRECTIVE

1. Construction Change Directive contains a complete description of change in the Work. It also designates method to be followed to determine change in the Contract Sum or the Contract Time.

B. Documentation: Maintain detailed records on a time and material basis of work required by the Construction Change Directive.

1. After completion of change, submit an itemized account and supporting data necessary to substantiate cost and time adjustments to the Contract.
PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION (Not Used)

END OF SECTION
THIS PAGE INTENTIONALLY LEFT BLANK
SECTION 012900
PAYMENT PROCEDURES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary
 Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes administrative and procedural requirements necessary to prepare and
 process Applications for Payment.

B. Related Requirements:

1. Section 012600 "Contract Modification Procedures" for administrative
 procedures for handling changes to the Contract.

1.3 DEFINITIONS

A. Schedule of Values: A statement furnished by Contractor allocating portions of the
 Contract Sum to various portions of the Work and used as the basis for reviewing
 Contractor's Applications for Payment.

1.4 SCHEDULE OF VALUES

A. Coordination: Coordinate preparation of the Schedule of Values with preparation of
 Contractor's Construction Schedule.

1. Coordinate line items in the schedule of values with other required administrative
 forms and schedules, including the following:

 a. Application for Payment Forms with continuation sheets.
 b. Submittal schedule.
 c. Items required to be indicated as separate activities in Contractor's
 Construction Schedule.

2. Submit the Schedule of Values to Owner at earliest possible date, but no later
 than seven days before the date scheduled for submittal of initial Applications for
 Payment.

B. Format and Content: Establish line items for the Schedule of Values. Provide at least
 one line item for each Specification Section.
1. Identification: Include the following Project identification on the schedule of values:
 a. Project name and location.
 b. Name of Architect.
 c. Architect's project number.
 d. Contractor's name and address.
 e. Date of submittal.

2. Arrange the schedule of values in tabular form with separate columns to indicate the following for each item listed:
 a. Related Specification Section or Division.
 b. Description of the Work.
 c. Name of subcontractor.
 d. Name of manufacturer or fabricator.
 e. Name of supplier.
 f. Change Orders (numbers) that affect value.
 g. Dollar value of the following, as a percentage of the Contract Sum to nearest one-hundredth percent, adjusted to total 100 percent.
 1) Labor.
 2) Materials.
 3) Equipment.

3. Provide a breakdown of the Contract Sum in enough detail to facilitate continued evaluation of applications for payment and progress reports.

4. Provide a separate line item in the schedule of values for each part of the Work where applications for payment may include materials or equipment purchased or fabricated and stored, but not yet installed.
 a. Differentiate between items stored on-site and items stored off-site. If required, include evidence of insurance.

5. Provide separate line items in the schedule of values for initial cost of materials, for each subsequent stage of completion, and for total installed value of that part of the Work.

6. Each item in the schedule of values and applications for payment shall be complete. Include total cost and proportionate share of general overhead and profit for each item.

7. Schedule Updating: Update and resubmit the schedule of values before the next applications for payment when Change Orders or Construction Change Directives result in a change in the Contract Sum.

1.5 APPLICATIONS FOR PAYMENT

A. Each Application for Payment following the initial Application for Payment shall be consistent with previous applications and payments as certified by and paid for by Owner.
1. Initial Application for Payment, Application for Payment at time of Substantial Completion, and final Application for Payment involve additional requirements.

B. Payment Application Times: The date for each progress payment is indicated in the Agreement between Owner and Contractor. The period of construction work covered by each Application for Payment is the period indicated in the Agreement.

C. Application for Payment Forms: Use forms provided by Owner for applications for payment.

D. Application Preparation: Complete every entry on form. Notarize and execute by a person authorized to sign legal documents on behalf of Contractor.

1. Entries shall match data on the schedule of values and Contractor's construction schedule. Use updated schedules if revisions were made.
2. Include amounts for work completed following previous Application for Payment, whether or not payment has been received. Include only amounts for work completed at time of Application for Payment.
3. Include amounts of Change Orders and Construction Change Directives issued before last day of construction period covered by application.
4. Indicate separate amounts for work being carried out under Owner-requested Project acceleration.

E. Stored Materials: Include in Application for Payment amounts applied for materials or equipment purchased or fabricated and stored, but not yet installed. Differentiate between items stored on-site and items stored off-site.

1. Provide certificate of insurance, evidence of transfer of title to Owner, and consent of surety to payment, for stored materials.
2. Provide supporting documentation that verifies amount requested, such as paid invoices. Match amount requested with amounts indicated on documentation; do not include overhead and profit on stored materials.
3. Provide summary documentation for stored materials indicating the following:

a. Value of materials previously stored and remaining stored as of date of previous applications for payment.

b. Value of previously stored materials put in place after date of previous Application for Payment and on or before date of current Application for Payment.

c. Value of materials stored since date of previous Application for Payment and remaining stored as of date of current Application for Payment.

F. Transmittal: Submit three signed and notarized original copies of each Application for Payment to Owner by a method ensuring receipt. One copy shall include waivers of lien and similar attachments if required.

1. Transmit each copy with a transmittal form listing attachments and recording appropriate information about application.
G. Waivers of Mechanic's Lien: With each Application for Payment, submit waivers of mechanic's lien from entities lawfully entitled to file a mechanic's lien arising out of the Contract and related to the Work covered by the payment.

1. Submit partial waivers on each item for amount requested in previous application, after deduction for retainage, on each item.
2. When an application shows completion of an item, submit conditional final or full waivers.
3. Owner reserves the right to designate which entities involved in the Work must submit waivers.
4. Waiver Forms: Submit executed waivers of lien on forms acceptable to Owner.

H. Initial Application for Payment: Administrative actions and submittals that must precede or coincide with submittal of first Application for Payment include the following:

1. List of subcontractors.
2. Schedule of values.
3. Contractor's construction schedule (preliminary, if not final).
4. Products list (preliminary, if not final).
5. Submittal schedule (preliminary, if not final).
6. List of Contractor's staff assignments.
7. Copies of building permits.
11. Certificates of insurance and insurance policies.
13. Data needed to acquire Owner's insurance.

I. Application for Payment at Substantial Completion: After issuance of the Certificate of Substantial Completion, submit an Application for Payment showing 100 percent completion for portion of the Work claimed as substantially complete.

1. Include documentation supporting claim that the Work is substantially complete and a statement showing an accounting of changes to the Contract Sum.

J. Final Payment Application: After completing Project closeout requirements, submit final Application for Payment with releases and supporting documentation not previously submitted and accepted, including, but not limited, to the following:

1. Evidence of completion of Project closeout requirements.
2. Insurance certificates for products and completed operations where required and proof that taxes, fees, and similar obligations were paid.
3. Updated final statement, accounting for final changes to the Contract Sum.
4. AIA Document G706, "Contractor's Affidavit of Payment of Debts and Claims."
6. Evidence that claims have been settled.
7. Final liquidated damages settlement statement.
PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION (Not Used)

END OF SECTION
SECTION 013100
PROJECT MANAGEMENT AND COORDINATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes administrative provisions for coordinating construction operations on Project including, but not limited to, the following:

1. General coordination procedures
2. Coordination drawings
3. Requests for Information (RFIs)
4. Project Web site
5. Project meetings

B. Each contractor shall participate in coordination requirements. Certain areas of responsibility are assigned to a specific contractor.

C. Related Requirements:

1. Section 017300 "Execution" for procedures for coordinating general installation and field-engineering services, including establishment of benchmarks and control points.
2. Section 017700 "Closeout Procedures" for coordinating closeout of the Contract.

1.3 DEFINITIONS

A. RFI: Request from Owner, Architect, or Contractor seeking information required by or clarifications of the Contract Documents.

1.4 INFORMATIONAL SUBMITTALS

A. Subcontract List: Prepare a written summary identifying individuals or firms proposed for each portion of the Work, including those who are to furnish products or equipment fabricated to a special design. Use CSI Form 1.5A or a form approved by the owner. Include the following information in tabular form:

1. Name, address, and telephone number of entity performing subcontract or supplying products.
2. Number and title of related Specification Section(s) covered by subcontract.
3. Drawing number and detail references, as appropriate, covered by subcontract.
B. Key Personnel Names: Within 15 days of starting construction operations, submit a list of key personnel assignments, including superintendent and other personnel in attendance at Project site. Identify individuals and their duties and responsibilities; list addresses and telephone numbers, including home, office, and cellular telephone numbers and e-mail addresses. Provide names, addresses, and telephone numbers of individuals assigned as alternates in the absence of individuals assigned to Project.

1. Post copies of list in project meeting room, in temporary field office, and by each temporary telephone. Keep list current at all times.

1.5 GENERAL COORDINATION PROCEDURES

A. Coordination: Coordinate construction operations included in different Sections of the Specifications to ensure efficient and orderly installation of each part of the Work. Coordinate construction operations included in different Sections that depend on each other for proper installation, connection, and operation.

1. Schedule construction operations in sequence required to obtain the best results where installation of one part of the Work depends on installation of other components, before or after its own installation.
2. Coordinate installation of different components to ensure maximum performance and accessibility for required maintenance, service, and repair.
3. Make adequate provisions to accommodate items scheduled for later installation.

B. Coordination: Each contractor shall coordinate its construction operations with those of other contractors and entities to ensure efficient and orderly installation of each part of the Work. Each contractor shall coordinate its operations with operations included in different Sections that depend on each other for proper installation, connection, and operation.

1. Schedule construction operations in sequence required to obtain the best results where installation of one part of the Work depends on installation of other components, before or after its own installation.
2. Coordinate installation of different components with other contractors to ensure maximum performance and accessibility for required maintenance, service, and repair.
3. Make adequate provisions to accommodate items scheduled for later installation.

C. Prepare memoranda for distribution to each party involved, outlining special procedures required for coordination. Include such items as required notices, reports, and list of attendees at meetings.

1. Prepare similar memoranda for Owner and separate contractors if coordination of their Work is required.

D. Administrative Procedures: Coordinate scheduling and timing of required administrative procedures with any other construction activities to avoid conflicts and to ensure orderly progress of the Work. Such administrative activities include, but are not limited to, the following:
1. Preparation of contractor's construction schedule.
2. Preparation of the schedule of values.
3. Installation and removal of temporary facilities and controls.
4. Delivery and processing of submittals.
5. Progress meetings.
6. Pre-installation conferences.
7. Project closeout activities.
8. Startup and adjustment of systems.

E. Conservation: Coordinate construction activities to ensure that operations are carried out with consideration given to conservation of energy, water, and materials. Coordinate use of temporary utilities to minimize waste.

1. Salvage materials and equipment involved in performance of, but not actually incorporated into, the Work. See other Sections for disposition of salvaged materials that are designated as Owner's property.

1.6 COORDINATION DRAWINGS

A. Coordination Drawings, General: Prepare coordination drawings according to requirements in individual Sections, and additionally where installation is not completely shown on Shop Drawings, where limited space availability necessitates coordination, or if coordination is required to facilitate integration of products and materials fabricated or installed by more than one entity.

1. Content: Project-specific information, drawn accurately to a scale large enough to indicate and resolve conflicts. Do not base coordination drawings on standard printed data. Include the following information, as applicable:

a. Use applicable Drawings as a basis for preparation of coordination drawings. Prepare sections, elevations, and details as needed to describe relationship of various systems and components.
b. Coordinate the addition of trade-specific information to the coordination drawings by multiple contractors in a sequence that best provides for coordination of the information and resolution of conflicts between installed components before submitting for review.
c. Indicate functional and spatial relationships of components of architectural, structural, civil, mechanical, and electrical systems.
d. Indicate space requirements for routine maintenance and for anticipated replacement of components during the life of the installation.
e. Show location and size of access doors required for access to concealed dampers, valves, and other controls.
f. Indicate required installation sequences.
g. Indicate dimensions shown on the Drawings. Specifically note dimensions that appear to be in conflict with submitted equipment and minimum clearance requirements. Provide alternate sketches to Architect indicating proposed resolution of such conflicts. Minor dimension changes and difficult installations will not be considered changes to the Contract.
B. Coordination Drawing Organization: Organize coordination drawings as follows:

1. Floor Plans and Reflected Ceiling Plans: Show architectural and structural elements, and mechanical, plumbing, fire-protection, fire-alarm, and electrical Work. Show locations of visible ceiling-mounted devices relative to acoustical ceiling grid. Supplement plan drawings with section drawings where required to adequately represent the Work.

2. Plenum Space: Indicate subframing for support of ceiling and wall systems, mechanical and electrical equipment, and related Work. Locate components within ceiling plenum to accommodate layout of light fixtures indicated on Drawings. Indicate areas of conflict between light fixtures and other components.

3. Mechanical Rooms: Provide coordination drawings for mechanical rooms showing plans and elevations of mechanical, plumbing, fire-protection, fire-alarm, and electrical equipment.

4. Structural Penetrations: Indicate penetrations and openings required for all disciplines.

5. Slab Edge and Embedded Items: Indicate slab edge locations and sizes and locations of embedded items for metal fabrications, sleeves, anchor bolts, bearing plates, angles, door floor closers, slab depressions for floor finishes, curbs and housekeeping pads, and similar items.

6. Mechanical and Plumbing Work: Show the following:
 a. Sizes and bottom elevations of ductwork, piping, and conduit runs, including insulation, bracing, flanges, and support systems.
 b. Dimensions of major components, such as dampers, valves, diffusers, access doors, cleanouts and electrical distribution equipment.
 c. Fire-rated enclosures around ductwork.

7. Electrical Work: Show the following:
 a. Runs of vertical and horizontal conduit 1-1/4 inches in diameter and larger.
 b. Light fixture, exit light, emergency battery pack, smoke detector, and other fire-alarm locations.
 c. Panel board, switch board, switchgear, transformer, busway, generator, and motor control center locations.
 d. Location of pull boxes and junction boxes dimensioned from column center lines.

8. Fire-Protection System: Show the following:
 a. Locations of standpipes, mains piping, branch lines, pipe drops, and sprinkler heads.

9. Review: Architect will review coordination drawings to confirm that the Work is being coordinated, but not for the details of the coordination, which are Contractor's responsibility. If Architect determines that coordination drawings are not being prepared in sufficient scope or detail, or are otherwise deficient, Architect will so inform Contractor, who shall make changes as directed and resubmit.
10. Retain "Coordination Drawing Prints" Subparagraph below if submittal of prints is adequate for review of coordination drawings and electronic file submittal for review or record is not required.

11. Coordination Drawing Prints: Prepare coordination drawing prints according to requirements in Section 013300 "Submittal Procedures."

C. Coordination Digital Data Files: Prepare coordination digital data files according to the following requirements:

1. File Preparation Format: DWG, Version, operating in Microsoft Windows operating system.
2. File Submittal Format: Submit or post coordination drawing files using Portable Data File (PDF) format.
3. Architect will furnish Contractor one set of digital data files of Drawings for use in preparing coordination digital data files.
 a. Architect makes no representations as to the accuracy or completeness of digital data files as they relate to Drawings.
 b. Contractor shall execute a data licensing agreement in the form of Agreement form acceptable to Owner.

1.7 REQUESTS FOR INFORMATION (RFIs)

A. General: Immediately on discovery of the need for additional information or interpretation of the Contract Documents, Contractor shall prepare and submit an RFI in the form specified.

1. Owner will return RFIs submitted by other entities controlled by Contractor with no response.
2. Coordinate and submit RFIs in a prompt manner so as to avoid delays in Contractor's work or work of subcontractors.

B. Content of the RFI: Include a detailed, legible description of item needing information or interpretation and the following:

1. Project name.
2. Project number.
3. Date.
4. Name of Contractor.
5. Name of Architect
6. RFI number, numbered sequentially.
7. RFI subject.
8. Specification Section number and title and related paragraphs, as appropriate.
9. Drawing number and detail references, as appropriate.
10. Field dimensions and conditions, as appropriate.
11. Contractor's suggested resolution. If Contractor's suggested resolution impacts the Contract Time or the Contract Sum, Contractor shall state impact in the RFI.
12. Contractor's signature.
13. Attachments: Include sketches, descriptions, measurements, photos, Product Data, Shop Drawings, coordination drawings, and other information necessary to fully describe items needing interpretation.
 a. Include dimensions, thicknesses, structural grid references, and details of affected materials, assemblies, and attachments on attached sketches.

C. RFI Forms: Software-generated form with substantially the same content as indicated above, acceptable to the Owner.
 1. Attachments shall be electronic files in Adobe Acrobat PDF format.

D. Owner’s Action: Owner, or his representatives (which may include the Architect) will review each RFI, determine action required, and respond. Allow seven working days for response for each RFI. RFIs received after 1:00 p.m. will be considered as received the following working day.
 1. The following Contractor-generated RFIs will be returned without action:
 a. Requests for approval of submittals.
 b. Requests for approval of substitutions.
 c. Requests for approval of Contractor's means and methods.
 d. Requests for coordination information already indicated in the Contract Documents.
 e. Requests for adjustments in the Contract Time or the Contract Sum.
 f. Requests for interpretation of Architect's actions on submittals.
 g. Incomplete RFIs or inaccurately prepared RFIs.

 2. Owner's action may include a request for additional information, in which case Architect's time for response will date from time of receipt of additional information.

 3. Owner's action on RFIs that may result in a change to the Contract Time or the Contract Sum may be eligible for Contractor to submit Change Proposal according to Section 012600 "Contract Modification Procedures."
 a. If Contractor believes the RFI response warrants change in the Contract Time or the Contract Sum, notify Owner in writing within 10 days of receipt of the RFI response.

E. RFI Log: Prepare, maintain, and submit a tabular log of RFIs organized by the RFI number. Submit log weekly. Include the following:
 1. Project name.
 2. Name and address of Contractor.
 3. Name and address of Architect.
 4. RFI number including RFIs that were returned without action or withdrawn.
 5. RFI description.
 6. Date the RFI was submitted.
 7. Date response was received.
F. On receipt of Owner’s Action, update the RFI log and immediately distribute the RFI response to affected parties. Review response and notify Owner within seven days if Contractor disagrees with response.

1. Identification of related Minor Change in the Work, Construction Change Directive, and Proposal Request, as appropriate.
2. Identification of related Field Order, Work Change Directive, and Proposal Request, as appropriate.

1.8 PROJECT MEETINGS

A. General: Schedule and conduct meetings and conferences at Project site unless otherwise indicated.

1. Attendees: Inform participants and others involved, and individuals whose presence is required, of date and time of each meeting. Notify Owner and Architect of scheduled meeting dates and times.
2. Agenda: Prepare the meeting agenda. Distribute the agenda to all invited attendees.
3. Minutes: Entity responsible for conducting meeting will record significant discussions and agreements achieved. Distribute the meeting minutes to everyone concerned, including Owner, and his representative (which may include the Architect), within three days of the meeting.

B. Preconstruction Conference: Schedule and conduct a preconstruction conference before starting construction, at a time convenient to Owner, but no later than 15 days after execution of the Agreement.

1. Conduct the conference to review responsibilities and personnel assignments.
2. Attendees: Authorized representatives of Owner, and his representatives (which may include the Architect); Contractor and its superintendent; major subcontractors; suppliers; and other concerned parties shall attend the conference. Participants at the conference shall be familiar with Project and authorized to conclude matters relating to the Work.
3. Agenda: Discuss items of significance that could affect progress, including the following:
 a. Tentative construction schedule.
 b. Phasing.
 c. Critical work sequencing and long-lead items.
 d. Designation of key personnel and their duties.
 e. Lines of communications.
 f. Procedures for processing field decisions and Change Orders.
 g. Procedures for RFI.
 h. Procedures for testing and inspecting.
 i. Procedures for processing Applications for Payment.
 j. Distribution of the Contract Documents.
 k. Submittal procedures.
 l. Preparation of record documents.
m. Use of the premises and existing building.
n. Work restrictions.
o. Working hours.
p. Owner's occupancy requirements.
q. Responsibility for temporary facilities and controls.
r. Procedures for moisture and mold control.
s. Procedures for disruptions and shutdowns.
t. Construction waste management and recycling.
u. Parking availability.
v. Office, work, and storage areas.
w. Equipment deliveries and priorities.
x. First aid.
y. Security.
z. Progress cleaning.

4. Minutes: Entity responsible for conducting meeting will record and distribute meeting minutes.

C. Preinstallation Conferences: Conduct a preinstallation conference at Project site before each construction activity that requires coordination with other Owner activities.

1. Attendees: Installer and representatives of manufacturers and fabricators involved in or affected by the installation and its coordination or integration with other materials and installations that have preceded or will follow, shall attend the meeting. Advise Owner of scheduled meeting dates.

2. Agenda: Review progress of other construction activities and preparations for the particular activity under consideration, including requirements for the following:

 b. Options.
 c. Related RFIs.
 d. Related Change Orders.
 e. Purchases.
 f. Deliveries.
 g. Submittals.
 h. Review of mockups.
 i. Possible conflicts.
 j. Compatibility requirements.
 k. Time schedules.
 l. Weather limitations.
 m. Manufacturer's written instructions.
 n. Warranty requirements.
 o. Compatibility of materials.
 p. Acceptability of substrates.
 q. Temporary facilities and controls.
 r. Space and access limitations.
 s. Regulations of authorities having jurisdiction.
 t. Testing and inspecting requirements.
u. Installation procedures.
v. Coordination with other work.
w. Required performance results.
x. Protection of adjacent work.
y. Protection of construction and personnel.

3. Record significant conference discussions, agreements, and disagreements, including required corrective measures and actions.

4. Reporting: Distribute minutes of the meeting to each party present and to other parties requiring information.

5. Do not proceed with installation if the conference cannot be successfully concluded. Initiate whatever actions are necessary to resolve impediments to performance of the Work and reconvene the conference at earliest feasible date.

D. Project Closeout Conference: Schedule and conduct a project closeout conference, at a time convenient to Owner and his representatives, but no later than 90 days prior to the scheduled date of Substantial Completion.

1. Conduct the conference to review requirements and responsibilities related to Project closeout.

2. Attendees: Authorized representatives of Owner, Contractor and its superintendent; major subcontractors; suppliers; and other concerned parties shall attend the meeting. Participants at the meeting shall be familiar with Project and authorized to conclude matters relating to the Work.

3. Agenda: Discuss items of significance that could affect or delay Project closeout, including the following:

 a. Preparation of record documents.
 b. Procedures required prior to inspection for Substantial Completion and for final inspection for acceptance.
 c. Submittal of written warranties.
 d. Requirements for preparing operations and maintenance data.
 e. Requirements for delivery of material samples, attic stock, and spare parts.
 f. Requirements for demonstration and training.
 g. Preparation of Contractor's punch list.
 h. Procedures for processing Applications for Payment at Substantial Completion and for final payment.
 i. Submittal procedures.
 j. Retain first subparagraph below for projects with separate contracts that may impact Contractor's work and procedures at project closeout.
 k. Coordination of separate contracts.
 l. Owner's partial occupancy requirements.
 m. Installation of Owner's furniture, fixtures, and equipment.
 n. Responsibility for removing temporary facilities and controls.

4. Minutes: Entity conducting meeting will record and distribute meeting minutes.
E. Progress Meetings: Conduct progress meetings at biweekly intervals.

1. Coordinate dates of meetings with preparation of payment requests.
2. Attendees: In addition to representatives of Owner, each contractor, subcontractor, supplier, and other entity concerned with current progress or involved in planning, coordination, or performance of future activities shall be represented at these meetings. All participants at the meeting shall be familiar with Project and authorized to conclude matters relating to the Work.
3. Agenda: Review and correct or approve minutes of previous progress meeting. Review other items of significance that could affect progress. Include topics for discussion as appropriate to status of Project.
 a. Contractor's Construction Schedule: Review progress since the last meeting. Determine whether each activity is on time, ahead of schedule, or behind schedule, in relation to Contractor's construction schedule. Determine how construction behind schedule will be expedited; secure commitments from parties involved to do so. Discuss whether schedule revisions are required to ensure that current and subsequent activities will be completed within the Contract Time.
 1) Review schedule for next period.
 b. Review present and future needs of each entity present, including the following:
 1) Interface requirements.
 2) Sequence of operations.
 3) Status of submittals.
 4) Deliveries.
 5) Off-site fabrication.
 6) Access.
 7) Site utilization.
 8) Temporary facilities and controls.
 9) Progress cleaning.
 10) Quality and work standards.
 11) Status of correction of deficient items.
 12) Field observations.
 13) Status of RFIs.
 14) Status of proposal requests.
 15) Pending changes.
 16) Status of Change Orders.
 17) Pending claims and disputes.
 18) Documentation of information for payment requests.
4. Minutes: Entity responsible for conducting the meeting will record and distribute the meeting minutes to each party present and to parties requiring information.
 a. Schedule Updating: Revise Contractor's construction schedule after each progress meeting where revisions to the schedule have been made or recognized. Issue revised schedule concurrently with the report of each meeting.
F. Coordination Meetings: Conduct Project coordination meetings at monthly intervals. Project coordination meetings are in addition to specific meetings held for other purposes, such as progress meetings and preinstallation conferences.

1. Attendees: In addition to representatives of Owner, each contractor, subcontractor, supplier, and other entity concerned with current progress or involved in planning, coordination, or performance of future activities shall be represented at these meetings. All participants at the meetings shall be familiar with Project and authorized to conclude matters relating to the Work.

2. Agenda: Review and correct or approve minutes of the previous coordination meeting. Review other items of significance that could affect progress. Include topics for discussion as appropriate to status of Project.

 a. Combined Contractor's Construction Schedule: Review progress since the last coordination meeting. Determine whether each contract is on time, ahead of schedule, or behind schedule, in relation to combined Contractor's construction schedule. Determine how construction behind schedule will be expedited; secure commitments from parties involved to do so. Discuss whether schedule revisions are required to ensure that current and subsequent activities will be completed within the Contract Time.

 b. Schedule Updating: Revise combined Contractor's construction schedule after each coordination meeting where revisions to the schedule have been made or recognized. Issue revised schedule concurrently with report of each meeting.

 c. Review present and future needs of each contractor present, including the following:

 1) Interface requirements.
 2) Sequence of operations.
 3) Status of submittals.
 4) Deliveries.
 5) Off-site fabrication.
 6) Access.
 7) Site utilization.
 8) Temporary facilities and controls.
 9) Work hours.
 10) Hazards and risks.
 11) Progress cleaning.
 12) Quality and work standards.
 13) Change Orders.

3. Reporting: Record meeting results and distribute copies to everyone in attendance and to others affected by decisions or actions resulting from each meeting.
PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION (Not Used)

END OF SECTION
SECTION 013300

SUBMITTAL PROCEDURES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary
 Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section includes requirements for the submittal schedule and administrative and
 procedural requirements for submitting Shop Drawings, Product Data, Samples, and
 other submittals.

 B. Related Requirements:

 1. Section 012900 "Payment Procedures" for submitting Applications for Payment
 and the schedule of values.

1.3 DEFINITIONS
A. Action Submittals: Written and graphic information and physical samples that require
 Owner's Representative's responsive action. Action submittals are those submittals
 indicated in individual Specification Sections as "action submittals."

B. Informational Submittals: Written and graphic information and physical samples that do
 not require Owner’s Representative responsive action. Submittals may be rejected for
 not complying with requirements. Informational submittals are those submittals
 indicated in individual Specification Sections as "informational submittals."

C. File Transfer Protocol (FTP): Communications protocol that enables transfer of files to
 and from another computer over a network and that serves as the basis for standard
 Internet protocols. An FTP site is a portion of a network located outside of network
 firewalls within which internal and external users are able to access files.

D. Portable Document Format (PDF): An open standard file format licensed by Adobe
 Systems used for representing documents in a device-independent and display resolution-
 independent fixed-layout document format.

1.4 ACTION SUBMITTALS
A. Submittal Schedule: Submit a schedule of submittals, arranged in chronological order by
 dates required by construction schedule. Include time required for review, ordering,
 manufacturing, fabrication, and delivery when establishing dates. Include additional time
required for making corrections or revisions to submittals noted by Owner’s Representative and additional time for handling and reviewing submittals required by those corrections.

1. Coordinate submittal schedule with list of subcontracts, the schedule of values, and Contractor’s construction schedule.
2. Initial Submittal: Submit concurrently with startup construction schedule. Include submittals required during the first 60 days of construction. List those submittals required to maintain orderly progress of the Work and those required early because of long lead time for manufacture or fabrication.
3. Final Submittal: Submit concurrently with the first complete submittal of Contractor’s construction schedule.
 a. Submit revised submittal schedule to reflect changes in current status and timing for submittals.
4. Format: Arrange the following information in a tabular format:
 a. Scheduled date for first submittal.
 b. Specification Section number and title.
 c. Submittal category: Action; informational.
 d. Name of subcontractor.
 e. Description of the Work covered.
 f. Scheduled date for Owner’s Representative’s final release or approval.
 g. Scheduled date of fabrication.

1.5 SUBMITTAL ADMINISTRATIVE REQUIREMENTS

A. Owner’s Representative's Digital Data Files: Electronic digital data files of the Contract Drawings will be provided by the Owner for Contractor's use in preparing submittals.

 a. Owner’s Representative makes no representations as to the accuracy or completeness of digital data drawing files as they relate to the Contract Drawings.

B. Coordination: Coordinate preparation and processing of submittals with performance of construction activities.

 1. Coordinate each submittal with fabrication, purchasing, testing, delivery, other submittals, and related activities that require sequential activity.
 2. Submit all submittal items required for each Specification Section concurrently unless partial submittals for portions of the Work are indicated on approved submittal schedule.
 3. Submit action submittals and informational submittals required by the same Specification Section as separate packages under separate transmittals.
4. Coordinate transmittal of different types of submittals for related parts of the Work so processing will not be delayed because of need to review submittals concurrently for coordination.

a. Owner’s Representative reserves the right to withhold action on a submittal requiring coordination with other submittals until related submittals are received.

C. Processing Time: Allow time for submittal review, including time for resubmittals, as follows. Time for review shall commence on Owner’s receipt of submittal. No extension of the Contract Time will be authorized because of failure to transmit submittals enough in advance of the Work to permit processing, including resubmittals.

1. Initial Review: Allow 15 days for initial review of each submittal. Allow additional time if coordination with subsequent submittals is required. Owner’s Representative will advise Contractor when a submittal being processed must be delayed for coordination.

2. Intermediate Review: If intermediate submittal is necessary, process it in same manner as initial submittal.

3. Resubmittal Review: Allow 15 days for review of each resubmittal.

D. Electronic Submittals: Identify and incorporate information in each electronic submittal file as follows:

1. Assemble complete submittal package into a single indexed file incorporating submittal requirements of a single Specification Section and transmittal form with links enabling navigation to each item.

2. Name file with submittal number or other unique identifier, including revision identifier.

a. File name shall use project identifier and Specification Section number followed by a decimal point and then a sequential number (e.g., NDMY-061000.01). Resubmittals shall include an alphabetic suffix after another decimal point (e.g., NDMY-061000.01.A).

3. Provide means for insertion to permanently record Contractor’s review and approval markings and action taken by Owner’s Representative.

4. Transmittal Form for Electronic Submittals: Use electronic form acceptable to Owner, containing the following information:

a. Project name.

b. Date.

c. Name and address of Architect.

d. Name of Construction Manager.

e. Name of Contractor.

f. Name of firm or entity that prepared submittal.

g. Names of subcontractor, manufacturer, and supplier.

h. Category and type of submittal.

i. Submittal purpose and description.
j. Specification Section number and title.
k. Specification paragraph number or drawing designation and generic name for each of multiple items.
l. Drawing number and detail references, as appropriate.
m. Location(s) where product is to be installed, as appropriate.
n. Related physical samples submitted directly.
o. Indication of full or partial submittal.
p. Transmittal number (numbered consecutively).
q. Submittal and transmittal distribution record.
r. Other necessary identification.
s. Remarks.

5. Metadata: Include the following information as keywords in the electronic submittal file metadata:
 a. Project name.
 b. Number and title of appropriate Specification Section.
 c. Manufacturer name.
 d. Product name.

E. Options: Identify options requiring selection by Owner’s Representative.

F. Deviations and Additional Information: On an attached separate sheet, prepared on Contractor's letterhead, record relevant information, requests for data, revisions other than those requested by Owner’s Representative on previous submittals, and deviations from requirements in the Contract Documents, including minor variations and limitations. Include same identification information as related submittal.

G. Resubmittals: Make resubmittals in same form and number of copies as initial submittal.
 1. Note date and content of previous submittal.
 2. Note date and content of revision in label or title block and clearly indicate extent of revision.
 3. Resubmit submittals until they are marked with approval notation from Owner’s Representative's action stamp.

H. Distribution: Furnish copies of final submittals to manufacturers, subcontractors, suppliers, fabricators, installers, authorities having jurisdiction, and others as necessary for performance of construction activities. Show distribution on transmittal forms.

I. Use for Construction: Retain complete copies of submittals on Project site. Use only final action submittals that are marked with approval notation from Owner’s Representative's action stamp.
PART 2 - PRODUCTS

2.1 SUBMITTAL PROCEDURES

A. General Submittal Procedure Requirements: Prepare and submit submittals required by individual Specification Sections. Types of submittals are indicated in individual Specification Sections.

1. Post electronic submittals as PDF electronic files directly to the Owner directed web site specifically established for Project.
 a. Owner’s Representative will return annotated file. Annotate and retain one copy of file as an electronic Project record document file.

2. Certificates and Certifications Submittals: Provide a statement that includes signature of entity responsible for preparing certification. Certificates and certifications shall be signed by an officer or other individual authorized to sign documents on behalf of that entity.
 a. Provide a digital signature with digital certificate on electronically submitted certificates and certifications where indicated.
 b. Provide a notarized statement on original paper copy certificates and certifications where indicated.

B. Product Data: Collect information into a single submittal for each element of construction and type of product or equipment.

1. If information must be specially prepared for submittal because standard published data are not suitable for use, submit as Shop Drawings, not as Product Data.
2. Mark each copy of each submittal to show which products and options are applicable.
3. Include the following information, as applicable:
 a. Manufacturer’s catalog cuts.
 b. Manufacturer’s product specifications.
 c. Standard color charts.
 d. Statement of compliance with specified referenced standards.
 e. Testing by recognized testing agency.
 f. Application of testing agency labels and seals.
 g. Notation of coordination requirements.
 h. Availability and delivery time information.

4. For equipment, include the following in addition to the above, as applicable:
 a. Wiring diagrams showing factory-installed wiring.
 b. Printed performance curves.
 c. Operational range diagrams.
 d. Clearances required to other construction, if not indicated on accompanying Shop Drawings.
5. Submit Product Data before or concurrent with Samples.
6. Submit Product Data in the following format:
 a. PDF electronic file.

C. Product Schedule: As required in individual Specification Sections, prepare a written summary indicating types of products required for the Work and their intended location. Include the following information in tabular form:
 1. Type of product. Include unique identifier for each product indicated in the Contract Documents or assigned by Contractor if none is indicated.
 2. Manufacturer and product name, and model number if applicable.
 3. Number and name of room or space.
 4. Location within room or space.
 5. Submit product schedule in the following format:
 a. PDF electronic file.

D. Coordination Drawing Submittals: Comply with requirements specified in Section 013100 "Project Management and Coordination."

E. Application for Payment and Schedule of Values: Comply with requirements specified in Section 012900 "Payment Procedures."

F. Closeout Submittals and Maintenance Material Submittals: Comply with requirements specified in Section 017700 "Closeout Procedures."

G. Qualification Data: Prepare written information that demonstrates capabilities and experience of firm or person. Include lists of completed projects with project names and addresses, contact information of Owner’s Representatives and owners, and other information specified.

H. Welding Certificates: Prepare written certification that welding procedures and personnel comply with requirements in the Contract Documents. Submit record of Welding Procedure Specification and Procedure Qualification Record on AWS forms. Include names of firms and personnel certified.

I. Installer Certificates: Submit written statements on manufacturer's letterhead certifying that Installer complies with requirements in the Contract Documents and, where required, is authorized by manufacturer for this specific Project.

J. Manufacturer Certificates: Submit written statements on manufacturer's letterhead certifying that manufacturer complies with requirements in the Contract Documents. Include evidence of manufacturing experience where required.

K. Product Certificates: Submit written statements on manufacturer's letterhead certifying that product complies with requirements in the Contract Documents.
L. Material Certificates: Submit written statements on manufacturer's letterhead certifying that material complies with requirements in the Contract Documents.

M. Material Test Reports: Submit reports written by a qualified testing agency, on testing agency's standard form, indicating and interpreting test results of material for compliance with requirements in the Contract Documents.

N. Product Test Reports: Submit written reports indicating that current product produced by manufacturer complies with requirements in the Contract Documents. Base reports on evaluation of tests performed by manufacturer and witnessed by a qualified testing agency, or on comprehensive tests performed by a qualified testing agency.

O. Research Reports: Submit written evidence, from a model code organization acceptable to authorities having jurisdiction, that product complies with building code in effect for Project. Include the following information:

1. Name of evaluation organization.
2. Date of evaluation.
3. Time period when report is in effect.
4. Product and manufacturers' names.
5. Description of product.
6. Test procedures and results.
7. Limitations of use.

P. Preconstruction Test Reports: Submit reports written by a qualified testing agency, on testing agency's standard form, indicating and interpreting results of tests performed before installation of product, for compliance with performance requirements in the Contract Documents.

Q. Compatibility Test Reports: Submit reports written by a qualified testing agency, on testing agency's standard form, indicating and interpreting results of compatibility tests performed before installation of product. Include written recommendations for primers and substrate preparation needed for adhesion.

R. Field Test Reports: Submit written reports indicating and interpreting results of field tests performed either during installation of product or after product is installed in its final location, for compliance with requirements in the Contract Documents.

S. Design Data: Prepare and submit written and graphic information, including, but not limited to, performance and design criteria, list of applicable codes and regulations, and calculations. Include list of assumptions and other performance and design criteria and a summary of loads. Include load diagrams if applicable. Provide name and version of software, if any, used for calculations. Include page numbers.
PART 3 - EXECUTION

3.1 CONTRACTOR'S REVIEW

A. Action and Informational Submittals: Review each submittal and check for coordination with other Work of the Contract and for compliance with the Contract Documents. Note corrections and field dimensions. Mark with approval stamp before submitting to the Owner’s Representative.

B. Project Closeout and Maintenance Material Submittals: See requirements in Section 017700 "Closeout Procedures."

C. Approval Stamp: Stamp each submittal with a uniform, approval stamp. Include Project name and location, submittal number, Specification Section title and number, name of reviewer, date of Contractor's approval, and statement certifying that submittal has been reviewed, checked, and approved for compliance with the Contract Documents.

3.2 OWNER’S REPRESENTATIVE ACTION

A. Action Submittals: Owner’s Representative (maybe the Architect) will review each submittal, make marks to indicate corrections or revisions required, and return it. Owner’s Representative will stamp each submittal with an action stamp and mark stamp appropriately to indicate action.

B. Informational Submittals: Owner’s Representative will review each submittal and will not return it, or will return it if it does not comply with requirements. Owner’s Representative will forward each submittal to appropriate party.

C. Partial submittals prepared for a portion of the Work will be reviewed when use of partial submittals has received prior approval from Owner’s Representative.

D. Incomplete submittals are unacceptable, will be considered nonresponsive, and will be returned for resubmittal without review.

E. Submittals not required by the Contract Documents may be returned by the Owner’s Representative without action.

END OF SECTION
SECTION 017300

EXECUTION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes general administrative and procedural requirements governing execution of the Work including, but not limited to, the following:

2. Installation of the Work.
3. Cutting and patching.
4. Progress cleaning.
5. Starting and adjusting.
6. Protection of installed construction.

B. Related Requirements:

1. Section 011000 "Summary" for limits on use of Project site.
2. Section 013300 "Submittal Procedures" for submitting surveys.
3. Section 017700 "Closeout Procedures" for submitting final property survey with Project Record Documents, recording of Owner-accepted deviations from indicated lines and levels, and final cleaning.

1.3 DEFINITIONS

A. Cutting: Removal of in-place construction necessary to permit installation or performance of other work.

B. Patching: Fitting and repair work required to restore construction to original conditions after installation of other work.

1.4 INFORMATIONAL SUBMITTALS

A. Cutting and Patching Plan: Submit plan describing procedures at least 10 days prior to the time cutting and patching will be performed. Include the following information:

1. Extent: Describe reason for and extent of each occurrence of cutting and patching.
2. Changes to In-Place Construction: Describe anticipated results. Include changes to structural elements and operating components as well as changes in building appearance and other significant visual elements.

3. Products: List products to be used for patching and firms or entities that will perform patching work.

4. Dates: Indicate when cutting and patching will be performed.

5. Utilities and Mechanical and Electrical Systems: List services and systems that cutting and patching procedures will disturb or affect. List services and systems that will be relocated and those that will be temporarily out of service. Indicate length of time permanent services and systems will be disrupted.
 a. Include description of provisions for temporary services and systems during interruption of permanent services and systems.

1.5 QUALITY ASSURANCE

A. Cutting and Patching: Comply with requirements for and limitations on cutting and patching of construction elements.

 1. Structural Elements: When cutting and patching structural elements, notify Owner of locations and details of cutting and await directions from Owner before proceeding. Shore, brace, and support structural elements during cutting and patching. Do not cut and patch structural elements in a manner that could change their load-carrying capacity or increase deflection.

 2. Operational Elements: Do not cut and patch operating elements and related components in a manner that results in reducing their capacity to perform as intended or that results in increased maintenance or decreased operational life or safety.

 3. Other Construction Elements: Do not cut and patch other construction elements or components in a manner that could change their load-carrying capacity, that results in reducing their capacity to perform as intended, or that results in increased maintenance or decreased operational life or safety.

B. Manufacturer’s Installation Instructions: Obtain and maintain on-site manufacturer’s written recommendations and instructions for installation of products and equipment.

PART 2 - PRODUCTS

2.1 MATERIALS

 A. General: Comply with requirements specified in other Sections.

 B. In-Place Materials: Use materials for patching identical to in-place materials. For exposed surfaces, use materials that visually match in-place adjacent surfaces to the fullest extent possible.
1. If identical materials are unavailable or cannot be used, use materials that, when installed, will provide a match acceptable to Architect for the visual and functional performance of in-place materials.

PART 3 - EXECUTION

3.1 EXAMINATION

A. **Existing Conditions:** The existence and location of utilities and construction indicated as existing are not guaranteed. Before beginning work, investigate and verify the existence and location of utilities, mechanical and electrical systems, and other construction affecting the Work.

B. **Examination and Acceptance of Conditions:** Before proceeding with each component of the Work, examine substrates, areas, and conditions, with Installer or Applicator present where indicated, for compliance with requirements for installation tolerances and other conditions affecting performance. Record observations.

C. Proceed with installation only after unsatisfactory conditions have been corrected. Proceeding with the Work indicates acceptance of surfaces and conditions.

3.2 PREPARATION

A. **Existing Utility Information:** Furnish information to Owner that is necessary to adjust, move, or relocate existing utility structures, lines, services, or other appurtenances located in or affected by construction.

B. **Field Measurements:** Take field measurements as required to fit the Work properly. Recheck measurements before installing each product. Where portions of the Work are indicated to fit to other construction, verify dimensions of other construction by field measurements before fabrication. Coordinate fabrication schedule with construction progress to avoid delaying the Work.

C. **Space Requirements:** Verify space requirements and dimensions of items shown diagrammatically on Drawings.

D. **Review of Contract Documents and Field Conditions:** Immediately on discovery of the need for clarification of the Contract Documents caused by differing field conditions outside the control of Contractor, submit a request for information to Owner.

3.3 CONSTRUCTION LAYOUT

A. **Verification:** Before proceeding to lay out the Work, verify layout information shown on Drawings, in relation to the existing benchmarks. If discrepancies are discovered, notify Owner promptly.

B. **Building Lines and Levels:** Locate and lay out control lines required for work. Transfer survey markings and elevations for use with control lines and levels.
3.4 INSTALLATION

A. General: Locate the Work and components of the Work accurately, in correct alignment and elevation, as indicated.
 1. Make vertical work plumb and make horizontal work level.
 2. Where space is limited, install components to maximize space available for maintenance and ease of removal for replacement.
 3. Conceal pipes, ducts, and wiring in finished areas unless otherwise indicated.

B. Comply with manufacturer's written instructions and recommendations for installing products in applications indicated.

C. Install products at the time and under conditions that will ensure the best possible results. Maintain conditions required for product performance until Substantial Completion.

D. Conduct construction operations so no part of the Work is subjected to damaging operations or loading in excess of that expected during normal conditions of occupancy.

E. Sequence the Work and allow adequate clearances to accommodate movement of construction items on site and placement in permanent locations.

F. Sequence the work to allow for all inspections required by the local Authority Having Jurisdiction and all governing Codes.

G. Tools and Equipment: Do not use tools or equipment that produce harmful noise levels.

H. Templates: Obtain and distribute to the parties involved templates for work specified to be factory prepared and field installed. Check Shop Drawings of other work to confirm that adequate provisions are made for locating and installing products to comply with indicated requirements.

I. Attachment: Provide blocking and attachment plates and anchors and fasteners of adequate size and number to securely anchor each component in place, accurately located and aligned with other portions of the Work. Where size and type of attachments are not indicated, verify size and type required for load conditions.
 1. Mounting Heights: Where mounting heights are not indicated, mount components at heights directed by Owner.
 2. Allow for building movement, including thermal expansion and contraction.
 3. Coordinate installation of anchorages. Furnish setting drawings, templates, and directions for installing anchorages, including sleeves, concrete inserts, anchor bolts, and items with integral anchors, that are to be embedded in concrete or masonry. Deliver such items to Project site in time for installation.

J. Joints: Make joints of uniform width. Where joint locations in exposed work are not indicated, arrange joints for the best visual effect. Fit exposed connections together to form hairline joints.
K. Hazardous Materials: Use products, cleaners, and installation materials that are not considered hazardous.

3.5 CUTTING AND PATCHING

A. Cutting and Patching, General: Employ skilled workers to perform cutting and patching. Proceed with cutting and patching at the earliest feasible time, and complete without delay.

1. Cut in-place construction to provide for installation of other components or performance of other construction, and subsequently patch as required to restore surfaces to their original condition.

B. Existing Warranties: Remove, replace, patch, and repair materials and surfaces cut or damaged during installation or cutting and patching operations, by methods and with materials so as not to void existing warranties.

C. Temporary Support: Provide temporary support of work to be cut.

D. Protection: Protect in-place construction during cutting and patching to prevent damage. Provide protection from adverse weather conditions for portions of Project that might be exposed during cutting and patching operations.

E. Adjacent Occupied Areas: Where interference with use of adjoining areas or interruption of free passage to adjoining areas is unavoidable, coordinate cutting and patching according to requirements in Section 011000 "Summary."

F. Existing Utility Services and Mechanical/Electrical Systems: Where existing services/systems are required to be removed, relocated, or abandoned, bypass such services/systems before cutting to minimize interruption to occupied areas.

G. Cutting: Cut in-place construction by sawing, drilling, breaking, chipping, grinding, and similar operations, including excavation, using methods least likely to damage elements retained or adjoining construction. If possible, review proposed procedures with original Installer; comply with original Installer's written recommendations.

1. In general, use hand or small power tools designed for sawing and grinding, not hammering and chopping. Cut holes and slots neatly to minimum size required, and with minimum disturbance of adjacent surfaces. Temporarily cover openings when not in use.

2. Finished Surfaces: Cut or drill from the exposed or finished side into concealed surfaces.

3. Concrete and Masonry: Cut using a cutting machine, such as an abrasive saw or a diamond-core drill.

4. Excavating and Backfilling: Comply with requirements in applicable Sections where required by cutting and patching operations.

5. Mechanical and Electrical Services: Cut off pipe or conduit in walls or partitions to be removed. Cap, valve, or plug and seal remaining portion of pipe or conduit to prevent entrance of moisture or other foreign matter after cutting.
6. Proceed with patching after construction operations requiring cutting are complete.

H. Patching: Patch construction by filling, repairing, refinishing, closing up, and similar operations following performance of other work. Patch with durable seams that are as invisible as practicable. Provide materials and comply with installation requirements specified in other Sections, where applicable.

1. Inspection: Where feasible, test and inspect patched areas after completion to demonstrate physical integrity of installation.
2. Exposed Finishes: Restore exposed finishes of patched areas and extend finish restoration into retained adjoining construction in a manner that will minimize evidence of patching and refinishing.
 a. Clean piping, conduit, and similar features before applying paint or other finishing materials.
 b. Restore damaged pipe covering to its original condition.
3. Ceilings: Patch, repair, or rehang in-place ceilings as necessary to provide an even-plane surface of uniform appearance.
4. Exterior Building Walls: Patch components in a manner that restores enclosure to a weathertight condition and ensures thermal and moisture integrity of building enclosure.

I. Cleaning: Clean areas and spaces where cutting and patching are performed. Remove paint, mortar, oils, putty, and similar materials from adjacent finished surfaces.

3.6 PROGRESS CLEANING

A. General: Clean Project site and work areas daily, including common areas. Enforce requirements strictly. Dispose of materials lawfully.

2. Do not hold waste materials more than seven days during normal weather or three days if the temperature is expected to rise above 80 deg F.
3. Containerize hazardous and unsanitary waste materials separately from other waste. Mark containers appropriately and dispose of legally, according to regulations.
 a. Use containers intended for holding waste materials of type to be stored.

B. Site: Maintain Project site free of waste materials and debris.

C. Work Areas: Clean areas where work is in progress to the level of cleanliness necessary for proper execution of the Work.

1. Remove liquid spills promptly.
2. Where dust would impair proper execution of the Work, broom-clean or vacuum the entire work area, as appropriate.

D. Installed Work: Keep installed work clean. Clean installed surfaces according to written instructions of manufacturer or fabricator of product installed, using only cleaning materials specifically recommended. If specific cleaning materials are not recommended, use cleaning materials that are not hazardous to health or property and that will not damage exposed surfaces.

E. Concealed Spaces: Remove debris from concealed spaces before enclosing the space.

F. Exposed Surfaces in Finished Areas: Clean exposed surfaces and protect as necessary to ensure freedom from damage and deterioration at time of Substantial Completion.

G. Waste Disposal: Do not bury or burn waste materials on-site. Do not wash waste materials down sewers or into waterways.

H. During handling and installation, clean and protect construction in progress and adjoining materials already in place. Apply protective covering where required to ensure protection from damage or deterioration at Substantial Completion.

I. Clean and provide maintenance on completed construction as frequently as necessary through the remainder of the construction period. Adjust and lubricate operable components to ensure operability without damaging effects.

J. Limiting Exposures: Supervise construction operations to assure that no part of the construction completed or in progress, is subject to harmful, dangerous, damaging, or otherwise deleterious exposure during the construction period.

3.7 STARTING AND ADJUSTING

A. Start equipment and operating components to confirm proper operation. Remove malfunctioning units, replace with new units, and retest.

B. Adjust equipment for proper operation. Adjust operating components for proper operation without binding.

C. Test each piece of equipment to verify proper operation. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

3.8 PROTECTION OF INSTALLED CONSTRUCTION

A. Provide final protection and maintain conditions that ensure installed Work is without damage or deterioration at time of Substantial Completion.

B. Comply with manufacturer's written instructions for temperature and relative humidity.

END OF SECTION
SECTION 017700
CLOSEOUT PROCEDURES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section includes administrative and procedural requirements for contract closeout, including, but not limited to, the following:
 1. Substantial Completion procedures.
 2. Final completion procedures.
 3. Warranties.
 4. Final cleaning.
 5. Repair of the Work.
B. Related Requirements:
 1. Section 017300 "Execution" for progress cleaning of Project site.

1.3 ACTION SUBMITTALS
A. Product Data: For cleaning agents.
B. Certified List of Incomplete Items: Final submittal at Final Completion.

1.4 CLOSEOUT SUBMITTALS
A. Certificates of Release: From authorities having jurisdiction.
B. Certificate of Insurance: For continuing coverage.
C. Field Report: For pest control inspection.

1.5 MAINTENANCE MATERIAL SUBMITTALS
A. Schedule of Maintenance Material Items: For maintenance material submittal items specified in other Sections.
1.6 SUBSTANTIAL COMPLETION PROCEDURES

A. Contractor's List of Incomplete Items: Prepare and submit a list of items to be completed and corrected (Contractor's punch list), indicating the value of each item on the list and reasons why the Work is incomplete.

B. Submittals Prior to Substantial Completion: Complete the following a minimum of 10 days prior to requesting inspection for determining date of Substantial Completion. List items below that are incomplete at time of request.

1. Certificates of Release: Obtain and submit releases from authorities having jurisdiction permitting Owner unrestricted use of the Work and access to services and utilities. Include occupancy permits, operating certificates, and similar releases.
2. Submit closeout submittals specified in other Division 01 Sections, including project record documents, operation and maintenance manuals, final completion construction photographic documentation, damage or settlement surveys, property surveys, and similar final record information.
3. Submit closeout submittals specified in individual Sections, including specific warranties, workmanship bonds, maintenance service agreements, final certifications, and similar documents.
4. Submit maintenance material submittals specified in individual Sections, including tools, spare parts, extra materials, and similar items, and deliver to location designated by Owner. Label with manufacturer's name and model number where applicable.
5. Submit test/adjust/balance records.
6. Submit changeover information related to Owner's occupancy, use, operation, and maintenance.

C. Procedures Prior to Substantial Completion: Complete the following a minimum of 10 days prior to requesting inspection for determining date of Substantial Completion. List items below that are incomplete at time of request.

1. Advise Owner of pending insurance changeover requirements.
2. Complete startup and testing of systems and equipment.
3. Perform preventive maintenance on equipment used prior to Substantial Completion.
4. Instruct Owner's personnel in operation, adjustment, and maintenance of products, equipment, and systems.
5. Advise Owner of changeover in heat and other utilities.
6. Terminate and remove temporary facilities from Project site, along with construction tools, and similar elements.
7. Complete final cleaning requirements, including touchup painting.
8. Touch up and otherwise repair and restore marred exposed finishes to eliminate visual defects.

D. Inspection: Submit a written request for inspection to determine Substantial Completion a minimum of 10 days prior to date the work will be completed and ready for final inspection and tests. On receipt of request, Owner will either proceed with inspection or
notify Contractor of unfulfilled requirements. Architect will prepare the Certificate of Substantial Completion after inspection or will notify Contractor of items, either on Contractor's list or additional items identified by Architect, that must be completed or corrected before certificate will be issued.

1. Re-inspection: Request re-inspection when the Work identified in previous inspections as incomplete is completed or corrected.
2. Results of completed inspection will form the basis of requirements for final completion.

1.7 FINAL COMPLETION PROCEDURES

A. Submittals Prior to Final Completion: Before requesting final inspection for determining final completion, complete the following:

1. Submit a final Application for Payment according to Section 012900 "Payment Procedures."
2. Certified List of Incomplete Items: Submit certified copy of Substantial Completion inspection list of items to be completed or corrected (punch list), endorsed and dated by Owner. Certified copy of the list shall state that each item has been completed or otherwise resolved for acceptance.
3. Certificate of Insurance: Submit evidence of final, continuing insurance coverage complying with insurance requirements.
4. Submit pest-control final inspection report.

B. Inspection: Submit a written request for final inspection to determine acceptance a minimum of 10 days prior to date the work will be completed and ready for final inspection and tests. On receipt of request, Owner will either proceed with inspection or notify Contractor of unfulfilled requirements. Final Certificate for Payment will be prepared by Owner after inspection or will notify Contractor of construction that must be completed or corrected before certificate will be issued.

1. Re-inspection: Request re-inspection when the Work identified in previous inspections as incomplete is completed or corrected.

1.8 LIST OF INCOMPLETE ITEMS (PUNCH LIST)

A. Organization of List: Include name and identification of each space and area affected by construction operations for incomplete items and items needing correction including, if necessary, areas disturbed by Contractor that are outside the limits of construction.

1. Organize items by major element.

1.9 SUBMITTAL OF PROJECT WARRANTIES

A. Time of Submittal: Submit written warranties on request of Owner for designated portions of the Work when delay in submittal of warranties might limit Owner's rights under warranty.
B. Provide additional copies of each warranty to include in operation and maintenance manuals.

PART 2 - PRODUCTS

2.1 MATERIALS

A. Cleaning Agents: Use cleaning materials and agents recommended by manufacturer or fabricator of the surface to be cleaned. Do not use cleaning agents that are potentially hazardous to health or property or that might damage finished surfaces.

PART 3 - EXECUTION

3.1 FINAL CLEANING

A. General: Perform final cleaning. Conduct cleaning and waste-removal operations to comply with local laws and ordinances and Federal and local environmental and antipollution regulations.

B. Cleaning: Employ experienced workers or professional cleaners for final cleaning. Clean each surface or unit to condition expected in an average commercial building cleaning and maintenance program. Comply with manufacturer's written instructions.

1. Complete the following cleaning operations before requesting inspection for certification of Substantial Completion for entire Project or for a designated portion of Project:

 a. Clean Project site, yard, and grounds, in areas disturbed by construction activities, including landscape development areas, of rubbish, waste material, litter, and other foreign substances.
 b. Sweep paved areas broom clean. Remove petrochemical spills, stains, and other foreign deposits.
 c. Rake grounds that are neither planted nor paved to a smooth, even-textured surface.
 d. Remove tools, construction equipment, machinery, and surplus material from Project site.
 e. Remove snow and ice to provide safe access to building.
 f. Clean exposed exterior and interior hard-surfaced finishes to a dirt-free condition, free of stains, films, and similar foreign substances. Avoid disturbing natural weathering of exterior surfaces. Restore reflective surfaces to their original condition.
 g. Remove debris and surface dust from limited access spaces, including roofs, plenums, shafts, trenches, equipment vaults, manholes, attics, and similar spaces.
 h. Sweep concrete floors broom clean in unoccupied spaces.
i. Clean transparent materials, including mirrors and glass in doors and windows. Remove glazing compounds and other noticeable, vision-obscuring materials.

j. Remove labels that are not permanent.

k. Wipe surfaces of mechanical and electrical equipment, and similar equipment. Remove excess lubrication, paint and mortar droppings, and other foreign substances.

l. Replace disposable air filters and clean permanent air filters. Clean exposed surfaces of diffusers, registers, and grills.

m. Clean ducts, blowers, and coils if units were operated without filters during construction or that display contamination with particulate matter on inspection.

n. Clean light fixtures, lamps, globes, and reflectors to function with full efficiency.

o. Leave Project clean and ready for occupancy.

C. Construction Waste Disposal: Comply with Owner waste disposal.

3.2 REPAIR OF THE WORK

A. Complete repair and restoration operations before requesting inspection for determination of Substantial Completion.

B. Repair or remove and replace defective construction. Repairing includes replacing defective parts, refinishing damaged surfaces, touching up with matching materials, and properly adjusting operating equipment. Where damaged or worn items cannot be repaired or restored, provide replacements. Remove and replace operating components that cannot be repaired. Restore damaged construction and permanent facilities used during construction to the specified condition.

1. Remove and replace chipped, scratched, and broken glass, and other damaged transparent materials.

2. Touch up and otherwise repair and restore marred or exposed finishes and surfaces. Replace finishes and surfaces that that already show evidence of repair or restoration.

 a. Do not paint over "UL" and other required labels and identification, including mechanical and electrical nameplates. Remove paint applied to required labels and identification.

3. Replace parts subject to operating conditions during construction that may impede operation or reduce longevity.
END OF SECTION
SECTION 017823
OPERATION AND MAINTENANCE DATA

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes administrative and procedural requirements for preparing operation and maintenance manuals, including the following:

1. Operation and maintenance documentation directory.
2. Emergency manuals.
3. Operation manuals for systems, subsystems, and equipment.
4. Maintenance manuals for the care and maintenance of products, materials, finishes, systems and equipment.

B. Related Sections include the following:

1. Section 018200 "Demonstration and Training."

1.3 DEFINITIONS

A. System: An organized collection of parts, equipment, or subsystems united by regular interaction.

B. Subsystem: A portion of a system with characteristics similar to a system.

1.4 SUBMITTALS

A. Initial Submittal: Submit draft copies of each manual within 30 days of the acceptance of the final equipment submittal or prior to 50% of project completion, whichever is sooner. On equipment for which the submittal has not been accepted, include in table of contents and include cover page and appropriate tab. Include a complete operation and maintenance directory. The Administration Project Manager will return copy of draft and mark whether general scope and content of manual are acceptable.

B. Final Submittal: Submit three (3) copies of each manual in final paper form and a single copy in electronic (Adobe Acrobat - .pdf) format.
1. Correct or modify each manual to comply with Engineer's comments. Submit three (3) copies of each corrected manual within 15 days of receipt of Engineer's comments.

1.5 COORDINATION

A. Where operation and maintenance documentation includes information on installations by more than one factory-authorized service representative, assemble and coordinate information furnished by representatives and prepare manuals.

PART 2 - PRODUCTS

2.1 GENERAL

A. Manuals shall include all warranties with starting and ending dates and contact names and numbers for warranty service calls. They should clearly indicate what the owner is required to do to continue the warranties in full force and effect.

B. Manual shall include lists of recommended spare parts.

2.2 OPERATION AND MAINTENANCE DOCUMENTATION DIRECTORY

A. Organization: The O&M manuals shall be organized for easy access to maintenance data and emergency operations procedures. The manuals shall be clearly labeled and indexed and will include, but not be limited to, the building systems and sequences of operation.

B. Include a section in the directory for each of the following:

1. List of documents.
2. List of systems.
3. List of equipment.
4. Table of contents.

C. List of Documents: Include a listing of all documents contained within the manual that is not specifically associated with another directory.

D. List of Systems and Subsystems: List systems alphabetically. Include references to operation and maintenance manuals that contain information about each system.

E. List of Equipment: List equipment for each system, organized alphabetically by system. For pieces of equipment not part of system, list alphabetically in separate list.

F. Tables of Contents: Include a table of contents for each emergency, operation, and maintenance manual.

G. Identification: In the documentation directory and in each operation and maintenance manual, identify each system, subsystem, and piece of equipment with same designation used in the Contract Documents. If no designation exists, assign a designation according
to ASHRAE Guideline 4, "Preparation of Operating and Maintenance Documentation for Building Systems."

H. Warranties: Attach equipment warranties in submitted Operation and Maintenance manual under each piece of equipment.

2.3 MANUALS, GENERAL

A. Organization: Unless otherwise indicated, organize each manual into a separate section for each system and subsystem, and a separate section for each piece of equipment not part of a system. Each manual shall contain the following materials, in the order listed:

1. Title page.
2. Table of contents.

B. Title Page: Enclose title page in transparent plastic sleeve. Include the following information:

1. Subject matter included in manual.
2. Name and address of Project.
3. Name and address of Owner.
4. Date of submittal.
5. Name, address, and telephone number of Contractor.
6. Name and address of Engineer.
7. Cross-reference to related systems in other operation and maintenance manuals.

C. Table of Contents: List each product included in manual, identified by product name, indexed to the content of the volume, and cross-referenced to Specification Section number in Project Manual.

1. If operation or maintenance documentation requires more than one volume to accommodate data, include comprehensive table of contents for all volumes in each volume of the set.

D. Manual Contents: Organize into sets of manageable sizes. Arrange contents alphabetically by system, subsystem, and equipment. If possible, assemble instructions for subsystems, equipment, and components of one system into a single binder.

1. Binders: Heavy-duty, 3-ring, vinyl-covered, loose-leaf binders, in thickness necessary to accommodate contents, sized to hold 8-1/2-by-11-inch (215-by-280-mm) paper; with clear plastic sleeve on spine to hold label describing contents and with pockets inside covers to hold folded oversize sheets.

 a. If two or more binders are necessary to accommodate data of a system, organize data in each binder into groupings by subsystem and related components. Cross-reference other binders if necessary to provide essential information for proper operation or maintenance of equipment or system.
b. Identify each binder on front and spine, with printed title "OPERATION AND MAINTENANCE MANUAL," Project title or name, and subject matter of contents. Indicate volume number for multiple-volume sets.

2. Dividers: Heavy-paper dividers with plastic-covered tabs for each section. Mark each tab to indicate contents. Include typed list of products and major components of equipment included in the section on each divider, cross-referenced to Specification Section number and title of Project Manual.

3. Protective Plastic Sleeves: Transparent plastic sleeves designed to enclose diagnostic software diskettes for computerized electronic equipment.

5. Drawings: Attach reinforced, punched binder tabs on drawings and bind with text.
 a. If oversize drawings are necessary, fold drawings to same size as text pages and use as foldouts.
 b. If drawings are too large to be used as foldouts, fold and place drawings in labeled envelopes and bind envelopes in rear of manual. At appropriate locations in manual, insert typewritten pages indicating drawing titles, descriptions of contents, and drawing locations.

2.4 OPERATION MANUALS

A. Operation manuals shall include shop drawings and submittals, performance data, pump curves, fan curves, installation and start-up instructions, test data, testing and balancing data, operations instructions, wiring diagrams and as-built drawings. All standard manufacturers’ data shall be marked to indicate what options and accessories are included and what sequences and wiring diagrams apply. Anything that does not apply shall be crossed out or deleted.

B. Content: In addition to requirements in this Section, include operation data required in individual Specification Sections and the following information:
 1. System, subsystem, and equipment descriptions.
 2. Performance and design criteria if Contractor is delegated design responsibility.
 3. Operating standards.
 4. Operating procedures.
 5. Operating logs.
 6. Wiring diagrams.
 7. Control diagrams.
 8. Piped system diagrams.
 9. Precautions against improper use.
 10. License requirements including inspection and renewal dates.

C. Descriptions: Include the following:
 1. Product name and model number.
 2. Manufacturer's name.
3. Equipment identification with serial number of each component.
4. Equipment function.
5. Operating characteristics.
6. Limiting conditions.
7. Performance curves.
8. Engineering data and tests.
9. Complete nomenclature and number of replacement parts.

D. Operating Procedures: Include the following, as applicable:
 1. Startup procedures.
 2. Equipment or system break-in procedures.
 3. Routine and normal operating instructions.
 4. Regulation and control procedures.
 5. Instructions on stopping.
 7. Seasonal and weekend operating instructions.
 8. Required sequences for electric or electronic systems.
 9. Special operating instructions and procedures.

E. Systems and Equipment Controls: Describe the sequence of operation, and diagram controls as installed.

F. Piped Systems: Diagram piping as installed, and identify color-coding where required for identification.

2.5 PRODUCT MAINTENANCE MANUAL

A. Content: Organize manual into a separate section for each product, material, and finish. Include source information, product information, maintenance procedures, repair materials and sources, and warranties and bonds, as described below.

B. Schedules: Maintenance schedules shall be developed in a calendar format, cross-referenced to specific manual sections.

C. Source Information: List each product included in manual, identified by product name and arranged to match manual's table of contents. For each product, list name, address, and telephone number of Installer or supplier and maintenance service agent, and cross-reference Specification Section number and title in Project Manual.

D. Product Information: Include the following, as applicable:
 1. Product name and model number.
 2. Manufacturer's name.
 3. Material and chemical composition.
 4. Reordering information for specially manufactured products.
E. Maintenance Procedures: Include manufacturer's written recommendations and the following:

1. Inspection procedures.
2. Types of cleaning agents to be used and methods of cleaning.
3. List of cleaning agents and methods of cleaning detrimental to product.
4. Schedule for routine cleaning and maintenance.
5. Repair instructions.

F. Repair Materials and Sources: Include lists of materials and local sources of materials and related services.

G. Warranties and Bonds: Include copies of warranties and bonds and lists of circumstances and conditions that would affect validity of warranties or bonds.

1. Include procedures to follow and required notifications for warranty claims.

2.6 SYSTEMS AND EQUIPMENT MAINTENANCE MANUAL

A. Content: For each system, subsystem, and piece of equipment not part of a system, include source information, manufacturers' maintenance documentation, maintenance procedures, maintenance and service schedules, spare parts list and source information, maintenance service contracts, and warranty and bond information, as described below.

B. Schedules: Maintenance schedules shall be developed in a calendar format, cross-referenced to specific manual sections.

C. Source Information: List each system, subsystem, and piece of equipment included in manual, identified by product name and arranged to match manual's table of contents. For each product, list name, address, and telephone number of Installer or supplier and maintenance service agent, and cross-reference Specification Section number and title in Project Manual.

D. Manufacturers' Maintenance Documentation: Manufacturers' maintenance documentation including the following information for each component part or piece of equipment:

1. Standard printed maintenance instructions and bulletins.
2. Drawings, diagrams, and instructions required for maintenance, including disassembly and component removal, replacement, and assembly.
3. Identification and nomenclature of parts and components.
4. List of items recommended to be stocked as spare parts.

E. Maintenance Procedures: Include the following information and items that detail essential maintenance procedures:

1. Test and inspection instructions.
2. Troubleshooting guide.
3. Precautions against improper maintenance.
4. Disassembly; component removal, repair, and replacement; and reassembly instructions.
5. Aligning, adjusting, and checking instructions.
6. Demonstration and training videotape, if available.

F. Maintenance and Service Schedules: Include service and lubrication requirements, list of required lubricants for equipment, and separate schedules for preventive and routine maintenance and service with standard time allotment.
 1. Scheduled Maintenance and Service: Tabulate actions for daily, weekly, monthly, quarterly, semiannual, and annual frequencies.
 2. Maintenance and Service Record: Include manufacturers' forms for recording maintenance.

G. Spare Parts List and Source Information: Include lists of replacement and repair parts, with parts identified and cross-referenced to manufacturers' maintenance documentation and local sources of maintenance materials and related services.

H. Maintenance Service Contracts: Include copies of maintenance agreements with name and telephone number of service agent.

I. Warranties: Include copies of warranties and bonds and lists of circumstances and conditions that would affect validity of warranties.
 1. Include procedures to follow and required notifications for warranty claims.

PART 3 - EXECUTION

3.1 MANUAL PREPARATION

A. Operation and Maintenance Documentation Directory: Prepare a separate manual that provides an organized reference to emergency, operation, and maintenance manuals.

B. Emergency Manual: Assemble a complete set of emergency information indicating procedures for use by emergency personnel and by Owner's operating personnel for types of emergencies indicated.

C. Product Maintenance Manual: Assemble a complete set of maintenance data indicating care and maintenance of each product, material, and finish incorporated into the Work.

D. Operation and Maintenance Manuals: Assemble a complete set of operation and maintenance data indicating operation and maintenance of each system, subsystem, and piece of equipment not part of a system.
 1. Engage a factory-authorized service representative to assemble and prepare information for each system, subsystem, and piece of equipment not part of a system.
2. Prepare a separate manual for each system and subsystem, in the form of an instructional manual for use by Owner's operating personnel.

E. Manufacturers' Data: Where manuals contain manufacturers' standard printed data, include only sheets pertinent to product or component installed. Mark each sheet to identify each product or component incorporated into the Work. If data includes more than one item in a tabular format, identify each item using appropriate references from the Contract Documents. Identify data applicable to the Work and delete references to information not applicable.

 1. Prepare supplementary text if manufacturers' standard printed data is not available and where the information is necessary for proper operation and maintenance of equipment or systems.

F. Drawings: Prepare drawings supplementing manufacturers' printed data to illustrate the relationship of component parts of equipment and systems and to illustrate control sequence and flow diagrams. Coordinate these drawings with information contained in Record Drawings to ensure correct illustration of completed installation.

 1. Do not use original Project Record Documents as part of operation and maintenance manuals.
 2. Comply with requirements of newly prepared Record Drawings in Division 1 Section "Project Record Documents."

G. Comply with Section 017700 "Closeout Procedures" for schedule for submitting operation and maintenance documentation.

END OF SECTION
SECTION 017839
PROJECT RECORD DOCUMENTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. This Section includes administrative and procedural requirements for Project Record Documents, including the following:
 1. Record Drawings.
 2. Record Specifications.
 3. Record Product Data.

B. Related Sections include the following:
 1. Section 017700 "Closeout Procedures."
 2. Section 017823 "Operation and Maintenance Data."

1.3 SUBMITTALS
A. Record Drawings: Comply with the following:
 1. Number of Copies: Submit one set of marked-up Record Prints.
 2. Number of Copies: Submit copies of Record Drawings as follows:
 a. Initial Submittal: Submit one (1) set of corrected marked-up Record Prints.
 b. Final Submittal: Submit one (1) set of marked-up Record Prints, one (1) set of Record CAD Drawing files, and three (3) copies printed from record plots. Plot and print each Drawing, whether or not changes and additional information were recorded.
 1) Electronic Media: CD.

B. Record Specifications: Submit one (1) copy of Project's Specifications, including addenda and contract modifications.

C. Record Product Data: Submit one (1) copy of each Product Data submittal.
1. Where Record Product Data is required as part of operation and maintenance manuals, submit marked-up Product Data as an insert in manual instead of submittal as Record Product Data.

PART 2 - PRODUCTS

2.1 RECORD DRAWINGS

A. Record Prints: Maintain one (1) set of blue- or black-line white prints of the Contract Drawings and Shop Drawings.

1. Preparation: Mark Record Prints to show the actual installation or products used where installation or product varies from that shown originally. Require individual or entity who obtained record data, whether individual or entity is Installer, subcontractor, or similar entity, to prepare the marked-up Record Prints.
 a. Give particular attention to information on concealed elements that would be difficult to identify or measure and record later.
 b. Modify equipment schedules to represent the “Basis of Design” as the actual product and manufacturer installed.
 c. Accurately record information in an understandable drawing technique.
 d. Record data as soon as possible after obtaining it. Record and check the markup before enclosing concealed installations.

2. Content: Types of items requiring marking include, but are not limited to, the following:
 a. Dimensional changes to Drawings.
 b. Revisions to details shown on Drawings.
 c. Depths of foundations below first floor.
 d. Locations and depths of underground utilities.
 e. Revisions to routing of piping and conduits.
 f. Revisions to electrical circuitry.
 g. Actual equipment locations.
 h. Duct size and routing.
 i. Locations of concealed internal utilities.
 j. Changes made by Change Order.
 k. Changes made following Engineer’s written orders.
 l. Details not on the original Contract Drawings.
 m. Field records for variable and concealed conditions.
 n. Record information on the Work that is shown only schematically.
 o. Modifications to equipment schedules, with specific attention to deviations from named “Basis of Design” vendors and equipment capacities.
 p. Modifications to Building Automation Controls systems operating logic.
3. Mark the Contract Drawings or Shop Drawings, whichever is most capable of showing actual physical conditions, completely and accurately. If Shop Drawings are marked, show cross-reference on the Contract Drawings.

4. Mark record sets with erasable, red-colored pencil. Use other colors to distinguish between changes for different categories of the Work at same location.

5. Mark important additional information that was either shown schematically or omitted from original Drawings.

6. Note Construction Change Directive numbers, alternate numbers, Change Order numbers, and similar identification, where applicable.

B. Format: Identify and date each Record Drawing; include the designation "PROJECT RECORD DRAWING" in a prominent location.

1. Record Prints: Organize Record Prints and newly prepared Record Drawings into manageable sets. Bind each set with durable paper cover sheets. Include identification on cover sheets.

2. Record Transparencies: Organize into unbound sets matching Record Prints. Place transparencies in durable tube-type drawing containers with end caps. Mark end cap of each container with identification. If container does not include a complete set, identify Drawings included.

3. Identification: As follows:
 a. Project name.
 b. Date.
 c. Designation "PROJECT RECORD DRAWINGS."
 d. Name of Architect.
 e. Name of Contractor.

2.2 RECORD SPECIFICATIONS

A. Preparation: Mark Specifications to indicate the actual product installation where installation varies from that indicated in Specifications, addenda, and contract modifications.

1. Give particular attention to information on concealed products and installations that cannot be readily identified and recorded later.

2. Mark copy with the proprietary name and model number of products, materials, and equipment furnished, including substitutions and product options selected.

3. Record the name of manufacturer, supplier, Installer, and other information necessary to provide a record of selections made.

4. For each principal product, indicate whether Record Product Data has been submitted in operation and maintenance manuals instead of submitted as Record Product Data.

5. Note related Change Orders, Record Product Data, and Record Drawings where applicable.
PART 3 - EXECUTION

3.1 BI-WEEKLY RECORD DOCUMENT REVIEW MEETING

A. Conduct a bi-weekly record document update meeting between the on-site construction manager and the contractor to review the status of the record documents.

3.2 RECORDING AND MAINTENANCE

A. Recording: Maintain one (1) copy of each submittal during the construction period for Project Record Document purposes. Post changes and modifications to Project Record Documents as they occur; do not wait until the end of Project.

B. Maintenance of Record Documents and Samples: Store Record Documents and Samples in the field office apart from the Contract Documents used for construction. Do not use Project Record Documents for construction purposes. Maintain Record Documents in good order and in a clean, dry, legible condition, protected from deterioration and loss. Provide access to Project Record Documents for Engineer’s reference during normal working hours.

END OF SECTION
SECTION 018200
DEMONSTRATION AND TRAINING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

A. The training requirements of this section are critical to the overall long-term success of the installed systems and is intended to educate the client operations and maintenance personnel in the following:

1. Basic operations of the system.
2. Troubleshooting problems which are typical of the installed systems.
3. Basic maintenance requirements which are critical to operations.
5. Complex maintenance requirements which may require specialists.

B. This Section includes administrative and procedural requirements for instructing Owner's personnel, including the following:

1. Demonstration of operation of systems, subsystems, and equipment.
2. Training in operation and maintenance of systems, subsystems, and equipment.

C. Related Sections include the following:

1. Section 017823 – Operations and Maintenance Data

1.3 SUBMITTALS

A. Instruction Program: Submit outline of instructional program for demonstration and training, including a schedule of proposed dates, times, length of instruction time, and instructors' names for each training module. Include learning objective and outline for each training module.

1. At completion of training, submit three (3) complete training manuals for Owner's use.

B. Qualification Data: For firms and persons specified in "Quality Assurance" Article to demonstrate their capabilities and experience. Include lists of completed projects with
project names and addresses, names and addresses of architects and owners, and other information specified.

C.

Attendance Record:

For each training module, submit list of participants and length of instruction time.

D.

Evaluations:

For each participant and for each training module, submit results and documentation of performance-based test.

E.

Demonstration and Training Recording:

Submit two (2) copies of DVD at end of each training module.

1.4 QUALITY ASSURANCE

A.

Facilitator Qualifications:

A firm or individual experienced in training or educating maintenance personnel in a training program similar in content and extent to that indicated for this Project, and whose work has resulted in training or education with a record of successful learning performance.

B.

Instructor Qualifications:

A factory-authorized service representative experienced in operation and maintenance procedures and training.

1.5 COORDINATION

A.

The contractor and training facilitator shall attend a coordination meeting with the owner and DelDOT’s Project Manager to review the training objectives and initiate training schedules.

B.

Coordinate instruction schedule with Owner's operations. Adjust schedule as required to minimize disrupting Owner's operations.

C.

Coordinate instructors, including providing notification of dates, times, length of instruction time, and course content.

D.

Coordinate content of training modules with content of approved emergency, operation, and maintenance manuals. Do not submit instruction program until operation and maintenance data has been reviewed and approved by Engineer.

E.

O&M Manuals shall be approved as Final prior to Demonstration and Training.

PART 2 - PRODUCTS

2.1 INSTRUCTION PROGRAM

A.

General: The training shall be sufficiently comprehensive so that employees responsible for building operations will fully understand all building systems. This includes emergency operations in case of fire, spills, leaks etc. The training shall include “hands on” exercises which are deemed appropriate by the owner. They should also understand
how to inspect the building for proper functioning and operation, as well as of safety system function and operation.

B. Program Structure: Develop an instruction program that includes individual training modules for each system and equipment not part of a system, as required by individual specification sections, and as follows:

1. Water Source Heat Pumps
2. Split system Heat Pumps
3. Unit Heaters
4. Exhaust Fans.
5. Pumps
6. Water Heaters
7. System interlocks (damper control, etc.).
8. Generators
9. Fire Alarm Systems

C. Training Modules: Develop a learning objective and teaching outline for each module. Include a description of specific skills and knowledge that participant is expected to master. For each module, include instruction for the following:

1. Basis of System Design, Operational Requirements, and Criteria: Include the following:
 a. System, subsystem, and equipment descriptions.
 b. Performance and design criteria if the Contractor is delegated design responsibility.
 c. Operating standards.
 d. Regulatory requirements.
 e. Equipment function.
 f. Operating characteristics.
 g. Limiting conditions.

2. Documentation: Review the following items in detail:
 a. Emergency manuals.
 b. Operations manuals.
 c. Maintenance manuals.
 d. Project Record Documents.
 e. Identification systems.
 f. Warranties and bonds.
 g. Maintenance service agreements and similar continuing commitments.

3. Emergencies: Include the following, as applicable:
 a. Instructions on meaning of warnings, trouble indications, and error messages.
 b. Shutdown instructions for each type of emergency.
 c. Operating instructions for conditions outside of normal operating limits.
d. Sequences for electric or electronic systems.
e. Special operating instructions and procedures.

4. Operations: Include the following, as applicable:

a. Startup procedures.
b. Routine and normal operating instructions.
c. Regulation and control procedures.
d. Control sequences.
e. Safety procedures.
f. Normal shutdown instructions.
g. Operating procedures for emergencies.
h. Operating procedures for system, subsystem, or equipment failure.
i. Required sequences for electric or electronic systems.
j. Special operating instructions and procedures.

5. Adjustments: Include the following:

a. Checking adjustments.
b. Noise and vibration adjustments.
c. Economy and efficiency adjustments.

6. Troubleshooting: Include the following:

a. Diagnostic instructions.
b. Test and inspection procedures.

7. Maintenance: Include the following:

a. Inspection procedures.
b. Types of cleaning agents to be used and methods of cleaning.
c. List of cleaning agents and methods of cleaning detrimental to product.
d. Procedures for routine cleaning.
e. Procedures for preventive maintenance.
f. Procedures for routine maintenance.
g. Instruction on use of special tools.

8. Repairs: Include the following:

a. Diagnosis instructions.
b. Repair instructions.
c. Disassembly; component removal, repair, and replacement; and reassembly instructions.
d. Instructions for identifying parts and components.

9. Review of spare parts needed for operation and maintenance.
PART 3 - EXECUTION

3.1 PREPARATION

A. Assemble educational materials necessary for instruction, including documentation and training module. Assemble training modules into a combined training manual.

B. Set up instructional equipment at instruction location.

3.2 INSTRUCTION

A. Facilitator: Engage a qualified facilitator to prepare instruction program and training modules, to coordinate instructors, and to coordinate between Contractor and Owner for number of participants, instruction times, and location.

B. Engage qualified instructors to instruct Owner's personnel to adjust, operate, and maintain systems, subsystems, and equipment not part of a system.

 1. Owner will furnish Contractor with names and positions of participants.

C. Scheduling: Provide instruction at mutually agreed on times. For equipment that requires seasonal operation, provide similar instruction at start of each season.

 1. Schedule training with the Owner with at least seven (7) days' advance notice or as required by individual specification sections.

D. Cleanup: Collect used and leftover educational materials and remove from Project site. Remove instructional equipment. Restore systems and equipment to condition existing before initial training use.

END OF SECTION
SECTION 033000
CAST-IN-PLACE CONCRETE

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section includes cast-in-place concrete, including formwork, reinforcement, concrete materials, mixture design, placement procedures, and finishes, for the following:
 1. Footings.
 2. Foundation walls.
 3. Slabs-on-grade.
B. Related Sections:
 1. Section 033300 "Architectural Concrete" for general building applications of specially finished formed concrete.
 2. Section 312000 "Earth Moving" for drainage fill under slabs-on-grade.
 3. Section 321313 "Concrete Paving" for concrete pavement and walks.
 4. Section 321316 "Decorative Concrete Paving" for decorative concrete pavement and walks.

1.3 DEFINITIONS
A. Cementitious Materials: Portland cement alone or in combination with one or more of the following: blended hydraulic cement, fly ash and other Pozzolans, ground granulated blast-furnace slag, and silica fume; subject to compliance with requirements.

1.4 ACTION SUBMITTALS
A. Product Data: For each type of product indicated.
B. Design Mixtures: For each concrete mixture. Submit alternate design mixtures when characteristics of materials, Project conditions, weather, test results, or other circumstances warrant adjustments.
 1. Indicate amounts of mixing water to be withheld for later addition at Project site.
C. Steel Reinforcement Shop Drawings: Placing drawings that detail fabrication, bending, and placement. Include bar sizes, lengths, material, grade, bar schedules, stirrup spacing,
bent bar diagrams, bar arrangement, splices and laps, mechanical connections, tie spacing, hoop spacing, and supports for concrete reinforcement.

D. Construction Joint Layout: Indicate proposed construction joints required to construct the structure.

1. Location of construction joints is subject to approval of the Architect.

1.5 INFORMATIONAL SUBMITTALS

A. Qualification Data: For Installer.

B. Material Certificates: For each of the following, signed by manufacturers:

1. Cementitious materials.
2. Admixtures.
3. Steel reinforcement and accessories.
4. Waterstops.
5. Curing compounds.
6. Floor and slab treatments.
8. Adhesives.
9. Vapor retarders.
10. Semirigid joint filler.
12. Repair materials.

C. Material Test Reports: For the following, from a qualified testing agency, indicating compliance with requirements:

D. Field quality-control reports.

E. Minutes of preinstallation conference.

1.6 QUALITY ASSURANCE

A. Installer Qualifications: A qualified installer who employs on Project personnel qualified as ACI-certified Flatwork Technician and Finisher and a supervisor who is an ACI-certified Concrete Flatwork Technician.

B. Manufacturer Qualifications: A firm experienced in manufacturing ready-mixed concrete products and that complies with ASTM C 94/C 94M requirements for production facilities and equipment.

1. Manufacturer certified according to NRMCA's "Certification of Ready Mixed Concrete Production Facilities."

C. Testing Agency Qualifications: An independent agency, acceptable to authorities having jurisdiction, qualified according to ASTM C 1077 and ASTM E 329 for testing indicated.
1. Personnel conducting field tests shall be qualified as ACI Concrete Field Testing Technician, Grade 1, according to ACI CP-1 or an equivalent certification program.
2. Personnel performing laboratory tests shall be ACI-certified Concrete Strength Testing Technician and Concrete Laboratory Testing Technician - Grade I. Testing Agency laboratory supervisor shall be an ACI-certified Concrete Laboratory Testing Technician - Grade II.

D. Source Limitations: Obtain each type or class of cementitious material of the same brand from the same manufacturer's plant, obtain aggregate from single source, and obtain admixtures from single source from single manufacturer.

E. Welding Qualifications: Qualify procedures and personnel according to AWS D1.4/D 1.4M, "Structural Welding Code - Reinforcing Steel."

F. ACI Publications: Comply with the following unless modified by requirements in the Contract Documents:

1. ACI 117, "Specifications for Tolerances for Concrete Construction and Materials."

G. Concrete Testing Service: Engage a qualified independent testing agency to perform material evaluation tests and to design concrete mixtures.

1.7 DELIVERY, STORAGE, AND HANDLING

A. Steel Reinforcement: Deliver, store, and handle steel reinforcement to prevent bending and damage.

B. Waterstops: Store waterstops under cover to protect from moisture, sunlight, dirt, oil, and other contaminants.

PART 2 - PRODUCTS

2.1 FORM-FACING MATERIALS

A. Smooth-Formed Finished Concrete: Form-facing panels that will provide continuous, true, and smooth concrete surfaces. Furnish in largest practicable sizes to minimize number of joints.

1. Plywood, metal, or other approved panel materials.

B. Form-Release Agent: Commercially formulated form-release agent that will not bond with, stain, or adversely affect concrete surfaces and will not impair subsequent treatments of concrete surfaces.

C. Form Ties: Factory-fabricated, removable or snap-off metal or glass-fiber-reinforced plastic form ties designed to resist lateral pressure of fresh concrete on forms and to prevent spalling of concrete on removal.

2.2 STEEL REINFORCEMENT

A. Reinforcing Bars: ASTM A 615/A 615M, Grade 60, deformed.

B. Plain-Steel Welded Wire Reinforcement: ASTM A 185/A 185M, plain, fabricated from as-drawn steel wire into flat sheets.

2.3 REINFORCEMENT ACCESSORIES

A. Joint Dowel Bars: ASTM A 615/A 615M, Grade 60, plain-steel bars, cut true to length with ends square and free of burrs.

B. Bar Supports: Bolsters, chairs, spacers, and other devices for spacing, supporting, and fastening reinforcing bars and welded wire reinforcement in place. Manufacture bar supports from steel wire, plastic, or precast concrete according to CRSI’s “Manual of Standard Practice,” of greater compressive strength than concrete.

2.4 CONCRETE MATERIALS

A. Cementitious Material: Use the following cementitious materials, of the same type, brand, and source, throughout Project:

 1. Portland Cement: ASTM C 150, Type I.
 a. Fly Ash: ASTM C 618, Class F or C.
 b. Ground Granulated Blast-Furnace Slag: ASTM C 989, Grade 100 or 120.

B. Normal-Weight Aggregates: ASTM C 33, Class 3S, Class 3M.

 2. Fine Aggregate: Free of materials with deleterious reactivity to alkali in cement.

2.5 ADMIXTURES

B. Chemical Admixtures: Provide admixtures certified by manufacturer to be compatible with other admixtures and that will not contribute water-soluble chloride ions exceeding those permitted in hardened concrete. Do not use calcium chloride or admixtures containing calcium chloride.
1. Water-Reducing Admixture: ASTM C 494/C 494M, Type A.
2. Retarding Admixture: ASTM C 494/C 494M, Type B.
3. Water-Reducing and Retarding Admixture: ASTM C 494/C 494M, Type D.
4. High-Range, Water-Reducing Admixture: ASTM C 494/C 494M, Type F.
5. High-Range, Water-Reducing and Retarding Admixture: ASTM C 494/C 494M, Type G.
6. Plasticizing and Retarding Admixture: ASTM C 1017/C 1017M, Type II.

2.6 WATERSTOPS
A. Flexible Rubber Waterstops: CE CRD-C 513, for embedding in concrete to prevent passage of fluids through joints. Factory fabricate corners, intersections, and directional changes.

2.7 VAPOR RETARDERS
A. Sheet Vapor Retarder: ASTM E 1745, Class A. Include manufacturer's recommended adhesive or pressure-sensitive tape.

2.8 FLOOR AND SLAB TREATMENTS
A. Slip-Resistive Emery Aggregate Finish: Factory-graded, packaged, rustproof, nonglazing, abrasive, crushed emery aggregate containing not less than 50 percent aluminum oxide and not less than 20 percent ferric oxide; unaffected by freezing, moisture, and cleaning materials with 100 percent passing 3/8-inch sieve.
B. Slip-Resistive Aluminum Granule Finish: Factory-graded, packaged, rustproof, nonglazing, abrasive aggregate of not less than 95 percent fused aluminum-oxide granules.

2.9 CURING MATERIALS
A. Evaporation Retarder: Waterborne, monomolecular film forming, manufactured for application to fresh concrete.
B. Absorptive Cover: AASHTO M 182, Class 2, burlap cloth made from jute or kenaf, weighing approximately 9 oz./sq. yd. when dry.
C. Moisture-Retaining Cover: ASTM C 171, polyethylene film or white burlap-polyethylene sheet.
D. Water: Potable.

2.10 RELATED MATERIALS
B. Semirigid Joint Filler: Two-component, semirigid, 100 percent solids, epoxy resin with a Type A shore durometer hardness of 80 or aromatic polyurea with a Type A shore durometer hardness range of 90 to 95 per ASTM D 2240.

C. Bonding Agent: ASTM C 1059/C 1059M, Type II, non-redispersible, acrylic emulsion or styrene butadiene.

D. Epoxy Bonding Adhesive: ASTM C 881, two-component epoxy resin, capable of humid curing and bonding to damp surfaces, of class suitable for application temperature and of grade to suit requirements, and as follows:

2.11 REPAIR MATERIALS

A. Repair Underlayment: Cement-based, polymer-modified, self-leveling product that can be applied in thicknesses from 1/8 inch and that can be feathered at edges to match adjacent floor elevations.

1. Cement Binder: ASTM C 150, Portland cement or hydraulic or blended hydraulic cement as defined in ASTM C 219.
2. Primer: Product of underlayment manufacturer recommended for substrate, conditions, and application.
3. Aggregate: Well-graded, washed gravel, 1/8 to 1/4 inch or coarse sand as recommended by underlayment manufacturer.

B. Repair Overlay: Cement-based, polymer-modified, self-leveling product that can be applied in thicknesses from 1/4 inch and that can be filled in over a scarified surface to match adjacent floor elevations.

1. Cement Binder: ASTM C 150, Portland cement or hydraulic or blended hydraulic cement as defined in ASTM C 219.
2. Primer: Product of topping manufacturer recommended for substrate, conditions, and application.
3. Aggregate: Well-graded, washed gravel, 1/8 to 1/4 inch or coarse sand as recommended by topping manufacturer.
4. Compressive Strength: Not less than 5000 psi at 28 days when tested according to ASTM C 109/C 109M.

2.12 CONCRETE MIXTURES, GENERAL

A. Prepare design mixtures for each type and strength of concrete, proportioned on the basis of laboratory trial mixture or field test data, or both, according to ACI 301.

1. Use a qualified independent testing agency for preparing and reporting proposed mixture designs based on laboratory trial mixtures.

B. Cementitious Materials: Use fly ash, Pozzolan, ground granulated blast-furnace slag, and silica fume as needed to reduce the total amount of Portland cement, which would otherwise be used, by not less than 40 percent.
1. Fly Ash: 25 percent.
4. Combined Fly Ash or Pozzolan and Ground Granulated Blast-Furnace Slag: 50 percent Portland cement minimum, with fly ash or Pozzolan not exceeding 25 percent.

C. Admixtures: Use admixtures according to manufacturer's written instructions.

1. Use water-reducing and retarding admixture when required by high temperatures, low humidity, or other adverse placement conditions.
2. Use water-reducing admixture in pumped concrete, concrete for heavy-use industrial slabs and parking structure slabs, concrete required to be watertight, and concrete with a water-cementitious materials ratio below 0.50.
3. Use corrosion-inhibiting admixture in concrete mixtures where indicated.

2.13 CONCRETE MIXTURES FOR BUILDING ELEMENTS

A. Footings: Proportion normal-weight concrete mixture as follows:

1. Minimum Compressive Strength: 4000 psi at 28 days.
2. Maximum Water-Cementitious Materials Ratio: 0.50.
3. Slump Limit: 4 inches, plus or minus 1 inch, or as indicated on engineer approved mix design submittal.

B. Foundation Walls: Proportion normal-weight concrete mixture as follows:

1. Minimum Compressive Strength: 4000 psi at 28 days.
2. Maximum Water-Cementitious Materials Ratio: 0.50.
3. Slump Limit: 4 inches plus or minus 1 inch, or as indicated on engineer approved mix design submittal.

C. Slabs-on-Grade: Proportion normal-weight concrete mixture as follows:

1. Minimum Compressive Strength: 4000 psi at 28 days.
3. Slump Limit: 4 inches plus or minus 1 inch, or as indicated on engineer approved mix design submittal.
4. Air Content: 6 percent, plus or minus 1.0 percent at point of delivery for 1-inch nominal maximum aggregate size. (Exterior slabs only)
5. Air Content: Do not allow air content of trowel-finished floors to exceed 3 percent.

2.14 FABRICATING REINFORCEMENT

A. Fabricate steel reinforcement according to CRSI's "Manual of Standard Practice."
2.15 CONCRETE MIXING

A. Ready-Mixed Concrete: Measure, batch, mix, and deliver concrete according to ASTM C 94/C 94M, and furnish batch ticket information.

1. When air temperature is between 85 and 90 deg F, reduce mixing and delivery time from 1-1/2 hours to 75 minutes; when air temperature is above 90 deg F, reduce mixing and delivery time to 60 minutes.

B. Project-Site Mixing: Measure, batch, and mix concrete materials and concrete according to ASTM C 94/C 94M. Mix concrete materials in appropriate drum-type batch machine mixer.

1. For mixer capacity of 1 cu. yd. or smaller, continue mixing at least 1-1/2 minutes, but not more than 5 minutes after ingredients are in mixer, before any part of batch is released.
2. For mixer capacity larger than 1 cu. yd. increase mixing time by 15 seconds for each additional 1 cu. yd.
3. Provide batch ticket for each batch discharged and used in the Work, indicating Project identification name and number, date, mixture type, mixture time, quantity, and amount of water added. Record approximate location of final deposit in structure.

PART 3 - EXECUTION

3.1 FORMWORK

A. Design, erect, shore, brace, and maintain formwork, according to ACI 301, to support vertical, lateral, static, and dynamic loads, and construction loads that might be applied, until structure can support such loads.

B. Construct formwork so concrete members and structures are of size, shape, alignment, elevation, and position indicated, within tolerance limits of ACI 117.

C. Limit concrete surface irregularities, designated by ACI 347 as abrupt or gradual, as follows:

1. Class A, 1/8 inch (3.2 mm) for smooth-formed finished surfaces.
2. Class B, 1/4 inch (6 mm) for rough-formed finished surfaces.

D. Construct forms tight enough to prevent loss of concrete mortar.

E. Fabricate forms for easy removal without hammering or prying against concrete surfaces. Provide crush or wrecking plates where stripping may damage cast concrete surfaces. Provide top forms for inclined surfaces steeper than 1.5 horizontal to 1 vertical.

1. Install keyways, reglets, recesses, and the like, for easy removal.
2. Do not use rust-stained steel form-facing material.
F. Set edge forms, bulkheads, and intermediate screed strips for slabs to achieve required elevations and slopes in finished concrete surfaces. Provide and secure units to support screed strips; use strike-off templates or compacting-type screeds.

G. Provide temporary openings for cleanouts and inspection ports where interior area of formwork is inaccessible. Close openings with panels tightly fitted to forms and securely braced to prevent loss of concrete mortar. Locate temporary openings in forms at inconspicuous locations.

H. Do not chamfer exterior corners and edges of permanently exposed concrete.

I. Form openings, chases, offsets, sinkages, keyways, reglets, blocking, screeds, and bulkheads required in the Work. Determine sizes and locations from trades providing such items.

J. Clean forms and adjacent surfaces to receive concrete. Remove chips, wood, sawdust, dirt, and other debris just before placing concrete.

K. Retighten forms and bracing before placing concrete, as required, to prevent mortar leaks and maintain proper alignment.

L. Coat contact surfaces of forms with form-release agent, according to manufacturer's written instructions, before placing reinforcement.

3.2 EMBEDDED ITEMS

A. Place and secure anchorage devices and other embedded items required for adjoining work that is attached to or supported by cast-in-place concrete. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.

1. Install anchor rods, accurately located, to elevations required and complying with tolerances in Section 7.5 of AISC's "Code of Standard Practice for Steel Buildings and Bridges."

2. Install reglets to receive waterproofing and to receive through-wall flashings in outer face of concrete frame at exterior walls, where flashing is shown at lintels, shelf angles, and other conditions.

3. Install dovetail anchor slots in concrete structures as indicated.

3.3 REMOVING AND REUSING FORMS

A. General: Formwork for sides of walls, and similar parts of the Work that does not support weight of concrete may be removed after cumulatively curing at not less than 50 deg F for 24 hours after placing concrete. Concrete has to be hard enough to not be damaged by form-removal operations and curing and protection operations need to be maintained.

B. Clean and repair surfaces of forms to be reused in the Work. Split, frayed, delaminated, or otherwise damaged form-facing material will not be acceptable for exposed surfaces. Apply new form-release agent.
C. When forms are reused, clean surfaces, remove fins and laitance, and tighten to close joints. Align and secure joints to avoid offsets. Do not use patched forms for exposed concrete surfaces unless approved by Architect.

3.4 SHORES
A. Comply with ACI 318 and ACI 301 for design, installation, and removal of shoring.
 1. Do not remove shoring until measurement of slab tolerances is complete.

3.5 VAPOR RETARDERS
A. Sheet Vapor Retarders: Place, protect, and repair sheet vapor retarder according to ASTM E 1643 and manufacturer's written instructions.
 1. Lap joints 6 inches and seal with manufacturer's recommended tape.
B. Bituminous Vapor Retarders: Place, protect, and repair bituminous vapor retarder according to manufacturer's written instructions.

3.6 STEEL REINFORCEMENT
A. General: Comply with CRSI's "Manual of Standard Practice" for placing reinforcement.
 1. Do not cut or puncture vapor retarder. Repair damage and reseal vapor retarder before placing concrete.
B. Clean reinforcement of loose rust and mill scale, earth, ice, and other foreign materials that would reduce bond to concrete.
C. Accurately position, support, and secure reinforcement against displacement. Locate and support reinforcement with bar supports to maintain minimum concrete cover. Do not tack weld crossing reinforcing bars.

3.7 JOINTS
A. General: Construct joints true to line with faces perpendicular to surface plane of concrete.
B. Construction Joints: Install so strength and appearance of concrete are not impaired, at locations indicated or as approved by Architect.
 1. Place joints perpendicular to main reinforcement. Continue reinforcement across construction joints unless otherwise indicated. Do not continue reinforcement through sides of strip placements of floors and slabs.
 2. Form keyed joints as indicated. Embed keys at least 1-1/2 inches into concrete.
 3. Space vertical joints in walls as indicated. Locate joints beside piers integral with walls, near corners, and in concealed locations where possible.
4. Use a bonding agent at locations where fresh concrete is placed against hardened or partially hardened concrete surfaces.

5. Use epoxy-bonding adhesive at locations where fresh concrete is placed against hardened or partially hardened concrete surfaces.

C. Isolation Joints in Slabs-on-Grade: After removing formwork, install joint-filler strips at slab junctions with vertical surfaces, such as column pedestals, foundation walls, grade beams, and other locations, as indicated.

3.8 WATERSTOPS

A. Flexible Waterstops: Install in construction joints and at other joints indicated to form a continuous diaphragm. Install in longest lengths practicable. Support and protect exposed waterstops during progress of the Work. Field fabricate joints in waterstops according to manufacturer's written instructions.

3.9 CONCRETE PLACEMENT

A. Before placing concrete, verify that installation of formwork, reinforcement, and embedded items is complete and that required inspections have been performed.

B. Do not add water to concrete during delivery, at Project site, or during placement unless approved by Architect.

C. Before test sampling and placing concrete, water may be added at Project site, subject to limitations of ACI 301.

1. Do not add water to concrete after adding high-range water-reducing admixtures to mixture.

D. Deposit concrete continuously in one layer or in horizontal layers of such thickness that no new concrete will be placed on concrete that has hardened enough to cause seams or planes of weakness. If a section cannot be placed continuously, provide construction joints as indicated. Deposit concrete to avoid segregation.

1. Deposit concrete in horizontal layers of depth to not exceed formwork design pressures and in a manner to avoid inclined construction joints.

2. Consolidate placed concrete with mechanical vibrating equipment according to ACI 301.

3. Do not use vibrators to transport concrete inside forms. Insert and withdraw vibrators vertically at uniformly spaced locations to rapidly penetrate placed layer and at least 6 inches into preceding layer. Do not insert vibrators into lower layers of concrete that have begun to lose plasticity. At each insertion, limit duration of vibration to time necessary to consolidate concrete and complete embedment of reinforcement and other embedded items without causing mixture constituents to segregate.

E. Deposit and consolidate concrete for floors and slabs in a continuous operation, within limits of construction joints, until placement of a panel or section is complete.
1. Consolidate concrete during placement operations so concrete is thoroughly worked around reinforcement and other embedded items and into corners.
3. Screed slab surfaces with a straightedge and strike off to correct elevations.
4. Slope surfaces uniformly to drains where required.
5. Begin initial floating using bull floats or darbies to form a uniform and open-textured surface plane, before excess bleedwater appears on the surface. Do not further disturb slab surfaces before starting finishing operations.

F. Cold-Weather Placement: Comply with ACI 306.1 and as follows. Protect concrete work from physical damage or reduced strength that could be caused by frost, freezing actions, or low temperatures.
1. When average high and low temperature is expected to fall below 40 deg F for three successive days, maintain delivered concrete mixture temperature within the temperature range required by ACI 301.
2. Do not use frozen materials or materials containing ice or snow. Do not place concrete on frozen subgrade or on subgrade containing frozen materials.
3. Do not use calcium chloride, salt, or other materials containing antifreeze agents or chemical accelerators unless otherwise specified and approved in mixture designs.

G. Hot-Weather Placement: Comply with ACI 301 and as follows:
1. Maintain concrete temperature below 90 deg F at time of placement. Chilled mixing water or chopped ice may be used to control temperature, provided water equivalent of ice is calculated to total amount of mixing water. Using liquid nitrogen to cool concrete is Contractor's option.
2. Fog-spray forms, steel reinforcement, and subgrade just before placing concrete. Keep subgrade uniformly moist without standing water, soft spots, or dry areas.

3.10 FINISHING FORMED SURFACES

A. Rough-Formed Finish: As-cast concrete texture imparted by form-facing material with tie holes and defects repaired and patched. Remove fins and other projections that exceed specified limits on formed-surface irregularities.
1. Apply to concrete surfaces not exposed to public view.

B. Smooth-Formed Finish: As-cast concrete texture imparted by form-facing material, arranged in an orderly and symmetrical manner with a minimum of seams. Repair and patch tie holes and defects. Remove fins and other projections that exceed specified limits on formed-surface irregularities.
1. Apply to concrete surfaces exposed to public view.

C. Related Unformed Surfaces: At tops of walls, horizontal offsets, and similar unformed surfaces adjacent to formed surfaces, strike off smooth and finish with a texture matching adjacent formed surfaces. Continue final surface treatment of formed surfaces uniformly across adjacent unformed surfaces unless otherwise indicated.
3.11 FINISHING FLOORS AND SLABS

A. General: Comply with ACI 302.1R recommendations for screeding, restraightening, and finishing operations for concrete surfaces. Do not wet concrete surfaces.

B. Scratch Finish: While still plastic, texture concrete surface that has been screeded and bull-floated or darbied. Use stiff brushes, brooms, or rakes to produce a profile amplitude of 1/4 inch in one direction.
 1. Apply scratch finish to surfaces to receive concrete floor toppings.

C. Float Finish: Consolidate surface with power-driven floats or by hand floating if area is small or inaccessible to power driven floats. Restraighten, cut down high spots, and fill low spots. Repeat float passes and restraightening until surface is left with a uniform, smooth, granular texture.
 1. Apply float finish to surfaces indicated to receive trowel finish.

D. Trowel Finish: After applying float finish, apply first troweling and consolidate concrete by hand or power-driven trowel. Continue troweling passes and restraighten until surface is free of trowel marks and uniform in texture and appearance. Grind smooth any surface defects that would telegraph through applied coatings or floor coverings.
 1. Apply a trowel finish to surfaces exposed to view or to be covered with paint or another thin-film-finish coating system.
 2. Finish surfaces to the following tolerances, according to ASTM E 1155, for a randomly trafficked floor surface:
 a. Specified overall values of flatness, F(F) 25; and of levelness, F(L) 20; with minimum local values of flatness, F(F) 17; and of levelness, F(L) 15.
 b. Specified overall values of flatness, F(F) 35; and of levelness, F(L) 25; with minimum local values of flatness, F(F) 24; and of levelness, F(L) 17; for slabs-on-grade.
 c. Specified overall values of flatness, F(F) 30; and of levelness, F(L) 20; with minimum local values of flatness, F(F) 24; and of levelness, F(L) 15; for suspended slabs.
 d. Specified overall values of flatness, F(F) 45; and of levelness, F(L) 35; with minimum local values of flatness, F(F) 30; and of levelness, F(L) 24.

 3. Finish and measure surface so gap at any point between concrete surface and an unleveled, freestanding, 10-ft.-long straightedge resting on two high spots and placed anywhere on the surface does not exceed 1/4 inch.

E. Trowel and Fine-Broom Finish: Apply a first trowel finish to surfaces where slip resistance is required. While concrete is still plastic, slightly scarify surface with a fine broom.
 1. Comply with flatness and levelness tolerances for trowel-finished floor surfaces.
F. Broom Finish: Apply a broom finish to exterior concrete platforms, steps, ramps, and elsewhere as indicated.

1. Immediately after float finishing, slightly roughen trafficked surface by brooming with fiber-bristle broom perpendicular to main traffic route. Coordinate required final finish with Architect before application.

G. Slip-Resistive Finish: Before final floating, apply slip-resistive aggregate finish where indicated and to concrete stair treads, platforms, and ramps. Apply according to manufacturer's written instructions and as follows:

1. Uniformly spread 25 lb/100 sq. ft. of dampened slip-resistive aggregate over surface in one or two applications. Tamp aggregate flush with surface, but do not force below surface.
2. After broadcasting and tamping, apply float finish.
3. After curing, lightly work surface with a steel wire brush or an abrasive stone and water to expose slip-resistive aggregate.

H. Dry-Shake Floor Hardener Finish: After initial floating, apply dry-shake floor hardener to surfaces according to manufacturer's written instructions and as follows:

1. Uniformly apply dry-shake floor hardener at a rate of 100 lb/100 sq. ft. unless greater amount is recommended by manufacturer.
2. Uniformly distribute approximately two-thirds of dry-shake floor hardener over surface by hand or with mechanical spreader, and embed by power floating. Follow power floating with a second dry-shake floor hardener application, uniformly distributing remainder of material, and embed by power floating.
3. After final floating, apply a trowel finish. Cure concrete with curing compound recommended by dry-shake floor hardener manufacturer and apply immediately after final finishing.

3.12 MISCELLANEOUS CONCRETE ITEMS

A. Filling In: Fill in holes and openings left in concrete structures after work of other trades is in place unless otherwise indicated. Mix, place, and cure concrete, as specified, to blend with in-place construction. Provide other miscellaneous concrete filling indicated or required to complete the Work.

B. Curbs: Provide monolithic finish to interior curbs by stripping forms while concrete is still green and by steel-troweling surfaces to a hard, dense finish with corners, intersections, and terminations slightly rounded.

C. Equipment Bases and Foundations: Provide machine and equipment bases and foundations as shown on Drawings. Set anchor bolts for machines and equipment at correct elevations, complying with diagrams or templates from manufacturer furnishing machines and equipment.
D. Steel Pan Stairs: Provide concrete fill for steel pan stair treads, landings, and associated items. Cast-in inserts and accessories as shown on Drawings. Screed, tamp, and trowel finish concrete surfaces.

3.13 CONCRETE PROTECTING AND CURING

A. General: Protect freshly placed concrete from premature drying and excessive cold or hot temperatures. Comply with ACI 306.1 for cold-weather protection and ACI 301 for hot-weather protection during curing.

B. Evaporation Retarder: Apply evaporation retarder to unformed concrete surfaces if hot, dry, or windy conditions cause moisture loss approaching 0.2 lb/sq. ft. x h before and during finishing operations. Apply according to manufacturer's written instructions after placing, screeding, and bull floating or darbying concrete, but before float finishing.

C. Formed Surfaces: Cure formed concrete surfaces, including underside of beams, supported slabs, and other similar surfaces. If forms remain during curing period, moist cure after loosening forms. If removing forms before end of curing period, continue curing for the remainder of the curing period.

D. Unformed Surfaces: Begin curing immediately after finishing concrete. Cure unformed surfaces, including floors and slabs, concrete floor toppings, and other surfaces.

E. Cure concrete according to ACI 308.1, by one or a combination of the following methods:

1. Moisture Curing: Keep surfaces continuously moist for not less than seven days with the following materials:
 a. Water.
 b. Continuous water-fog spray.
 c. Absorptive cover, water saturated, and kept continuously wet. Cover concrete surfaces and edges with 12-inch lap over adjacent absorptive covers.

2. Moisture-Retaining-Cover Curing: Cover concrete surfaces with moisture-retaining cover for curing concrete, placed in widest practicable width, with sides and ends lapped at least 12 inches, and sealed by waterproof tape or adhesive. Cure for not less than seven days. Immediately repair any holes or tears during curing period using cover material and waterproof tape.
 a. Moisture cure or use moisture-retaining covers to cure concrete surfaces to receive floor coverings.
 b. Moisture cure or use moisture-retaining covers to cure concrete surfaces to receive penetrating liquid floor treatments.
 c. Cure concrete surfaces to receive floor coverings with either a moisture-retaining cover or a curing compound that the manufacturer certifies will not interfere with bonding of floor covering used on Project.
3. Curing Compound: Apply uniformly in continuous operation by power spray or roller according to manufacturer's written instructions. Recoat areas subjected to heavy rainfall within three hours after initial application. Maintain continuity of coating and repair damage during curing period.

 a. Removal: After curing period has elapsed, remove curing compound without damaging concrete surfaces by method recommended by curing compound manufacturer.

4. Curing and Sealing Compound: Apply uniformly to floors and slabs indicated in a continuous operation by power spray or roller according to manufacturer's written instructions. Recoat areas subjected to heavy rainfall within three hours after initial application. Repeat process 24 hours later and apply a second coat. Maintain continuity of coating and repair damage during curing period.

3.14 LIQUID FLOOR TREATMENTS

A. Penetrating Liquid Floor Treatment: Prepare, apply, and finish penetrating liquid floor treatment according to manufacturer's written instructions.

1. Remove curing compounds, sealers, oil, dirt, laitance, and other contaminants and complete surface repairs.
2. Do not apply to concrete that is less than three days' old.
3. Apply liquid until surface is saturated, scrubbing into surface until a gel forms; rewet; and repeat brooming or scrubbing. Rinse with water; remove excess material until surface is dry. Apply a second coat in a similar manner if surface is rough or porous.

B. Polished Concrete Floor Treatment: Apply polished concrete finish system to cured and prepared slabs to match accepted mockup.

1. Machine grind floor surfaces to receive polished finishes level and smooth and to depth required to reveal aggregate to match approved mockup.
2. Apply penetrating liquid floor treatment for polished concrete in polishing sequence and according to manufacturer's written instructions, allowing recommended drying time between successive coats.
3. Continue polishing with progressively finer grit diamond polishing pads to gloss level to match approved mockup.
4. Control and dispose of waste products produced by grinding and polishing operations.
5. Neutralize and clean polished floor surfaces.

C. Sealing Coat: Uniformly apply a continuous sealing coat of curing and sealing compound to hardened concrete by power spray or roller according to manufacturer's written instructions.
3.15 JOINT FILLING

A. Prepare, clean, and install joint filler according to manufacturer's written instructions.

1. Defer joint filling until concrete has aged at least one month(s). Do not fill joints until construction traffic has permanently ceased.

B. Remove dirt, debris, saw cuttings, curing compounds, and sealers from joints; leave contact faces of joint clean and dry.

C. Install semirigid joint filler full depth in saw-cut joints and at least 2 inches deep in formed joints. Overfill joint and trim joint filler flush with top of joint after hardening.

3.16 CONCRETE SURFACE REPAIRS

A. Defective Concrete: Repair and patch defective areas when approved by Architect. Remove and replace concrete that cannot be repaired and patched to Architect's approval.

B. Patching Mortar: Mix dry-pack patching mortar, consisting of one part Portland cement to two and one-half parts fine aggregate passing a No. 16 sieve, using only enough water for handling and placing.

C. Repairing Formed Surfaces: Surface defects include color and texture irregularities, cracks, spalls, air bubbles, honeycombs, rock pockets, fins and other projections on the surface, and stains and other discolorations that cannot be removed by cleaning.

1. Immediately after form removal, cut out honeycombs, rock pockets, and voids more than 1/2 inch in any dimension to solid concrete. Limit cut depth to 3/4 inch. Make edges of cuts perpendicular to concrete surface. Clean, dampen with water, and brush-coat holes and voids with bonding agent. Fill and compact with patching mortar before bonding agent has dried. Fill form-tie voids with patching mortar or cone plugs secured in place with bonding agent.

2. Repair defects on surfaces exposed to view by blending white Portland cement and standard Portland cement so that, when dry, patching mortar will match surrounding color. Patch a test area at inconspicuous locations to verify mixture and color match before proceeding with patching. Compact mortar in place and strike off slightly higher than surrounding surface.

3. Repair defects on concealed formed surfaces that affect concrete's durability and structural performance as determined by Architect.

D. Repairing Unformed Surfaces: Test unformed surfaces, such as floors and slabs, for finish and verify surface tolerances specified for each surface. Correct low and high areas. Test surfaces sloped to drain for trueness of slope and smoothness; use a sloped template.

1. Repair finished surfaces containing defects. Surface defects include spalls, popouts, honeycombs, rock pockets, crazing and cracks in excess of 0.01 inch-wide or that penetrate to reinforcement or completely through unreinforced sections regardless of width, and other objectionable conditions.
2. After concrete has cured at least 14 days, correct high areas by grinding.
3. Correct localized low areas during or immediately after completing surface finishing operations by cutting out low areas and replacing with patching mortar. Finish repaired areas to blend into adjacent concrete.
4. Correct other low areas scheduled to receive floor coverings with a repair underlayment. Prepare, mix, and apply repair underlayment and primer according to manufacturer's written instructions to produce a smooth, uniform, plane, and level surface. Feather edges to match adjacent floor elevations.
5. Correct other low areas scheduled to remain exposed with a repair topping. Cut out low areas to ensure a minimum repair topping depth of 1/4 inch to match adjacent floor elevations. Prepare, mix, and apply repair topping and primer according to manufacturer's written instructions to produce a smooth, uniform, plane, and level surface.
6. Repair defective areas, except random cracks and single holes 1 inch or less in diameter, by cutting out and replacing with fresh concrete. Remove defective areas with clean, square cuts and expose steel reinforcement with at least a 3/4-inch clearance all around. Dampen concrete surfaces in contact with patching concrete and apply bonding agent. Mix patching concrete of same materials and mixture as original concrete except without coarse aggregate. Place, compact, and finish to blend with adjacent finished concrete. Cure in same manner as adjacent concrete.
7. Repair random cracks and single holes 1 inch or less in diameter with patching mortar. Groove top of cracks and cut out holes to sound concrete and clean off dust, dirt, and loose particles. Dampen cleaned concrete surfaces and apply bonding agent. Place patching mortar before bonding agent has dried. Compact patching mortar and finish to match adjacent concrete. Keep patched area continuously moist for at least 72 hours.

E. Perform structural repairs of concrete, subject to Architect's approval, using epoxy adhesive and patching mortar.

F. Repair materials and installation not specified above may be used, subject to Architect's approval.

3.17 FIELD QUALITY CONTROL

A. Testing and Inspecting: Owner will engage a qualified independent testing agency to perform field tests, shop tests and inspections and prepare test reports.

B. Inspections:

1. Steel reinforcement placement.
2. Verification of use of required design mixture.
3. Concrete placement, including conveying and depositing.
4. Curing procedures and maintenance of curing temperature.
5. Verification of concrete strength before removal of shores and forms from slabs.

C. Concrete Tests: Testing of composite samples of fresh concrete obtained according to ASTM C 172 shall be performed according to the following requirements:
1. Testing Frequency: Obtain one composite sample for each day's pour of each concrete mixture exceeding 5 cu. yd., but less than 25 cu. yd., plus one set for each additional 50 cu. yd. or fraction thereof.

2. Testing Frequency: Obtain at least one composite sample for each 100 cu. yd. or fraction thereof of each concrete mixture placed each day.
 a. When frequency of testing will provide fewer than five compressive-strength tests for each concrete mixture, testing shall be conducted from at least five randomly selected batches or from each batch if fewer than five are used.

3. Slump: ASTM C 143/C 143M; one test at point of placement for each composite sample, but not less than one test for each day's pour of each concrete mixture. Perform additional tests when concrete consistency appears to change.

4. Air Content: ASTM C 231, pressure method, for normal-weight concrete; one test for each composite sample, but not less than one test for each day's pour of each concrete mixture.

5. Concrete Temperature: ASTM C 1064/C 1064M; one test hourly when air temperature is 40 deg F and below and when 80 deg F and above, and one test for each composite sample.

6. Unit Weight: ASTM C 567, fresh unit weight of structural lightweight concrete; one test for each composite sample, but not less than one test for each day's pour of each concrete mixture.

7. Compression Test Specimens: ASTM C 31/C 31M.
 a. Cast and laboratory cure two sets of two standard cylinder specimens for each composite sample.
 b. Cast and field cure two (2) sets of two standard cylinder specimens for each composite sample.

8. Compressive-Strength Tests: ASTM C 39/C 39M; test one set of two laboratory-cured specimens at 7 days and one set of two specimens at 28 days.
 a. Test one set of two field-cured specimens at 7 days and one set of two specimens at 28 days.
 b. A compressive-strength test shall be the average compressive strength from a set of two specimens obtained from same composite sample and tested at age indicated.

9. When strength of field-cured cylinders is less than 85 percent of companion laboratory-cured cylinders, Contractor shall evaluate operations and provide corrective procedures for protecting and curing in-place concrete.

10. Strength of each concrete mixture will be satisfactory if every average of any three consecutive compressive-strength tests equals or exceeds specified compressive strength and no compressive-strength test value falls below specified compressive strength by more than 500 psi.
11. Test results shall be reported in writing to Architect, concrete manufacturer, and Contractor within 48 hours of testing. Reports of compressive-strength tests shall contain Project identification name and number, date of concrete placement, name of concrete testing and inspecting agency, location of concrete batch in Work, design compressive strength at 28 days, concrete mixture proportions and materials, compressive breaking strength, and type of break for both 7- and 28-day tests.

12. Nondestructive Testing: Impact hammer, sonoscope, or other nondestructive device may be permitted by Architect but will not be used as sole basis for approval or rejection of concrete.

13. Additional Tests: Testing and inspecting agency shall make additional tests of concrete when test results indicate that slump, air entrainment, compressive strengths, or other requirements have not been met, as directed by Architect. Testing and inspecting agency may conduct tests to determine adequacy of concrete by cored cylinders complying with ASTM C 42/C 42M or by other methods as directed by Architect.

14. Additional testing and inspecting, at Contractor's expense, will be performed to determine compliance of replaced or additional work with specified requirements.

15. Correct deficiencies in the Work that test reports and inspections indicate do not comply with the Contract Documents.

D. Measure floor and slab flatness and levelness according to ASTM E 1155 within 24 hours of finishing.

3.18 PROTECTION OF LIQUID FLOOR TREATMENTS

A. Protect liquid floor treatment from damage and wear during the remainder of construction period. Use protective methods and materials, including temporary covering, recommended in writing by liquid floor treatments installer.

END OF SECTION
SECTION 055000

METAL FABRICATIONS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Steel framing and supports for operable partitions.
2. Steel framing and supports for mechanical and electrical equipment.
3. Metal bollards.

B. Products furnished, but not installed, under this Section include the following:

1. Anchor bolts, steel pipe sleeves, slotted-channel inserts, and wedge-type inserts indicated to be cast into concrete or built into unit masonry.
2. Steel weld plates and angles for casting into concrete for applications where they are not specified in other Sections.

C. Related Requirements:

1. Section 033000 "Cast-in-Place Concrete" for installing anchor bolts, steel pipe sleeves, slotted-channel inserts, wedge-type inserts, and other items cast into concrete.

1.3 COORDINATION

A. Coordinate selection of shop primers with topcoats to be applied over them. Comply with paint and coating manufacturers' written recommendations to ensure that shop primers and topcoats are compatible with one another.

B. Coordinate installation of metal fabrications that are anchored to or that receive other work. Furnish setting drawings, templates, and directions for installing anchorages, including sleeves, concrete inserts, anchor bolts, and items with integral anchors, that are to be embedded in concrete or masonry. Deliver such items to Project site in time for installation.

1.4 ACTION SUBMITTALS

A. Product Data: For the following:
1. Paint products.
2. Grout.

B. Shop Drawings: Show fabrication and installation details. Include plans, elevations, sections, and details of metal fabrications and their connections. Show anchorage and accessory items. Provide Shop Drawings for the following:

1. Steel framing and supports for operable partitions.
2. Steel framing and supports for mechanical and electrical equipment.
3. Metal bollards.

1.5 INFORMATIONAL SUBMITTALS

A. Mill Certificates: Signed by stainless-steel manufacturers, certifying that products furnished comply with requirements.

B. Welding certificates.

C. Paint Compatibility Certificates: From manufacturers of topcoats applied over shop primers, certifying that shop primers are compatible with topcoats.

D. Research/Evaluation Reports: For post-installed anchors, from ICC-ES.

1.6 QUALITY ASSURANCE

A. Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."

B. Welding Qualifications: Qualify procedures and personnel according to the following:

 1. AWS D1.1/D1.1M, "Structural Welding Code - Steel."

1.7 FIELD CONDITIONS

A. Field Measurements: Verify actual locations of walls and other construction contiguous with metal fabrications by field measurements before fabrication.

PART 2 - PRODUCTS

2.1 METALS

A. Metal Surfaces, General: Provide materials with smooth, flat surfaces unless otherwise indicated. For metal fabrications exposed to view in the completed Work, provide materials without seam marks, roller marks, rolled trade names, or blemishes.

B. Steel Plates, Shapes, and Bars: ASTM A 36/A 36M.

C. W-Shapes: ASTM A 992/A 992M or ASTM A 572/A 572M, Grade 50.
D. Steel Tubing: ASTM 1085 or ASTM A 500/A 500M, cold-formed steel tubing.

E. Steel Pipe: ASTM A 53/A 53M, Standard Weight (Schedule 40) unless otherwise indicated.

F. Zinc-Coated Steel Wire Rope: ASTM A 741.

1. Wire-Rope Fittings: Hot-dip galvanized-steel connectors with capability to sustain, without failure, a load equal to minimum breaking strength of wire rope with which they are used.

2.2 FASTENERS

A. General: Unless otherwise indicated, provide Type 304 stainless-steel fasteners for exterior use and zinc-plated fasteners with coating complying with ASTM B 633 or ASTM F 1941 (ASTM F 1941M), Class Fe/Zn 5, at exterior walls. Select fasteners for type, grade, and class required.

1. Provide stainless-steel fasteners for fastening aluminum.
2. Provide stainless-steel fasteners for fastening stainless steel.
4. Provide bronze fasteners for fastening bronze.

B. Steel Bolts and Nuts: Regular hexagon-head bolts, ASTM A 307, Grade A (ASTM F 568M, Property Class 4.6); with hex nuts, ASTM A 563 (ASTM A 563M); and, where indicated, flat washers.

C. Steel Bolts and Nuts: Unless otherwise indicated, for interior use, regular hexagon-head bolts, ASTM A 325, Type 3 (ASTM A 325M, Type 3); with hex nuts, ASTM A 563, Grade C3 (ASTM A 563M, Class 8S3); and, where indicated, flat washers.

D. Anchor Bolts: ASTM F 1554, Grade 36, of dimensions indicated; with nuts, ASTM A 563 (ASTM A 563M); and, where indicated, flat washers.

1. Hot-dip galvanize or provide mechanically deposited, zinc coating where item being fastened is indicated to be galvanized.

E. Anchors, General: Anchors capable of sustaining, without failure, a load equal to six times the load imposed when installed in unit masonry and four times the load imposed when installed in concrete, as determined by testing according to ASTM E 488/E 488M, conducted by a qualified independent testing agency.

F. Cast-in-Place Anchors in Concrete: Either threaded type or wedge type unless otherwise indicated; galvanized ferrous castings, either ASTM A 47/A 47M malleable iron or ASTM A 27/A 27M cast steel. Provide bolts, washers, and shims as needed, all hot-dip galvanized per ASTM F 2329.
G. Post-Installed Anchors: Torque-controlled expansion anchors or chemical anchors.

1. Material for Interior Locations: Carbon-steel components zinc plated to comply with ASTM B 633 or ASTM F 1941 (ASTM F 1941M), Class Fe/Zn 5, unless otherwise indicated.

H. Slotted-Channel Inserts: Cold-formed, hot-dip galvanized-steel box channels (struts) complying with MFMA-4, 1-5/8 by 7/8 inches (41 by 22 mm) by length indicated with anchor straps or studs not less than 3 inches (75 mm) long at not more than 8 inches (200 mm) o.c. Provide with temporary filler and tee-head bolts, complete with washers and nuts, all zinc-plated to comply with ASTM B 633, Class Fe/Zn 5, as needed for fastening to inserts.

2.3 MISCELLANEOUS MATERIALS

A. Universal Shop Primer: Fast-curing, lead- and chromate-free, universal modified-alkyd primer complying with MPI#79 and compatible with topcoat.

1. Use primer containing pigments that make it easily distinguishable from zinc-rich primer.

B. Water-Based Primer: Emulsion type, anticorrosive primer for mildly corrosive environments that is resistant to flash rusting when applied to cleaned steel, complying with MPI#107 and compatible with topcoat.

C. Nonshrink, Nonmetallic Grout: Factory-packaged, nonstaining, noncorrosive, nongaseous grout complying with ASTM C 1107/C 1107M. Provide grout specifically recommended by manufacturer for interior and exterior applications.

D. Concrete: Comply with requirements in Section 033000 "Cast-in-Place Concrete" for normal-weight, air-entrained, concrete with a minimum 28-day compressive strength of 4000 psi (20 MPa).

2.4 FABRICATION, GENERAL

A. Shop Assembly: Preassemble items in the shop to greatest extent possible. Disassemble units only as necessary for shipping and handling limitations. Use connections that maintain structural value of joined pieces. Clearly mark units for reassembly and coordinated installation.

B. Cut, drill, and punch metals cleanly and accurately. Remove burrs and ease edges to a radius of approximately 1/32 inch (1 mm) unless otherwise indicated. Remove sharp or rough areas on exposed surfaces.

C. Form bent-metal corners to smallest radius possible without causing grain separation or otherwise impairing work.
D. Form exposed work with accurate angles and surfaces and straight edges.

E. Weld corners and seams continuously to comply with the following:
 1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
 2. Obtain fusion without undercut or overlap.
 3. Remove welding flux immediately.
 4. At exposed connections, finish exposed welds and surfaces smooth and blended so no roughness shows after finishing.

F. Form exposed connections with hairline joints, flush and smooth, using concealed fasteners or welds where possible. Where exposed fasteners are required, use Phillips flat-head (countersunk) fasteners unless otherwise indicated. Locate joints where least conspicuous.

G. Fabricate seams and other connections that are exposed to weather in a manner to exclude water. Provide weep holes where water may accumulate.

H. Cut, reinforce, drill, and tap metal fabrications as indicated to receive finish hardware, screws, and similar items.

I. Provide for anchorage of type indicated; coordinate with supporting structure. Space anchoring devices to secure metal fabrications rigidly in place and to support indicated loads.

J. Where units are indicated to be cast into concrete or built into masonry, equip with integrally welded steel strap anchors, 1/8 by 1-1/2 inches (3.2 by 38 mm), with a minimum 6-inch (150-mm) embedment and 2-inch (50-mm) hook, not less than 8 inches (200 mm) from ends and corners of units and 24 inches (600 mm) o.c., unless otherwise indicated.

2.5 MISCELLANEOUS FRAMING AND SUPPORTS

A. General: Provide steel framing and supports not specified in other Sections as needed to complete the Work.

B. Fabricate units from steel shapes, plates, and bars of welded construction unless otherwise indicated. Fabricate to sizes, shapes, and profiles indicated and as necessary to receive adjacent construction.
 1. Fabricate units from slotted channel framing where indicated.
 2. Furnish inserts for units installed after concrete is placed.

C. Fabricate supports for operable partitions from continuous steel beams of sizes indicated with attached bearing plates, anchors, and braces as indicated. Drill or punch bottom flanges of beams to receive partition track hanger rods; locate holes where indicated on operable partition Shop Drawings.
D. Fabricate steel girders for wood frame construction from continuous steel shapes of sizes indicated.
 1. Provide bearing plates welded to beams where indicated.
 2. Drill or punch girders and plates for field-bolted connections where indicated.
 3. Where wood nailers are attached to girders with bolts or lag screws, drill or punch holes at 24 inches (600 mm) o.c.

E. Fabricate steel pipe columns for supporting wood frame construction from steel pipe with steel baseplates and top plates as indicated. Drill or punch baseplates and top plates for anchor and connection bolts and weld to pipe with fillet welds all around. Make welds the same size as pipe wall thickness unless otherwise indicated.
 1. Unless otherwise indicated, fabricate from Schedule 40 steel pipe.
 2. Unless otherwise indicated, provide 1/2-inch (12.7-mm) baseplates with four 5/8-inch (16-mm) anchor bolts and 1/4-inch (6.4-mm) top plates.

F. Galvanize miscellaneous framing and supports where indicated.

G. Prime miscellaneous framing and supports with zinc-rich primer where indicated.

2.6 METAL BOLLARDS

A. Fabricate metal bollards from steel shapes, as indicated.
 1. Where bollards are indicated to receive controls for door operators, provide cutouts for controls and holes for wire.
 2. Where bollards are indicated to receive light fixtures, provide cutouts for fixtures and holes for wire.

B. Fabricate bollards with 3/4-inch- (9.5-mm-) thick steel baseplates for bolting to concrete slab. Drill baseplates at all four corners for 3/4-inch (19-mm) anchor bolts.
 1. Where bollards are to be anchored to sloping concrete slabs, angle baseplates for plumb alignment of bollards.

C. Fabricate internal sleeves for removable bollards from Schedule 40 steel pipe or 1/4-inch (6.4-mm) wall-thickness steel tubing with an OD approximately 1/16 inch (1.5 mm) less than ID of bollards. Match drill sleeve and bollard for 3/4-inch (19-mm) steel machine bolt.

D. Prime bollards with zinc-rich primer.

2.7 LOOSE BEARING AND LEVELING PLATES

A. Provide loose bearing and leveling plates for steel items bearing on masonry or concrete construction. Drill plates to receive anchor bolts and for grouting.
2.8 STEEL WELD PLATES AND ANGLES

A. Provide steel weld plates and angles not specified in other Sections, for items supported from concrete construction as needed to complete the Work. Provide each unit with no fewer than two integrally welded steel strap anchors for embedding in concrete.

2.9 FINISHES, GENERAL

A. Finish metal fabrications after assembly.

B. Finish exposed surfaces to remove tool and die marks and stretch lines, and to blend into surrounding surface.

2.10 STEEL AND IRON FINISHES

A. Galvanizing: Hot-dip galvanize items as indicated to comply with ASTM A 153/A 153M for steel and iron hardware and with ASTM A 123/A 123M for other steel and iron products.

1. Do not quench or apply post galvanizing treatments that might interfere with paint adhesion.

B. Preparation for Shop Priming Galvanized Items: After galvanizing, thoroughly clean railings of grease, dirt, oil, flux, and other foreign matter, and treat with metallic phosphate process.

C. Shop prime iron and steel items not indicated to be galvanized unless they are to be embedded in concrete, sprayed-on fireproofing, or masonry, or unless otherwise indicated.

1. Shop prime with universal shop primer unless zinc-rich primer is indicated.

D. Preparation for Shop Priming: Prepare surfaces to comply with requirements indicated below:

3. Other Items: SSPC-SP 3, "Power Tool Cleaning."

E. Shop Priming: Apply shop primer to comply with SSPC-PA 1, "Paint Application Specification No. 1: Shop, Field, and Maintenance Painting of Steel," for shop painting.

1. Stripe paint corners, crevices, bolts, welds, and sharp edges.
PART 3 - EXECUTION

3.1 INSTALLATION, GENERAL

A. Cutting, Fitting, and Placement: Perform cutting, drilling, and fitting required for installing metal fabrications. Set metal fabrications accurately in location, alignment, and elevation; with edges and surfaces level, plumb, true, and free of rack; and measured from established lines and levels.

B. Fit exposed connections accurately together to form hairline joints. Weld connections that are not to be left as exposed joints but cannot be shop welded because of shipping size limitations. Do not weld, cut, or abrade surfaces of exterior units that have been hot-dip galvanized after fabrication and are for bolted or screwed field connections.

C. Field Welding: Comply with the following requirements:

1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
2. Obtain fusion without undercut or overlap.
3. Remove welding flux immediately.
4. At exposed connections, finish exposed welds and surfaces smooth and blended so no roughness shows after finishing and contour of welded surface matches that of adjacent surface.

D. Fastening to In-Place Construction: Provide anchorage devices and fasteners where metal fabrications are required to be fastened to in-place construction. Provide threaded fasteners for use with concrete and masonry inserts, toggle bolts, through bolts, lag screws, wood screws, and other connectors.

E. Provide temporary bracing or anchors in formwork for items that are to be built into concrete, masonry, or similar construction.

F. Corrosion Protection: Coat concealed surfaces of aluminum that come into contact with grout, concrete, masonry, wood, or dissimilar metals with the following:

1. Cast Aluminium: Heavy coat of bituminous paint.
2. Extruded Aluminum: Two coats of clear lacquer.

3.2 INSTALLING MISCELLANEOUS FRAMING AND SUPPORTS

A. General: Install framing and supports to comply with requirements of items being supported, including manufacturers' written instructions and requirements indicated on Shop Drawings.

B. Support steel girders on solid grouted masonry, concrete, or steel pipe columns. Secure girders with anchor bolts embedded in grouted masonry or concrete or with bolts through top plates of pipe columns.
1. Where grout space under bearing plates is indicated for girders supported on concrete or masonry, install as specified in "Installing Bearing and Leveling Plates" Article.

C. Install pipe columns on concrete footings with grouted baseplates. Position and grout column baseplates as specified in "Installing Bearing and Leveling Plates" Article.

1. Grout baseplates of columns supporting steel girders after girders are installed and leveled.

3.3 INSTALLING METAL BOLLARDS

A. Anchor bollards to existing construction with anchor bolts. Provide four 3/4-inch (19-mm) bolts at each bollard unless otherwise indicated.

B. Fill bollards solidly with concrete, mounding top surface to shed water.

1. Do not fill removable bollards with concrete.

3.4 INSTALLING BEARING AND LEVELING PLATES

B. Set bearing and leveling plates on wedges, shims, or leveling nuts. After bearing members have been positioned and plumbed, tighten anchor bolts. Do not remove wedges or shims but, if protruding, cut off flush with edge of bearing plate before packing with non-shrink grout. Pack grout solidly between bearing surfaces and plates to ensure that no voids remain.

3.5 ADJUSTING AND CLEANING

A. Touchup Painting: Immediately after erection, clean field welds, bolted connections, and abraded areas. Paint uncoated and abraded areas with the same material as used for shop painting to comply with SSPC-PA 1 for touching up shop-painted surfaces.

1. Apply by brush or spray to provide a minimum 2.0-mil (0.05-mm) dry film thickness.

B. Galvanized Surfaces: Clean field welds, bolted connections, and abraded areas and repair galvanizing to comply with ASTM A 780/A 780M.

END OF SECTION
SECTION 061000
ROUGH CARPENTRY

PART 1 - DESCRIPTION

1.1 SUMMARY

A. Section Includes:

1. Framing with dimension lumber.
2. Shear wall panels.
3. Wood blocking and nailers.
4. Wood furring and grounds.
5. Plywood backing panels.
6. Wood furring and grounds.
7. Wood sleepers.
8. Plywood backing panels.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product.

1. Include data on lumber, adhesives, fabrication, and protection.
2. For preservative-treated wood products. Include chemical treatment manufacturer's written instructions for handling, storing, installing, and finishing treated material.
3. For connectors. Include product data indicating compliance with engineering calculations and installation instructions.

B. Shop Drawings:

1. Show layout and comprehensive details of wood connectors and connection hardware.
 a. Include large-scale details, plan location and layout of wood structural connectors.

C. Delegated-Design Submittal: For wood structural connectors.

1. Provide engineering calculations signed and sealed by a registered engineer in the state of Delaware responsible for their preparation.
1.3 INFORMATIONAL SUBMITTALS

A. Material Certificates: For dimension lumber specified to comply with minimum allowable unit stresses. Indicate species and grade for each indicated use, and location, and design values approved by the ALSC Board of Review.

B. Product Data: For each type of process and factory-fabricated product.
 1. Include data for wood-preservative treatment from chemical treatment manufacturer and certification by treating plant that treated materials comply with requirements
 2. Include data for fire-retardant treatment from chemical treatment manufacturer and certification by treating plant that treated materials comply with requirements.

C. Evaluation Reports: For the following, from ICC-ES:
 1. Wood-preservative-treated wood.
 2. Fire-retardant-treated wood.
 3. Metal framing anchors.
 4. Powder-actuated fasteners
 5. Power-driven fasteners

1.4 PERFORMANCE REQUIREMENTS

A. Delegated Design: Engage a qualified professional engineer, as defined in Division 01 Section "Quality Requirements," to design structural wood connectors.

B. Structural Performance: Structural connectors shall withstand the effects of structural loads shown on Drawings without exceeding allowable design working stresses listed in AITC 117 or determined according to ASTM D 3737 and acceptable to authorities having jurisdiction.

C. Seismic Performance: Structural connectors shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.

1.5 QUALITY ASSURANCE

A. Testing Agency Qualifications: For testing agency providing classification marking for fire-retardant treated material, an inspection agency acceptable to authorities having jurisdiction that periodically performs inspections to verify that the material bearing the classification marking is representative of the material tested.

1.6 DELIVERY, STORAGE, AND HANDLING

A. Stack lumber flat with spacers beneath and between each bundle to provide air circulation. Protect lumber from weather by covering with waterproof sheeting, securely anchored. Provide for air circulation around stacks and under coverings.
PART 2 - MATERIALS

2.1 WOOD PRODUCTS, GENERAL

A. Lumber: DOC PS 20 and applicable rules of grading agencies indicated. If no grading agency is indicated, provide lumber that complies with the applicable rules of any rule-writing agency certified by the ALSC Board of Review. Provide lumber graded by an agency certified by the ALSC Board of Review to inspect and grade lumber under the rules indicated.

1. Factory mark each piece of lumber with grade stamp of grading agency.
2. For exposed lumber indicated to receive a stained or natural finish, mark grade stamp on end or back of each piece.
3. Provide dressed lumber, S4S, unless otherwise indicated.

B. Maximum Moisture Content of Lumber: 15 percent unless otherwise indicated.

C. Engineered Wood Products: Provide engineered wood products acceptable to authorities having jurisdiction and for which current model code research or evaluation reports exist that show compliance with building code in effect for Project.

1. Allowable Design Stresses: Provide engineered wood products with allowable design stresses, as published by manufacturer, that meet or exceed those indicated. Manufacturer's published values shall be determined from empirical data or by rational engineering analysis and demonstrated by comprehensive testing performed by a qualified independent testing agency.

2.2 WOOD-PRESERVATIVE-TREATED LUMBER

A. Preservative Treatment by Pressure Process: AWPA U1; Use Category UC2 for interior construction not in contact with the ground, Use Category UC3b for exterior construction not in contact with the ground, and Use Category UC4a for items in contact with the ground.

1. Preservative Chemicals: Acceptable to authorities having jurisdiction and containing no arsenic or chromium.

B. Kiln-dry lumber after treatment to a maximum moisture content of 19 percent. Do not use material that is warped or that does not comply with requirements for untreated material.

C. Mark lumber with treatment quality mark of an inspection agency approved by the ALSC Board of Review.

D. Application: Treat items indicated on Drawings, and the following:

1. Wood cants, nailers, curbs, equipment support bases, blocking, stripping, and similar members in connection with roofing, flashing, vapor barriers, and waterproofing.
2. Wood sills, sleepers, blocking, furring, stripping, and similar concealed members in contact with masonry or concrete.
3. Wood framing and furring attached directly to the interior of below-grade exterior masonry or concrete walls.
4. Wood framing members that are less than 18 inches above the ground in crawlspaces or unexcavated areas.
5. Wood floor plates that are installed over concrete slabs-on-grade.

2.3 DIMENSION LUMBER FRAMING

A. Non-Load-Bearing Interior Partitions: Construction or No. 2 grade.

1. Application: Non-loadbearing interior partitions unless indicated otherwise as shear walls.
2. Species:
 a. Mixed southern pine; SPIB.
 b. Southern Pine
 c. Hem-Fir
 d. Eastern softwoods; NeLMA.
 e. Western woods; WCLIB or WWPA.
 f. Spruce/Pine/ Fir #2.

B. Structural Framing of Load-Bearing and Shear Wall Partitions: Southern Pine No. 1 grade.

2. Species: Southern Pine; SPIB.

C. Structural Framing of rafters, ceiling joists, beams, headers, and lintels: Southern Pine No. 1 grade.

1. Application: All Structural framing of rafters, ceiling joists, beams, headers, and lintels, and top and bottom plates.
2. Species:
 a. Southern Pine: SPIB

D. Structural framing and Load Bearing Partition walls, and Shear Walls: Southern Pine No. 1 or better, with a maximum moisture content of 15%, and with a modulus of elasticity as indicated and an extreme fiber stress in bending as indicated for 2-inch nominal thickness and 12-inch nominal width for single-member use.

1. Application: All Structural Framing.
2.4 ENGINEERED WOOD PRODUCTS

A. Laminated-Veneer Lumber: Engineered wood products shall comply with section 061800 “Glued-Laminated Construction. Structural composite lumber made from wood veneers with grain primarily parallel to member lengths, evaluated and monitored according to ASTM D 5456 and manufactured with an exterior-type adhesive complying with ASTM D 2559.

1. Extreme Fiber Stress in Bending, Edgewise: 3100 psi for 12-inch nominal-depth members.
2. Modulus of Elasticity, Edgewise 2,000,000 psi.

2.5 SHEAR WALL PANELS

A. Wood-Framed Shear Wall Panels: Prefabricated assembly consisting of wood perimeter framing, hold downs as indicated, and Exposure I, Structural I plywood.

2.6 MISCELLANEOUS LUMBER

A. General: Provide miscellaneous lumber indicated and lumber for support or attachment of other construction, including the following:

1. Blocking.
2. Nailers.
3. Cants.
4. Furring.

B. For items of dimension lumber size, provide Construction or No. 2 grade lumber of any species.

C. For concealed boards, provide lumber with 19 percent maximum moisture content and any of the following species and grades:

1. Mixed southern pine; No. 2 grade; SPIB.
2. Spruce/ Pine/ Fire; No 2.
3. Eastern softwoods; No. 2 Common grade; NeLMA.
4. Northern species; No. 2 Common grade; NLGA.
5. Western woods; Construction or No. 2 Common grade; WCLIB or WWPA.

2.7 PLYWOOD BACKING PANELS

A. Equipment Backing Panels: DOC PS 1, Exterior, AC, fire-retardant treated, in thickness indicated or, if not indicated, not less than 1/2-inch nominal thickness.

2.8 FASTENERS

A. General: Provide fasteners of size and type indicated that comply with requirements specified in this article for material and manufacture.
1. Where rough carpentry is exposed to weather, in ground contact, pressure-preservative treated, or in area of high relative humidity, provide fasteners with hot-dip zinc coating complying with ASTM A 153/A 153M.

B. Nails, Brads, and Staples: ASTM F 1667.

D. Lag Bolts: ASME B18.2.1 (ASME B18.2.3.8M).

F. Bolts: Steel bolts complying with ASTM A 307, Grade A (ASTM F 568M, Property Class 4.6); with ASTM A 563 (ASTM A 563M) hex nuts and, where indicated, flat washers.

G. Expansion Anchors: Anchor bolt and sleeve assembly of material indicated below with capability to sustain, without failure, a load equal to six times the load imposed when installed in unit masonry assemblies and equal to four times the load imposed when installed in concrete as determined by testing per ASTM E 488 conducted by a qualified independent testing and inspecting agency.

H. Provide fasteners in accordance with Section 2304.9 Connection and Fasteners, and Table 2304.9.1 Fastening Schedule of the 2009 International Building Code (IBC), unless otherwise indicated.

2.9 STRUCTURAL METAL FRAMING ANCHORS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the

B. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:

1. Simpson Strong-Tie Co., Inc.
2. USP Structural Connectors.
3. Engineer Approved Equal.

C. Allowable Design Loads: Provide products with allowable design loads, as published by manufacturer that meet or exceed those indicated. Manufacturer's published values shall be determined from empirical data or by rational engineering analysis and demonstrated by comprehensive testing performed by a qualified independent testing agency.

1. Use for interior locations unless otherwise indicated.
E. Hot-Dip, Heavy-Galvanized Steel Sheet: ASTM A 653/A 653M; structural steel (SS), high-strength low-alloy steel Type A (HSLAS Type A), or high-strength low-alloy steel Type B (HSLAS Type B); G60 coating designation; and not less than 0.036 inch thick.

1. Use for wood-preservative-treated lumber and where indicated.

F. Joist Hangers: U-shaped joist hangers with minimum 2-inch-long seat and 1-1/4-inch-wide nailing flanges at least 85 percent of joist depth.

G. Top Flange Hangers: U-shaped joist hangers, full depth of joist, formed from metal strap with tabs bent to extend over and be fastened to supporting member, with minimum dimensions of:

1. Strap Width: 2 inches.
2. Thickness: 0.062 inch.

H. Hold-Downs: Brackets for bolting to wall studs and securing to foundation walls with anchor bolts or to other hold-downs with threaded rods and designed with first of two bolts placed seven bolt diameters from reinforced base.

2. Width: 3-3/16 inches
3. Body Thickness: 0.138 inch.
4. Base Reinforcement Thickness: 0.239 inch.

I. Wall Bracing: T-shaped bracing made for letting into studs in saw kerf, 1-1/8-inches wide by 9/16-inch deep by 0.034-inch thick with hemmed edges. Wall T-Shaped bracing is not an acceptable substitute for the indicated plywood shear wall panels.

2.10 MISCELLANEOUS MATERIALS

A. Sill-Sealer Gaskets: Closed-cell neoprene foam, ¼-inch thick, selected from manufacturer's standard widths to suit width of sill members indicated.

PART 3 - CONSTRUCTION METHODS

3.1 INSTALLATION, GENERAL

A. Set rough carpentry to required levels and lines, with members plumb, true to line, cut, and fitted. Fit rough carpentry to other construction; scribe and cope as needed for accurate fit. Locate furring, nailers, blocking, grounds, and similar supports to comply with requirements for attaching other construction.

B. Framing Standard: Comply with AF&PA's WCD 1, "Details for Conventional Wood Frame Construction," unless otherwise indicated.

C. Framing with Engineered Wood Products: Install engineered wood products to comply with manufacturer's written instructions.
D. Install fire-retardant treated plywood backing panels with classification marking of testing agency exposed to view.

E. Metal Framing Anchors: Install metal framing anchors to comply with manufacturer's written instructions. Install fasteners through each fastener hole.

F. Install sill sealer gasket to form continuous seal between sill plates and foundation walls.

G. Do not splice structural members between supports unless otherwise indicated.

H. Provide blocking and framing as indicated and as required to support facing materials, fixtures, specialty items, and trim.
 1. Provide metal clips for fastening gypsum board or lath at corners and intersections where framing or blocking does not provide a surface for fastening edges of panels. Space clips not more than 16 inches o.c.

I. Provide fire blocking in furred spaces, stud spaces, and other concealed cavities as indicated and as follows:
 1. Fire block furred spaces of walls, at ceiling, and at not more than 96 inches o.c. with solid wood blocking or noncombustible materials accurately fitted to close furred spaces.
 2. Fire block concealed spaces of wood-framed walls and partitions, at ceiling line, and at not more than 96 inches o.c. Where fire blocking is not inherent in framing system used, provide closely fitted solid wood blocks of same width as framing members and 2-inch nominal- (38-mm actual-) thickness.
 3. Fire block concealed spaces behind combustible cornices and exterior trim at not more than 20 feet o.c.

J. Sort and select lumber so that natural characteristics will not interfere with installation or with fastening other materials to lumber. Do not use materials with defects that interfere with function of member or pieces that are too small to use with minimum number of joints or optimum joint arrangement.

K. Comply with AWPA M4 for applying field treatment to cut surfaces of preservative-treated lumber.

L. Where wood-preservative-treated lumber is installed adjacent to metal decking, install continuous flexible flashing separator between wood and metal decking.

M. Securely attach rough carpentry work to substrate by anchoring and fastening as indicated, select fasteners of size that will not fully penetrate members where opposite side will be exposed to view or will receive finish materials. Make tight connections between members. Install fasteners without splitting wood. Drive nails snug but do not countersink nail heads unless otherwise indicated. Complying with the following:
N. Use steel common nails unless otherwise indicated. Select fasteners of size that will not fully penetrate members where opposite side will be exposed to view or will receive finish materials. Make tight connections between members. Install fasteners without splitting wood. Drive nails snug but do not countersink nail heads unless otherwise indicated.

3.2 WOOD GROUND, BLOCKING, AND NAILER INSTALLATION

A. Install where indicated and where required for attaching other work. Form to shapes indicated and cut as required for true line and level of attached work. Coordinate locations with other work involved.

B. Attach items to substrates to support applied loading. Recess bolts and nuts flush with surfaces unless otherwise indicated.

C. Where wood-preservative-treated lumber is installed adjacent to metal decking, install continuous flexible flashing separator between wood and metal decking.

D. Provide permanent grounds of dressed, pressure-preservative-treated, key-beveled lumber not less than 1-1/2 inches wide and of thickness required to bring face of ground to exact thickness of finish material. Remove temporary grounds when no longer required.

3.3 WOOD FURRING INSTALLATION

A. Install level and plumb with closure strips at edges and openings. Shim with wood as required for tolerance of finish work.

3.4 WALL AND PARTITION FRAMING INSTALLATION

A. General: Provide single bottom plate and double top plates using members of 2-inch nominal thickness whose widths equal that of studs, except single top plate may be used for non-load-bearing partitions. Fasten plates to supporting construction unless otherwise indicated.

1. For exterior walls, provide 2-by-6-inch nominal- size wood studs spaced 16 inches o.c. unless otherwise indicated.

2. For interior partitions and walls, provide 2-by-6-inch nominal- and 2-by-4-inch nominal-as indicated wood studs spaced 24 inches o.c. unless otherwise indicated.

3. Provide continuous horizontal blocking at mid-height of partitions more than 96 inches high, using members of 2-inch nominal thickness and of same width as wall or partitions.

B. Construct corners and intersections with three or more studs.

C. Frame openings with multiple studs and headers. Provide nailed header members of thickness equal to width of studs. Support headers on jamb studs.
1. For non-load-bearing partitions, unless otherwise indicated, provide double-jamb studs and headers not less than 4-inch nominal depth for openings 48 inches and less in width, 6-inch nominal depth for openings 48 to 72 inches in width, 8-inch nominal depth for openings 72 to 120 inches in width, and not less than 10-inch nominal depth for openings 10 to 12 feet in width.

2. For load-bearing walls, unless otherwise indicated, provide double-jamb studs for openings 60 inches and less in width, and triple-jamb studs for wider openings. Provide headers of depth indicated.

3.5 CEILING JOIST AND RAFTER FRAMING INSTALLATION

A. Ceiling Joists: Install ceiling joists with crown edge up and complying with requirements specified above for floor joists. Face nail to ends of parallel rafters.

1. Where ceiling joists are at right angles to rafters, provide additional short joists parallel to rafters from wall plate to first joist; nail to ends of rafters and to top plate and nail to first joist or anchor with framing anchors or metal straps. Provide 1-by-8-inch nominal-size or 2-by-4-inch nominal-size stringers spaced 48 inches o.c. crosswise over main ceiling joists.

B. Rafters: Notch to fit exterior wall plates and toe nail or use metal framing anchors. Provide double rafters to form headers and trimmers at openings in roof framing, if any, and support with metal hangers. Where rafters abut at ridge, place directly opposite each other and use metal ridge hangers.

1. At valleys, provide double-valley rafters of size indicated or, if not indicated, of same thickness as regular rafters and 2 inches deeper. Bevel ends of jack rafters for full bearing against valley rafters.

2. At hips, provide hip rafter of size indicated or, if not indicated, of same thickness as regular rafters and 2 inches deeper. Bevel ends of jack rafters for full bearing against hip rafter.

C. Provide collar beams (ties) as indicated or, if not indicated, provide 1-by-6-inch nominal actual size boards between every third pair of rafters, but not more than 48 inches o.c. Locate below ridge member, at third point of rafter span. Cut ends to fit roof slope and nail to rafters.

3.6 PROTECTION

A. Protect rough carpentry from weather. If, despite protection, rough carpentry becomes wet, apply EPA-registered borate treatment. Apply borate solution by spraying to comply with EPA-registered label.

END OF SECTION
SECTION 061600
SHEATHING

PART 1 - DESCRIPTION

1.1 SUMMARY
A. Section Includes:
 1. Wall sheathing.
 2. Roof sheathing.

1.2 ACTION SUBMITTALS
A. Product Data: For each type of process and factory-fabricated product. Indicate component materials and dimensions and include construction and application details.
 1. Include data for wood-preservative treatment from chemical treatment manufacturer and certification by treating plant that treated plywood complies with requirements.
 2. Include data for fire-retardant treatment from chemical treatment manufacturer and certification by treating plant that treated plywood complies with requirements.

1.3 INFORMATIONAL SUBMITTALS
A. Evaluation Reports: For following products, from ICC-ES:
 1. Preservative-treated plywood.
 2. Fire-retardant-treated plywood.

PART 2 - MATERIALS

2.1 PERFORMANCE REQUIREMENTS
A. Fire-Test-Response Characteristics: For assemblies with fire-resistance ratings, provide materials and construction identical to those of assemblies tested for fire resistance per ASTM E 119 by a testing and inspecting agency acceptable to authorities having jurisdiction.
2.2 WOOD PANEL PRODUCTS

A. Certified Wood: For the following wood products, provide materials produced from wood obtained from forests certified by an FSC-accredited certification body to comply with FSC STD-01-001, "FSC Principles and Criteria for Forest Stewardship”:
 1. Plywood.

B. Plywood: DOC PS 1.

2.3 PRESERVATIVE-TREATED PLYWOOD

A. Preservative Treatment by Pressure Process: AWPA U1; Use Category UC2
 Use Category UC3b.

B. Mark plywood with appropriate classification marking of an inspection agency acceptable to authorities having jurisdiction.

C. Application: Treat all plywood unless otherwise indicated.

2.4 FIRE-RETARDANT-TREATED PLYWOOD

A. General: Where fire-retardant-treated materials are indicated, use materials complying with requirements in this article that are acceptable to authorities having jurisdiction and with fire-test-response characteristics specified as determined by testing identical products per test method indicated by a qualified testing agency.

B. Fire-Retardant-Treated Plywood by Pressure Process: Products with a flame-spread index of 25 or less when tested according to ASTM E 84, and with no evidence of significant progressive combustion when the test is extended an additional 20 minutes, and with the flame front not extending more than 10.5 feet beyond the centerline of the burners at any time during the test.
 1. Exterior Type: Treated materials shall comply with requirements specified above for fire-retardant-treated plywood by pressure process after being subjected to accelerated weathering according to ASTM D 2898. Use for exterior locations and where indicated.
 2. Design Value Adjustment Factors: Treated lumber plywood shall be tested according ASTM D 5516 and design value adjustment factors shall be calculated according to ASTM D 6305. Span ratings after treatment shall be not less than span ratings specified. For roof sheathing and where high-temperature fire-retardant treatment is indicated, span ratings for temperatures up to 170 deg F (deg C) shall be not less than span ratings specified.

C. Kiln-dry material after treatment to a maximum moisture content of 15 percent.

D. Identify fire-retardant-treated plywood with appropriate classification marking of qualified testing agency.

E. Application: Treat all plywood unless otherwise indicated.
2.5 WALL SHEATHING

A. Plywood Wall Sheathing: Exposure 1, Structural I Sheathing.

2.6 ROOF SHEATHING

A. Plywood Roof Sheathing: Exposure 1, Structural I Sheathing.

2.7 FASTENERS

A. General: Provide fasteners of size and type indicated that comply with requirements specified in this article for material and manufacture.

1. For roof and wall sheathing, provide fasteners with hot-dip zinc coating complying with ASTM A 153/A 153M, unless otherwise indicated.

2.8 MISCELLANEOUS MATERIALS

A. Adhesives for Field Gluing Panels to Framing: Formulation complying with APA AFG-01 that is approved for use with type of construction panel indicated by manufacturers of both adhesives and panels.

B. Panel Edge Clips (H-Clips)

1. For roof sheathing, provide 18 gage galvanized plywood panel edge clips (H-Clips)

PART 3 - CONSTRUCTION METHODS

3.1 INSTALLATION, GENERAL

A. Do not use materials with defects that impair quality of sheathing or pieces that are too small to use with minimum number of joints or optimum joint arrangement. Arrange joints so that pieces do not span between fewer than three support members.

B. Cut panels at penetrations, edges, and other obstructions of work; fit tightly against abutting construction unless otherwise indicated.

C. Securely attach to substrate by fastening as indicated, complying with the following:

1. NES NER-272 for power-driven fasteners.
2. Table 2304.9.1, "Fastening Schedule," in ICC's "International Building Code."

D. Coordinate wall and roof sheathing installation with flashing and joint-sealant installation so these materials are installed in sequence and manner that prevent exterior moisture from passing through completed assembly.
E. Do not bridge building expansion joints; cut and space edges of panels to match spacing of structural support elements.

F. Install preservative treated plywood where in contact with concrete.

3.2 WOOD STRUCTURAL PANEL INSTALLATION

1. Roof Sheathing:
 a. Install plywood edge clips (H-Clips) at roof sheathing. One H-clip shall be placed between abutting panels at a location midway between each pair of rafters, or joists.

B. Fastening Methods: Fasten panels as indicated below:

1. Wall and Roof Sheathing:
 a. Nail to wood framing.
 b. Screw to cold-formed metal framing.
 c. Space panels 1/8 inch apart at edges and ends.

END OF SECTION
SECTION 061753
SHOP-FABRICATED WOOD TRUSSES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Wood roof trusses.
 2. Wood floor trusses.
 3. Wood girder trusses.

1.3 ALLOWANCES
A. Provide wood truss bracing under the Metal-Plate-Connected Truss Bracing Allowance as specified in Section 012100 "Allowances."

1.4 DEFINITIONS
A. Metal-Plate-Connected Wood Trusses: Planar structural units consisting of metal-plate-connected members fabricated from dimension lumber and cut and assembled before delivery to Project site.

1.5 ACTION SUBMITTALS
A. Product Data: For fire-retardant-treated lumber, metal-plate connectors, metal truss accessories, and fasteners.
 1. Include data for fire-retardant treatment from chemical-treatment manufacturer and certification from treating plant that treated materials comply with requirements. Include physical properties of treated materials based on testing by a qualified independent testing agency.
 2. For fire-retardant treatments, include physical properties of treated lumber both before and after exposure to elevated temperatures, based on testing by a qualified independent testing agency according to ASTM D 5664.
 3. For products receiving a waterborne treatment, include statement that moisture content of treated materials was reduced to levels specified before shipment to truss fabricator.
B. Shop Drawings: Show fabrication and installation details for trusses.

1. Show location, pitch, span, camber, configuration, and spacing for each type of truss required.
2. Indicate sizes, stress grades, and species of lumber.
3. Indicate locations of permanent bracing required to prevent buckling of individual truss members due to design loads.
4. Indicate locations, sizes, and materials for permanent bracing required to prevent buckling of individual truss members due to design loads.
5. Indicate type, size, material, finish, design values, orientation, and location of metal connector plates.
6. Show splice details and bearing details.

C. Delegated-Design Submittal: For metal-plate-connected wood trusses indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

1.6 INFORMATIONAL SUBMITTALS

A. Qualification Data: For metal connector-plate manufacturer and fabricator.

B. Material Certificates: For dimension lumber specified to comply with minimum specific gravity. Indicate species and grade selected for each use and specific gravity.

C. Product Certificates: For metal-plate-connected wood trusses, signed by officer of truss-fabricating firm.

D. Evaluation Reports: For the following, from ICC-ES:

1. Wood-preservative-treated lumber.
2. Fire-retardant-treated wood.
3. Metal-plate connectors.
4. Metal truss accessories.

1.7 QUALITY ASSURANCE

A. Metal Connector-Plate Manufacturer Qualifications: A manufacturer that is a member of TPI and that complies with quality-control procedures in TPI 1 for manufacture of connector plates.

1. Manufacturer's responsibilities include providing professional engineering services needed to assume engineering responsibility.
2. Engineering Responsibility: Preparation of Shop Drawings and comprehensive engineering analysis by a qualified professional engineer.

B. Fabricator Qualifications: Shop that participates in a recognized quality-assurance program, complies with quality-control procedures in TPI 1, and involves third-party inspection by an independent testing and inspecting agency acceptable to Architect and authorities having jurisdiction.
C. Testing Agency Qualifications: For testing agency providing classification marking for fire-retardant-treated material, an inspection agency acceptable to authorities having jurisdiction that periodically performs inspections to verify that the material bearing the classification marking is representative of the material tested.

1.8 DELIVERY, STORAGE, AND HANDLING

A. Handle and store trusses to comply with recommendations in SBCA BCSI, "Building Component Safety Information: Guide to Good Practice for Handling, Installing, Restraining, & Bracing Metal Plate Connected Wood Trusses."
 1. Store trusses flat, off of ground, and adequately supported to prevent lateral bending.
 2. Protect trusses from weather by covering with waterproof sheeting, securely anchored.
 3. Provide for air circulation around stacks and under coverings.

B. Inspect trusses showing discoloration, corrosion, or other evidence of deterioration. Discard and replace trusses that are damaged or defective.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Delegated Design: Engage a qualified professional engineer, licensed in the state of Delaware, as defined in Section 014000 "Quality Requirements," to design metal-plate-connected wood trusses.

B. Structural Performance: Metal-plate-connected wood trusses shall be capable of withstanding design loads within limits and under conditions indicated. Comply with requirements in TPI 1 unless more stringent requirements are specified below.
 1. Design Loads: As indicated on drawings.
 2. Maximum Deflection under Design Loads:
 b. Floor Trusses: Vertical deflection of 1/360 (Live Load only) of span.

C. Comply with applicable requirements and recommendations of TPI 1, TPI DSB, and SBCA BCSI.

2.2 DIMENSION LUMBER

A. Lumber: DOC PS 20 and applicable rules of any rules-writing agency certified by the American Lumber Standard Committee (ALSC) Board of Review. Provide lumber graded by an agency certified by the ALSC Board of Review to inspect and grade lumber under the rules indicated.

1. Factory mark each piece of lumber with grade stamp of grading agency.
2. For exposed lumber indicated to receive a stained or natural finish, omit grade stamp and provide certificates of grade compliance issued by grading agency.
3. Provide dressed lumber, S4S.
4. Provide dry lumber with 15 percent maximum moisture content at time of dressing.

B. Permanent Bracing: Provide wood bracing that complies with requirements for miscellaneous lumber in Section 061000 "Rough Carpentry."

C. Kiln-dry lumber after treatment to a maximum moisture content of 15 percent. Do not use material that is warped or does not comply with requirements for untreated material.

D. Mark lumber with treatment quality mark of an inspection agency approved by the ALSC Board of Review.

2.3 FIRE-RETARDANT-TREATED WOOD

A. General: Where fire-retardant-treated materials are indicated, use materials complying with requirements in this article, that are acceptable to authorities having jurisdiction, and with fire-test-response characteristics specified as determined by testing identical products according to test method indicated by a qualified testing agency.

B. Fire-Retardant-Treated Lumber by Pressure Process: Products with a flame-spread index of 25 or less when tested according to ASTM E 84, with no evidence of significant progressive combustion when the test is extended an additional 20 minutes, and with the flame front not extending more than 10.5 feet (3.2 m) beyond the centerline of the burners at any time during the test.

1. Use treatment that does not promote corrosion of metal fasteners.
2. Interior Type A: Treated materials shall have a moisture content of 28 percent or less when tested according to ASTM D 3201 at 92 percent relative humidity. Use for interior locations where exterior type is not indicated.
3. Design Value Adjustment Factors: Treated lumber shall be tested according to ASTM D 5664, and design value adjustment factors shall be calculated according to ASTM D 6841. For enclosed roof framing and framing in attic spaces, and where high-temperature fire-retardant treatment is indicated, provide material with adjustment factors of not less than 0.85 modulus of elasticity and 0.75 for extreme fiber in bending for Project's climatological zone.

C. Kiln-dry lumber after treatment to a maximum moisture content of 15 percent.
D. Identify fire-retardant-treated wood with appropriate classification marking of testing and inspecting agency acceptable to authorities having jurisdiction.

E. For exposed trusses indicated to receive a stained or natural finish, use chemical formulations that do not bleed through, contain colorants, or otherwise adversely affect finishes.

F. Application: Treat items indicated on Drawings, and the following.

2.4 METAL CONNECTOR PLATES

A. General: Fabricate connector plates to comply with TPI 1.

B. Hot-Dip Galvanized-Steel Sheet: ASTM A 653/A 653M; Structural Steel (SS), high-strength low-alloy steel Type A (HSLAS Type A), or high-strength low-alloy steel Type B (HSLAS Type B); G60 (Z180) coating designation; and not less than 0.036 inch (0.9 mm) thick.

1. Use for interior locations unless otherwise indicated.

C. Hot-Dip Heavy-Galvanized-Steel Sheet: ASTM A 653/A 653M; Structural Steel (SS), high-strength low-alloy steel Type A (HSLAS Type A), or high-strength low-alloy steel Type B (HSLAS Type B); G185 (Z550) coating designation; and not less than 0.036 inch (0.9 mm) thick.

1. Use for wood-preservative-treated lumber and where indicated.

D. Stainless-Steel Sheet: ASTM A 666, Type 304, and not less than 0.035 inch (0.88 mm) thick.

1. Use for exterior locations and where indicated.

2.5 FASTENERS

A. General: Provide fasteners of size and type indicated that comply with requirements specified in this article for material and manufacture.

1. Provide fasteners for use with metal framing anchors that comply with written recommendations of metal framing manufacturer.

2. Where trusses are exposed to weather, in ground contact, made from pressure-preservative treated wood, or in area of high relative humidity, provide fasteners with hot-dip zinc coating complying with ASTM A 153/A 153M.

B. Nails, Brads, and Staples: ASTM F 1667.

2.6 METAL FRAMING ANCHORS AND ACCESSORIES

A. Allowable design loads, as published by manufacturer, shall comply with or exceed those of basis-of-design products. Manufacturer's published values shall be determined from
empirical data or by rational engineering analysis and demonstrated by comprehensive testing performed by a qualified independent testing agency. Framing anchors shall be punched for fasteners adequate to withstand same loads as framing anchors.

 1. Use for interior locations unless otherwise indicated.

C. Hot-Dip Heavy-Galvanized-Steel Sheet: ASTM A 653/A 653M; Structural Steel (SS), high-strength low-alloy steel Type A (HSLAS Type A), or high-strength low-alloy steel Type B (HSLAS Type B); G185 (Z550) coating designation; and not less than 0.036 inch (0.9 mm) thick.
 1. Use for wood-preservative-treated lumber and where indicated.

D. Truss Tie-Downs: Bent strap tie for fastening roof trusses to wall studs below, 1-1/2 inches (38 mm) wide by 0.050 inch (1.3 mm) thick

E. Truss Tie-Downs (Hurricane or Seismic Ties): Bent strap tie for fastening roof trusses to wall studs below, 2-1/4 inches (57 mm) wide by 0.062 inch (1.6 mm) thick. Tie fits over top of truss and fastens to both sides of truss, top plates, and one side of stud below.

F. Roof Truss Clips: Angle clips for bracing bottom chord of roof trusses at non-load-bearing walls, 1-1/4 inches (32 mm) wide by 0.050 inch (1.3 mm) thick. Clip is fastened to truss through slotted holes to allow for truss deflection.

G. Floor Truss Hangers: U-shaped hangers, full depth of floor truss, with 1-3/4-inch- (44-mm-) long seat; formed from metal strap 0.062 inch (1.6 mm) thick with tabs bent to extend over and be fastened to supporting member.

H. Roof Truss Bracing/Spacers: U-shaped channels, 1-1/2 inches (38 mm) wide by 1 inch (25 mm) deep by 0.040 inch (1.0 mm) thick, made to fit between two adjacent trusses and accurately space them apart, and with tabs having metal teeth for fastening to trusses.

I. Drag Strut Connectors: Angle clip with one leg extended for fastening to the side of girder truss.
 1. Angle clip is 3 by 3 by 0.179 by 8 inches (76 by 76 by 4.55 by 203 mm) with extended leg 8 inches (203 mm) long. Connector has galvanized finish.

2.7 MISCELLANEOUS MATERIALS

A. Galvanizing Repair Paint: SSPC-Paint 20, with dry film containing a minimum of 92 percent zinc dust by weight.

2.8 FABRICATION

A. Cut truss members to accurate lengths, angles, and sizes to produce close-fitting joints.
B. Fabricate metal connector plates to sizes, configurations, thicknesses, and anchorage details required to withstand design loads for types of joint designs indicated.

C. Assemble truss members in design configuration indicated; use jigs or other means to ensure uniformity and accuracy of assembly, with joints closely fitted to comply with tolerances in TPI 1. Position members to produce design camber indicated.

1. Fabricate wood trusses within manufacturing tolerances in TPI 1.

D. Connect truss members by metal connector plates located and securely embedded simultaneously in both sides of wood members by air or hydraulic press.

2.9 SOURCE QUALITY CONTROL

A. Special Inspections: Owner will engage a qualified special inspector to perform special inspections.

1. Provide special inspector with access to fabricator's documentation of detailed fabrication and quality-control procedures that provide a basis for inspection control of the workmanship and the fabricator's ability to conform to approved construction documents and referenced standards.

2. Provide special inspector with access to places where wood trusses are being fabricated to perform inspections.

B. Correct deficiencies in Work that special inspections indicate do not comply with the Contract Documents.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install wood trusses only after supporting construction is in place and is braced and secured.

B. If trusses are delivered to Project site in more than one piece, assemble trusses before installing.

C. Hoist trusses in place by lifting equipment suited to sizes and types of trusses required, exercising care not to damage truss members or joints by out-of-plane bending or other causes.

D. Install and brace trusses according to TPI recommendations and as indicated.

E. Install trusses plumb, square, and true to line and securely fasten to supporting construction.

F. Space trusses as indicated; adjust and align trusses in location before permanently fastening.
G. Anchor trusses securely at bearing points; use metal truss tie-downs or floor truss hangers as applicable. Install fasteners through each fastener hole in metal framing anchors according to manufacturer's fastening schedules and written instructions.

H. Securely connect each truss ply required for forming built-up girder trusses.
 1. Anchor trusses to girder trusses as indicated.

I. Install and fasten permanent bracing during truss erection and before construction loads are applied. Anchor ends of permanent bracing where terminating at walls or beams.
 1. Install bracing to comply with Section 061000 "Rough Carpentry.”

J. Install wood trusses within installation tolerances in TPI 1.

K. Do not alter trusses in field. Do not cut, drill, notch, or remove truss members.

L. Replace wood trusses that are damaged or do not comply with requirements.
 1. Damaged trusses may be repaired according to truss repair details signed and sealed by the qualified professional engineer responsible for truss design, when approved by Architect.

3.2 REPAIRS AND PROTECTION

A. Protect wood trusses from weather. If, despite protection, wood trusses become wet, apply EPA-registered borate treatment. Apply borate solution by spraying to comply with EPA-registered label.

B. Repair damaged galvanized coatings on exposed surfaces according to ASTM A 780/A 780M and manufacturer's written instructions.

3.3 FIELD QUALITY CONTROL

A. Special Inspections: Owner will engage a qualified special inspector to perform special inspections to verify that temporary installation restraint/bracing and the permanent individual truss member restraint/bracing are installed in accordance with the approved truss submittal package.

END OF SECTION
SECTION 061800
GLUED-LAMINATED CONSTRUCTION

PART 1 - DESCRIPTION

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes framing using structural glued-laminated timber.

B. Related Requirements:
 1. Section 061000 "Rough Carpentry" for dimension lumber items associated with structural glued-laminated timber.

1.3 DEFINITIONS

A. Structural Glued-Laminated (Glulam) Timber: An engineered, stress-rated timber product assembled from selected and prepared wood laminations bonded together with adhesives and with the grain of the laminations approximately parallel longitudinally.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product.
 1. Include data on lumber, adhesives, fabrication, and protection.
 2. For preservative-treated wood products. Include chemical treatment manufacturer's written instructions for handling, storing, installing, and finishing treated material.
 3. For structural connectors. Include product data indicating compliance with engineering calculations and installation instructions.

B. Shop Drawings:
 1. Show location and layout of structural glued-laminated timber system and full dimensions of each member.
 2. Indicate species and laminating combination.
 3. Include large-scale details, plan location and layout of structural connections.

C. Samples: Full width and depth, 24 inches long, showing the range of variation to be expected in appearance of structural glued-laminated timber including variations due to specified treatment.
1. Apply specified factory finish to three sides of half-length of each Sample.

D. Delegated-Design Submittal: For structural glued-laminated timber and timber connectors. Provide engineering calculations signed and sealed by a registered engineer in the state of Delaware responsible for their preparation.

1.5 INFORMATIONAL SUBMITTALS

A. Certificates of Conformance: Issued by a qualified testing and inspecting agency indicating that structural glued-laminated timber complies with requirements in AITC A190.1.

B. Material Certificates: For preservative-treated wood products, from manufacturer. Indicate type of preservative used and net amount of preservative retained.

C. Research/Evaluation Reports: For structural glued-laminated timber and timber connectors, from ICC-ES.

1.6 QUALITY ASSURANCE

A. Manufacturer Qualifications: An AITC- or APA-EWS-licensed firm, certified for chain of custody by an FSC-accredited certification body.

1.7 DELIVERY, STORAGE, AND HANDLING

A. General: Comply with provisions in AITC 111.

B. Individually wrap members using plastic-coated paper covering with water-resistant seams.

1.8 PERFORMANCE REQUIREMENTS

A. Delegated Design: Engage a qualified professional engineer, as defined in Division 01 Section "Quality Requirements," to design structural wood connectors and glue laminated framing (LVL) material.

B. Structural Performance: Structural connectors shall withstand the effects of structural loads shown on Drawings without exceeding allowable design working stresses listed in AITC 117 or determined according to ASTM D 3737 and acceptable to authorities having jurisdiction.

C. Seismic Performance: Structural glued-laminated timber and connectors shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.
PART 2 - MATERIALS

2.1 PERFORMANCE REQUIREMENTS

A. Delegated Design: Engage a qualified professional engineer, as defined in Division 01 Section "Quality Requirements," to design structural glued-laminated timber and connectors.

B. Structural Performance: Structural glued-laminated timber and connectors shall withstand the effects of structural loads shown on Drawings without exceeding allowable design working stresses listed in AITC 117 or determined according to ASTM D 3737 and acceptable to authorities having jurisdiction.

C. Seismic Performance: Structural glued-laminated timber and connectors shall withstand the effects of earthquake motions determined according to ASCE/SEI 7

2.2 STRUCTURAL GLUED-LAMINATED TIMBER

A. General: Provide structural glued-laminated timber that complies with AITC A190.1 and AITC 117 or research/evaluation reports acceptable to authorities having jurisdiction.

1. Factory mark each piece of structural glued-laminated timber with AITC Quality Mark or APA-EWS trademark. Place mark on surfaces that are not exposed in the completed Work.

2. Provide structural glued-laminated timber made from single species.

3. Provide structural glued-laminated timber made with wet-use adhesive complying with AITC A190.1.

B. Species and Grades for Structural Glued-Laminated Timber: Douglas fir-larch, Southern yellow pine in grades needed to comply with "Performance Requirements" Article.

C. Species and Grades for Structural Glued-Laminated Timber: Douglas fir-larch, or Southern yellow pine that complies with structural properties indicated.

D. Species and Grades for Joists and Beams:

1. Species and Beam Stress Classification: 3100 Fb-2.0 E.

2. Lay-up: Balanced.

E. Appearance Grade: Framing, complying with AITC 110.

2.3 PRESERVATIVE TREATMENT

A. Preservative Treatment: Where preservative-treated structural glued-laminated timber is indicated, comply with AWPA U1, Use Category 2.
1. Do not incise structural glued-laminated timber or wood used to produce structural glued-laminated timber for Southern yellow pine.

B. Preservative: One of the following:
 1. Oxine copper (copper-8-quinolinolate) in a light petroleum solvent.
 2. Pentachlorophenol in light petroleum solvent.
 3. Propiconazole tebuconazole imidacloprid (PTI) in a water emulsion.

C. After dressing members, apply a copper naphthenate field-treatment preservative to comply with AWPA M4 to surfaces cut to a depth of more than 1/16 inch.

2.4 STRUCTURAL TIMBER CONNECTORS

A. Manufacturers: Provide products by one of the following:
 1. Simpson Strong-Tie Co., Inc.
 2. USP Structural Connectors.
 3. Engineer Approved Equal.

B. Fabricate beam seats from steel with minimum; 3/8-inch bearing plates, 3/4-inch-diameter-by-12-inch-long deformed bar anchors, and 0.239-inch side plates.

C. Fabricate beam hangers from steel-with minimum; 0.179-inch stirrups and 0.239-inch top plates.

D. Fabricate hinge connectors from steel with minimum; 0.19-inch side plates and 3/4-inch top and bottom plates.

E. Fabricate strap ties from steel minimum; 3 inches wide by 0.239 inch thick.

F. Fabricate tie rods from round steel bars with upset threads connected with forged-steel turnbuckles complying with ASTM A 668/A 668M.

G. Provide bolts, 3/4 inch unless otherwise indicated, complying with ASTM A 307, Grade A (ASTM F 568M, Property Class 4.6); nuts complying with ASTM A 563 (ASTM A 563M); and, where indicated, flat washers.

H. Provide shear plates, 4 inches in diameter, complying with ASTM D 5933.

I. Materials: Unless otherwise indicated, fabricate from the following materials:
 1. Structural-steel shapes, plates, and flat bars complying with ASTM A 36/A 36M.
 2. Round steel bars complying with ASTM A 575, Grade M 1020.
 3. Hot-rolled steel sheet complying with ASTM A 1011/A 1011M, Structural Steel, Type SS, Grade 33.

J. Hot-dip galvanize steel assemblies and fasteners after fabrication to comply with ASTM A 123/A 123M or ASTM A 153/A 153M.
2.5 MISCELLANEOUS MATERIALS

A. End Sealer: Manufacturer's standard, transparent, colorless wood sealer that is effective in retarding the transmission of moisture at cross-grain cuts and is compatible with indicated finish.

B. Penetrating Sealer: Manufacturer's standard, transparent, penetrating wood sealer that is compatible with indicated finish.

2.6 FABRICATION

A. Shop fabricate for connections to greatest extent possible, including cutting to length and drilling bolt holes.

1. Dress exposed surfaces as needed to remove planing and surfacing marks.

B. Camber: Fabricate horizontal and inclined members of less than 1:1 slope with either circular or parabolic camber equal to 1/500 of span.

C. Where preservative-treated members are indicated, fabricate (cut, drill, surface, and sand) before treatment to greatest extent possible. Where fabrication must be done after treatment, apply a field-treatment preservative to comply with AWPA M4.

1. Use inorganic boron (SBX) treatment for members not in contact with the ground and continuously protected from liquid water.

2. Use copper naphthenate treatment for members in contact with the ground or not continuously protected from liquid water.

D. End-Cut Sealing: Immediately after end cutting each member to final length and after preservative treatment, apply a saturation coat of end sealer to ends and other cross-cut surfaces, keeping surfaces flood coated for not less than 10 minutes.

E. Seal Coat: After fabricating, sanding, and end-coat sealing, apply a heavy saturation coat of penetrating sealer on surfaces of each unit except for preservative-treated wood where treatment included a water repellent.

2.7 FACTORY FINISHING

A. Clear Finish: Manufacturer's standard, two-coat, clear varnish finish; resistant to mildew and fungus.

PART 3 - CONSTRUCTION METHODS

3.1 EXAMINATION

A. Examine substrates in areas to receive structural glued-laminated timber, with Installer present, for compliance with requirements, installation tolerances, and other conditions affecting performance of the Work.

B. Proceed with installation only after unsatisfactory conditions have been corrected.
3.2 INSTALLATION

A. General: Erect structural glued-laminated timber true and plumb and with uniform, close-fitting joints. Provide temporary bracing to maintain lines and levels until permanent supporting members are in place.

1. Handle and temporarily support glued-laminated timber to prevent surface damage, compression, and other effects that might interfere with indicated finish.

B. Cutting: Avoid extra cutting after fabrication. Where field fitting is unavoidable, comply with requirements for shop fabrication.

C. Fit structural glued-laminated timber by cutting and restoring exposed surfaces to match specified surfacing and finishing.

1. Predrill for fasteners using timber connectors as templates.
2. Finish exposed surfaces to remove planing or surfacing marks and to provide a finish equivalent to that produced by machine sanding with No. 120 grit sandpaper.
3. Coat cross cuts with end sealer.
4. Where preservative-treated members must be cut during erection, apply a field-treatment preservative to comply with AWPA M4.
 a. Use inorganic boron (SBX) treatment for members not in contact with the ground and continuously protected from liquid water.
 b. Use copper naphthenate treatment for members in contact with the ground or not continuously protected from liquid water.

D. Install timber connectors as indicated on approved shop drawings.

1. Unless otherwise indicated, install bolts with same orientation within each connection and in similar connections.
2. Install bolts with orientation as indicated or, if not indicated, as directed by Architect.

3.3 ADJUSTING

A. Repair damaged surfaces and finishes after completing erection. Replace damaged structural glued-laminated timber if repairs are not approved by Architect.

3.4 PROTECTION

A. Do not remove wrappings on individually wrapped members until they no longer serve a useful purpose, including protection from weather, sunlight, soiling, and damage from work of other trades.

1. Coordinate wrapping removal with finishing work. Retain wrapping where it can serve as a painting shield.
2. Slit underside of wrapping to prevent accumulation of moisture inside the wrapping.

END OF SECTION
SECTION 064116
PLASTIC-LAMINATE-FACED ARCHITECTURAL CABINETS

PART 1 - DESCRIPTION

1.1 SUMMARY
A. Section Includes:
 1. Plastic-laminate-faced architectural cabinets.
 2. Wood furring, blocking, shims, and hanging strips for installing plastic-laminate-faced architectural cabinets unless concealed within other construction before cabinet installation.

1.2 ACTION SUBMITTALS
A. Product Data: For each type of product, including panel products and high-pressure decorative laminate.
B. Shop Drawings: Show location of each item, dimensioned plans and elevations, large-scale details, attachment devices, and other components.
C. Samples:
 1. Plastic laminates, for each color, pattern, and surface finish.

1.3 FIELD CONDITIONS
A. Environmental Limitations: Do not deliver or install cabinets until building is enclosed, wet work is complete, and HVAC system is operating and maintaining temperature and relative humidity at occupancy levels during the remainder of the construction period.

PART 2 - MATERIALS

2.1 PLASTIC-LAMINATE-FACED ARCHITECTURAL CABINETS
A. Quality Standard: Unless otherwise indicated, comply with the "Architectural Woodwork Standards" for grades of architectural plastic-laminate cabinets indicated for construction, finishes, installation, and other requirements.
B. Grade: AWI Premium.
C. Type of Construction: Frameless.
D. Cabinet, Door, and Drawer Front Interface Style: Flush overlay.
E. Reveal Dimension: As indicated.

F. High-Pressure Decorative Laminate: NEMA LD 3, grades as indicated or if not indicated, as required by woodwork quality standard.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Abet Laminati, Inc.
 b. Formica Corporation.
 c. Lamin-Art, Inc.
 d. Panolam Industries International, Inc.
 e. Wilsonart International; Div. of Premark International, Inc.

G. Laminate Cladding for Exposed Surfaces:

1. Horizontal Surfaces: Grade HGS.
2. Vertical Surfaces: Grade HGS.

H. Materials for Semi-exposed Surfaces:

1. Surfaces Other Than Drawer Bodies: Thermoset decorative panels.
2. Drawer Sides and Backs: Solid-hardwood lumber.
3. Drawer Bottoms: Hardwood plywood.

I. Colors, Patterns, and Finishes: Provide materials and products that result in colors and textures of exposed laminate surfaces complying with the following requirements:

1. As selected by Architect from laminate manufacturer's full range in the following categories:
 a. Solid colors with core same color as surface, matte finish.

2.2 WOOD MATERIALS

A. Wood Products: Provide materials that comply with requirements of referenced quality standard for each type of woodwork and quality grade specified unless otherwise indicated.

1. Wood Moisture Content: 5 to 10 percent.
5. Thermoset Decorative Panels: Medium-density fiberboard finished with thermally fused, melamine-impregnated decorative paper and complying with requirements of NEMA LD 3, Grade VGL, for test methods 3.3, 3.4, 3.6, 3.8, and 3.10.
2.3 CABINET HARDWARE AND ACCESSORIES

A. General: Provide cabinet hardware and accessory materials associated with architectural cabinets except for items specified in Section 087111 "Door Hardware (Descriptive Specification)."

B. Frameless Concealed Hinges (European Type): BHMA A156.9, B01602, 170 degrees of opening.

C. Back-Mounted Pulls: BHMA A156.9, B02011.

D. Wire Pulls: Back mounted, solid metal 4 inches long, 5/16 inch in diameter.

E. Catches: Magnetic catches, BHMA A156.9, B03141.

F. Shelf Rests: BHMA A156.9, B04013; metal.

G. Drawer Slides: BHMA A156.9.
 1. Grade 1 and Grade 2: Side mounted and extending under bottom edge of drawer; partial-extension type; zinc-plated steel with polymer rollers.
 2. Grade 1HD-100: Side mounted; full-extension type; zinc-plated-steel ball-bearing slides.
 3. For drawers not more than 3 inches high and not more than 24 inches wide, provide Grade 2.
 4. For drawers more than 3 inches high but not more than 6 inches high and not more than 24 inches wide, provide Grade 1.
 5. For drawers more than 6 inches high or more than 24 inches wide, provide Grade 1HD-100.

H. Exposed Hardware Finishes: For exposed hardware, provide finish that complies with BHMA A156.18 for BHMA finish number indicated.
 1. Satin Chromium Plated: BHMA 626 for brass or bronze base; BHMA 652 for steel base.

2.4 MISCELLANEOUS MATERIALS

A. Furring, Blocking, Shims, and Hanging Strips: Softwood or hardwood lumber, kiln dried to less than 15 percent moisture content.

B. Anchors: Select material, type, size, and finish required for each substrate for secure anchorage. Provide metal expansion sleeves or expansion bolts for post-installed anchors. Use nonferrous-metal or hot-dip galvanized anchors and inserts at inside face of exterior walls and at floors.

C. Adhesive for Bonding Plastic Laminate: Fabricator’s option.
2.5 FABRICATION

A. Complete fabrication, including assembly and hardware application, to maximum extent possible before shipment to Project site. Disassemble components only as necessary for shipment and installation. Where necessary for fitting at site, provide ample allowance for scribing, trimming, and fitting.

B. Shop-cut openings to maximum extent possible to receive hardware, appliances, electrical work, and similar items. Locate openings accurately and use templates or roughing-in diagrams to produce accurately sized and shaped openings. Sand edges of cutouts to remove splinters and burrs.

PART 3 - CONSTRUCTION METHODS

3.1 PREPARATION

A. Before installation, condition cabinets to average prevailing humidity conditions in installation areas.

3.2 INSTALLATION

A. Grade: Install cabinets to comply with same grade as item to be installed.

B. Install cabinets level, plumb, true, and straight. Shim as required with concealed shims. Install level and plumb to a tolerance of 1/8 inch in 96 inches.

C. Scribe and cut cabinets to fit adjoining work, refinish cut surfaces, and repair damaged finish at cuts.

D. Anchor cabinets to anchors or blocking built in or directly attached to substrates. Secure with countersunk, concealed fasteners and blind nailing. Use fine finishing nails for exposed fastening, countersunk and filled flush with woodwork.

E. Cabinets: Install without distortion so doors and drawers fit openings properly and are accurately aligned. Adjust hardware to center doors and drawers in openings and to provide unencumbered operation. Complete installation of hardware and accessory items as indicated.

1. Install cabinets with no more than 1/8 inch in 96-inch sag, bow, or other variation from a straight line.

2. Fasten wall cabinets through back, near top and bottom, and at ends not more than 16 inches o.c. with No. 10 wafer-head screws sized for not less than 1-1/2-inch penetration into framing, blocking, or hanging strips.

END OF SECTION
SECTION 061600

STRUCTURAL FIBERGLASS COLUMNS

PART 1 - DESCRIPTION

1.1 SUMMARY
 A. Section Includes: Structural Fiberglass Columns, factory split.

1.2 ACTION SUBMITTALS
 A. Literature & Shop Drawings: Shall illustrate dimensions, materials, thickness, fabrications details, attachments, and anchorages to substrates.
 B. Product Data: Submit manufacturer’s product data and detailed installation instructions.
 C. Product Samples: Submit samples of manufacturing materials.

1.3 DELIVERY, STORAGE AND HANDLING
 A. Handle, store and transport architectural fiberglass columns according to manufacturer’s recommendations and in a manner that prevents damage.
 B. Protect architectural fiberglass columns from damage by retaining shipping protection in place until installation.
 C. Damage Responsibility: Except for damage caused by others, the installer is responsible for chipping, cracking, or other damage to fiberglass fabrications, after delivery to the jobsite and until installation is completed and inspected and approved by the Project Engineer.

1.4 WARRANTY
 A. Warrant architectural fiberglass columns to be free from defect due to materials and workmanship for one year.

PART 2 - MATERIALS

2.1 PERFORMANCE REQUIREMENTS
 A. Installed architectural fiberglass column and fastening systems shall be designed, engineered, fabricated, and installed to conform to the state codes, local codes, and the Architect’s design.
2.2 MANUFACTURERS

A. Basis of Design: HB&G; Permacast Column.

1. Subject to compliance with requirements, products by the following manufacturers are also acceptable:
 a. Edon Corporation
 b. Royal Corinthian; Royal Cast.
 c. Architectural Fiberglass, Inc.

2. Style: Round Plain
3. Column Bottom Shaft Diameter: 10 inches.
4. Overall Height: As indicated on drawings.
5. Cap Style: Colonial
6. Base Style: Colonial
7. Filler Material: General purpose or ASTM E 84-01 Class A rated.

2.3 MATERIALS

A. Structural Fiberglass Columns are manufactured from E-Glass Fiberglass and Polyester Resin (Fiberglass Reinforced Polymers-FRP).

B. Mechanical Properties

<table>
<thead>
<tr>
<th>PROPERTY</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensile strength</td>
<td>35,000-50,000 PSI</td>
</tr>
<tr>
<td>Tensile modulus</td>
<td>2,500,000 – 3,600,000</td>
</tr>
<tr>
<td>Flexural strength</td>
<td>30,000 -50,000 PSI</td>
</tr>
<tr>
<td>Flexural modulus</td>
<td>2,500,000 – 3,600,000</td>
</tr>
<tr>
<td>Compressive strength</td>
<td>30,000 – 45,000 PSI</td>
</tr>
<tr>
<td>Water Absorption</td>
<td>0.5% (By wt.)</td>
</tr>
<tr>
<td>Barcol Hardness</td>
<td>50</td>
</tr>
<tr>
<td>Thermal expansion</td>
<td>.000012 I / deg F</td>
</tr>
<tr>
<td>Glass to Resin Ratio</td>
<td>60% / 40%</td>
</tr>
</tbody>
</table>

PART 3 - CONSTRUCTION METHODS

3.1 PRE-INSTALLATION EXAMINATION

A. Carefully observe and verify field conditions that substrates are ready for installation of architectural fiberglass fabrications. Contractor shall verify on site dimensions with shop drawings and assume full responsibility for fitting the components to the structure.

B. Verify that bearing surfaces are true and level.

C. Verify that support framing has been constructed to allow accurate placement, alignment and connection of architectural fiberglass columns to structure.
D. Report discrepancies between design dimensions and field dimensions, which could adversely affect installation, to the Project Engineer.

E. Do not proceed with installation until discrepancies are corrected, or until installation requirements are modified and approved by the Project Engineer.

F. Beginning of installation means acceptance of existing conditions.

3.2 INSTALLATION

A. Install architectural fiberglass columns in accordance with manufacturer’s instructions and approved shop drawings. If columns are split refer to shop drawings for repair and finishing of the joint.

B. The position of the plinth must be determined by dropping a plumb line from the center of the soffit beam to floor. This point should be marked well on the floor.

C. Measure the overall height. Raise the soffit or porch slightly and brace safely for later column placement.

D. Measure length and if necessary, trim the shaft on the bottom only. Trim with an abrasive saw blade. Finish the top and bottom ends of the shaft with a rasp or sander to ensure an even load distribution around the shaft.

E. Slide the capital over the neck and rest temporarily on the astragal until the shaft is in the proper position. Installation of decorative capitals other than Tuscan or Doric should be noted on shop drawings.

F. Slide the base/plinth onto the shaft from the bottom.

G. Stand column in a vertical position and slide into place where mark was made on the floor.

H. Use small L brackets to hold the shaft to the floor and do not let the bracket interfere with the position of the base/plinth. (Note: use through bolts on the shaft, do not use screws.)

I. Remove brace and allow load to rest on the column evenly. Secure top of shaft with L brackets similar to the bottom of the shaft.

J. Slide capital up to soffit and attach using corrosion resistant screws. Attach the base to the flooring using masonry or appropriate fasteners. Fill holes with polyester body filler such as bondo.

K. Apply sealant between the capital and the shaft, and the base and the shaft for a completed appearance.
3.3 FINISHING

A. Make sure all surfaces are clean prior to painting. Lightly sand and remove all dust and dirt before applying primer or paint. Fill any visible surface scratches.

B. Fiberglass column joints on split columns shall be finished with fiberglass repair kit.

3.4 CLEANING

A. Clean installed architectural fiberglass fabrications using cleaning methods and material approved by manufacturer.

END OF SECTION
SECTION 071113
BITUMINOUS DAMPROOFING

PART 1 - DESCRIPTION

1.1 SUMMARY

A. Section includes cold-applied, emulsified-asphalt dampproofing.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product.

1.3 FIELD CONDITIONS

A. Weather Limitations: Proceed with application only when existing and forecasted weather conditions permit dampproofing to be performed according to manufacturers' written instructions.

PART 2 - MATERIALS

2.1 MATERIALS, GENERAL

A. VOC Content: Products shall comply with VOC content limits of authorities having jurisdiction unless otherwise required.

2.2 COLD-APPLIED, EMULSIFIED-ASPHALT DAMPROOFING

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. BASF Construction Chemicals - Building Systems; Sonneborn Brand Products.
2. ChemMasters, Inc.
3. Euclid Chemical Company (The); an RPM company.
6. Koppers Inc.

B. Trowel Coats: ASTM D 1227, Type II, Class 1.

C. Fibered Brush and Spray Coats: ASTM D 1227, Type II, Class 1.

D. Brush and Spray Coats: ASTM D 1227, Type III, Class 1.
2.3 PROTECTION COURSE

A. Protection Course, Asphalt-Board Type: ASTM D 6506, premolded, 1/8-inch-thick, multi-ply, semi rigid board consisting of a mineral-stabilized asphalt core sandwiched between layers of asphalt-saturated felt, and faced on 1 side with polyethylene film.

2.4 AUXILIARY MATERIALS

A. General: Furnish auxiliary materials recommended in writing by dampproofing manufacturer for intended use and compatible with bituminous dampproofing.

B. Emulsified-Asphalt Primer: ASTM D 1227, Type III, Class 1, except diluted with water as recommended in writing by manufacturer.

C. Asphalt-Coated Glass Fabric: ASTM D 1668, Type I.

PART 3 - CONSTRUCTION METHODS

3.1 EXAMINATION

A. Examine substrates, areas, and conditions with Applicator present, for compliance with requirements for surface smoothness, surface moisture, and other conditions affecting performance of bituminous dampproofing work.

B. Proceed with application only after substrate construction and penetrating work have been completed and unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Mask or otherwise protect adjoining exposed surfaces from being stained, spotted, or coated with dampproofing. Prevent dampproofing materials from entering and clogging weep holes and drains.

B. Clean substrates of projections and substances detrimental to the dampproofing work; fill voids, seal joints, and remove bond breakers if any, as recommended in writing by prime material manufacturer.

C. Apply patching compound to patch and fill tie holes, honeycombs, reveals, and other imperfections; cover with asphalt-coated glass fabric.

3.3 APPLICATION, GENERAL

A. Comply with manufacturer's written instructions for substrate preparation, dampproofing application, cure time between coats, and drying time before backfilling unless more stringent requirements are indicated.

1. Apply dampproofing to provide continuous plane of protection.
2. Apply additional coats if recommended in writing by manufacturer or to achieve a smooth surface and uninterrupted coverage.
B. Where dampproofing footings and foundation walls, apply from finished-grade line to top of footing; extend over top of footing and down a minimum of 6 inches over outside face of footing.

1. Extend dampproofing 12 inches onto intersecting walls and footings, but do not extend onto surfaces exposed to view when Project is completed.
2. Install flashings and corner protection stripping at internal and external corners, changes in plane, construction joints, cracks, and where shown as "reinforced," by embedding an 8-inch wide strip of asphalt-coated glass fabric in a heavy coat of dampproofing. Dampproofing coat for embedding fabric is in addition to other coats required.

C. Where dampproofing exterior face of inner wythe of exterior masonry cavity walls, lap dampproofing at least 1/4 inch onto flashing, masonry reinforcement, veneer ties, and other items that penetrate inner wythe.

1. Extend dampproofing over outer face of structural members and concrete slabs that interrupt inner wythe.
2. Lap dampproofing at least 1/4 inch onto shelf angles supporting veneer.

D. Where dampproofing interior face of above-grade, exterior concrete and masonry walls, continue dampproofing through intersecting walls by keeping vertical mortar joints at intersection temporarily open or by dampproofing wall before constructing intersecting walls.

3.4 COLD-APPLIED, EMULSIFIED-ASPHALT DAMPPROOFING

A. Concrete Foundations: Apply two brush or spray coats at not less than 1.5 gal./100 sq. ft. for first coat and 1 gal./100 sq. ft. for second coat, one fibered brush or spray coat at not less than 3 gal./100 sq. ft., or one trowel coat at not less than 4 gal./100 sq. ft.

B. Unparged Masonry Foundation Walls: Apply primer and two brush or spray coats at not less than 1.5 gal./100 sq. ft. for first coat and 1 gal./100 sq. ft. for second coat, primer and one fibered brush or spray coat at not less than 3 gal./100 sq. ft. or primer and one trowel coat at not less than 5 gal./100 sq. ft.

3.5 INSTALLATION OF PROTECTION COURSE

A. Where indicated, install protection course over completed-and-cured dampproofing. Comply with dampproofing material manufacturer's written recommendations for attaching protection course.

1. Support protection course with spot application of adhesive of type recommended by protection board manufacturer over cured coating.
2. Install protection course on same day within 24 hours of installation of dampproofing (while coating is tacky) to ensure adhesion.

END OF SECTION
PART 1 - DESCRIPTION

1.1 SUMMARY
A. Section Includes:
 1. Foam-plastic board insulation.
 2. Glass-fiber blanket insulation.

1.2 ACTION SUBMITTALS
A. Product Data: For each type of product indicated.

1.3 INFORMATIONAL SUBMITTALS
A. Product test reports.
B. Research/evaluation reports.

1.4 DELIVERY, STORAGE, AND HANDLING
A. Protect insulation materials from physical damage and from deterioration due to moisture, soiling, and other sources. Store inside and in a dry location. Comply with manufacturer's written instructions for handling, storing, and protecting during installation.

B. Protect foam-plastic board insulation as follows:
 1. Do not expose to sunlight except to necessary extent for period of installation and concealment.
 2. Protect against ignition at all times. Do not deliver foam-plastic board materials to Project site until just before installation time.
 3. Quickly complete installation and concealment of foam-plastic board insulation in each area of construction.

PART 2 - MATERIALS

2.1 FOAM-PLASTIC BOARD INSULATION
A. Extruded-Polystyrene Board Insulation: ASTM C 578, with maximum flame-spread and smoke-developed indexes of 75 and 450, respectively, per ASTM E 84.
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. DiversiFoam Products.
 b. Dow Chemical Company (The).
 c. Owens Corning.
 d. Pactiv Building Products.

2. Type IV, 25 psi.

2.2 GLASS-FIBER BLANKET INSULATION
A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. CertainTeed Corporation.
 2. Johns Manville.
 4. Owens Corning.

B. Kraft-Faced, Glass-Fiber Blanket Insulation: ASTM C 665, Type II (non-reflective faced), Class C (faced surface not rated for flame propagation); Category 1 (membrane is a vapor barrier).

2.3 MINERAL-WOOL BLANKET INSULATION
A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Fibrex Insulations Inc.
 2. Owens Corning.
 3. Roxul Inc.
 4. Thermafiber.

B. Unfaced, Mineral-Wool Blanket Insulation: ASTM C 665, Type I (blankets without membrane facing); consisting of fibers; with maximum flame-spread and smoke-developed indexes of 25 and 50, respectively, per ASTM E 84; passing ASTM E 136 for combustion characteristics.

2.4 SPRAY POLYURETHANE FOAM INSULATION
A. Closed-Cell Polyurethane Foam Insulation: ASTM C 1029, Type II, with maximum flame-spread and smoke-developed indexes of 75 and 450, respectively, per ASTM E 84.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. BASF Corporation.
 b. BaySystems NorthAmerica, LLC.
 c. Dow Chemical Company (The).
2. Minimum density of 1.5 lb/cu. ft., thermal resistivity of 6.2 deg F x h x sq. ft./Btu x in. at 75 deg F.

2.5 ACCESSORIES

A. Eave Ventilation Troughs: Preformed, rigid fiberboard or plastic sheets designed and sized to fit between roof framing members and to provide cross ventilation between insulated attic spaces and vented eaves.

PART 3 - CONSTRUCTION METHODS

3.1 INSTALLATION, GENERAL

A. Comply with insulation manufacturer's written instructions applicable to products and applications indicated.

B. Install insulation that is undamaged, dry, and unsoiled and that has not been left exposed to ice, rain, or snow at any time.

C. Extend insulation to envelop entire area to be insulated. Cut and fit tightly around obstructions and fill voids with insulation. Remove projections that interfere with placement.

D. Provide sizes to fit applications indicated and selected from manufacturer's standard thicknesses, widths, and lengths. Apply single layer of insulation units to produce thickness indicated unless multiple layers are otherwise shown or required to make up total thickness.

3.2 INSTALLATION OF BELOW-GRADE INSULATION

A. On vertical surfaces, set insulation units loosely laid according to manufacturer's written instructions.

1. If not otherwise indicated, extend insulation a minimum of 24 inches below exterior grade line.

B. On horizontal surfaces, loosely lay insulation units according to manufacturer's written instructions. Stagger end joints and tightly abut insulation units.

1. If not otherwise indicated, extend insulation a minimum of 24 inches in from exterior walls.

3.3 INSTALLATION OF INSULATION FOR FRAMED CONSTRUCTION

A. Apply insulation units to substrates by method indicated, complying with manufacturer's written instructions. If no specific method is indicated, bond units to substrate with adhesive or use mechanical anchorage to provide permanent placement and support of units.
B. Glass-Fiber or Mineral-Wool Blanket Insulation: Install in cavities formed by framing members according to the following requirements:

1. Use insulation widths and lengths that fill the cavities formed by framing members. If more than one length is required to fill the cavities, provide lengths that will produce a snug fit between ends.
2. Place insulation in cavities formed by framing members to produce a friction fit between edges of insulation and adjoining framing members.
3. Maintain 3-inch clearance of insulation around recessed lighting fixtures not rated for or protected from contact with insulation.
4. Install eave ventilation troughs between roof framing members in insulated attic spaces at vented eaves.
5. For wood-framed construction, install blankets according to ASTM C 1320 and as follows:
 a. With faced blankets having stapling flanges, secure insulation by inset, stapling flanges to sides of framing members.
 b. With faced blankets having stapling flanges, lap blanket flange over flange of adjacent blanket to maintain continuity of vapor retarder once finish material is installed over it.

C. Miscellaneous Voids: Install insulation in miscellaneous voids and cavity spaces where required to prevent gaps in insulation using the following materials:

1. Spray Polyurethane Insulation: Apply according to manufacturer's written instructions.

3.4 PROTECTION

A. Protect installed insulation from damage due to harmful weather exposures, physical abuse, and other causes. Provide temporary coverings or enclosures where insulation is subject to abuse and cannot be concealed and protected by permanent construction immediately after installation.

END OF SECTION
SECTION 072500
WEATHER BARRIERS

PART 1 - DESCRIPTION

1.1 SUMMARY

A. Section Includes:
 1. Building wrap.
 2. Flexible flashing.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product.

1.3 INFORMATIONAL SUBMITTALS

A. Evaluation Reports: For water-resistive barrier and flexible flashing, from ICC-ES.

PART 2 - MATERIALS

2.1 WATER-RESISTIVE BARRIER

A. Building Wrap: ASTM E 1677, Type I air barrier; with flame-spread and smoke-developed indexes of less than 25 and 450, respectively, when tested according to ASTM E 84; UV stabilized; and acceptable to authorities having jurisdiction.

1. Products: Subject to compliance with requirements, provide one of the following:

 a. DuPont (E. I. du Pont de Nemours and Company); Tyvek CommercialWrap.
 b. Ludlow Coated Products; Barricade Building Wrap.
 c. Pactiv, Inc.; GreenGuard Ultra Wrap.
 d. Approved Equal

2. Water-Vapor Permeance: Not less than 20 perms per ASTM E 96/E 96M, Desiccant Method (Procedure A).

3. Air Permeance: Not more than 0.004 cfm/sq. ft. at 0.3-inch wg when tested according to ASTM E 2178.

4. Allowable UV Exposure Time: Not less than three months.

5. Flame Propagation Test: Materials and construction shall be as tested according to NFPA 285.
B. Building-Wrap Tape: Pressure-sensitive plastic tape recommended by building-wrap manufacturer for sealing joints and penetrations in building wrap.

2.2 MISCELLANEOUS MATERIALS

A. Flexible Flashing: Self-adhesive butyl rubber or rubberized-asphalt compound, bonded to a high-density polyethylene film, aluminum foil, or spunbonded polyolefin to produce an overall thickness of not less than 0.025 inch (0.6 mm).

1. Products: Subject to compliance with requirements, provide one of the following:
 a. DuPont (E. I. du Pont de Nemours and Company); DuPont Flashing Tape.
 c. Raven Industries Inc.; Fortress Flashshield.
 d. Carlisle Coatings & Waterproofing; CCW-705-TWF Thru-Wall Flashing.

PART 3 - CONSTRUCTION METHODS

3.1 WATER-RESISTIVE BARRIER INSTALLATION

A. Cover sheathing with water-resistive barrier as follows:

1. Cut back barrier 1/2 inch on each side of the break in supporting members at expansion- or control-joint locations.
2. Apply barrier to cover vertical flashing with a minimum 4-inch overlap unless otherwise indicated.

B. Building Wrap: Comply with manufacturer's written instructions.

1. Seal seams, edges, fasteners, and penetrations with tape.
2. Extend into jambs of openings and seal corners with tape.

3.2 FLEXIBLE FLASHING INSTALLATION

A. Apply flexible flashing where indicated to comply with manufacturer's written instructions.

1. Lap seams and junctures with other materials at least 4 inches except that at flashing flanges of other construction, laps need not exceed flange width.
2. Lap flashing over water-resistive barrier at bottom and sides of openings.
3. Lap water-resistive barrier over flashing at heads of openings.

END OF SECTION
SECTION 073113

ASPHALT SHINGLES

PART 1 - DESCRIPTION

1.1 SUMMARY
A. Section Includes:
 1. Asphalt shingles.
 2. Underlayment.
 3. Ridge vents.

1.2 DEFINITION
A. Roofing Terminology: See ASTM D 1079 and glossary of NRCA's "The NRCA Roofing and Waterproofing Manual" for definitions of terms related to roofing work in this Section.

1.3 PREINSTALLATION MEETINGS
A. Preinstallation Conference: Conduct conference at Project site.

1.4 ACTION SUBMITTALS
A. Product Data: For each type of product indicated.
B. Samples: For each exposed product and for each color and blend specified.

1.5 INFORMATIONAL SUBMITTALS
A. Product Test Reports: For each type of asphalt shingle and underlayment product indicated, for tests performed by a qualified testing agency.
B. Evaluation Reports: For high-temperature, self-adhering sheet underlayment, from ICC-ES or other testing and inspecting agency acceptable to authorities having jurisdiction, indicating that product is suitable for intended use under applicable building codes.
C. Warranties: Sample of special warranties.

1.6 CLOSEOUT SUBMITTALS
A. Maintenance data.
1.7 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Asphalt Shingles: 100 sq. ft. of each type, in unbroken bundles.

1.8 QUALITY ASSURANCE

A. Installer Qualifications: An authorized representative who is trained and approved by manufacturer.

1.9 DELIVERY, STORAGE, AND HANDLING

A. Store roofing materials in a dry, well-ventilated location protected from weather, sunlight, and moisture according to manufacturer's written instructions.

B. Store underlayment rolls on end on pallets or other raised surfaces. Do not double stack rolls.

C. Protect unused roofing materials from weather, sunlight, and moisture when left overnight or when roofing work is not in progress.

D. Handle, store, and place roofing materials in a manner to prevent damage to roof deck or structural supporting members.

1.10 FIELD CONDITIONS

A. Environmental Limitations: Install self-adhering sheet underlayment within the range of ambient and substrate temperatures recommended in writing by manufacturer.

1.11 WARRANTY

A. Special Warranty: Standard form in which manufacturer agrees to repair or replace asphalt shingles that fail in materials or workmanship within specified warranty period.
 1. Material Warranty Period: 30 years from date of Substantial Completion, prorated, with first 10 years non-prorated.
 2. Algae-Discoloration Warranty Period: Asphalt shingles will not discolor 10 years from date of Substantial Completion.

B. Roofing Installer's Warranty: On warranty form at end of this Section, signed by Installer, in which Installer agrees to repair or replace components of asphalt-shingle roofing that fail in materials or workmanship within specified warranty period.
 1. Warranty Period: Two years from date of Substantial Completion.
PART 2 - PRODUCTS

2.1 GLASS-FIBER-REINFORCED ASPHALT SHINGLES

 1. Basis-of-Design Product: Subject to compliance with requirements, provide GAF, Timberline Cool Series or comparable product by one of the following:
 a. CertainTeed Corporation.
 b. GAF Materials Corporation.
 c. Owens Corning.
 d. TAMKO Roofing Products, Inc.

2. Algae Resistance: Granules treated to resist algae discoloration.
3. Color and Blends: As selected by Architect from manufacturer's full range.

B. Hip and Ridge Shingles: Manufacturer's standard units to match asphalt shingles.

2.2 UNDERLAYMENT MATERIALS

A. Felt: ASTM D 226 or ASTM D 4869, Type II, asphalt-saturated organic felts, nonperforated.

B. Self-Adhering Sheet Underlayment, High Temperature: Minimum of 30- to 40-mil-thick, slip-resisting, polyethylene-film-reinforced top surface laminated to layer of butyl or SBS-modified asphalt adhesive, with release paper backing; cold applied
 2. Low-Temperature Flexibility: Passes after testing at minus 20 deg F; ASTM D 1970.

2.3 RIDGE VENTS

A. Rigid Ridge Vent: Manufacturer's standard, rigid section high-density polypropylene or other UV-stabilized plastic ridge vent with nonwoven geotextile filter strips and external deflector baffles; for use under ridge shingles.
 1. Basis-of-Design Product: Subject to compliance with requirements, provide Cobra Ridge Vent 3 or comparable product by one of the following:
 a. Air Vent, Inc.; a Gibraltar Industries company.
 b. Cor-A-Vent, Inc.
 c. Lomanco, Inc.
 d. Mid-America Building Products.
 e. Obdyke, Benjamin Incorporated.
 f. Owens Corning.
2. Minimum Net Free Area: 720 sq. in.
3. Width: 13.7 in.
4. Thickness: 7/8”.

2.4 ACCESSORIES

A. Asphalt Roofing Cement: ASTM D 4586, Type II, asbestos free.

B. Roofing Nails: ASTM F 1667; aluminum, stainless-steel, copper, or hot-dip galvanized-steel wire shingle nails, minimum 0.120-inch- diameter, barbed shank, sharp-pointed, with a minimum 3/8-inch- diameter flat head and of sufficient length to penetrate 3/4 inch into solid wood decking or extend at least 1/8 inch through OSB or plywood sheathing.

 1. Where nails are in contact with metal flashing, use nails made from same metal as flashing.

C. Felt Underlayment Nails: Aluminum, stainless-steel, or hot-dip galvanized-steel wire with low-profile capped heads or disc caps, 1-inch minimum diameter.

2.5 METAL FLASHING AND TRIM

A. General: Comply with requirements in Section 076200 "Sheet Metal Flashing and Trim."

 1. Sheet Metal: Copper, stainless steel, or Zinc-tin alloy-coated steel.

B. Fabricate sheet metal flashing and trim to comply with recommendations in SMACNA’s "Architectural Sheet Metal Manual" that apply to design, dimensions, metal, and other characteristics of the item.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.

 1. Examine roof sheathing to verify that sheathing joints are supported by framing and blocking or metal clips and that installation is within flatness tolerances.
 2. Verify that substrate is sound, dry, smooth, clean, sloped for drainage, and completely anchored; and that provisions have been made for flashings and penetrations through asphalt shingles.

B. Prepare written report, endorsed by Installer, listing conditions detrimental to performance of the Work.

C. Proceed with installation only after unsatisfactory conditions have been corrected.
3.2 UNDERLAMENT INSTALLATION

A. General: Comply with underlayment manufacturer's written installation instructions applicable to products and applications indicated unless more stringent requirements apply.

B. Single-Layer Felt Underlayment: Install on roof deck parallel with and starting at the eaves. Lap sides a minimum of 2 inches over underlying course. Lap ends a minimum of 4 inches. Stagger end laps between succeeding courses at least 72 inches. Fasten with felt underlayment nails.

1. Install felt underlayment on roof deck not covered by self-adhering sheet underlayment. Lap sides of felt over self-adhering sheet underlayment not less than 3 inches in direction to shed water. Lap ends of felt not less than 6 inches over self-adhering sheet underlayment.

2. Install fasteners at no more than 36 inch o.c.

C. Self-Adhering Sheet Underlayment: Install, wrinkle free, on roof deck. Comply with low-temperature installation restrictions of underlayment manufacturer, if applicable. Install at locations indicated below, lapped in direction to shed water. Lap sides not less than 3-1/2 inches. Lap ends not less than 6 inches staggered 24 inches between courses. Roll laps with roller. Cover underlayment within seven days.

1. Eaves: Extend membrane from eave up roof slope to minimum of 24 inches beyond inside face of exterior wall assembly.

2. Rakes: Extend from edges of rake 24 inches beyond interior face of exterior wall.

3. Valleys: Extend from lowest to highest point 18 inches on each side.

4. Hips: Extend 18 inches on each side.

5. Ridges: Extend 36 inches on each side without obstructing continuous ridge vent slot.

3.3 METAL FLASHING INSTALLATION

A. General: Install metal flashings and other sheet metal to comply with requirements in Section 076200 "Sheet Metal Flashing and Trim."

1. Install metal flashings according to recommendations in ARMA's "Residential Asphalt Roofing Manual" and asphalt shingle recommendations in NRCA's "The NRCA Roofing and Waterproofing Manual."

3.4 ASPHALT SHINGLE INSTALLATION

B. Install starter strip along lowest roof edge, consisting of an asphalt shingle strip at least 7 inches wide with self-sealing strip face up at roof edge.
1. Extend asphalt shingles 1/2 inch over fasciae at eaves and rakes.
2. Install starter strip along rake edge.

C. Install first and remaining courses of asphalt shingles stair-stepping diagonally across roof deck with manufacturer's recommended offset pattern at succeeding courses, maintaining uniform exposure.

D. Fasten asphalt shingle strips with a minimum of four roofing nails located according to manufacturer's written instructions.

E. Closed-Cut Valleys: Extend asphalt shingle strips from one side of valley 12 inches beyond center of valley. Use one-piece shingle strips without joints in valley. Fasten with extra nail in upper end of shingle. Install asphalt shingle courses from other side of valley and cut back to a straight line 2 inches short of valley centerline. Trim upper concealed corners of cut-back shingle strips.

F. Ridge Vents: Install continuous ridge vents over asphalt shingles according to manufacturer's written instructions. Fasten with roofing nails of sufficient length to penetrate sheathing.

G. Ridge Cap Shingles: Maintain same exposure of cap shingles as roofing shingle exposure. Lap cap shingles at ridges to shed water away from direction of prevailing winds. Fasten with roofing nails of sufficient length to penetrate sheathing.

1. Fasten ridge cap asphalt shingles to cover ridge vent without obstructing airflow.

END OF SECTION
SECTION 074646

FIBER-CEMENT SIDING

PART 1 - DESCRIPTION

1.1 SUMMARY

A. Section includes fiber-cement siding and soffit.

B. Related Requirements:
 1. Section 061000 "Rough Carpentry" for wood furring, grounds, nailers, and blocking.
 2. Section 072500 "Weather Barriers" for weather-resistive barriers.

1.2 COORDINATION

A. Coordinate siding installation with flashings and other adjoining construction to ensure proper sequencing.

1.3 PREINSTALLATION MEETINGS

A. Pre-installation Conference: Conduct conference at Project site.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes.

 B. Samples: For each exposed product.

 1. 12-inch-long-by-actual-width Sample of siding.
 2. 12-inch-long-by-actual-width Sample of soffit.
 3. 12-inch-long-by-actual-width Samples of trim and accessories.

1.5 INFORMATIONAL SUBMITTALS

A. Product Certificates: For each type of fiber-cement siding and soffit.

 B. Product Test Reports: Based on evaluation of comprehensive tests performed by a qualified testing agency, for fiber-cement siding.

 C. Research/Evaluation Reports: For each type of fiber-cement siding required, from ICC-ES.

 D. Sample Warranty: For special warranty.
1.6 CLOSEOUT SUBMITTALS
A. Maintenance Data: For each type of product, including related accessories, to include in maintenance manuals.

1.7 MAINTENANCE MATERIAL SUBMITTALS
A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Furnish full lengths of fiber-cement siding and soffit including related accessories, in a quantity equal to 2 percent of amount installed.

1.8 QUALITY ASSURANCE
A. Mockups: Build mockups to verify selections made under Sample submittals and to demonstrate aesthetic effects and to set quality standards for fabrication and installation.
 1. Build mockups for fiber-cement siding and soffit including accessories.
 a. Size: 48 inches long by 60 inches high.
 b. Include outside corner on one end of mockup.
 2. Approval of mockups does not constitute approval of deviations from the Contract Documents contained in mockups unless Architect specifically approves such deviations in writing.
 3. Subject to compliance with requirements, approved mockups may become part of the completed Work if undisturbed at time of Substantial Completion.

1.9 DELIVERY, STORAGE, AND HANDLING
A. Deliver and store packaged materials in original containers with labels intact until time of use.
B. Store materials on elevated platforms, under cover, and in a dry location.

1.10 WARRANTY
A. Special Warranty: Manufacturer agrees to repair or replace products that fail in materials or workmanship within specified warranty period.
 1. Failures include, but are not limited to, the following:
 a. Structural failures including cracking and deforming.
 b. Deterioration of materials beyond normal weathering.
 2. Warranty Period: 30 years from date of Substantial Completion.
PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Source Limitations: Obtain products, including related accessories, from single source from single manufacturer.

2.2 FIBER-CEMENT SIDING

A. General: ASTM C 1186, Type A, Grade II, fiber-cement board, noncombustible when tested according to ASTM E 136; with a flame-spread index of 25 or less when tested according to ASTM E 84.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Cemplank.
 b. CertainTeed Corp.
 c. James Hardie.
 d. Nichiha Fiber Cement.

B. Labeling: Provide fiber-cement siding that is tested and labeled according to ASTM C 1186 by a qualified testing agency acceptable to authorities having jurisdiction.

C. Nominal Thickness: Not less than 5/16 inch.

D. Horizontal Pattern: Boards 8-1/4 to 8-1/2 inches wide in beaded-edge style.

1. Texture: Smooth.

E. Factory Finish: Manufacturer's standard pre-finished color as selected from manufacturer’s full range.

2.3 FIBER-CEMENT SOFFIT

A. General: ASTM C 1186, Type A, Grade II, fiber-cement board, noncombustible when tested according to ASTM E 136; with a flame-spread index of 25 or less when tested according to ASTM E 84.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Cemplank.
 b. CertainTeed Corp.
 c. James Hardie.
 d. Nichiha Fiber Cement.

B. Nominal Thickness: Not less than 5/16 inch.
C. Pattern: 24-inch wide sheets with smooth texture.

D. Ventilation: Provide perforated soffit unless otherwise indicated.

E. Factory Finish: Manufacturer's standard pre-finished color as selected from manufacturer’s full range.

2.4 ACCESSORIES

A. Siding Accessories, General: Provide starter strips, edge trim, outside and inside corner caps, and other items as recommended by siding manufacturer for building configuration.

1. Provide accessories matching color and texture of adjacent siding unless otherwise indicated.

B. Decorative Accessories: Provide the following fiber-cement decorative accessories as indicated:

1. Door and window casings.
2. Fasciae.
3. Moldings and trim.
4. Skirt Boards

C. Flashing: Provide flashing complying with Section 076200 "Sheet Metal Flashing and Trim" at window and door heads and where indicated.

D. Fasteners:

1. For fastening to wood, use siding nails of sufficient length to penetrate a minimum of 1 inch into substrate.
2. For fastening fiber cement, use stainless-steel fasteners.

E. Insect Screening for Soffit Vents: Aluminum, 18-by-16 mesh.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates for compliance with requirements for installation tolerances and other conditions affecting performance of fiber-cement siding and soffit and related accessories.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Clean substrates of projections and substances detrimental to application.
3.3 INSTALLATION

A. General: Comply with manufacturer's written installation instructions applicable to products, applications, and clearances indicated unless more stringent requirements apply.

1. Do not install damaged components.
2. Install fasteners no more than 24 inches o.c.
3. Install starter strip per manufacturer’s instructions to ensure consistent plank angle.
4. Install flashing complying with Section 076200 "Sheet Metal Flashing and Trim" where indicated and according to manufacturer's written instructions.

B. Install joint sealants as specified in Section 079200 "Joint Sealants" and to produce a weathertight installation.

C. Do not install siding less than 2 inches from surface of ground nor closer than 2 to roofs, patios, porches, and other surfaces where water may collect.

D. Finish Painting: Paint siding within 6 months after installation.

3.4 ADJUSTING AND CLEANING

A. Remove damaged, improperly installed, or otherwise defective materials and replace with new materials complying with specified requirements.

B. Clean finished surfaces according to manufacturer's written instructions and maintain in a clean condition during construction.

END OF SECTION
SECTION 076200
SHEET METAL FLASHING AND TRIM

PART 1 - DESCRIPTION

1.1 SUMMARY

A. Section Includes:
 1. Formed roof-drainage sheet metal fabrications.
 2. Formed steep-slope roof sheet metal fabrications.

1.2 COORDINATION

A. Coordinate sheet metal flashing and trim layout and seams with sizes and locations of penetrations to be flashed, and joints and seams in adjacent materials.

B. Coordinate sheet metal flashing and trim installation with adjoining roofing and wall materials, joints, and seams to provide leakproof, secure, and noncorrosive installation.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. Shop Drawings: For sheet metal flashing and trim.
 1. Include plans, elevations, sections, and attachment details.
 2. Distinguish between shop- and field-assembled work.
 3. Include identification of finish for each item.
 4. Include pattern of seams and details of termination points, expansion joints and expansion-joint covers, direction of expansion, roof-penetration flashing, and connections to adjoining work.

C. Samples: For each exposed product and for each color and texture specified.

1.4 INFORMATIONAL SUBMITTALS

A. Qualification Data: For fabricator.

B. Sample warranty.

1.5 CLOSEOUT SUBMITTALS

A. Maintenance data.
1.6 QUALITY ASSURANCE

A. Fabricator Qualifications: Employs skilled workers who custom fabricate sheet metal flashing and trim similar to that required for this Project and whose products have a record of successful in-service performance.

1.7 DELIVERY, STORAGE, AND HANDLING

A. Do not store sheet metal flashing and trim materials in contact with other materials that might cause staining, denting, or other surface damage. Store sheet metal flashing and trim materials away from uncured concrete and masonry.

B. Protect strippable protective covering on sheet metal flashing and trim from exposure to sunlight and high humidity, except to extent necessary for period of sheet metal flashing and trim installation.

1.8 WARRANTY

A. Special Warranty on Finishes: Manufacturer agrees to repair finish or replace sheet metal flashing and trim that shows evidence of deterioration of factory-applied finishes within specified warranty period.

1. Finish Warranty Period: 20 years from date of Substantial Completion.

PART 2 - MATERIALS

2.1 PERFORMANCE REQUIREMENTS

A. General: Sheet metal flashing and trim assemblies shall withstand wind loads, structural movement, thermally induced movement, and exposure to weather without failure due to defective manufacture, fabrication, installation, or other defects in construction. Completed sheet metal flashing and trim shall not rattle, leak, or loosen, and shall remain watertight.

B. Sheet Metal Standard for Flashing and Trim: Comply with NRCA's "The NRCA Roofing Manual" and SMACNA's "Architectural Sheet Metal Manual" requirements for dimensions and profiles shown unless more stringent requirements are indicated.

C. Thermal Movements: Allow for thermal movements from ambient and surface temperature changes.

1. Temperature Change: 120 deg F (67 deg C), ambient; 180 deg F (100 deg C), material surfaces.

2.2 SHEET METALS

A. General: Protect mechanical and other finishes on exposed surfaces from damage by applying strippable, temporary protective film before shipping.
B. Metallic-Coated Steel Sheet: Provide zinc-coated (galvanized) steel sheet according to ASTM A 653/A 653M, G90 (Z275) coating designation; prepainted by coil-coating process to comply with ASTM A 755/A 755M.

1. Exposed Coil-Coated Finish:
 a. Three-Coat Fluoropolymer: AAMA 621. Fluoropolymer finish containing not less than 70 percent PVDF resin by weight in both color coat and clear topcoat. Prepare, pretreat, and apply coating to exposed metal surfaces to comply with coating and resin manufacturers’ written instructions.

2. Color: As selected by Architect from manufacturer's full range.

2.3 UNDERLAYMENT MATERIALS

A. Felt: ASTM D 226/D 226M, Type II (No. 30), asphalt-saturated organic felt; nonperforated.

B. Self-Adhering, High-Temperature Sheet: Minimum 30 mils (0.76 mm) thick, consisting of a slip-resistant polyethylene- or polypropylene-film top surface laminated to a layer of butyl- or SBS-modified asphalt adhesive, with release-paper backing; specifically designed to withstand high metal temperatures beneath metal roofing. Provide primer according to written recommendations of underlayment manufacturer.

1. Products: Subject to compliance with requirements, provide one of the following:
 a. Grace Construction Products, a unit of W. R. Grace & Co.-Conn.; Grace Ice and Water Shield HT.
 b. Henry Company; Blueskin PE200 HT.
 c. Metal-Fab Manufacturing, LLC; MetShield.
 d. Owens Corning; WeatherLock Specialty Tile & Metal Underlayment.
 e. Protecto Wrap Company; Protecto Jiffy Seal Ice & Water Guard HT.

3. Low-Temperature Flexibility: ASTM D 1970; passes after testing at minus 20 deg F or lower.

C. Slip Sheet: Rosin-sized building paper, 3 lb./100 sq. ft. minimum.

2.4 MISCELLANEOUS MATERIALS

A. General: Provide materials and types of fasteners, solder, protective coatings, sealants, and other miscellaneous items as required for complete sheet metal flashing and trim installation and as recommended by manufacturer of primary sheet metal or manufactured item unless otherwise indicated.
B. Fasteners: Wood screws, annular threaded nails, self-tapping screws, self-locking rivets and bolts, and other suitable fasteners designed to withstand design loads and recommended by manufacturer of primary sheet metal or manufactured item.

1. General: Blind fasteners or self-drilling screws, gasketed, with hex-washer head.
 a. Exposed Fasteners: Heads matching color of sheet metal using plastic caps or factory-applied coating. Provide metal-backed EPDM or PVC sealing washers under heads of exposed fasteners bearing on weather side of metal.
 b. Blind Fasteners: High-strength aluminum or stainless-steel rivets suitable for metal being fastened.
 c. Spikes and Ferrules: Same material as gutter; with spike with ferrule matching internal gutter width.

2. Fasteners for Zinc-Coated (Galvanized) and Aluminum-Zinc Alloy-Coated Steel Sheet: Series 300 stainless steel or hot-dip galvanized steel according to ASTM A 153/A 153M or ASTM F 2329.

C. Solder:

1. For Zinc-Coated (Galvanized) Steel: ASTM B 32, Grade Sn50, 50 percent tin and 50 percent lead or Grade Sn60, 60 percent tin and 40 percent lead with maximum lead content of 0.2 percent.

D. Sealant Tape: Pressure-sensitive, 100 percent solids, polyisobutylene compound sealant tape with release-paper backing. Provide permanently elastic, nonsag, nontoxic, nonstaining tape 1/2 inch (13 mm) wide and 1/8 inch (3 mm) thick.

E. Elastomeric Sealant: ASTM C 920, elastomeric polyurethane or silicone polymer sealant; of type, grade, class, and use classifications required to seal joints in sheet metal flashing and trim and remain watertight.

F. Butyl Sealant: ASTM C 1311, single-component, solvent-release butyl rubber sealant; polyisobutylene plasticized; heavy bodied for hooked-type expansion joints with limited movement.

G. Bituminous Coating: Cold-applied asphalt emulsion according to ASTM D 1187.

2.5 FABRICATION, GENERAL

A. General: Custom fabricate sheet metal flashing and trim to comply with details shown and recommendations in cited sheet metal standard that apply to design, dimensions, geometry, metal thickness, and other characteristics of item required. Fabricate sheet metal flashing and trim in shop to greatest extent possible.
1. Obtain field measurements for accurate fit before shop fabrication.
2. Form sheet metal flashing and trim to fit substrates without excessive oil canning, buckling, and tool marks; true to line, levels, and slopes; and with exposed edges folded back to form hems.
3. Conceal fasteners and expansion provisions where possible. Do not use exposed fasteners on faces exposed to view.

B. Expansion Provisions: Form metal for thermal expansion of exposed flashing and trim.

1. Form expansion joints of intermeshing hooked flanges, not less than 1 inch (25 mm) deep, filled with butyl sealant concealed within joints.
2. Use lapped expansion joints only where indicated on Drawings.

C. Sealant Joints: Where movable, nonexpansion-type joints are required, form metal to provide for proper installation of elastomeric sealant according to cited sheet metal standard.

D. Fabricate cleats and attachment devices from same material as accessory being anchored or from compatible, noncorrosive metal.

E. Fabricate cleats and attachment devices of sizes as recommended by cited sheet metal standard for application, but not less than thickness of metal being secured.

F. Seams: Fabricate nonmoving seams with flat-lock seams. Form seams and seal with elastomeric sealant unless otherwise recommended by sealant manufacturer for intended use. Rivet joints where necessary for strength.

2.6 ROOF-DRAINAGE SHEET METAL FABRICATIONS

A. Hanging Gutters: Fabricate to cross section required, complete with end pieces, outlet tubes, and other accessories as required. Fabricate in minimum 96-inch- (2400-mm-) long sections. Furnish flat-stock gutter brackets and gutter spacers and straps fabricated from same metal as gutters, of size recommended by cited sheet metal standard but with thickness not less than twice the gutter thickness. Fabricate expansion joints, expansion-joint covers, and gutter accessories from same metal as gutters. Shop fabricate interior and exterior corners.

1. Expansion Joints: Butt type with cover plate.
3. Gutters with Girth up to 15 Inches: Fabricate from the following materials:
 a. Galvanized Steel: 0.022 inch thick.

B. Downspouts: Fabricate rectangular downspouts to dimensions indicated, complete with mitered elbows. Furnish with metal hangers from same material as downspouts and anchors. Shop fabricate elbows.

1. Fabricate from the following materials:
 a. Galvanized Steel, Coated: 0.022 inch thick.
2.7 STEEP-SLOPE ROOF SHEET METAL FABRICATIONS

A. Drip Edges: Fabricate from the following materials:
 1. Galvanized Steel: 0.022 inch thick.

B. Eave, Rake Flashing: Fabricate from the following materials:
 1. Galvanized Steel, Uncoated: 0.022 inch thick.
 2. Aluminum-Zinc Alloy-Coated Steel, Uncoated: 0.022 inch thick.

C. Roof-Penetration Flashing: Fabricate from the following materials:
 1. Galvanized Steel: 0.022 inch thick.

PART 3 - CONSTRUCTION METHODS

3.1 EXAMINATION

A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for installation tolerances, substrate, and other conditions affecting performance of the Work.
 1. Verify compliance with requirements for installation tolerances of substrates.
 2. Verify that substrate is sound, dry, smooth, clean, sloped for drainage, and securely anchored.
 3. Verify that air- or water-resistant barriers have been installed over sheathing or backing substrate to prevent air infiltration or water penetration.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 UNDERLAYMENT INSTALLATION

A. Felt Underlayment: Install felt underlayment, wrinkle free, using adhesive to minimize use of mechanical fasteners under sheet metal flashing and trim. Apply in shingle fashion to shed water, with lapped joints of not less than 2 inches.

B. Self-Adhering Sheet Underlayment: Install self-adhering sheet underlayment, wrinkle free. Prime substrate if recommended by underlayment manufacturer. Comply with temperature restrictions of underlayment manufacturer for installation; use primer for installing underlayment at low temperatures. Apply in shingle fashion to shed water, with end laps of not less than 6 inches staggered 24 inches between courses. Overlap side edges not less than 3-1/2 inches. Roll laps and edges with roller. Cover underlayment within 14 days.
3.3 INSTALLATION, GENERAL

A. General: Anchor sheet metal flashing and trim and other components of the Work securely in place, with provisions for thermal and structural movement. Use fasteners, solder, protective coatings, separators, sealants, and other miscellaneous items as required to complete sheet metal flashing and trim system.

1. Install sheet metal flashing and trim true to line, levels, and slopes. Provide uniform, neat seams with minimum exposure of solder, welds, and sealant.
2. Install sheet metal flashing and trim to fit substrates and to result in watertight performance. Verify shapes and dimensions of surfaces to be covered before fabricating sheet metal.
3. Space cleats not more than 12 inches apart. Attach each cleat with at least two fasteners. Bend tabs over fasteners.
4. Install exposed sheet metal flashing and trim with limited oil canning, and free of buckling and tool marks.
5. Torch cutting of sheet metal flashing and trim is not permitted.

B. Metal Protection: Where dissimilar metals contact each other, or where metal contacts pressure-treated wood or other corrosive substrates, protect against galvanic action or corrosion by painting contact surfaces with bituminous coating or by other permanent separation as recommended by sheet metal manufacturer or cited sheet metal standard.

1. Underlayment: Where installing sheet metal flashing and trim directly on cementitious or wood substrates, install underlayment and cover with slip sheet.

C. Expansion Provisions: Provide for thermal expansion of exposed flashing and trim. Space movement joints at maximum of 10 feet with no joints within 24 inches of corner or intersection.

1. Form expansion joints of intermeshing hooked flanges, not less than 1 inch deep, filled with sealant concealed within joints.
2. Use lapped expansion joints only where indicated on Drawings.

D. Fasteners: Use fastener sizes that penetrate substrate not less than recommended by fastener manufacturer to achieve maximum pull-out resistance.

E. Conceal fasteners and expansion provisions where possible in exposed work and locate to minimize possibility of leakage. Cover and seal fasteners and anchors as required for a tight installation.

F. Seal joints as required for watertight construction. Prepare joints and apply sealants to comply with requirements in Section 079200 "Joint Sealants."

3.4 ROOF-DRAINAGE SYSTEM INSTALLATION

A. General: Install sheet metal roof-drainage items to produce complete roof-drainage system according to cited sheet metal standard unless otherwise indicated. Coordinate installation of roof perimeter flashing with installation of roof-drainage system.
B. Hanging Gutters: Join sections with joints sealed with sealant. Provide for thermal expansion. Attach gutters at eave or fascia to firmly anchor them in position. Provide end closures and seal watertight with sealant. Slope to downspouts.

1. Install gutter with expansion joints at locations indicated, but not exceeding, 50 feet apart. Install expansion-joint caps.

C. Downspouts: Join sections with 1-1/2-inch telescoping joints. Provide hangers with fasteners designed to hold downspouts securely to walls. Locate hangers at top and bottom and at approximately 60 inches o.c.

3.5 ROOF FLASHING INSTALLATION

A. General: Install sheet metal flashing and trim to comply with performance requirements and cited sheet metal standard. Provide concealed fasteners where possible, and set units true to line, levels, and slopes. Install work with laps, joints, and seams that are permanently watertight and weather resistant.

B. Roof Edge Flashing: Anchor to resist uplift and outward forces according to recommendations in cited sheet metal standard unless otherwise indicated. Interlock bottom edge of roof edge flashing with continuous cleat anchored to substrate.

C. Roof-Penetration Flashing: Coordinate installation of roof-penetration flashing with installation of roofing and other items penetrating roof. Seal with sealant and clamp flashing to pipes that penetrate roof.

3.6 CLEANING AND PROTECTION

A. Clean exposed metal surfaces of substances that interfere with uniform oxidation and weathering.

B. Clean off excess sealants.

C. Remove temporary protective coverings and strippable films as sheet metal flashing and trim are installed unless otherwise indicated in manufacturer's written installation instructions.

END OF SECTION
PART 1 - DESCRIPTION

1.1 REFERENCES

A. Reference Standards: In addition to requirements shown or specified, comply with applicable provisions of following for design, materials, fabrication, and installation of component parts:

1.2 SUBMITTALS

A. Include data to indicate chemical characteristics, performance criteria, limitations, substrate preparation, installation requirements, and curing requirements.

B. Include information for accessories and other required components.

C. Include color charts indicating manufacturer’s full color range available of each sealant type for Architect’s initial selection.

1.3 QUALITY ASSURANCE

A. Single Source Responsibility: Provide products for each sealant system from one manufacturer for entire Project, unless otherwise acceptable to Architect.

1.4 PROJECT CONDITIONS

A. Environmental Requirements: Do not apply sealants to wet or frozen surfaces.

1. Apply sealant when following are within manufacturer’s limits during and for 24 hours after sealant installation:

 a. Ambient and surface temperatures.
 b. Relative humidity.

2. Comply with manufacturer’s requirements regarding application of sealants in vicinity of curing sealants of a different material.
PART 2 - MATERIALS

2.1 JOINT SEALANT MATERIALS AND MANUFACTURERS

A. Acrylic Latex (Designation AL): ASTM C834, non-sag; non-staining; non-bleeding.
 1. Joint Movement Range without Cohesive/Adhesive Failure: Plus 7.5 percent to minus 7.5 percent of joint width.
 2. Color: Selected by Architect from manufacturer’s full color range.
 3. Acceptable Products:
 a. AC-20, Pecora, Harleysville, PA.
 b. Sonolac, Sonneborn, Minneapolis, MN.
 c. Acrylic Latex 834, Tremco, Cleveland, OH.

B. Silicone - General Purpose (Designation S-GP): ASTM C920, Type S, Grade NS, Class 25.
 1. Uses: NT, [M], G, A, O
 2. Low modulus, single component, neutral curing, non-staining, non-bleeding silicone sealant.
 3. Joint Movement Range without Cohesive/Adhesive Failure: Plus 50 percent to minus 50 percent of joint width.
 5. Acceptable Products:
 a. 790, Dow Corning, Midland, MI.
 b. Silpruf, General Electric Silicone Products Division, Waterford, NY.
 c. 890 NST, Pecora, Harleysville, PA.
 d. Spectrum 1, Tremco, Cleveland, OH.

C. Silicone—Sanitary (Designation S-S): ASTM C920, Type S, Grade NS, Class 25.
 1. Uses: NT, M, G, A, O
 2. Neutral or acid curing, non-staining, non-bleeding, fungicide-containing.
 4. Acceptable Products:
 a. 786 Mildew-Resistant Silicone Sealant, Dow Corning, Midland, MI.
 b. Sanitary 1700, General Electric Silicone Products Division, Waterford, NY.

 1. Uses: NT, M, A, O
 2. Chemical curing, non-staining, and non-bleeding.
5. Acceptable Products:
 a. Dynatrol II, Pecora, Harleysville, PA.
 b. Sikaflex-2c NS, Sika, Lyndhurst, NJ.
 c. Sonolastic NP-2, Sonneborn, Minneapolis, MN.
 d. Dymonic, Tremco, Cleveland, OH.

2.2 ACCESSORIES

A. Joint Cleaner: Chemical cleaners required by sealant manufacturer for substrates encountered, compatible with sealant backing bond breaker materials.
B. Primer: Dyed coating material required by sealant manufacturer for enhancing sealant adhesion to joint substrates.
C. Sealant Backing Bond Breaker Rod: ASTM D1056 and D1565.
 1. Open Cell Polyurethane: Use not permitted unless required by sealant manufacturer.
 2. Closed Cell Polyethylene: Non-absorbent to liquid water.
 a. Use in wall and ceiling joints unless otherwise required by sealant manufacturer.
 4. Unless otherwise required by sealant manufacturer, oversize rod shall be larger than joint width by following minimum amounts:
 a. Open Cell Polyethylene: 50 percent.
 b. Closed Cell Polyethylene: 33 percent.
 c. Reticulated Polymeric: 25 percent.
D. Sealant Backing Bond Breaker Tape: Pressure sensitive polyethylene tape or tetrafluorethylene self-adhesive tape required by sealant manufacturer to suit application.
 1. Minimum thickness of 11 mils (0.275 mm).
E. Tooling Liquids: Non-staining material approved by manufacturer to reduce adhesion of sealant to joint finishing tools.
PART 3 - CONSTRUCTION METHODS

3.1 EXAMINATION AND PREPARATION

A. Examination: Verify that sealant backing is compatible with sealant.
 1. Verify that Substrate Surface:
 a. Is within manufacturer’s moisture content range.
 b. Complies with manufacturer’s cleanliness and surface preparation requirements.
 2. Joint Width: Verify joints are greater than minimum widths required by manufacturer.
 a. If joints are narrower than minimum required widths, widen narrow joints to indicated width.
 b. Do not place sealant in joints narrower than manufacturer’s required minimum.

B. Preparation: Comply with ASTM C1193.
 1. Prepare, clean, and prime joints in accordance with manufacturer’s instructions.
 2. Priming: Comply with manufacturer’s sequencing requirements for joint priming and sealant backing bond breaker rod installation to assure required primer application coverage and rate without placement of primer on backer rod surface to be in contact with sealant and avoid three-sided sealant adhesion.

3.2 APPLICATION

A. Joint Sealants: Comply with manufacturer’s printed instructions.

B. Cleaning: Clean excess sealants and sealant smears from adjacent surfaces as application progresses.
 1. Repair or replace defaced or disfigured finishes caused by work of this Section and replace where installation techniques result in unsatisfactory joining of materials and unsightly conditions.

C. Protection: Protect sealants from contamination until cured.
 1. Protect sealant joints in horizontal surfaces from foot and vehicular traffic until cured.
3.3 SCHEDULE

A. Sealant Schedule: Interior Joints:

1. Wall and Ceiling Joints Subject to Movement: Designation S-GP.
2. Wall and Ceiling Joints not Subject to Movement: Designation AL.
3. Wall and Ceiling Joints between Frames and their Rough Opening: Designation AL.
4. Wall and Ceiling Joints between Frames and Adjoining Surfaces: Designation AL.
5. Interior Sanitary Joints; Joints between Plumbing Fixtures and Adjoining Floor, Wall, and Ceiling Surfaces; Joints between Shower Door Enclosure Components and Adjacent Finish Surfaces; Joints Between Back Splashes and Wall Substrates: Designation S-S.

B. Joint Sealant Schedule for Exterior Locations:

1. Wall Joints:
4. Bordered on One Side by Porous Building Material (Concrete, Stone, Masonry) And Other Side by Non-Porous Building Material (Coated and Uncoated Metals, Anodized Aluminum, and Glass): Designation S-GP.
5. Wall and Ceiling Joints Between Frames and Their Rough Opening: Designation S-GP.
6. Wall and Ceiling Joints Between Frames and Adjoining Surfaces: Designation S-GP.

END OF SECTION
SECTION 081113
HOLLOW METAL DOORS AND FRAMES

PART 1 - DESCRIPTION

1.1 SUMMARY
 A. Section includes hollow-metal work.

1.2 DEFINITIONS
 A. Minimum Thickness: Minimum thickness of base metal without coatings according to NAAMM-HMMA 803 or SDI A250.8.

1.3 ACTION SUBMITTALS
 A. Product Data: For each type of product.
 B. Shop Drawings: Include elevations, door edge details, frame profiles, metal thicknesses, preparations for hardware, and other details.
 C. Schedule: Prepared by or under the supervision of supplier, using same reference numbers for details and openings as those on Drawings.

PART 2 - MATERIALS

2.1 MANUFACTURERS
 A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Amweld International, LLC.
2. Ceco Door Products; an Assa Abloy Group company.
3. Curries Company; an Assa Abloy Group company.
4. Pioneer Industries, Inc.
5. Republic Doors and Frames.
6. Steelcraft; an Ingersoll-Rand company.

2.2 INTERIOR DOORS AND FRAMES
 A. Heavy-Duty Doors and Frames: SDI A250.8, Level 2. At locations indicated in the Door and Frame Schedule.

1. Physical Performance: Level B according to SDI A250.4.
2. Doors:
 a. Type: As indicated in the Door and Frame Schedule.
 b. Thickness: 1-3/4 inches (44.5 mm).
 c. Face: Uncoated, cold-rolled steel sheet, minimum thickness of 0.042 inch (1.0 mm).
 d. Edge Construction: Model 2, Seamless.
 e. Core: Manufacturer's standard.

3. Frames:
 a. Materials: Uncoated, steel sheet, minimum thickness of 0.053 inch (1.3 mm).
 b. Construction: Knocked down.

2.3 EXTERIOR HOLLOW-METAL DOORS AND FRAMES

A. Extra-Heavy-Duty Doors and Frames: SDI A250.8, Level 3. At locations indicated in the Door and Frame Schedule.
 1. Physical Performance: Level A according to SDI A250.4.
 2. Doors:
 a. Type: As indicated in the Door and Frame Schedule.
 b. Thickness: 1-3/4 inches (44.5 mm).
 c. Face: Metallic-coated steel sheet, minimum thickness of 0.053 inch (1.3 mm), with minimum A40 (ZF120) coating.
 d. Edge Construction: Model 2, Seamless and Model 3, Stile and Rail.
 e. Core: Manufacturer's standard insulation material.
 3. Thermal-Rated Doors: Provide doors fabricated with thermal-resistance value (R-value) of not less than 2.1 deg F x h x sq. ft./Btu (0.370 K x sq. m/W) when tested according to ASTM C 1363.
 4. Frames:
 a. Materials: Metallic-coated steel sheet, minimum thickness of 0.053 inch (1.3 mm), with minimum A40 (ZF120) coating.
 b. Construction: Full profile welded.

2.4 FRAME ANCHORS

A. Jamb Anchors:
1. **Stud-Wall Type**: Designed to engage stud, welded to back of frames; not less than 0.042 inch (1.0 mm) thick.

B. Floor Anchors: Formed from same material as frames, minimum thickness of 0.042 inch (1.0 mm), and as follows:

1. **Monolithic Concrete Slabs**: Clip-type anchors, with two holes to receive fasteners.
2. **Separate Topping Concrete Slabs**: Adjustable-type anchors with extension clips, allowing not less than 2-inch (51-mm) height adjustment. Terminate bottom of frames at finish floor surface.

2.5 MATERIALS

A. Cold-Rolled Steel Sheet: ASTM A 1008/A 1008M, Commercial Steel (CS), Type B; suitable for exposed applications.

B. Hot-Rolled Steel Sheet: ASTM A 1011/A 1011M, Commercial Steel (CS), Type B; free of scale, pitting, or surface defects; pickled and oiled.

C. Metallic-Coated Steel Sheet: ASTM A 653/A 653M, Commercial Steel (CS), Type B.

D. Frame Anchors: ASTM A 879/A 879M, Commercial Steel (CS), 04Z (12G) coating designation; mill phosphatized.

1. For anchors built into exterior walls, steel sheet complying with ASTM A 1008/A 1008M or ASTM A 1011/A 1011M, hot-dip galvanized according to ASTM A 153/A 153M, Class B.

E. Inserts, Bolts, and Fasteners: Hot-dip galvanized according to ASTM A 153/A 153M.

F. Power-Actuated Fasteners in Concrete: From corrosion-resistant materials.

G. Mineral-Fiber Insulation: ASTM C 665, Type I (blankets without membrane facing).

H. Glazing: Insulating-Glass Units: ASTM E 2190

1. **Glass**: ASTM C 1036, Type 1, Class 1, q3.
 a. **Tint**: Clear.
 b. **Kind**: Fully tempered where indicated on Drawings.

2. **Lites**: Two.

3. **Filling**: Fill space between glass lites with air.
2.6 FABRICATION

A. Fabricate hollow-metal work to be rigid and free of defects, warp, or buckle. Accurately form metal to required sizes and profiles, with minimum radius for metal thickness. Where practical, fit and assemble units in manufacturer's plant. To ensure proper assembly at Project site, clearly identify work that cannot be permanently factory assembled before shipment.

B. Hollow-Metal Doors:

1. Exterior Doors: Provide weep-hole openings in bottoms of exterior doors to permit moisture to escape. Seal joints in top edges of doors against water penetration.

C. Hollow-Metal Frames: Where frames are fabricated in sections due to shipping or handling limitations, provide alignment plates or angles at each joint, fabricated of same thickness metal as frames.

1. Sidelight Frames: Provide closed tubular members with no visible face seams or joints, fabricated from same material as door frame. Fasten members at crossings and to jambs by butt welding.
2. Provide countersunk, flat- or oval-head exposed screws and bolts for exposed fasteners unless otherwise indicated.
3. Floor Anchors: Weld anchors to bottoms of jambs with at least four spot welds per anchor; however, for slip-on drywall frames, provide anchor clips or countersunk holes at bottoms of jambs.
4. Jamb Anchors: Provide number and spacing of anchors as follows:

 a. Stud-Wall Type: Locate anchors not more than 18 inches (457 mm) from top and bottom of frame. Space anchors not more than 32 inches (813 mm) o.c. and as follows:

 1) Three anchors per jamb up to 60 inches (1524 mm) high.
 2) Four anchors per jamb from 60 to 90 inches (1524 to 2286 mm) high.
 3) Five anchors per jamb from 90 to 96 inches (2286 to 2438 mm) high.
 4) Five anchors per jamb plus one additional anchor per jamb for each 24 inches (610 mm) or fraction thereof above 96 inches (2438 mm) high.

 b. Compression Type: Not less than two anchors in each frame.
 c. Postinstalled Expansion Type: Locate anchors not more than 6 inches (152 mm) from top and bottom of frame. Space anchors not more than 26 inches (660 mm) o.c.

5. Door Silencers: Except on weather-striped frames, drill stops to receive door silencers.
a. Single-Door Frames: Drill stop in strike jamb to receive three door silencers.
b. Double-Door Frames: Drill stop in head jamb to receive two door silencers.

D. Hardware Preparation: Factory prepare hollow-metal work to receive templated mortised hardware; include cutouts, reinforcement, mortising, drilling, and tapping according to SDI A250.6, the Door Hardware Schedule, and templates.

1. Reinforce doors and frames to receive nontemplated, mortised, and surface-mounted door hardware.
2. Comply with applicable requirements in SDI A250.6 and BHMA A156.115 for preparation of hollow-metal work for hardware.

E. Stops and Moldings: Provide stops and moldings around glazed lites and louvers where indicated. Form corners of stops and moldings with mitered hairline joints.

1. Single Glazed Lites: Provide fixed stops and moldings welded on secure side of hollow-metal work.
2. Multiple Glazed Lites: Provide fixed and removable stops and moldings so that each glazed lite is capable of being removed independently.
3. Provide fixed frame moldings on outside of exterior and on secure side of interior doors and frames.
4. Provide loose stops and moldings on inside of hollow-metal work.
5. Coordinate rabbet width between fixed and removable stops with glazing and installation types indicated.

2.7 STEEL FINISHES

A. Prime Finish: Clean, pretreat, and apply manufacturer's standard primer.

2.8 ACCESSORIES

A. Mullions and Transom Bars: Join to adjacent members by welding or rigid mechanical anchors.

PART 3 - CONSTRUCTION METHODS

3.1 INSTALLATION

A. Hollow-Metal Frames: Install hollow-metal frames of size and profile indicated. Comply with SDI A250.11 or NAAMM-HMMA 840 as required by standards specified.

1. Set frames accurately in position; plumbed, aligned, and braced securely until permanent anchors are set. After wall construction is complete, remove temporary braces, leaving surfaces smooth and undamaged.
a. Where frames are fabricated in sections because of shipping or handling limitations, field splice at approved locations by welding face joint continuously; grind, fill, dress, and make splice smooth, flush, and invisible on exposed faces.
b. Install frames with removable stops located on secure side of opening.
c. Install door silencers in frames before grouting.
d. Remove temporary braces necessary for installation only after frames have been properly set and secured.
e. Check plumb, square, and twist of frames as walls are constructed. Shim as necessary to comply with installation tolerances.
f. Field apply bituminous coating to backs of frames that will be filled with grout containing anti-freezing agents.

2. Floor Anchors: Provide floor anchors for each jamb and mullion that extends to floor, and secure with postinstalled expansion anchors.
a. Floor anchors may be set with power-actuated fasteners instead of postinstalled expansion anchors if so indicated and approved on Shop Drawings.

4. Installation Tolerances: Adjust hollow-metal door frames for squareness, alignment, twist, and plumb to the following tolerances:

 a. Squareness: Plus or minus 1/16 inch (1.6 mm), measured at door rabbet on a line 90 degrees from jamb perpendicular to frame head.
 b. Alignment: Plus or minus 1/16 inch (1.6 mm), measured at jambs on a horizontal line parallel to plane of wall.
 c. Twist: Plus or minus 1/16 inch (1.6 mm), measured at opposite face corners of jambs on parallel lines, and perpendicular to plane of wall.
 d. Plumbness: Plus or minus 1/16 inch (1.6 mm), measured at jambs at floor.

B. Hollow-Metal Doors: Fit hollow-metal doors accurately in frames, within clearances specified below. Shim as necessary.

1. Non-Fire-Rated Steel Doors:

 a. Between Door and Frame Jambs and Head: 1/8 inch (3.2 mm) plus or minus 1/32 inch (0.8 mm).
 b. Between Edges of Pairs of Doors: 1/8 inch (3.2 mm) to 1/4 inch (6.3 mm) plus or minus 1/32 inch (0.8 mm).
 c. At Bottom of Door: 5/8 inch (15.8 mm) plus or minus 1/32 inch (0.8 mm).
 d. Between Door Face and Stop: 1/16 inch (1.6 mm) to 1/8 inch (3.2 mm) plus or minus 1/32 inch (0.8 mm).
C. Glazing: Secure stops with countersunk flat- or oval-head machine screws spaced uniformly not more than 9 inches (230 mm) o.c. and not more than 2 inches (51 mm) o.c. from each corner.

3.2 ADJUSTING AND CLEANING

A. Final Adjustments: Check and readjust operating hardware items immediately before final inspection. Leave work in complete and proper operating condition. Remove and replace defective work, including hollow-metal work that is warped, bowed, or otherwise unacceptable.

B. Prime-Coat Touchup: Immediately after erection, sand smooth rusted or damaged areas of prime coat and apply touchup of compatible air-drying, rust-inhibitive primer.

C. Metallic-Coated Surface Touchup: Clean abraded areas and repair with galvanizing repair paint according to manufacturer's written instructions.

END OF SECTION
SECTION 081416

FLUSH WOOD DOORS

PART 1 - DESCRIPTION

1.1 SUMMARY

A. Section Includes:

1. Solid-core doors with wood-veneer faces.
2. Factory finishing flush wood doors.
3. Factory fitting flush wood doors to frames and factory machining for hardware.

B. Related Requirements.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of door. Include factory-finishing specifications.

B. Shop Drawings: Indicate location, size, and hand of each door; elevation of each kind of door; construction details not covered in Product Data; and the following:

1. Dimensions and locations of blocking.
2. Dimensions and locations of mortises and holes for hardware.
3. Dimensions and locations of cutouts.
4. Undercuts.
5. Requirements for veneer matching.
6. Doors to be factory finished and finish requirements.
7. Fire-protection ratings for fire-rated doors.

C. Samples: For factory-finished doors.

1.3 INFORMATIONAL SUBMITTALS

A. Quality Standard Compliance Certificates: AWI Quality Certification Program certificates.

1.4 QUALITY ASSURANCE

PART 2 - MATERIALS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
1. Algoma Hardwoods, Inc.
2. Eggers Industries.
3. Graham Wood Doors; an Assa Abloy Group company.
5. Mohawk Doors; a Masonite company.
6. VT Industries, Inc.

2.2 FLUSH WOOD DOORS, GENERAL

A. Quality Standard: In addition to requirements specified, comply with AWI's, AWMAC's, and WI's "Architectural Woodwork Standards."
 1. Provide AWI Quality Certification Labels indicating that doors comply with requirements of grades specified.

B. WDMA I.S.1-A Performance Grade:
 1. Heavy Duty unless otherwise indicated.

C. Particleboard-Core Doors:
 1. Particleboard: ANSI A208.1, Grade LD-2, made with binder containing no urea-formaldehyde.
 2. Blocking: Provide wood blocking in particleboard-core doors as needed to eliminate through-bolting hardware.
 3. Provide doors with glued-wood-stave or structural-composite-lumber cores instead of particleboard cores for doors indicated to receive exit devices.

2.3 VENEER-FACED DOORS FOR TRANSPARENT FINISH

A. Interior Solid-Core Doors:
 1. Grade: Custom (Grade A faces).
 2. Species: White oak.
 5. Core: Particleboard.
 6. Construction: Five or seven plies. Stiles and rails are bonded to core, then entire unit is abrasive planed before veneering.

2.4 FABRICATION

A. Factory fit doors to suit frame-opening sizes indicated. Comply with clearance requirements of referenced quality standard for fitting unless otherwise indicated.

B. Factory machine doors for hardware that is not surface applied.
2.5 FACTORY FINISHING

A. General: Comply with referenced quality standard for factory finishing. Complete fabrication, including fitting doors for openings and machining for hardware that is not surface applied, before finishing.

1. Finish faces, all four edges, edges of cutouts, and mortises. Stains and fillers may be omitted on top and bottom edges, edges of cutouts, and mortises.

B. Factory finish doors that are indicated to receive transparent finish.

C. Transparent Finish:

1. Grade: Custom.
2. Finish: AWI's, AWMAC's, and WI's "Architectural Woodwork Standards" System 11, catalyzed polyurethane.
3. Finish: WDMA TR-4 conversion varnish or WDMA TR-6 catalyzed polyurethane.
4. Staining: None required.
5. Sheen: Satin.

PART 3 - CONSTRUCTION METHODS

3.1 INSTALLATION

A. Hardware: For installation, see Section 087100 "Door Hardware."

B. Installation Instructions: Install doors to comply with manufacturer's written instructions and referenced quality standard, and as indicated.

C. Job-Fitted Doors: Align and fit doors in frames with uniform clearances and bevels as indicated below; do not trim stiles and rails in excess of limits set by manufacturer or permitted for fire-rated doors. Machine doors for hardware. Seal edges of doors, edges of cutouts, and mortises after fitting and machining.

1. Clearances: Provide 1/8 inch (3.2 mm) at heads, jambs, and between pairs of doors. Provide 1/8 inch (3.2 mm) from bottom of door to top of decorative floor finish or covering unless otherwise indicated. Where threshold is shown or scheduled, provide 1/4 inch (6.4 mm) from bottom of door to top of threshold unless otherwise indicated.
 a. Comply with NFPA 80 for fire-rated doors.

D. Factory-Fitted Doors: Align in frames for uniform clearance at each edge.

E. Factory-Finished Doors: Restore finish before installation if fitting or machining is required at Project site.

END OF SECTION
SECTION 085413
FIBERGLASS WINDOWS

PART 1 - DESCRIPTION

1.1 SUMMARY
A. Section includes fiberglass-framed windows.

1.2 ACTION SUBMITTALS
A. Product Data: For each type of product.
B. Shop Drawings: Include plans, elevations, sections, hardware, accessories, insect screens, operational clearances, and details of installation, including anchor, flashing, and sealant installation.

1.3 INFORMATIONAL SUBMITTALS
A. Product test reports.
B. Sample warranties.

1.4 WARRANTY
A. Manufacturer's Warranty: Manufacturer agrees to repair or replace fiberglass windows that fail in materials or workmanship within specified warranty period.

1. Warranty Period:
 a. Window: 10 years from date of Substantial Completion.
 b. Glazing Units: Five years from date of Substantial Completion.

PART 2 - MATERIALS

2.1 MANUFACTURERS
A. Basis of Design: Impervia, Pella Corporation.

1. Subject to compliance with requirements, products by the following manufacturers are also acceptable:
 a. Marvin Windows and Doors.
 b. Fibertec Window and Door Manufacturing.
 c. Milgard Windows, Inc.
 d. Serious Materials Inc.
2.2 WINDOW PERFORMANCE REQUIREMENTS

1. Minimum Performance Class: CW

B. Thermal Transmittance: NFRC 100 maximum whole-window U-factor of 0.30 Btu/sq. ft. × h × deg F.

C. Solar Heat-Gain Coefficient (SHGC): NFRC 200 maximum whole-window SHGC of 0.30.

2.3 FIBERGLASS WINDOWS

A. Operating Types: As indicated on Drawings.

B. Description: Picture window with awing projection where indicated on Window Schedule.

1. Exterior Color: Color selected by Architect from manufacturer's full range.
2. Interior Finish: Matching exterior color and finish.

D. Insulating-Glass Units: ASTM E 2190.

1. Glass: ASTM C 1036, Type 1, Class 1, q3.
 a. Tint: Clear.
 b. Kind: Fully tempered where indicated on Drawings.

2. Lites: Two.
3. Filling: Fill space between glass lites with argon.
4. Low-E Coating: Pyrolytic second or third surface.

E. Hardware, General: Manufacturer's standard corrosion-resistant hardware sized to accommodate sash weight and dimensions.

1. Exposed Hardware Color and Finish: As selected by Architect from manufacturer's full range.

F. Projected Window Hardware:

1. Gear-Type Rotary Operators: Complying with AAMA 901 when tested according to ASTM E 405, Method A. Provide operators that function without requiring the removal of interior screens or using screen wickets.
a. Type and Style: As selected by Architect from manufacturer's full range of types and styles.

2. Hinges: Manufacturer's standard type for sash weight and size indicated.
3. Single-Handle Locking System: Operates positive-acting arms that pull sash into locked position. Provide one arm on sashes up to 27-1/2 inches tall and two arms on taller sashes.
4. Limit Devices: Limit clear opening to 6 inches for ventilation; with custodial key release.

G. Weather Stripping: Provide full-perimeter weather stripping for each operable sash unless otherwise indicated.

H. Fasteners: Noncorrosive and compatible with window members, trim, hardware, anchors, and other components.

1. Exposed Fasteners: Do not use exposed fasteners to the greatest extent possible. For application of hardware, use fasteners that match finish hardware being fastened.

2.4 ACCESSORIES

2.5 INSECT SCREENS

A. General: Fabricate insect screens to integrate with window frame. Provide screen for each operable exterior sash. Screen wickets are not permitted.

1. Type and Location: Full, inside for project-out sashes.

B. Aluminum Frames: Complying with SMA 1004 or SMA 1201.

1. Finish for Interior Screens: Baked-on organic coating in color selected by Architect from manufacturer's full range.

2.6 FABRICATION

A. Fabricate fiberglass windows in sizes indicated. Include a complete system for installing and anchoring windows.

B. Glaze fiberglass windows in the factory.

C. Weather strip each operable sash to provide weathertight installation.

D. Provide mullions and cover plates, matching window units, complete with anchors for support to structure and installation of window units. Allow for erection tolerances and provide for movement of window units due to thermal expansion and building deflections. Provide mullions and cover plates capable of withstanding design wind loads of window units.
E. Complete fabrication, assembly, finishing, hardware application, and other work in the factory to greatest extent possible. Disassemble components only as necessary for shipment and installation. Allow for scribing, trimming, and fitting at Project site.

PART 3 - CONSTRUCTION METHODS

3.1 INSTALLATION

A. Comply with manufacturer's written instructions for installing windows, hardware, accessories, and other components. For installation procedures and requirements not addressed in manufacturer's written instructions, comply with installation requirements in ASTM E 2112.

B. Install windows level, plumb, square, true to line, without distortion, anchored securely in place to structural support, and in proper relation to wall flashing and other adjacent construction to produce weathertight construction.

C. Adjust operating sashes and hardware for a tight fit at contact points and weather stripping for smooth operation and weathertight closure.

D. Clean exposed surfaces immediately after installing windows. Remove excess sealants, glazing materials, dirt, and other substances.

E. Remove and replace sashes if glass has been broken, chipped, cracked, abraded, or damaged during construction period.

F. Costs include all labor, material, services and equipment necessary to complete the work in every respect.

END OF SECTION
SECTION 087100

DOOR HARDWARE

PART 1 - DESCRIPTION

1.1 SUBMITTALS

A. Product Data: For each type of product indicated.

B. Door Hardware Schedule: Prepared by or under the supervision of Installer, detailing fabrication and assembly of door hardware, as well as installation procedures and diagrams. Coordinate final door hardware schedule with doors, frames, and related work to ensure proper size, thickness, hand, function, and finish of door hardware.

 1. Format: Use same scheduling sequence and format and use same door numbers as in the Contract Documents.
 2. Content: Include the following information:

 a. Identification number, location, hand, fire rating, size, and material of each door and frame.
 b. Locations of each door hardware set, cross-referenced to Drawings on floor plans and to door and frame schedule.
 c. Complete designations, including name and manufacturer, type, style, function, size, quantity, function, and finish of each door hardware product.

C. Keying Schedule: Prepared by or under the supervision of Installer, detailing Owner's final keying instructions for locks.

1.2 QUALITY ASSURANCE

A. Regulatory Requirements:

 1. Installer Qualifications: Supplier of products and an employer of workers trained and approved by product manufacturers and an Architectural Hardware Consultant who is available during the course of the Work to consult with Contractor, Architect, and Owner about door hardware and keying.

1.3 WARRANTY

A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components of door hardware that fail in materials or workmanship within specified warranty period.
PART 2 - MATERIALS

2.1 MANUFACTURERS AND PRODUCTS

A. General: Where products are specified by manufacturer to establish standard of quality, function, and design. Products of equivalent quality, function and design are acceptable.

B. Butt Hinges: ANSI A156.1 and A156.7.

1. Five knuckle design with square corners.
2. Full mortise type.
3. Anti-friction or ball bearing type for doors equipped with closers.
4. Plain bearing type for doors less than 3'-0" width which are not equipped with closers.
5. Heavy weight hinges for fire rated doors.
6. Acceptable Manufacturers:
 a. Hager Hinge Co., St. Louis, MO.
 b. McKinney, Scranton, PA.
 c. Stanley Hardware Division of The Stanley Works, New Britain, CT.

C. Keying: Consult with Owner’s authorized representative and prepare detailed keying schedule accordingly.

1. Key to Medeco standard system provided by Allied Lock and Safe (http://www.allied-lock.com) in sets or subsets, masterkey, and grand masterkey as directed.
2. Key exterior doors and interior doors to different masterkeys.
3. Provide two keys for each lock; six masterkeys, and six grand masterkeys.

D. Cylinders: Provide cylinders for locksets, deadlocks, exit devices, and other control and locking devices.

1. Six pin tumbler design.
2. Equip cylinders with appropriate rings.
3. Finish cylinders and rings to match trim.

E. Mortise Locksets and Latchsets: ANSI A156.13, Grade 1.

2. Trim: Lever and rose, Carmel CRR design.
 a. Tactile warning required where indicated in Hardware Sets.
3. Acceptable Manufacturer: Same as keying above.
4. Vacant/Occupied Indicator: Provide thumb turn indicator by same manufacturer as mortise lock.

F. Surface Mounted Closers: ANSI A156.4, Grade 1.
 1. Acceptable Products:
 a. Dorma 8900 Series at label doors and exterior doors.
 b. Dorma 7600 Series at interior label doors.
 2. Maximum operating force of 8.5 pounds or exterior doors, 5 pounds for interior doors, and 15 pounds for label doors.
 3. Acceptable Manufacturers:
 a. Dorma Door Controls Inc., Reamstown, PA.
 b. LCN Closers, Princeton, IL.
 c. Norton Door Controls, Charlotte, NC.

G. Overhead Stop: ANSI A156.8
 1. Acceptable Products: Glynn-Johnson 90S Series
 2. Acceptable Manufacturers:
 a. Architectural Builders Hardware Mfg., Inc.
 b. Rockwood Manufacturing Company.
 c. SARGENT Manufacturing Company; an ASSA ABLOY Group company

H. Wall Stops: Use at locations indicated.
 1. Provide blocking in gypsum board and metal stud partition.
 2. Acceptable Product: Ives 407 or 407-1/2 as applicable equipped with expandable anchor for use at gypsum board/stud walls.

I. Floor Stops: Use only at storage, janitor, mechanical equipment, and electrical rooms and other locations indicated in Hardware Sets.

J. Protection Plates: Stainless steel, square corner design, 0.050 inch thickness.
 1. Size: When mounted on push side of door, 1 inch less than door width at pair of doors and 2 inches less than door width at single doors. When mounted on pull side of door, 1 inch less than door width.
 2. Kick Plates: Beveled 3 edges, 12 inch height unless indicated otherwise in Hardware Sets.
 3. Mop Plates: Beveled 3 edges, 4 inch height.

K. Flush Bolts, Manual Design:
 1. Ives 458-1/2 at non-labeled metal or wood doors.
 2. Ives 358 at labeled wood doors.
 3. Ives 458 at labeled metal doors.
 4. Provide dust proof strike at sills

L. Silencers: Preformed neoprene or rubber.
 1. Location and Quantities:
 a. Pairs of Doors: Two at header.
 b. Single Doors: Three at strike jamb.

M. Thresholds: Extruded aluminum with neoprene insert.
 1. Size: 5-inch width, 1/2-inch height.

N. Astragals: Steel, prime coated.
 1. Acceptable Product: Reese 183SP.

2.2 FINISHES
 A. Except where indicated otherwise in Hardware Sets, provide US26D hardware finish.

PART 3 - CONSTRUCTION METHODS

3.1 EXAMINATION
 A. Examine conditions and proceed with Work in accordance with Section 014000.

3.2 INSTALLATION
 A. Install hardware in accordance with HMMA 830 and NWWDA I.S. 1-87, manufacturer’s templates and printed instructions, and Project conditions.
 1. Install fire rated hardware in accordance with NFPA 80.
 2. Where cutting and fitting is required on substrates to be field painted or similarly finished, install, fit, remove and store hardware prior to finishing. Reinstall hardware after finishing operations are completed.
 3. Do not install surface mounted items until finishes have been completed on the substrate.
4. Reinforce attachment substrates as necessary for installation and operation.

B. For Substrates which are Not Factory Prepared for Hardware:
 1. Mortise work to correct size and location without gouging, splintering or causing irregularities in exposed finish work.
 2. Fit faces of mortised components snug and flush without excessive clearance.

C. Set thresholds at exterior doors in bed of sealant. Remove excess sealant.

3.3 ADJUSTING

A. Check and adjust each operating hardware item to ensure correct operation and function.
 1. Lubricate moving or operating components as recommended by hardware manufacturer. Use graphite type lubrication if none other is recommended.
 2. Replace defective materials or units which cannot be adjusted to operate as intended. Reinstall items found improperly installed.
 3. Prior to date of Substantial Completion, readjust and relubricate hardware items as necessary.

3.4 HARDWARE SETS

A. Set H1 Interior, Office:
 1. Hinges
 2. Mortise Lockset
 3. Overhead Stop
 4. Silencers
 5. Kick Plate

B. Set H2 Interior, Storage:
 1. Hinges
 2. Mortise Lockset
 3. Overhead Stop
 4. Silencers
 5. Kick Plate, interior and exterior

C. Set H3 Interior, Toilet Room:
 1. Hinges
 2. Combination Push/Pull Plates
 3. Surface Mounted Closer
 4. Mop Plate
 5. Wall Stop
 6. Silencers
D. Set H4 Interior, Closet, pair of doors:

1. Hinges
2. Mortise Lockset
3. Flush Bolts
4. Overhead Stops
5. Silencers

E. Set H5 Interior, Toilet Room:

1. Hinges
2. Mortise Lockset w/ Occupancy Indicator
3. Surface Mounted Closer
4. Mop Plate
5. Wall Stop
6. Silencers

F. Set H10 Exterior, Entrance:

1. Hinges
2. Mortise Lockset
3. Closer
4. Overhead Stop
5. Weather Stripping
6. Threshold
7. Kick Plate, Interior

G. Set H11 Exterior, Entrance, pair of doors:

1. Hinges
2. Mortise Lockset
3. Flush Bolts
4. Closer, Active Leaf
5. Weather Stripping
6. Astragal
7. Threshold
8. Kick Plate, interior

END OF SECTION
SECTION 092900

GYPSUM BOARD

PART 1 - DESCRIPTION

1.1 SUMMARY

A. Section Includes:
 1. Interior gypsum board.
 2. Tile backing panels.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. Samples:

PART 2 - MATERIALS

2.1 INTERIOR GYPSUM BOARD

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 1. American Gypsum.
 2. CertainTeed Corp.
 3. Georgia-Pacific Gypsum LLC.
 5. USG Corporation.

B. Gypsum Wallboard: ASTM C 1396/C 1396M.

 1. Thickness: As indicated on drawings.
 2. Long Edges: Tapered and featured (rounded or beveled) for prefilling.

C. Gypsum Ceiling Board: ASTM C 1396/C 1396M.

 1. Thickness: As indicated on drawings.
 2. Long Edges: Tapered.

D. Moisture- and Mold-Resistant Gypsum Board: ASTM C 1396/C 1396M. With moisture- and mold-resistant core and paper surfaces.

 1. Core: As indicated.
2. Long Edges: Tapered.
3. Mold Resistance: ASTM D 3273, score of 10 as rated according to ASTM D 3274.

2.2 TILE BACKING PANELS

A. Cementitious Backer Units: ANSI A118.9 and ASTM C 1288 or 1325, with manufacturer's standard edges.

1. Products: Subject to compliance with requirements, provide one of the following:
 a. CertainTeed Corp.; FiberCement BackerBoard.
 b. Custom Building Products; Wonderboard.
 d. USG Corporation; DUROCK Cement Board.

2. Thickness: As indicated on drawings.
3. Mold Resistance: ASTM D 3273, score of 10 as rated according to ASTM D 3274.

2.3 TRIM ACCESSORIES

A. Interior Trim: ASTM C 1047.

1. Material: Galvanized or aluminum-coated steel sheet, rolled zinc, plastic, or paper-faced galvanized steel sheet.

2.4 JOINT TREATMENT MATERIALS

A. General: Comply with ASTM C 475/C 475M.

B. Joint Tape:

1. Interior Gypsum Board: Paper.
2. Tile Backing Panels: As recommended by panel manufacturer.

C. Joint Compound for Interior Gypsum Board: For each coat use formulation that is compatible with other compounds applied on previous or for successive coats.

2.5 AUXILIARY MATERIALS

A. Laminating Adhesive: Adhesive or joint compound recommended for directly adhering gypsum panels to continuous substrate.

B. Steel Drill Screws: ASTM C 1002, unless otherwise indicated.

C. Sound Attenuation Blankets: ASTM C 665, Type I (blankets without membrane facing).
D. Acoustical Joint Sealant: ASTM C 834. Product effectively reduces airborne sound transmission through perimeter joints and openings as demonstrated by testing according to ASTM E 90.

1. Products: Subject to compliance with requirements, provide one of the following:
 a. Accumetric LLC; BOSS 824 Acoustical Sound Sealant.
 b. Grabber Construction Products; Acoustical Sealant GSC.
 d. USG Corporation; SHEETROCK Acoustical Sealant.

E. Thermal Insulation: As specified in Section 072100 "Thermal Insulation."

F. Vapor Retarder: As specified in Section 072100 "Thermal Insulation."

PART 3 - CONSTRUCTION METHODS

3.1 APPLYING AND FINISHING PANELS

A. Comply with ASTM C 840.

B. Examine panels before installation. Reject panels that are wet, moisture damaged, and mold damaged.

C. Isolate perimeter of gypsum board applied to non-load-bearing partitions at structural abutments, except floors. Provide 1/4- to 1/2-inch- wide spaces at these locations and trim edges with edge trim where edges of panels are exposed. Seal joints between edges and abutting structural surfaces with acoustical sealant.

D. Install trim with back flanges intended for fasteners, attach to framing with same fasteners used for panels. Otherwise, attach trim according to manufacturer's written instructions.

 1. Control Joints: Install control joints according to ASTM C 840 and in specific locations approved by Architect for visual effect.

E. Prefill open joints, rounded or beveled edges, and damaged surface areas.

F. Apply joint tape over gypsum board joints, except for trim products specifically indicated as not intended to receive tape.

G. Gypsum Board Finish Levels: Finish panels to levels indicated below and according to ASTM C 840:

 1. Level 1: Ceiling plenum areas, concealed areas, and where indicated.
 2. Level 2: Panels that are substrate for tile Panels that are substrate for acoustical tile.
3. Level 3: Where indicated on Drawings.
4. Level 4: At panel surfaces that will be exposed to view unless otherwise indicated.
 a. Primer and its application to surfaces are specified in Section 099123 "Interior Painting."
5. Level 5: Where indicated on Drawings.
 a. Primer and its application to surfaces are specified in Section 099123 "Interior Painting."

H. Protect adjacent surfaces from drywall compound and texture finishes and promptly remove from floors and other non-drywall surfaces. Repair surfaces stained, marred, or otherwise damaged during drywall application.

I. Remove and replace panels that are wet, moisture damaged, and mold damaged.

END OF SECTION
SECTION 093000

TILING

PART 1 - DESCRIPTION

1.1 SUMMARY

A. Section Includes:
 1. Ceramic tile.
 2. Stone thresholds.
 3. Waterproof membrane.
 4. Tile backing panels.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

B. Samples:
 1. Each type and composition of tile and for each color and finish required.
 2. Assembled samples, with grouted joints, for each type and composition of tile
 and for each color and finish required.
 3. Stone thresholds in 6-inch (150-mm) lengths.

PART 2 - MATERIALS

2.1 TILE PRODUCTS

A. ANSI Ceramic Tile Standard: Provide Standard grade tile that complies with
 ANSI A137.1 for types, compositions, and other characteristics indicated.

B. 2” x 2” Floor Tile: Factory-mounted unglazed ceramic mosaic tile.
 1. Manufacturers: Subject to compliance with requirements, provide products by
 one of the following:
 a. American Olean; Division of Dal-Tile International Inc.
 b. Crossville, Inc.
 c. Daltile; Division of Dal-Tile International Inc.
 2. Composition: Impervious natural clay or porcelain.
 3. Module Size: 2 by 2 inches (50.8 by 50.8 mm).
 4. Thickness: 1/4 inch (6.35 mm).
 5. Face: Plain with cushion edges.
7. Tile Color and Pattern: As selected by Architect from manufacturer's full range.
8. Grout Color: As selected by Architect from manufacturer's full range.
9. Trim Units: Coordinated with sizes and coursing of adjoining flat tile where applicable and matching characteristics of adjoining flat tile. Provide shapes as follows, selected from manufacturer's standard shapes:
 a. Base Cove: Cove, module size 2 by 2 inch (50 by 50 mm).
 b. External Corners: Surface bullnose, module size module size 2 by 2 inch (50 by 50 mm).
 c. Internal Corners: Cove, module size module size 2 by 2 inch (50 by 50 mm).

C. 12” x 12” Floor Tile: Unglazed paver tile.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. American Olean; Division of Dal-Tile International Inc.
 b. Crossville, Inc.
 c. Daltile; Division of Dal-Tile International Inc.
 d. Florida Tile Industries, Inc.
 e. United States Ceramic Tile Company.
 2. Composition: Porcelain.
 3. Face Size: 11-13/16 by 11-13/16 inches (300 by 300 mm).
 4. Thickness: 3/8 inch (9.5 mm).
 5. Face: Plain with square edges.
 6. Finish: Mat, opaque glaze.
 7. Tile Color and Pattern: As selected by Architect from manufacturer's full range.
 8. Grout Color: As selected by Architect from manufacturer's full range.
 9. Trim Units: Coordinated with sizes and coursing of adjoining flat tile where applicable and matching characteristics of adjoining flat tile. Provide shapes as follows, selected from manufacturer's standard shapes:
 a. Base Cove: Cove, module size same as adjoining flat tile.
 b. Base Cap: Bead (bullnose), module size same as adjoining flat tile.
 c. External Corners: Bead (bullnose), module size same as adjoining flat tile.
 d. Internal Corners: Cove, module size same as adjoining flat tile.

D. 4”x4” Wall Tile: Glazed wall tile.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. American Olean; Division of Dal-Tile International Inc.
 b. Crossville, Inc.
 c. Daltile; Division of Dal-Tile International Inc.
d. Florida Tile Industries, Inc.
e. United States Ceramic Tile Company.

3. Thickness: 5/16 inch (8 mm).
4. Face: Plain with cushion edges.
5. Finish: Bright, opaque glaze.
6. Tile Color and Pattern: As selected by Architect from manufacturer's full range.
7. Grout Color: As selected by Architect from manufacturer's full range.
9. Trim Units: Coordinated with sizes and coursing of adjoining flat tile where applicable and matching characteristics of adjoining flat tile. Provide shapes as follows, selected from manufacturer's standard shapes:
 a. External Corners for Thin-Set Mortar Installations: Bullnose shape, same size as adjoining flat tile.
 b. Internal Corners: Field-butted square corners

2.2 THRESHOLDS

A. General: Fabricate to sizes and profiles indicated or required to provide transition between adjacent floor finishes.
 1. Bevel edges at 1:2 slope, with lower edge of bevel aligned with or up to 1/16 inch (1.5 mm) above adjacent floor surface. Finish bevel to match top surface of threshold. Limit height of threshold to 1/2 inch (12.7 mm) or less above adjacent floor surface.

B. Marble Thresholds: ASTM C 503, with a minimum abrasion resistance of 10 per ASTM C 1353 or ASTM C 241 and with honed finish.
 1. Description: Uniform, fine- to medium-grained white stone with gray veining.

2.3 SETTING MATERIALS

 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Bonsal American; an Oldcastle company.
 b. Bostik, Inc.
 c. Custom Building Products.
 d. Laticrete International, Inc.
 e. MAPEI Corporation.

2.4 GROUT MATERIALS

A. Polymer-Modified Tile Grout: ANSI A118.7.
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Bonsal American; an Oldcastle company.
 b. Bostik, Inc.
 c. Custom Building Products.
 d. Laticrete International, Inc.
 e. MAPEI Corporation.

2. Polymer Type: Liquid-latex form for addition to prepackaged dry-grout mix.

2.5 ELASTOMERIC SEALANTS

A. One-Part, Mildew-Resistant Silicone Sealant: ASTM C 920; Type S; Grade NS; Class 25; Uses NT, G, A, and, as applicable to nonporous joint substrates indicated, O; formulated with fungicide, intended for sealing interior ceramic tile joints and other nonporous substrates that are subject to in-service exposures of high humidity and extreme temperatures.

1. Products: Subject to compliance with requirements, provide one of the following:
 a. DAP Inc.; 100 percent Silicone Kitchen and Bath Sealant.
 b. Dow Corning Corporation; Dow Corning 786.
 c. GE Silicones, a division of GE Specialty Materials; Sanitary 1700.
 e. Pecora Corporation; Pecora 898 Sanitary Silicone Sealant.
 f. Tremco Incorporated; Tremsil 600 White.

2.6 MISCELLANEOUS MATERIALS

A. Trowelable Underlayments and Patching Compounds: Latex-modified, portland cement-based formulation provided or approved by manufacturer of tile-setting materials for installations indicated.

B. Metal Edge Strips: Angle or L-shape, stainless steel, ASTM A 666, 300 Series exposed-edge material.

C. Grout Sealer: Manufacturer's standard product for sealing grout joints and that does not change color or appearance of grout.

1. Products: Subject to compliance with requirements, provide one of the following:
 a. Bonsal American, an Oldcastle company; Grout Sealer.
 b. Bostik, Inc.; CeramaSeal.
 c. Custom Building Products; Surfaceguard Sealer.
 d. MAPEI Corporation; KER 003, Silicone Spray Sealer for Cementitious Tile Grout.
PART 3 - CONSTRUCTION METHODS

3.1 EXAMINATION

A. Examine substrates, areas, and conditions where tile will be installed, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of installed tile.

1. Verify that substrates for setting tile are firm, dry, clean, free of coatings that are incompatible with tile-setting materials including curing compounds and other substances that contain soap, wax, oil, or silicone; and comply with flatness tolerances required by ANSI A108.01 for installations indicated.

3.2 PREPARATION

A. Fill cracks, holes, and depressions in concrete substrates for tile floors installed with thin-set mortar with trowelable leveling and patching compound specifically recommended by tile-setting material manufacturer.

B. Where indicated, prepare substrates to receive waterproofing by applying a reinforced mortar bed that complies with ANSI A108.1A and is sloped 1/4 inch per foot (1:50) toward drains.

C. Blending: For tile exhibiting color variations, use factory blended tile or blend tiles at Project site before installing.

D. Field-Applied Temporary Protective Coating: If indicated under tile type or needed to prevent grout from staining or adhering to exposed tile surfaces, precoat them with continuous film of temporary protective coating, taking care not to coat unexposed tile surfaces.

3.3 INSTALLATION

A. Comply with TCA's "Handbook for Ceramic Tile Installation" for TCA installation methods specified in tile installation schedules. Comply with parts of the ANSI A108 Series "Specifications for Installation of Ceramic Tile" that are referenced in TCA installation methods, specified in tile installation schedules, and apply to types of setting and grouting materials used.

1. For the following installations, follow procedures in the ANSI A108 Series of tile installation standards for providing 95 percent mortar coverage:

 a. Tile floors in wet areas.
 b. Tile floors composed of tiles 8 by 8 inches (200 by 200 mm) or larger.

B. Extend tile work into recesses and under or behind equipment and fixtures to form complete covering without interruptions unless otherwise indicated. Terminate work neatly at obstructions, edges, and corners without disrupting pattern or joint alignments.
C. Accurately form intersections and returns. Perform cutting and drilling of tile without marring visible surfaces. Carefully grind cut edges of tile abutting trim, finish, or built-in items for straight aligned joints. Fit tile closely to electrical outlets, piping, fixtures, and other penetrations so plates, collars, or covers overlap tile.

D. Provide manufacturer's standard trim shapes where necessary to eliminate exposed tile edges.

E. Jointing Pattern: Lay tile in grid pattern unless otherwise indicated. Lay out tile work and center tile fields in both directions in each space or on each wall area. Lay out tile work to minimize the use of pieces that are less than half of a tile. Provide uniform joint widths unless otherwise indicated.

F. Joint Widths: Unless otherwise indicated, install tile with the following joint widths:
 1. Ceramic Mosaic Tile: 1/16 inch (1.6 mm).
 2. Paver Tile: 1/4 inch (6.35 mm).
 3. Glazed Wall Tile: 1/16 inch (1.6 mm).
 4. Decorative Thin Wall Tile: 1/16 inch (1.6 mm).

G. Lay out tile wainscots to dimensions indicated or to next full tile beyond dimensions indicated.

H. Expansion Joints: Provide expansion joints and other sealant-filled joints, including control, contraction, and isolation joints, where indicated. Form joints during installation of setting materials, mortar beds, and tile. Do not saw-cut joints after installing tiles.
 1. Where joints occur in concrete substrates, locate joints in tile surfaces directly above them.
 2. Prepare joints and apply sealants to comply with requirements in Section 079200 "Joint Sealants."

I. Stone Thresholds: Install stone thresholds in same type of setting bed as adjacent floor unless otherwise indicated.
 1. At locations where mortar bed (thickset) would otherwise be exposed above adjacent floor finishes, set thresholds in latex-portland cement mortar (thin set).

J. Metal Edge Strips: Install at locations indicated.

K. Grout Sealer: Apply grout sealer to cementitious grout joints in tile floors according to grout-sealer manufacturer's written instructions. As soon as grout sealer has penetrated grout joints, remove excess sealer and sealer from tile faces by wiping with soft cloth.

L. Install cementitious backer units and treat joints according to ANSI A108.11 and manufacturer's written instructions for type of application indicated. Use latex-portland cement mortar for bonding material unless otherwise directed in manufacturer's written instructions.
M. Install waterproofing to comply with ANSI A108.13 and manufacturer's written instructions to produce waterproof membrane of uniform thickness and bonded securely to substrate.

N. Install crack isolation membrane to comply with ANSI A108.17 and manufacturer's written instructions to produce membrane of uniform thickness and bonded securely to substrate.

3.4 INTERIOR TILE INSTALLATION SCHEDULE

A. Interior Floor Installations, Concrete Subfloor:

 a. Tile Type: 2”x2” and 12”x12” Floor Tile.
 c. Grout: Polymer-modified sanded grout.

B. Interior Wall Installations, Metal Studs or Furring:

 a. Tile Type: 4”x4” Wall Tile.
 b. Thin-Set Mortar: Latex- portland cement mortar.
 c. Grout: Polymer-modified unsanded grout.

2. Tile Installation W244: Thin-set mortar on cementitious backer units or fiber cement underlayment; TCA W244.
 a. Tile Type: 4”x4” Wall Tile.
 b. Thin-Set Mortar: Latex- portland cement mortar.
 c. Grout: Polymer-modified unsanded grout.

END OF SECTION
SECTION 095113
ACOUSTICAL PANEL CEILINGS

PART 1 - DESCRIPTION

1.1 SUMMARY
 A. Section includes acoustical panels and exposed suspension systems for ceilings.

1.2 ACTION SUBMITTALS
 A. Product Data: For each type of product.
 B. Samples: For each exposed product and for each color and texture specified.

1.3 CLOSEOUT SUBMITTALS
 A. Maintenance data.

1.4 QUALITY ASSURANCE
 A. Testing Agency Qualifications: Qualified according to NVLAP.

PART 2 - MATERIALS

2.1 PERFORMANCE REQUIREMENTS
 A. Seismic Performance: Acoustical ceiling shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.
 B. Surface-Burning Characteristics: Comply with ASTM E 84; testing by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.
 1. Flame-Spread Index: Comply with ASTM E 1264 for Class A materials.

2.2 ACOUSTICAL PANEL CEILINGS, GENERAL
 A. Acoustical Panel Standard: Comply with ASTM E 1264.
 B. Metal Suspension System Standard: Comply with ASTM C 635.
 C. Attachment Devices: Size for five times the design load indicated in ASTM C 635, Table 1, "Direct Hung," unless otherwise indicated. Comply with seismic design requirements.
2.3 ACOUSTICAL PANELS

A. Basis-of-Design Product: Subject to compliance with requirements, provide Fine Fissured, Armstrong World Industries, Inc or comparable product by one of the following:

1. CertainTeed Corp.
2. Chicago Metallic Corporation.
3. USG Interiors, Inc.; Subsidiary of USG Corporation.

B. Color: White.

C. LR: 0.85

D. NRC: 0.70, Type E-400 mounting according to ASTM E 795.

E. CAC: 40.

F. Edge/Joint Detail: Angled Tegular.

G. Thickness: 3/4 inch (19 mm).

H. Modular Size: 24 by 24 inches (610 by 610 mm).

2.4 METAL SUSPENSION SYSTEM

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Armstrong World Industries, Inc.
2. CertainTeed Corp.
3. Chicago Metallic Corporation.
4. USG Interiors, Inc.; Subsidiary of USG Corporation.

B. Wide-Face, Capped, Double-Web, Steel Suspension System: Main and cross runners roll formed from cold-rolled steel sheet; prepainted, electrolytically zinc coated, or hot-dip galvanized according to ASTM A 653/A 653M, not less than G30 (Z90) coating designation; with prefinished 9/16-inch- (20-mm-) wide metal caps on flanges.

1. Structural Classification: Heavy-duty system.
2. End Condition of Cross Runners: Override (stepped) type.
3. Face Design: Flat, flush.

C. Roll-Formed, Sheet-Metal Edge Moldings and Trim: Type and profile indicated or, if not indicated, manufacturer's standard moldings for edges and penetrations that comply with seismic design requirements; formed from sheet metal of same material, finish, and color as that used for exposed flanges of suspension-system runners.
PART 3 - CONSTRUCTION METHODS

3.1 INSTALLATION

A. Install acoustical panel ceilings to comply with ASTM C 636/C 636M and seismic design requirements indicated, according to manufacturer's written instructions and CISCA's "Ceiling Systems Handbook."

B. Measure each ceiling area and establish layout of acoustical panels to balance border widths at opposite edges of each ceiling. Avoid using less-than-half-width panels at borders, and comply with layout shown on reflected ceiling plans.

1. Arrange directionally patterned acoustical panels as indicated on reflected ceiling plans.

END OF SECTION
SECTION 096519
RESILIENT TILE FLOORING

PART 1 - GENERAL

1.1 SUMMARY
A. Section Includes:
 1. Vinyl composition floor tile.

1.2 SUBMITTALS
A. Product Data: For each type of product indicated.
B. Shop Drawings: For each type of floor tile. Include floor tile layouts, edges, columns, doorways, enclosing partitions, built-in furniture, cabinets, and cutouts.
C. Samples: Full-size units of each color and pattern of floor tile required.
D. Maintenance data.

1.3 QUALITY ASSURANCE
A. Fire-Test-Response Characteristics: As determined by testing identical products according to ASTM E 648 or NFPA 253 by a qualified testing agency.
 1. Critical Radiant Flux Classification: Class I, not less than 0.45 W/sq. cm.

1.4 PROJECT CONDITIONS
A. Maintain ambient temperatures within range recommended by manufacturer in spaces to receive floor tile.
B. Until Substantial Completion, maintain ambient temperatures within range recommended by manufacturer.
C. Close spaces to traffic during floor tile installation.
D. Close spaces to traffic for 48 hours after floor tile installation.
E. Install floor tile after other finishing operations, including painting, have been completed.
PART 2 - PRODUCTS

2.1 VINYL COMPOSITION FLOOR TILE

A. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:

1. Armstrong World Industries, Inc.
2. Congoleum Corporation.
3. Mannington Mills, Inc.
4. Tarkett, Inc.

B. Tile Standard: ASTM F 1066, Class 2, through-pattern tile.

C. Wearing Surface: Smooth.

D. Thickness: 0.125 inch.

E. Size: 12 by 12 inches.

F. Colors and Patterns: As selected by Architect from full range of industry colors.

2.2 INSTALLATION MATERIALS

A. Trowelable Leveling and Patching Compounds: Latex-modified, portland cement based or blended hydraulic-cement-based formulation provided or approved by manufacturer for applications indicated.

B. Adhesives: Water-resistant type recommended by manufacturer to suit floor tile and substrate conditions indicated.

1. Use adhesives that comply with the following limits for VOC content when calculated according to 40 CFR 59, Subpart D (EPA Method 24):

 a. VCT and Asphalt Tile Adhesives: Not more than 50 g/L.
 b. Rubber Floor Adhesives: Not more than 60 g/L.

C. Floor Polish: Provide protective liquid floor polish products as recommended by manufacturer.

PART 3 - EXECUTION

3.1 PREPARATION

A. Prepare substrates according to manufacturer’s written instructions to ensure adhesion of resilient products.

B. Concrete Substrates: Prepare according to ASTM F 710.
1. Verify that substrates are dry and free of curing compounds, sealers, and hardeners.
2. Remove substrate coatings and other substances that are incompatible with adhesives and that contain soap, wax, oil, or silicone, using mechanical methods recommended by manufacturer. Do not use solvents.
3. Alkalinity and Adhesion Testing: Perform tests recommended by manufacturer. Proceed with installation only after substrates pass testing.
4. Moisture Testing: Perform tests recommended by floor covering manufacturer and as follows. Proceed with installation only after substrates pass testing.
 a. Perform anhydrous calcium chloride test, ASTM F 1869. Proceed with installation only after substrates have maximum moisture-vapor-emission rate of 3 lb of water/1000 sq. ft. in 24 hours.
 b. Perform relative humidity test using in situ probes, ASTM F 2170. Proceed with installation only after substrates have a maximum 75% relative humidity level measurement.

C. Fill cracks, holes, and depressions in substrates with trowelable leveling and patching compound and remove bumps and ridges to produce a uniform and smooth substrate.

D. Do not install floor tiles until they are same temperature as space where they are to be installed.
 1. Move resilient products and installation materials into spaces where they will be installed at least 48 hours in advance of installation.

E. Sweep and vacuum clean substrates to be covered by resilient products immediately before installation.

3.2 FLOOR TILE INSTALLATION

A. Comply with manufacturer's written instructions for installing floor tile.

B. Lay out floor tiles from center marks established with principal walls, discounting minor offsets, so tiles at opposite edges of room are of equal width. Adjust as necessary to avoid using cut widths that equal less than one-half tile at perimeter.
 1. Lay tiles square with room axis.

C. Match floor tiles for color and pattern by selecting tiles from cartons in the same sequence as manufactured and packaged, if so numbered. Discard broken, cracked, chipped, or deformed tiles.
 1. Lay tiles with grain direction alternating in adjacent tiles (basket-weave pattern).

D. Scribe, cut, and fit floor tiles to butt neatly and tightly to vertical surfaces and permanent fixtures including built-in furniture, cabinets, pipes, outlets, and door frames.
E. Extend floor tiles into toe spaces, door reveals, closets, and similar openings. Extend floor tiles to center of door openings.

F. Maintain reference markers, holes, and openings that are in place or marked for future cutting by repeating on floor tiles as marked on substrates. Use chalk or other nonpermanent, nonstaining marking device.

G. Adhere floor tiles to flooring substrates using a full spread of adhesive applied to substrate to produce a completed installation without open cracks, voids, raising and puckering at joints, telegraphing of adhesive spreader marks, and other surface imperfections.

3.3 CLEANING AND PROTECTION

A. Comply with manufacturer's written instructions for cleaning and protection of floor tile.

B. Floor Polish: Remove soil, visible adhesive, and surface blemishes from floor tile surfaces before applying liquid floor polish.
 1. Apply two coat(s).

C. Cover floor tile until Substantial Completion.

END OF SECTION
SECTION 099113

EXTERIOR PAINTING

PART 1 - DESCRIPTION

1.1 DEFINITIONS

A. Gloss Level 1: Not more than 5 units at 60 degrees and 10 units at 85 degrees, according to ASTM D 523.

B. Gloss Level 3: 10 to 25 units at 60 degrees and 10 to 35 units at 85 degrees, according to ASTM D 523.

C. Gloss Level 4: 20 to 35 units at 60 degrees and not less than 35 units at 85 degrees, according to ASTM D 523.

D. Gloss Level 5: 35 to 70 units at 60 degrees, according to ASTM D 523.

E. Gloss Level 6: 70 to 85 units at 60 degrees, according to ASTM D 523.

F. Gloss Level 7: More than 85 units at 60 degrees, according to ASTM D 523.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product. Include preparation requirements and application instructions.

B. Samples: For each type of paint system and each color and gloss of topcoat.

1.3 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Paint: 1 gal. (3.8 L) of each material and color applied.

PART 2 - MATERIALS

2.1 MANUFACTURERS

A. Products: Subject to compliance with requirements, provide one of the products by one of the follow manufactures:

1. Benjamin Moore Paints.
2. MAB Paints.
2.2 PAINT, GENERAL

A. MPI Standards: Provide products that comply with MPI standards indicated and that are listed in its "MPI Approved Products List."

B. Material Compatibility:
 1. Provide materials for use within each paint system that are compatible with one another and substrates indicated, under conditions of service and application as demonstrated by manufacturer, based on testing and field experience.
 2. For each coat in a paint system, provide products recommended in writing by manufacturers of topcoat for use in paint system and on substrate indicated.

C. VOC Content: Provide materials that comply with VOC limits of authorities having jurisdiction.

D. Colors: As selected by Architect from manufacturer's full range.

2.3 PRIMERS/SEALERS

A. Primer, Bonding, Solvent Based: MPI #69.

2.4 METAL PRIMERS

A. Primer, Alkyd, Anti-Corrosive for Metal: MPI #79.

B. Primer, Galvanized: As recommended in writing by topcoat manufacturer.

2.5 WOOD PRIMERS

A. Primer, Alkyd for Exterior Wood: MPI #5.

2.6 WATER-BASED PAINTS

A. Light Industrial Coating, Exterior, Water Based (Gloss Level 3): MPI #161.

2.7 SOLVENT-BASED PAINTS

A. Alkyd, Exterior, Semi-Gloss (Gloss Level 5): MPI #94.

PART 3 - CONSTRUCTION METHODS

3.1 EXAMINATION

A. Examine substrates and conditions, with Applicator present, for compliance with requirements for maximum moisture content and other conditions affecting performance of the Work.
B. Maximum Moisture Content of Substrates: When measured with an electronic moisture meter as follows:

1. Concrete: 12 percent.
3. Wood: 15 percent.
5. Gypsum Board: 12 percent.

C. Verify suitability of substrates, including surface conditions and compatibility with existing finishes and primers.

D. Proceed with coating application only after unsatisfactory conditions have been corrected.

1. Application of coating indicates acceptance of surfaces and conditions.

3.2 PREPARATION

A. Comply with manufacturer's written instructions and recommendations in "MPI Manual" applicable to substrates and paint systems indicated.

B. Clean substrates of substances that could impair bond of paints, including dust, dirt, oil, grease, and incompatible paints and encapsulants.

1. Remove incompatible primers and reprime substrate with compatible primers or apply tie coat as required to produce paint systems indicated.

3.3 APPLICATION

A. Apply paints according to manufacturer's written instructions and recommendations in "MPI Manual."

B. Apply paints to produce surface films without cloudiness, spotting, holidays, laps, brush marks, roller tracking, runs, sags, ropiness, or other surface imperfections. Cut in sharp lines and color breaks.

3.4 CLEANING AND PROTECTION

A. Protect work of other trades against damage from paint application. Correct damage to work of other trades by cleaning, repairing, replacing, and refinishing, as approved by Architect, and leave in an undamaged condition.

B. At completion of construction activities of other trades, touch up and restore damaged or defaced painted surfaces.

3.5 EXTERIOR PAINTING SCHEDULE

A. Steel Substrates:
1. Water-Based Light Industrial Coating System:
 a. Prime Coat: Primer, alkyd, anti-corrosive for metal, MPI #79.
 c. Topcoat: Light industrial coating, exterior, water based (Gloss Level 3), MPI #161.

2. Alkyd System:
 a. Prime Coat: Primer, alkyd, anticorrosive for metal, MPI #79.
 c. Topcoat: Alkyd, exterior, semi-gloss (Gloss Level 5), MPI #94.

B. Galvanized-Metal Substrates:
1. Alkyd System:
 c. Topcoat: Alkyd, exterior, semi-gloss (Gloss Level 5), MPI #94.

C. Wood Substrates:
1. Latex over Alkyd Primer System:
 a. Prime Coat: Primer, alkyd for exterior wood, MPI #5.
 c. Topcoat: Latex, exterior, low sheen (Gloss Level 3-4), MPI #15.

D. Plastic Trim Fabrication Substrates:
1. Latex System:
 a. Prime Coat: Primer, bonding, solvent based, MPI #69.
 c. Topcoat: Latex, exterior, low sheen (Gloss Level 3-4), MPI #15.

E. Exterior Gypsum Board Substrates:
1. Latex System:
 c. Topcoat: Latex, exterior, low sheen (Gloss Level 3-4), MPI #15.

END OF SECTION
SECTION 099123

INTERIOR PAINTING

PART 1 - DESCRIPTION

1.1 DEFINITIONS

A. Gloss Level 1: Not more than 5 units at 60 degrees and 10 units at 85 degrees, according to ASTM D 523.

B. Gloss Level 2: Not more than 10 units at 60 degrees and 10 to 35 units at 85 degrees, according to ASTM D 523.

C. Gloss Level 3: 10 to 25 units at 60 degrees and 10 to 35 units at 85 degrees, according to ASTM D 523.

D. Gloss Level 4: 20 to 35 units at 60 degrees and not less than 35 units at 85 degrees, according to ASTM D 523.

E. Gloss Level 5: 35 to 70 units at 60 degrees, according to ASTM D 523.

F. Gloss Level 6: 70 to 85 units at 60 degrees, according to ASTM D 523.

G. Gloss Level 7: More than 85 units at 60 degrees, according to ASTM D 523.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product. Include preparation requirements and application instructions.

B. Samples: For each type of paint system and in each color and gloss of topcoat.

1.3 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Paint: 1 gal. (3.8 L) of each material and color applied.

PART 2 - MATERIALS

2.1 PAINT, GENERAL

A. MPI Standards: Provide products that comply with MPI standards indicated and that are listed in its "MPI Approved Products List."
B. Material Compatibility:

1. Provide materials for use within each paint system that are compatible with one another and substrates indicated, under conditions of service and application as demonstrated by manufacturer, based on testing and field experience.
2. For each coat in a paint system, provide products recommended in writing by manufacturers of topcoat for use in paint system and on substrate indicated.

C. VOC Content: Products shall comply with VOC limits of authorities having jurisdiction.

1. Flat Paints and Coatings: 50 g/L.
2. Nonflat Paints and Coatings: 150 g/L.
3. Primers, Sealers, and Undercoaters: 200 g/L.
4. Anticorrosive and Antirust Paints Applied to Ferrous Metals: 250 g/L.
6. Pretreatment Wash Primers: 420 g/L.

D. Colors: As selected by Architect from manufacturer's full range.

2.2 PRIMERS/SEALERS

A. Primer Sealer, Latex, Interior: MPI #50.
B. Primer, Alkali Resistant, Water Based: MPI #3.
C. Primer Sealer, Interior, Institutional Low Odor/VOC: MPI #149.
D. Primer, Latex, for Interior Wood: MPI #39.
E. Primer Sealer, Alkyd, Interior: MPI #45.

2.3 METAL PRIMERS

A. Primer, Alkyd, Anti-Corrosive, for Metal: MPI #79.
B. Primer, Alkyd, Quick Dry, for Metal: MPI #76.
C. Primer, Galvanized, Water Based: MPI #134.
D. Primer, Vinyl Wash: MPI #80.

2.4 WATER-BASED PAINTS

A. Latex, Interior, High Performance Architectural, (Gloss Level 3): MPI #139.

2.5 SOLVENT-BASED PAINTS

A. Alkyd, Interior, Semi-Gloss (Gloss Level 5): MPI #47.
PART 3 - CONSTRUCTION METHODS

3.1 EXAMINATION

A. Examine substrates and conditions, with Applicator present, for compliance with requirements for maximum moisture content and other conditions affecting performance of the Work.

B. Maximum Moisture Content of Substrates: When measured with an electronic moisture meter as follows:

1. Concrete: 12 percent.
3. Wood: 15 percent.
4. Gypsum Board: 12 percent.
5. Plaster: 12 percent.

C. Verify suitability of substrates, including surface conditions and compatibility with existing finishes and primers.

D. Proceed with coating application only after unsatisfactory conditions have been corrected.

1. Application of coating indicates acceptance of surfaces and conditions.

3.2 PREPARATION

A. Comply with manufacturer's written instructions and recommendations in "MPI Manual" applicable to substrates indicated.

B. Remove hardware, covers, plates, and similar items already in place that are removable and are not to be painted. If removal is impractical or impossible because of size or weight of item, provide surface-applied protection before surface preparation and painting.

1. After completing painting operations, use workers skilled in the trades involved to reinstall items that were removed. Remove surface-applied protection if any.

C. Clean substrates of substances that could impair bond of paints, including dust, dirt, oil, grease, and incompatible paints and encapsulants.

1. Remove incompatible primers and reprime substrate with compatible primers or apply tie coat as required to produce paint systems indicated.

3.3 APPLICATION

A. Apply paints according to manufacturer's written instructions and to recommendations in "MPI Manual."
B. Apply paints to produce surface films without cloudiness, spotting, holidays, laps, brush marks, roller tracking, runs, sags, ropiness, or other surface imperfections. Cut in sharp lines and color breaks.

3.4 CLEANING AND PROTECTION

A. Protect work of other trades against damage from paint application. Correct damage to work of other trades by cleaning, repairing, replacing, and refinishing, as approved by Architect, and leave in an undamaged condition.

B. At completion of construction activities of other trades, touch up and restore damaged or defaced painted surfaces.

3.5 INTERIOR PAINTING SCHEDULE

A. Steel Substrates:
 1. Alkyd System:
 a. Prime Coat: Primer, alkyd, anti-corrosive, for metal, MPI #79.
 b. Topcoat: Alkyd, interior, semi-gloss (Gloss Level 5), MPI #47.

B. Galvanized-Metal Substrates:
 1. Water-Based Light Industrial Coating Over Waterborne Primer System:
 a. Prime Coat: Primer, galvanized, water based, MPI #134.
 c. Topcoat: Light industrial coating, interior, water based (Gloss Level 3), MPI #151.
 d. Topcoat: Light industrial coating, interior, water based, semi-gloss (Gloss Level 5), MPI #153.
 e. Topcoat: Light industrial coating, interior, water based, gloss (Gloss Level 6), MPI #154.

 2. Aluminum Paint System:
 a. Prime Coat: Primer, galvanized metal, as recommended in writing by topcoat manufacturer for use on galvanized-metal substrates with topcoat indicated.
 b. Intermediate Coat: Aluminum paint, MPI #1.
 c. Topcoat: Aluminum paint, MPI #1.

C. Wood Substrates: Including wood trim windows.
 1. Alkyd System:
 a. Prime Coat: Primer sealer, alkyd, interior, MPI #45.
c. Topcoat: Alkyd, interior, semi-gloss (Gloss Level 5), MPI #47.

D. Fiberglass and Plastic Substrates:

1. Alkyd System:

 a. Prime Coat: Primer, bonding, solvent based, MPI #69.
 c. Topcoat: Alkyd, interior, semi-gloss (Gloss Level 5), MPI #47.

E. Gypsum Board Substrates:

1. High-Performance Architectural Latex System:

 a. Prime Coat: Primer sealer, latex, interior, MPI #50.
 c. Topcoat: Latex, interior, high performance architectural, (Gloss Level 3), MPI #139.

END OF SECTION
THIS PAGE INTENTIONALLY LEFT BLANK
SECTION 102113
TOILET COMPARTMENTS

PART 1 - DESCRIPTION

1.1 SUMMARY

A. Section Includes:

1. Steel toilet compartments configured as toilet enclosures and urinal screens.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

B. Shop Drawings: For toilet compartments. Include plans, elevations, sections, details, and attachments to other work.

1.3 CLOSEOUT SUBMITTALS

A. Maintenance data.

1.4 QUALITY ASSURANCE

A. Regulatory Requirements: Comply with applicable provisions in ICC/ANSI A117.1 for toilet compartments designated as accessible.

PART 2 - MATERIALS

2.1 MATERIALS

A. Steel Sheet: Commercial steel sheet for exposed applications; mill phosphatized and selected for smoothness.

1. Electrolytically Zinc Coated: ASTM A 879/A 879M, 01Z (03G).

B. Zamac: ASTM B 86, commercial zinc-alloy die castings.

2.2 STEEL UNITS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

1. Accurate Partitions Corporation.
2. Bradley Corporation; Mills Partitions.
3. Flush Metal Partition Corp.
5. Hadrian Manufacturing Inc.

B. Toilet-Enclosure Style: Floor anchored.

C. Urinal-Screen Style: Floor anchored.

D. Door, Panel, and Pilaster Construction: Seamless, metal facing sheets pressure laminated to core material; with continuous, interlocking molding strip or lapped-and-formed edge closures; corners secured by welding or clips and exposed welds ground smooth. Exposed surfaces shall be free of pitting, seam marks, roller marks, stains, discolorations, telegraphing of core material, or other imperfections.
 1. Core Material: Manufacturer's standard sound-deadening honeycomb of resin-impregnated kraft paper in thickness required to provide finished thickness of 1 inch for doors and panels and 1-1/4 inches for pilasters.
 2. Grab-Bar Reinforcement: Provide concealed internal reinforcement for grab bars mounted on units.
 3. Tapping Reinforcement: Provide concealed reinforcement for tapping (threading) at locations where machine screws are used for attaching items to units.

E. Urinal-Screen Construction:
 1. Flat-Panel Urinal Screen: Matching panel construction.

F. Facing Sheets and Closures: Electrolytically coated steel sheet with nominal base-metal (uncoated) thicknesses standard with manufacturer.

G. Pilaster: Stainless-steel sheet, not less than 3 inches high, finished to match hardware.

H. Urinal-Screen Post: Manufacturer's standard post design of material matching the thickness and construction of pilasters; with shoematching that on the pilaster.

I. Brackets (Fittings):
 1. Stirrup Type: Ear or U-brackets; chrome-plated zinc or stainless steel.
 2. Full-Height (Continuous) Type: Manufacturer's standard design; stainless steel.

J. Steel-Sheet Finish: Manufacturer's standard baked-on finish, with one color in each room.
 1. Color: As selected by Architect from manufacturer's full range.
2.3 ACCESSORIES

A. Hardware and Accessories: Manufacturer's standard design, heavy-duty operating hardware and accessories.

1. Material: Chrome-plated zamac or stainless steel.
2. Hinges: Manufacturer's standard.
3. Latch and Keeper: Manufacturer's standard surface-mounted latch unit designed for emergency access and with combination rubber-faced door strike and keeper. Provide units that comply with regulatory requirements for accessibility at compartments designated as accessible.
4. Coat Hook: Manufacturer's standard combination hook and rubber-tipped bumper, sized to prevent in-swinging door from hitting compartment-mounted accessories.
5. Door Bumper: Manufacturer's standard rubber-tipped bumper at out-swinging doors.
6. Door Pull: Manufacturer's standard unit at out-swinging doors that complies with regulatory requirements for accessibility. Provide units on both sides of doors at compartments designated as accessible.

B. Anchorages and Fasteners: Manufacturer's standard exposed fasteners of stainless steel or chrome-plated steel or brass, finished to match the items they are securing, with theft-resistant-type heads. Provide sex-type bolts for through-bolt applications. For concealed anchors, use stainless steel, hot-dip galvanized steel, or other rust-resistant, protective-coated steel.

2.4 FABRICATION

A. Floor-Anchored Units: Provide manufacturer's standard corrosion-resistant anchoring assemblies with leveling adjustment nuts at pilasters for structural connection to floor. Provide shoes at pilasters to conceal anchorage.

B. Urinal-Screen Posts: Provide manufacturer's standard corrosion-resistant anchoring assemblies with leveling adjustment at [tops and] bottoms of posts. Provide shoes and sleeves (caps) at posts to conceal anchorage.

C. Door Size and Swings: Unless otherwise indicated, provide 24-inch-wide, in-swinging doors for standard toilet compartments and 36-inch-wide, out-swinging doors with a minimum 32-inch-wide, clear opening for compartments designated as accessible.

PART 3 - CONSTRUCTION METHODS

3.1 INSTALLATION

A. General: Comply with manufacturer's written installation instructions. Install units rigid, straight, level, and plumb. Secure units in position with manufacturer's recommended anchoring devices.
B. Clearances: Maximum 1/2 inch between pilasters and panels; 1 inch between panels and walls.

C. Stirrup Brackets: Secure panels to walls and to pilasters with no fewer than three brackets attached at midpoint and near top and bottom of panel. Locate wall brackets so holes for wall anchors occur in masonry or tile joints. Align brackets at pilasters with brackets at walls.

3.2 ADJUSTING

A. Hardware Adjustment: Adjust and lubricate hardware according to hardware manufacturer's written instructions for proper operation. Set hinges on in-swinging doors to hold doors open approximately 30 degrees from closed position when unlatched. Set hinges on out-swinging doors to return doors to fully closed position.

END OF SECTION
SECTION 102239

FOLDING PANEL PARTITIONS

PART 1 - DESCRIPTION

1.1 SUMMARY

A. Section Includes:
 1. Manually operated, acoustical panel partitions.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product.
B. Shop Drawings: For operable panel partitions.
 1. Include plans, elevations, sections, details, and attachments to other work.
 2. Indicate stacking and operating clearances. Indicate location and installation requirements for hardware and track, blocking, and direction of travel.
 3. Include diagrams for power, signal, and control wiring.
C. Delegated-Design Submittal: For operable panel partitions.
 1. Include design calculations for seismic restraints.

1.3 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Reflected ceiling plans, drawn to scale and coordinated with each other, using input from installers of the items involved.
B. Setting Drawings: For embedded items and cutouts required in other work, including support-beam, mounting-hole template.
C. Seismic Qualification Certificates: For operable panel partitions, tracks, accessories, and components, from manufacturer.

1.4 CLOSEOUT SUBMITTALS

A. Operation and maintenance data.

1.5 QUALITY ASSURANCE

A. Installer Qualifications: An entity that employs installers and supervisors who are trained and approved by manufacturer.
1.6 WARRANTY

A. Special Warranty: Manufacturer agrees to repair or replace components of operable panel partitions that fail in materials or workmanship within specified warranty period.

1. Warranty Period: Two years from date of Substantial Completion.

PART 2 - MATERIALS

2.1 PERFORMANCE REQUIREMENTS

A. Delegated Design: Engage a qualified professional engineer, as defined in Section 014000 "Quality Requirements," to design seismic bracing of tracks to structure above.

B. Seismic Performance: Operable panel partitions shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.

1. The term "withstand" means "the partition panels will remain in place without separation of any parts from the system when subjected to the seismic forces specified."

C. Acoustical Performance: Provide operable panel partitions tested by a qualified testing agency for the following acoustical properties according to test methods indicated:

1. Sound-Transmission Requirements: Operable panel partition assembly tested for laboratory sound-transmission loss performance according to ASTM E 90, determined by ASTM E 413, and rated for not less than the STC indicated.

D. Fire-Test-Response Characteristics: Provide panels with finishes complying with one of the following as determined by testing identical products by UL or another testing and inspecting agency acceptable to authorities having jurisdiction:

1. Surface-Burning Characteristics: Comply with ASTM E 84 or UL 723; testing by a qualified testing agency.
 a. Flame-Spread Index: 25 or less.
 b. Smoke-Developed Index: 450 or less.

2. Fire Growth Contribution: Complying with acceptance criteria of local code and authorities having jurisdiction when tested according to NFPA 265 Method B Protocol or NFPA 286.

2.2 OPERABLE ACOUSTICAL PANELS

A. Operable Acoustical Panels: Partition system, including panels, seals, finish facing, suspension system, operators, and accessories.

1. Basis-of-Design Product: Subject to compliance with requirements, provide 931, Modernfold, Inc. or comparable product by one of the following:
a. Hufcor Inc.
b. Moderco Inc.
c. Panelfold Inc.

B. Panel Operation: Manually operated, individual panels.

C. Panel Construction: As required to support panel from suspension components and with reinforcement for hardware attachment. Fabricate panels with tight hairline joints and concealed fasteners. Fabricate panels so finished in-place partition is rigid; level; plumb; aligned, with tight joints and uniform appearance; and free of bow, warp, twist, deformation, and surface and finish irregularities.

D. Dimensions: Fabricate operable acoustical panel partitions to form an assembled system of dimensions indicated and verified by field measurements.

E. STC: Not less than 41.

F. Panel Materials:
 2. Steel Face/Liner Sheets: Tension-leveled steel sheet, manufacturer's standard thickness.
 3. Aluminum: Alloy and temper recommended by aluminum producer and finisher for type of use, corrosion resistance, and finish indicated; manufacturer's standard strengths and thicknesses for type of use.

G. Panel Closure: Manufacturer's standard.

H. Hardware: Manufacturer's standard as required to operate operable panel partition and accessories; with decorative, protective finish.

2.3 SEALS

A. General: Provide seals that produce operable panel partitions complying with performance requirements and the following:

 1. Seals made from materials and in profiles that minimize sound leakage.
 2. Seals fitting tight at contact surfaces and sealing continuously between adjacent panels and between operable panel partition perimeter and adjacent surfaces, when operable panel partition is extended and closed.

B. Horizontal Bottom Seals: Manufacturer's standard continuous-contact seal exerting uniform constant pressure on floor.

 1. Mechanically Operated for Acoustical Panels: Extension and retraction of bottom seal by operating handle or built-in operating mechanism, with operating range not less than 2 inches between retracted seal and floor finish.
2.4 PANEL FINISH FACINGS

A. General: Provide finish facings for panels that comply with indicated fire-test-response characteristics and that are factory applied to operable panel partitions with appropriate backing, using mildew-resistant nonstaining adhesive as recommended by facing manufacturer's written instructions.

1. Color/Pattern: As selected by Architect from manufacturer's full range.

B. Vinyl-Coated Fabric Wall Covering: Manufacturer's standard, mildew-resistant, washable, vinyl-coated fabric wall covering; complying with CFFA-W-101-D for type indicated; Class A.

C. Paint: Manufacturer's standard factory-painted finish.

D. Cap-Trimmed Edges: Protective perimeter-edge trim with tight hairline joints concealing edges of panel and finish facing.

E. Trimless Edges: Fabricate exposed panel edges so finish facing wraps uninterrupted around panel, covering edge and resulting in an installed partition with facing visible on vertical panel edges, without trim, for minimal sightlines at panel-to-panel joints.

2.5 SUSPENSION SYSTEMS

A. Tracks: Steel or aluminum with adjustable steel hanger rods for overhead support, designed for operation, size, and weight of operable panel partition indicated. Size track to support partition operation and storage without damage to suspension system, operable panel partitions, or adjacent construction. Limit track deflection to no more than 0.10 inch between bracket supports. Provide a continuous system of track sections and accessories to accommodate configuration and layout indicated for partition operation and storage.

B. Carriers: Trolley system as required for configuration type, size, and weight of partition and for easy operation; with ball-bearing wheels.

C. Track Intersections, Switches, and Accessories: As required for operation, storage, track configuration, and layout indicated for operable panel partitions, and compatible with partition assembly specified. Fabricate track intersections and switches from steel or aluminum.

2.6 ACCESSORIES

A. Pass Doors: Swinging door built into and matching panel materials, construction, acoustical qualities, finish and thickness, complete with frames and operating hardware. Hinges finished to match other exposed hardware.

2. Single Pass Door: 36 by 80 inches.
3. Pass-Door Hardware: Equip pass door with the following:
 a. Door Seals: Sweep floor seals.
 b. Latchset: Passage set.

B. Storage Pocket Door: Full height at end of partition runs to conceal stacked partition; of same materials, finish, construction, thickness, and acoustical qualities as panels; complete with operating hardware and acoustical seals at soffit, floor, and jambs. Hinges in finish to match other exposed hardware.

1. Manufacturer's standard method to secure storage pocket door in closed position.

PART 3 - CONSTRUCTION METHODS

3.1 INSTALLATION
 A. General: Comply with ASTM E 557 except as otherwise required by operable panel partition manufacturer's written installation instructions.
 B. Install operable panel partitions and accessories after other finishing operations, including painting, have been completed in area of partition installation.
 C. Broken, cracked, chipped, deformed, or unmatched panels are not acceptable.
 D. Broken, cracked, deformed, or unmatched gasketing or gasketing with gaps at butted ends is not acceptable.
 E. Light-Leakage Test: Illuminate one side of partition installation and observe vertical joints and top and bottom seals for voids. Adjust partitions for alignment and full closure of vertical joints and full closure along top and bottom seals.

3.2 ADJUSTING
 A. Adjust pass doors and storage pocket doors to operate smoothly and easily, without binding or warping.
 B. Verify that safety devices are properly functioning.

3.3 DEMONSTRATION
 A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain operable panel partitions.

END OF SECTION
THIS PAGE INTENTIONALLY LEFT BLANK
PART 1 - DESCRIPTION

1.1 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

B. Product Schedule: Indicating types, quantities, sizes, and installation locations by room of each accessory required.
 1. Identify locations using room designations indicated.
 2. Identify products using designations indicated.

1.2 INFORMATIONAL SUBMITTALS

A. Warranty: Sample of special warranty.

1.3 CLOSEOUT SUBMITTALS

A. Maintenance data.

1.4 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

1.5 WARRANTY

A. Special Mirror Warranty: Manufacturer's standard form in which manufacturer agrees to replace mirrors that develop visible silver spoilage defects and that fail in materials or workmanship within specified warranty period.
 1. Warranty Period: 15 years from date of Substantial Completion.

PART 2 - MATERIALS

2.1 MATERIALS

A. Stainless Steel: ASTM A 666, Type 304, 0.031-inch minimum nominal thickness unless otherwise indicated.
B. Brass: ASTM B 19, flat products; ASTM B 16/B 16M, rods, shapes, forgings, and flat products with finished edges; or ASTM B 30, castings.

C. Steel Sheet: ASTM A 1008/A 1008M, Designation CS (cold rolled, commercial steel), 0.036-inch minimum nominal thickness.

D. Galvanized-Steel Sheet: ASTM A 653/A 653M, with G60 hot-dip zinc coating.

F. Fasteners: Screws, bolts, and other devices of same material as accessory unit and tamper-and-theft resistant where exposed, and of galvanized steel where concealed.

G. Chrome Plating: ASTM B 456, Service Condition Number SC 2 (moderate service).

H. Mirrors: ASTM C 1503, Mirror Glazing Quality, clear-glass mirrors, nominal 6.0 mm thick.

2.2 WASHROOM ACCESSORIES

A. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:

1. A & J Washroom Accessories, Inc.
2. American Specialties, Inc.
4. GAMCO Specialty Accessories; a division of Bobrick Washroom Equipment, Inc.
5. Tubular Specialties Manufacturing, Inc.

B. Products: Refer to TOILET ACCESSORIES SCHEDULE on Drawings.

2.3 CUSTODIAL ACCESSORIES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. A & J Washroom Accessories, Inc.
2. American Specialties, Inc.
5. GAMCO Specialty Accessories; a division of Bobrick Washroom Equipment, Inc.
6. Tubular Specialties Manufacturing, Inc.

B. Mop and Broom Holder:
2. Description: Unit with shelf, hooks, holders, and rod suspended beneath shelf.

2.4 FABRICATION

A. Keys: Provide universal keys for internal access to accessories for servicing and resupplying. Provide minimum of six keys to Owner's representative.

PART 3 - CONSTRUCTION METHODS

3.1 INSTALLATION

A. Install accessories according to manufacturers' written instructions, using fasteners appropriate to substrate indicated and recommended by unit manufacturer. Install units level, plumb, and firmly anchored in locations and at heights indicated.

B. Grab Bars: Install to withstand a downward load of at least 250 lbf, when tested according to ASTM F 446.

END OF SECTION
THIS PAGE INTENTIONALLY LEFT BLANK
SECTION 220500

COMMON WORK RESULTS FOR PLUMBING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes the following:

1. HVAC, Electrical, Plumbing and Architectural Coordination Drawings
2. Piping materials and installation instructions common to most piping systems.
3. Transition fittings.
4. Dielectric fittings.
5. Mechanical sleeve seals.
6. Flexible Connectors
7. Grout.
8. Plumbing demolition.
9. Equipment installation requirements common to equipment sections.
10. Painting and finishing.
11. Concrete bases.
12. Supports and anchorages.

1.3 DEFINITIONS

A. Finished Spaces: Spaces other than mechanical and electrical equipment rooms, furred spaces, pipe and duct shafts, Bus Barn, Maintenance Shops, Service Bays, Bus Wash, and other common similar spaces, unheated spaces immediately below roof, and spaces above ceilings.

B. Exposed, Interior Installations: Exposed to view indoors. Examples include finished occupied spaces and mechanical equipment rooms.

C. Exposed, Exterior Installations: Exposed to view outdoors or subject to outdoor ambient temperatures and weather conditions. Examples include rooftop locations.

D. Concealed, Interior Installations: Concealed from view and protected from physical contact by building occupants. Examples include above ceilings and in duct shafts.

E. Concealed, Exterior Installations: Concealed from view and protected from weather conditions and physical contact by building occupants but subject to outdoor ambient temperatures. Examples include installations within unheated shelters.
F. The following are industry abbreviations for plastic materials:

2. CPVC: Chlorinated polyvinyl chloride plastic.
3. PE: Polyethylene plastic.
4. PVC: Polyvinyl chloride plastic.

G. The following are industry abbreviations for rubber materials:

1. EPDM: Ethylene-propylene-diene terpolymer rubber.
2. NBR: Acrylonitrile-butadiene rubber.

1.4 SUBMITTALS

A. Coordination Drawings: A coordination drawing set including plan and section views, showing piping and equipment layout, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:

1. Suspended ceiling components.
2. Other building services including but not limited to domestic water piping, cable tray, and electrical conduit.
3. Clearances between electrical panels, and grounded (equipment and walls) elements.
4. Structural members including building structural elements and concrete housekeeping pads.

B. Product Data: For the following:

1. Transition fittings.
2. Dielectric fittings.
3. Mechanical sleeve seals.

C. Welding certificates.

1.5 QUALITY ASSURANCE

A. Steel Support Welding: Qualify processes and operators according to AWS D1.1, "Structural Welding Code--Steel."

B. Steel Pipe Welding: Qualify processes and operators according to ASME Boiler and Pressure Vessel Code: Section IX, "Welding and Brazing Qualifications."

1. Comply with provisions in ASME B31 Series, "Code for Pressure Piping."
2. Certify that each welder has passed AWS qualification tests for welding processes involved and that certification is current.

C. Electrical Characteristics for Plumbing Equipment: Equipment of higher electrical characteristics may be furnished provided such proposed equipment is approved in writing and connecting electrical services, circuit breakers, and conduit sizes are
appropriately modified. If minimum energy ratings or efficiencies are specified, equipment shall comply with requirements.

1.6 DELIVERY, STORAGE, AND HANDLING

A. Deliver pipes and tubes with factory-applied end caps. Maintain end caps through shipping, storage, and handling to prevent pipe end damage and to prevent entrance of dirt, debris, and moisture.

B. Store plastic pipes protected from direct sunlight. Support to prevent sagging and bending.

1.7 COORDINATION

A. Arrange for pipe spaces, chases, slots, and openings in building structure during progress of construction, to allow for plumbing installations.

B. Coordinate installation of required supporting devices and set sleeves in poured-in-place concrete and other structural components as they are constructed.

C. Coordinate requirements for access panels and doors for plumbing items requiring access that are concealed behind finished surfaces.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. In other Part 2 articles where subparagraph titles below introduce lists, the following requirements apply for product selection:

1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the manufacturers specified.

2. Manufacturers: Subject to compliance with requirements, provide products by the manufacturers specified.

2.2 PIPE, TUBE, AND FITTINGS

A. Refer to individual Division 22 piping Sections for pipe, tube, and fitting materials and joining methods.

B. Pipe Threads: ASME B1.20.1 for factory-threaded pipe and pipe fittings.

2.3 JOINING MATERIALS

A. Refer to individual Division 22 Piping Sections for special joining materials not listed below.
B. Pipe-Flange Gasket Materials: Suitable for chemical and thermal conditions of piping system contents.

1. ASME B16.21, nonmetallic, flat, asbestos-free, 1/8-inch (3.2-mm) maximum thickness unless thickness or specific material is indicated.
 a. Full-Face Type: For flat-face, Class 125, cast-iron and cast-bronze flanges.
 b. Narrow-Face Type: For raised-face, Class 250, cast-iron and steel flanges.

2. AWWA C110, rubber, flat face, 1/8 inch (3.2 mm) thick, unless otherwise indicated; and full-face or ring type, unless otherwise indicated.

C. Flange Bolts and Nuts: ASME B18.2.1, carbon steel, unless otherwise indicated.

D. Solder Filler Metals: ASTM B32, lead-free alloys. Include water-flushable flux according to ASTM B813.

E. Brazing Filler Metals: AWS A5.8, BCuP Series, copper-phosphorus alloys for general-duty brazing, unless otherwise indicated; and AWS A5.8, BAg1, silver alloy for refrigerant piping, unless otherwise indicated.

F. Welding Filler Metals: Comply with AWS D10.12 for welding materials appropriate for wall thickness and chemical analysis of steel pipe being welded.

2.4 TRANSITION FITTINGS

A. AWWA Transition Couplings: Same size as, and with pressure rating at least equal to and with ends compatible with, piping to be joined.

1. Available Manufacturers:
 b. Dresser Industries, Inc.; DMD Div.
 c. JCM Industries.
 d. Smith-Blair, Inc.
 e. Viking Johnson.

2. Aboveground Pressure Piping: Pipe fitting.

2.5 DIELECTRIC FITTINGS

A. Description: Combination fitting of copper alloy and ferrous materials with threaded, solder-joint, plain, or weld-neck end connections that match piping system materials.

B. Insulating Material: Suitable for system fluid, pressure, and temperature.
C. Dielectric Unions: Factory-fabricated, union assembly, for 250-psig (1725-kPa) minimum working pressure at 180 deg F (82 deg C).

1. Available Manufacturers:
 a. Epco Sales, Inc.
 c. Zurn Industries, Inc.; Wilkins Div.

D. Dielectric Flanges: Factory-fabricated, companion-flange assembly, for 150- or 300-psig (1035- or 2070-kPa) minimum working pressure as required to suit system pressures.

1. Available Manufacturers:
 a. Epco Sales, Inc.

E. Dielectric-Flange Kits: Companion-flange assembly for field assembly. Include flanges, full-face- or ring-type neoprene or phenolic gasket, phenolic or polyethylene bolt sleeves, phenolic washers, and steel backing washers.

1. Available Manufacturers:
 a. Calpico, Inc.
 b. Pipeline Seal and Insulator, Inc.

2. Separate companion flanges and steel bolts and nuts shall have 150- or 300-psig (1035- or 2070-kPa) minimum working pressure where required to suit system pressures.

F. Dielectric Nipples: Electroplated steel nipple with inert and noncorrosive, thermoplastic lining; plain, threaded, or grooved ends; and 300-psig (2070-kPa) minimum working pressure at 225 deg F (107 deg C).

1. Available Manufacturers:
 a. Perfection Corp.
 b. Precision Plumbing Products, Inc.
 c. Sioux Chief Manufacturing Co., Inc.
 d. Victaulic Co. of America.

2.6 FLEXIBLE CONNECTORS

A. General: Fabricated from materials suitable for system fluid and that will provide flexible pipe connections. Include 125-psig (860-kPa) minimum working-pressure rating, unless higher working pressure is indicated, and ends according to the following:

1. 2-Inch NPS (DN50) and Smaller: Threaded.
2. 2-1/2-Inch NPS (DN65) and Larger: Flanged.
B. Stainless-Steel-Hose/Steel Pipe, Flexible Connectors: Corrugated, stainless-steel, inner tubing covered with stainless-steel wire braid. Include steel nipples or flanges, welded to hose.

2.7 GROUT

A. Description: ASTM C 1107, Grade B, nonshrink and nonmetallic, dry hydraulic-cement grout.

2. Design Mix: 5000-psi (34.5-MPa), 28-day compressive strength.

PART 3 - EXECUTION

3.1 PIPING SYSTEMS - COMMON REQUIREMENTS

A. Install piping according to the following requirements and Division 22 Sections specifying piping systems.

B. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations.

C. Install piping in concealed locations, unless otherwise indicated and except in equipment rooms and service areas.

D. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.

E. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.

F. Install piping to permit valve servicing.

G. Install piping at minimum slope of ¼”/foot unless otherwise specifically noted on the drawings.

H. Install piping free of sags and bends.

I. Install fittings for changes in direction and branch connections.

J. Install piping to allow application of insulation.

K. Select system components with pressure rating equal to or greater than system operating pressure.
L. Fire-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal all pipe penetrations with firestop materials.

M. Verify final equipment locations for roughing-in.

N. Refer to equipment specifications in other Sections of these Specifications for roughing-in requirements.

3.2 PIPING JOINT CONSTRUCTION

A. Join pipe and fittings according to the following requirements and Division 22 Sections specifying piping systems.

B. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.

C. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.

D. Soldered Joints: Apply ASTM B 813, water-flushable flux, unless otherwise indicated, to tube end. Construct joints according to ASTM B 828 or CDA's "Copper Tube Handbook," using lead-free solder alloy complying with ASTM B 32.

F. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:

1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is specified.
2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.

G. Welded Joints: Construct joints according to AWS D10.12, using qualified processes and welding operators according to Part 1 "Quality Assurance" Article.

H. Flanged Joints: Select appropriate gasket material, size, type, and thickness for service application. Install gasket concentrically positioned. Use suitable lubricants on bolt threads.

3.3 PIPING CONNECTIONS

A. Make connections according to the following, unless otherwise indicated:

1. Install unions, in piping NPS 2 and smaller, adjacent to each valve and at final connection to each piece of equipment.
2. Install flanges, in piping NPS 2-1/2 and larger, adjacent to flanged valves and at final connection to each piece of equipment.
3. Install dielectric connections between copper and ferrous piping systems.
3.4 LABELING AND IDENTIFYING

A. Piping Systems: Install pipe markers on each system. Include arrows showing normal direction of flow.
 2. Plastic markers, with application systems. Install on insulation segment if required for hot, uninsulated piping.
 3. Locate pipe markers as follows if piping is exposed in finished spaces, machine rooms, and accessible maintenance spaces, such as shafts, tunnels, plenums, and exterior non-concealed locations:
 a. Near each valve and control device.
 b. Near each branch, excluding short takeoffs for fixtures and terminal units. Mark each pipe at branch, if flow pattern is not obvious.
 c. Near locations if pipes pass through walls, floors, ceilings, or enter non-accessible enclosures.
 d. At access doors, manholes, and similar access points that permit view of concealed piping.
 e. Near major equipment items and other points of origination and termination.
 f. Spaced at maximum of 50-foot (15-m) intervals along each run. Reduce intervals to 25 feet (7.5 m) in congested areas of piping and equipment.

B. Equipment: Install engraved plastic-laminate sign or equipment marker on or near each major item of mechanical equipment.
 1. Lettering Size: Minimum 1/4-inch- (6.4-mm-) high lettering for name of unit if viewing distance is less than 24 inches (610 mm), 1/2-inch- (12.7-mm-) high lettering for distances up to 72 inches (1800 mm), and proportionately larger lettering for greater distances. Provide secondary lettering two-thirds to three-fourths of size of principal lettering.
 2. Text of Signs: Provide name of identified unit. Include text to distinguish between multiple units, inform user of operational requirements, indicate safety and emergency precautions, and warn of hazards and improper operations.

C. Adjusting: Relocate identifying devices as necessary for unobstructed view in finished construction.

3.5 EQUIPMENT INSTALLATION - COMMON REQUIREMENTS

A. Install equipment to allow maximum possible headroom unless specific mounting heights are not indicated.

B. Install equipment level and plumb, parallel and perpendicular to other building systems and components in exposed interior spaces, unless otherwise indicated.
C. Install plumbing equipment to facilitate service, maintenance, and repair or replacement of components. Connect equipment for ease of disconnecting, with minimum interference to other installations. Extend grease fittings to accessible locations.

D. Install equipment to allow right of way for piping installed at required slope.

E. All floor mounted equipment within Mechanical Rooms shall be mounted on concrete bases.

3.6 PAINTING

A. Painting of plumbing systems, equipment, and components with one coat of primer and one coat of neutral color latex enamel.

B. Damage and Touchup: Repair marred and damaged factory-painted finishes with materials and procedures to match original factory finish.

3.7 CONCRETE BASES

A. Concrete Bases: Anchor equipment to concrete base according to equipment manufacturer's written instructions and according to seismic codes at Project.

1. Construct concrete bases of dimensions indicated, but not less than 4 inches larger in both directions than supported unit.
2. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch (450-mm) centers around the full perimeter of the base.
3. Install epoxy-coated anchor bolts for supported equipment that extend through concrete base, and anchor into structural concrete floor.
4. Place and secure anchorage devices. Use supported equipment manufacturer's setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
5. Install anchor bolts to elevations required for proper attachment to supported equipment.
6. Install anchor bolts according to anchor-bolt manufacturer's written instructions.
7. Use concrete strength and reinforcement as specified in Division 3 Section "Cast-in-Place Concrete."

3.8 ERECTION OF METAL SUPPORTS AND ANCHORAGES

A. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor plumbing materials and equipment.

B. Field Welding: Comply with AWS D1.1.
3.9 GROUTING

A. Mix and install grout for plumbing equipment base bearing surfaces, pump and other equipment base plates, and anchors.

B. Clean surfaces that will come into contact with grout.

C. Provide forms as required for placement of grout.

D. Avoid air entrapment during placement of grout.

E. Place grout, completely filling equipment bases.

F. Place grout on concrete bases and provide smooth bearing surface for equipment.

G. Place grout around anchors.

H. Cure placed grout.

END OF SECTION
SECTION 220513
COMMON MOTOR REQUIREMENTS FOR PLUMBING EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section includes general requirements for single-phase, general-purpose, horizontal, small and medium, squirrel-cage induction motors for use on ac power systems up to 600 V and installed at equipment manufacturer's factory or shipped separately by equipment manufacturer for field installation.

1.3 COORDINATION
A. Coordinate features of motors, installed units, and accessory devices to be compatible with the following:
 1. Motor controllers.
 2. Torque, speed, and horsepower requirements of the load.
 3. Ratings and characteristics of supply circuit and required control sequence.
 4. Ambient and environmental conditions of installation location.

PART 2 - PRODUCTS

2.1 GENERAL MOTOR REQUIREMENTS
A. Comply with NEMA MG 1 unless otherwise indicated.
B. Retain paragraph below if severe-duty motors are required.
C. Comply with IEEE 841 for severe-duty motors.

2.2 MOTOR CHARACTERISTICS
A. Duty: Continuous duty at ambient temperature of 40 deg C and at altitude of 3300 feet above sea level.
B. Capacity and Torque Characteristics: Sufficient to start, accelerate, and operate connected loads at designated speeds, at installed altitude and environment, with indicated operating sequence, and without exceeding nameplate ratings or considering service factor.
2.3 SINGLE-PHASE MOTORS

A. Motors larger than 1/20 hp shall be one of the following, to suit starting torque and requirements of specific motor application:

1. Permanent-split capacitor.
2. Split phase.
3. Capacitor start, inductor run.
4. Capacitor start, capacitor run.

B. Multispeed Motors: Variable-torque, permanent-split-capacitor type.

C. Bearings: Pre-lubricated, antifriction ball bearings or sleeve bearings suitable for radial and thrust loading.

D. Motors 1/20 HP and Smaller: Shaded-pole type.

E. Thermal Protection: Internal protection to automatically open power supply circuit to motor when winding temperature exceeds a safe value calibrated to temperature rating of motor insulation. Thermal-protection device shall automatically reset when motor temperature returns to normal range.

PART 3 - EXECUTION (Not Applicable)

END OF SECTION
SECTION 220517
SLEEVES AND SLEEVE SEALS FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Sleeves.
 2. Stack-sleeve fittings.
 3. Sleeve-seal systems.
 4. Sleeve-seal fittings.
 5. Grout.

1.3 ACTION SUBMITTALS
A. Product Data: For each type of product indicated.

PART 2 - PRODUCTS

2.1 SLEEVES
A. Galvanized-Steel Wall Pipes: ASTM A 53/A 53M, Schedule 40, with plain ends and welded steel collar; zinc coated. Provide welded-on anchor lugs.

B. Galvanized-Steel-Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, zinc coated, with plain ends. Provide welded on anchor lugs.

2.2 STACK-SLEEVE FITTINGS
A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 2. Zurn Specification Drainage Operation; Zurn Plumbing Products Group.

B. Description: Manufactured, cast-iron sleeve with integral clamping flange. Include clamping ring, bolts, and nuts for membrane flashing.
 1. Underdeck Clamp: Clamping ring with set screws.
2.3 SLEEVE-SEAL SYSTEMS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Advance Products & Systems, Inc.
 2. Metraflex Company (The).
 3. Pipeline Seal and Insulator, Inc.

B. Description: Modular sealing-element unit, designed for field assembly, for filling annular space between piping and sleeve.
 1. Sealing Elements: EPDM-rubber interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.
 2. Pressure Plates: Stainless steel.
 3. Connecting Bolts and Nuts: Stainless steel of length required to secure pressure plates to sealing elements.

2.4 SLEEVE-SEAL FITTINGS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Presealed Systems.

B. Description: Manufactured plastic, sleeve-type, waterstop assembly made for imbedding in concrete slab or wall. Unit has plastic or rubber waterstop collar with center opening to match piping OD.

2.5 GROUT

B. Characteristics: Nonshrink; recommended for interior and exterior applications.

C. Design Mix: 5000-psi, 28-day compressive strength.

D. Packaging: Premixed and factory packaged.

PART 3 - EXECUTION

3.1 SLEEVE INSTALLATION

A. Install sleeves for piping passing through penetrations in floors, partitions, roofs, and walls.
B. For sleeves that will have sleeve-seal system installed, select sleeves of size large enough to provide 1-inch annular clear space between piping and concrete slabs and walls.

1. Sleeves are not required for core-drilled holes.

C. Install sleeves in concrete floors, concrete roof slabs, and concrete walls as new slabs and walls are constructed.

1. Cut sleeves to length for mounting flush with both surfaces.
 a. Exception: Extend sleeves installed in floors of mechanical equipment areas or other wet areas 2 inches above finished floor level.

2. Using grout, seal the space outside of sleeves in slabs and walls without sleeve-seal system.

D. Install sleeves for pipes passing through interior partitions.

1. Cut sleeves to length for mounting flush with both surfaces.
2. Install sleeves that are large enough to provide 1/4-inch annular clear space between sleeve and pipe or pipe insulation.
3. Seal annular space between sleeve and piping or piping insulation; use joint sealants appropriate for size, depth, and location of joint. Comply with requirements for sealants specified in Section 079200 "Joint Sealants."

3.2 STACK-SLEEVE-FITTING INSTALLATION

A. Install stack-sleeve fittings in new slabs as slabs are constructed.

1. Install fittings that are large enough to provide 1/4-inch annular clear space between sleeve and pipe or pipe insulation.
2. Install section of cast-iron soil pipe to extend sleeve to 2 inches above finished floor level.
3. Extend cast-iron sleeve fittings below floor slab as required to secure clamping ring if ring is specified.
4. Using grout, seal the space around outside of stack-sleeve fittings.

3.3 SLEEVE-SEAL-SYSTEM INSTALLATION

A. Install sleeve-seal systems in sleeves in exterior concrete walls and slabs-on-grade at service piping entries into building.

B. Select type, size, and number of sealing elements required for piping material and size and for sleeve ID or hole size. Position piping in center of sleeve. Center piping in penetration, assemble sleeve-seal system components, and install in annular space between piping and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make a watertight seal.
3.4 SLEEVE-SEAL-FITTING INSTALLATION

A. Install sleeve-seal fittings in new walls and slabs as they are constructed.
B. Assemble fitting components of length to be flush with both surfaces of concrete slabs and walls. Position waterstop flange to be centered in concrete slab or wall.
C. Secure nailing flanges to concrete forms.
D. Using grout, seal the space around outside of sleeve-seal fittings.

3.5 SLEEVE AND SLEEVE-SEAL SCHEDULE

A. Use sleeves and sleeve seals for the following piping-penetration applications:

1. Exterior Concrete Walls above Grade:

2. Concrete Slabs-on-Grade and Foundation Stem Wall:
 a. Piping Smaller Than NPS 6: Galvanized-steel wall sleeves with sleeve-seal system.
 1) Select sleeve size to allow for required annular clear space between piping and sleeve for installing sleeve-seal system.

3. Concrete Slabs above Grade:

4. Interior Partitions:

END OF SECTION
SECTION 220518

ESCUTCHEONS FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Escutcheons.
 2. Floor plates.

1.3 ACTION SUBMITTALS
 A. Product Data: For each type of product indicated.

PART 2 - PRODUCTS

2.1 ESCUTCHEONS
 A. One-Piece, Cast-Brass Type: With polished, chrome-plated finish and setscrew fastener.
 B. One-Piece, Deep-Pattern Type: Deep-drawn, box-shaped brass with chrome-plated finish and spring-clip fasteners.
 C. One-Piece, Stamped-Steel Type: With chrome-plated finish and spring-clip fasteners.

2.2 FLOOR PLATES
 A. One-Piece Floor Plates: Cast-iron flange with holes for fasteners.

PART 3 - EXECUTION

3.1 INSTALLATION
 A. Install polished chrome-plated finish escutcheons for piping penetrations of walls, ceilings, and finished floors.
B. Install escutcheons with ID to closely fit around pipe, tube, and insulation of insulated piping and with OD that completely covers opening.

1. Escutcheons for New Piping:
 a. Piping with Fitting or Sleeve Protruding from Wall: One-piece, deep-pattern type.
 b. Insulated Piping: One-piece, stamped-steel type or split-plate, stamped-steel type with concealed hinge.
 c. Bare Piping at Wall, Ceiling, and Floor Penetrations: One-piece, cast-brass or split-casting brass type.
 d. Bare Piping at Wall, Ceiling, and Floor Penetrations: One-piece, stamped-steel type or split-plate, stamped-steel type with concealed hinge.

C. Install floor plates for piping penetrations of equipment-room floors.

D. Install floor plates with ID to closely fit around pipe, tube, and insulation of piping and with OD that completely covers opening.

1. New Piping: One-piece, floor-plate type.

3.2 FIELD QUALITY CONTROL

A. Replace broken and damaged escutcheons and floor plates using new materials.

END OF SECTION
SECTION 220519

METERS AND GAGES FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Bimetallic-actuated thermometers.
 2. Dial-type pressure gages.

B. Related Sections:
 1. Section 221116 "Domestic Water Piping".

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

1.4 INFORMATIONAL SUBMITTALS

A. Product Certificates: For each type of meter and gage, from manufacturer.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For meters and gages to include in operation and maintenance manuals.

PART 2 - PRODUCTS

2.1 BIMETALLIC-ACTUATED THERMOMETERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Ashcroft Inc.
 2. Marsh Bellofram.
 3. Trerice, H. O. Co.
4. Watts Regulator Co.; a div. of Watts Water Technologies, Inc.
5. Weiss Instruments, Inc.

C. Case: sealed type(s); stainless steel with 5-inch nominal diameter.

D. Dial: Nonreflective aluminum with permanently etched scale markings and scales in deg F.

E. Connector Type(s): Union joint, adjustable angle, with unified-inch screw threads.

F. Connector Size: 1/2 inch, with ASME B1.1 screw threads.

G. Stem: 0.25 or 0.375 inch in diameter; stainless steel.

H. Window: Plain glass or plastic.

I. Ring: Stainless steel.

J. Element: Bimetal coil.

K. Pointer: Dark-colored metal.

L. Accuracy: Plus or minus 1 percent of scale range.

M. Range: To be in the middle 2/3 of scale.

2.2 PRESSURE GAGES

A. Direct-Mounted, Metal-Case, Dial-Type Pressure Gages:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Ashcroft Inc.
 b. Marsh Bellofram.
 c. Trerice, H. O. Co.
 d. Watts Regulator Co.; a div. of Watts Water Technologies, Inc.
 e. Weiss Instruments, Inc.

3. Case: Sealed Solid-front, pressure relief type(s); cast aluminum or drawn steel; 4-1/2-inch nominal diameter.

4. Pressure-Element Assembly: Bourdon tube unless otherwise indicated.

5. Pressure Connection: Brass, with NPS 1/2, ASME B1.20.1 pipe threads and bottom-outlet type unless back-outlet type is indicated.

6. Movement: Mechanical, with link to pressure element and connection to pointer.
7. Dial: Nonreflective aluminum with permanently etched scale markings graduated in psi.
9. Window: Glass or plastic.
10. Ring: Metal.
11. Accuracy: Grade A, plus or minus 1 percent of middle half of scale range.

2.3 GAGE ATTACHMENTS
A. Snubbers: ASME B40.100, brass; with NPS 1/2, ASME B1.20.1 pipe threads and piston-type surge-dampening device. Include extension for use on insulated piping.
B. Valves: Brass or stainless-steel needle, with NPS 1/2, ASME B1.20.1 pipe threads.

PART 3 - EXECUTION

3.1 INSTALLATION
A. Install direct-mounted thermometers in thermowells and adjust vertical and tilted positions.
B. Install direct-mounted pressure gages in piping tees with pressure gage located on pipe at the most readable position.
C. Install valve and snubber in piping for each pressure gage for fluids.
D. Install test plugs in piping tees.
E. Install thermometers in the following locations:
 1. Inlet and outlet of each water heater.
 2. Inlet and outlet of each mixing valve assembly.
 3. Building water service entrance into the building.
 4. In other location as indicated on drawings.
F. Install pressure gages in the following locations:
 1. Building water service entrance into the building.
 2. Inlet and outlet of backflow preventers.
 3. In other locations as indicated on drawings.

3.2 CONNECTIONS
A. Install meters and gages adjacent to machines and equipment to allow service and maintenance of meters, gages, machines, and equipment.
3.3 ADJUSTING

A. Adjust faces of meters and gages to proper angle for best visibility.

3.4 THERMOMETER SCHEDULE

A. Thermometers at inlet and outlet of each domestic water heater shall be the following:

1. Sealed, bimetallic-actuated type.
4. Test plug with EPDM self-sealing rubber inserts.

B. Thermometers at inlet and outlet of each domestic hot-water storage tank shall be the following:

1. Sealed, bimetallic-actuated type.
4. Test plug with EPDM self-sealing rubber inserts.

C. Thermometer stems shall be of length to match thermowell insertion length.

3.5 THERMOMETER SCALE-RANGE SCHEDULE

A. Scale Range for Domestic Cold-Water Piping: 0 to 150 deg F.

B. Scale Range for Domestic Hot-Water Piping: 0 to 250 deg F.

3.6 PRESSURE-GAGE SCHEDULE

A. Pressure gages at discharge of each water service into building shall be the following:

2. Test plug with EPDM self-sealing rubber inserts.

3.7 PRESSURE-GAGE SCALE-RANGE SCHEDULE

A. Scale Range for Domestic Water Piping: 0 to 200 psi.

END OF SECTION
SECTION 220523
BALL VALVES FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Bronze ball valves.

1.3 DEFINITIONS
A. CWP: Cold working pressure.

1.4 ACTION SUBMITTALS
A. Product Data: For each type of valve.
 1. Certification that products comply with NSF 61 and NSF 372.

1.5 DELIVERY, STORAGE, AND HANDLING
A. Prepare valves for shipping as follows:
 1. Protect internal parts against rust and corrosion.
 2. Protect threads, flange faces, and soldered ends.

B. Use the following precautions during storage:
 1. Maintain valve end protection.
 2. Store valves indoors and maintain at higher-than-ambient-dew-point temperature. If outdoor storage is necessary, store valves off the ground in watertight enclosures.

C. Use sling to handle large valves; rig sling to avoid damage to exposed parts. Do not use operating handles or stems as lifting or rigging points.
PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR VALVES

A. Source Limitations for Valves: Obtain each type of valve from single source from single manufacturer.

B. ASME Compliance:
 1. ASME B1.20.1 for threads for threaded end valves.
 2. ASME B16.10 and ASME B16.34 for ferrous valve dimensions and design criteria.
 4. ASME B31.9 for building services piping valves.

C. NSF Compliance: NSF 61 and NSF 372 for valve materials for potable-water service.

D. Bronze valves shall be made with dezincification-resistant materials. Bronze valves made with copper alloy (brass) containing more than 15 percent zinc are not permitted.

E. The lead content of all valves shall comply with the Reduction of Lead in Drinking Water Act (RLDWA).

F. Valve Pressure-Temperature Ratings: Not less than indicated and as required for system pressures and temperatures.

G. Valve Sizes: Same as upstream piping unless otherwise indicated.

H. Valve Actuator Types:
 1. Hand-lever: For quarter-turn valves NPS 4 and smaller.

I. Valves in Insulated Piping:
 1. Include 2-inch stem extensions.
 2. Extended operating handles of nonthermal-conductive material and protective sleeves that allow operation of valves without breaking vapor seals or disturbing insulation.
 3. Memory stops that are fully adjustable after insulation is applied.

2.2 BRONZE BALL VALVES

A. Two-Piece, Bronze Ball Valves with Full Port, and Bronze Trim:
 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 b. Milwaukee Valve Company.
c. NIBCO INC.
d. Watts Regulator Co.; a division of Watts Water Technologies, Inc.

2. Description:
 b. CWP Rating: Working pressure of the installed system, minimum 600 psig.
 c. Body Design: Two piece.
 d. Body Material: Bronze.
 e. Ends: Threaded and soldered.
 f. Seats: PTFE.
 g. Stem: Bronze or brass.
 h. Ball: Chrome-plated brass.
 i. Port: Full.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine valve interior for cleanliness, freedom from foreign matter, and corrosion. Remove special packing materials, such as blocks, used to prevent disc movement during shipping and handling.

B. Operate valves in positions from fully open to fully closed. Examine guides and seats made accessible by such operations.

C. Examine threads on valve and mating pipe for form and cleanliness.

D. Examine mating flange faces for conditions that might cause leakage. Check bolting for proper size, length, and material. Verify that gasket is of proper size, that its material composition is suitable for service, and that it is free from defects and damage.

E. Do not attempt to repair defective valves; replace with new valves.

3.2 VALVE INSTALLATION

A. Install valves with unions or flanges at each piece of equipment arranged to allow service, maintenance, and equipment removal without system shutdown.

B. Locate valves for easy access and provide separate support where necessary.

C. Install valves in horizontal piping with stem at or above center of pipe.

D. Install valves in position to allow full stem movement.

E. Install valve tags. Comply with requirements in Section 220553 "Identification for Plumbing Piping and Equipment" for valve tags and schedules.
3.3 GENERAL REQUIREMENTS FOR VALVE APPLICATIONS

A. If valves with specified CWP ratings are unavailable, the same types of valves with higher CWP ratings may be substituted.

B. Select valves with the following end connections:

1. For Copper Tubing, 2” and Smaller: Threaded ends except where solder-joint valve-end option is indicated in valve schedules below.

3.4 DOMESTIC HOT- AND COLD-WATER VALVE SCHEDULE

A. Pipe 4” and Smaller:

1. Bronze Valves: May be provided with solder-joint ends instead of threaded ends.
2. Two-piece, bronze ball valves with full port and bronze trim.

END OF SECTION
SECTION 220524
CHECK VALVES FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Bronze swing check valves.

1.3 DEFINITIONS
A. CWP: Cold working pressure.
B. EPDM: Ethylene propylene-diene terpolymer rubber.
C. NBR: Acrylonitrile-butadiene, Buna-N, or nitrile rubber.

1.4 ACTION SUBMITTALS
A. Product Data: For each type of valve.
 1. Certification that products comply with NSF 61 and NSF 372.

1.5 DELIVERY, STORAGE, AND HANDLING
A. Prepare valves for shipping as follows:
 1. Protect internal parts against rust and corrosion.
 2. Protect threads, flange faces, grooves, and weld ends.
 3. Set check valves in either closed or open position.
B. Use the following precautions during storage:
 1. Maintain valve end protection.
 2. Store valves indoors and maintain at higher-than-ambient-dew-point temperature. If outdoor storage is necessary, store valves off the ground in watertight enclosures.
C. Use sling to handle large valves; rig sling to avoid damage to exposed parts. Do not use handwheels or stems as lifting or rigging points.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR VALVES

A. Source Limitations for Valves: Obtain each type of valve from single source from single manufacturer.

B. ASME Compliance:
 1. ASME B1.20.1 for threads for threaded end valves.
 2. ASME B16.10 and ASME B16.34 for ferrous valve dimensions and design criteria.
 3. ASME B16.18 for solder joint.
 4. ASME B31.9 for building services piping valves.

C. AWWA Compliance: Comply with AWWA C606 for grooved-end connections.

D. NSF Compliance: NSF 61 and NSF 372 for valve materials for potable-water service.

E. Bronze valves shall be made with dezincification-resistant materials. Bronze valves made with copper alloy (brass) containing more than 15 percent zinc are not permitted.

F. Valve Pressure-Temperature Ratings: Not less than indicated and as required for system pressures and temperatures.

G. Valve Sizes: Same as upstream piping unless otherwise indicated.

H. Valve Bypass and Drain Connections: MSS SP-45.

I. The lead content of all valves shall comply with the Reduction of Lead in Drinking Water Act (RLDWA).

2.2 BRONZE SWING CHECK VALVES

A. Class 125, Bronze, Swing Check Valves with Bronze Disc:
 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. Crane Co.; Crane Valve Group; Stockham Valves.
 b. Milwaukee Valve Company.
 c. NIBCO INC.
 d. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
2. Description:
 a. Standard: MSS SP-80, Type 3.
 b. CWP Rating: working pressure of the installed system, 200 psig minimum.
 c. Body Design: Horizontal flow.
 e. Ends: Threaded or soldered. See valve schedule articles.
 f. Disc: Bronze.

PART 3 - EXECUTION

3.1 EXAMINATION
 A. Examine valve interior for cleanliness, freedom from foreign matter, and corrosion. Remove special packing materials, such as blocks, used to prevent disc movement during shipping and handling.
 B. Operate valves in positions from fully open to fully closed. Examine guides and seats made accessible by such operations.
 C. Examine threads on valve and mating pipe for form and cleanliness.
 D. Examine mating flange faces for conditions that might cause leakage. Check bolting for proper size, length, and material. Verify that gasket is of proper size, that its material composition is suitable for service, and that it is free from defects and damage.
 E. Do not attempt to repair defective valves; replace with new valves.

3.2 VALVE INSTALLATION
 A. Install valves with unions or flanges at each piece of equipment arranged to allow service, maintenance, and equipment removal without system shutdown.
 B. Locate valves for easy access and provide separate support where necessary.
 C. Install valves in horizontal piping with stem at or above center of pipe.
 D. Install valves in position to allow full stem movement.
 E. Install check valves for proper direction of flow and as follows:
 1. Swing Check Valves: In horizontal position with hinge pin level.
 F. Install valve tags. Comply with requirements in Section 220553 "Identification for Plumbing Piping and Equipment" for valve tags and schedules.
3.3 ADJUSTING

A. Adjust or replace valve packing after piping systems have been tested and put into service but before final adjusting and balancing. Replace valves if persistent leaking occurs.

3.4 GENERAL REQUIREMENTS FOR VALVE APPLICATIONS

A. If valve applications are not indicated, use the following:
 1. Pump-Discharge Check Valves:
 a. 2” and Smaller: Bronze swing check valves with bronze disc.

B. If valves with specified CWP ratings are unavailable, the same types of valves with higher CWP ratings may be substituted.

C. End Connections:
 1. For Copper Tubing, 2” and Smaller: Threaded or soldered.

3.5 DOMESTIC HOT- AND COLD-WATER VALVE SCHEDULE

A. Pipe 4” and Smaller: Bronze swing check valves, Class 125, bronze disc with soldered or threaded end connections.

END OF SECTION
SECTION 220529

HANGERS AND SUPPORTS FOR PLUMBING PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
1. Metal pipe hangers and supports.
2. Trapeze pipe hangers.
3. Metal framing systems.
4. Thermal-hanger shield inserts.
5. Fastener systems.
6. Pipe stands.
7. Pipe positioning systems.
8. Equipment supports.

B. Related Sections:
1. Section 055000 "Metal Fabrications" for structural-steel shapes and plates for trapeze hangers for pipe and equipment supports.

1.3 DEFINITIONS

A. MSS: Manufacturers Standardization Society of the Valve and Fittings Industry, Inc.

1.4 PERFORMANCE REQUIREMENTS

A. Delegated Design: Design trapeze pipe hangers and equipment supports, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.

B. Structural Performance: Hangers and supports for plumbing piping and equipment shall withstand the effects of gravity loads and stresses within limits and under conditions indicated according to ASCE/SEI 7.

1. Design supports for multiple pipes, including pipe stands, capable of supporting combined weight of supported systems, system contents, and test water.
2. Design equipment supports capable of supporting combined operating weight of supported equipment and connected systems and components.
3. Design seismic-restraint hangers and supports for piping and equipment.

1.5 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

B. Shop Drawings: Show fabrication and installation details and include calculations for the following; include Product Data for components:
 1. Trapeze pipe hangers.
 2. Metal framing systems.
 3. Pipe stands.
 4. Equipment supports.

C. Delegated-Design Submittal: For trapeze hangers indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
 1. Detail fabrication and assembly of trapeze hangers.
 2. Design Calculations: Calculate requirements for designing trapeze hangers.

1.6 INFORMATIONAL SUBMITTALS

A. Welding certificates.

1.7 QUALITY ASSURANCE

A. Structural Steel Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."

B. Pipe Welding Qualifications: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code.

PART 2 - PRODUCTS

2.1 METAL PIPE HANGERS AND SUPPORTS

A. Stainless-Steel Pipe Hangers and Supports (for all pipe inside the Wash Bay):
 1. Description: MSS SP-58, Types 1 through 58, factory-fabricated Type 304 stainless steel components.
 2. Hanger Rods: Continuous-thread rod, nuts, and washer made of Type 304 stainless steel.

B. Copper Pipe Hangers (for copper pipe outside of the Wash Bay):
 1. Description: MSS SP-58, Types 1 through 58, copper-coated-steel, factory-fabricated components.

2.2 TRAPEZE PIPE HANGERS

A. Description: MSS SP-69, Type 59, shop- or field-fabricated pipe-support assembly made from structural carbon-steel shapes (for supports outside the Wash Bay) with MSS SP-58 carbon-steel hanger rods, nuts, saddles, and U-bolts. Use type 304 stainless steel for hangers, rods, nuts, washers, etc. inside the Wash Bay.

2.3 METAL FRAMING SYSTEMS

A. MFMA Manufacturer Metal Framing Systems:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Allied Tube & Conduit.
 b. Cooper B-Line, Inc.
 c. Flex-Strut Inc.
 d. Unistrut Corporation; Tyco International, Ltd.

2. Description: Shop- or field-fabricated pipe-support assembly for supporting multiple parallel pipes.

4. Channels: Continuous slotted steel channel with inturned lips.

5. Channel Nuts: Formed or stamped steel nuts or other devices designed to fit into channel slot and, when tightened, prevent slipping along channel.

7. Metallic Coating: Electroplated zinc and Hot-dipped galvanized for products installed outside the Wash Bay and Type 304 stainless steel for products installed inside the Wash Bay.

2.4 THERMAL-HANGER SHIELD INSERTS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Carpenter & Paterson, Inc.
2. ERICO International Corporation.
4. Pipe Shields, Inc.; a subsidiary of Piping Technology & Products, Inc.
5. Piping Technology & Products, Inc.
6. Rilco Manufacturing Co., Inc.

B. Insulation-Insert Material for Cold Piping: ASTM C 552, Type II cellular glass with 100-psig or ASTM C 591, Type VI, Grade I polyisocyanurate with 125-psig minimum compressive strength and vapor barrier.
C. Insulation-Insert Material for Hot Piping: ASTM C 552, Type II cellular glass with 100-psig or ASTM C 591, Type VI, Grade 1 polyisocyanurate with 125-psig minimum compressive strength.

D. For Trapeze or Clamped Systems: Insert and shield shall cover entire circumference of pipe.

E. For Clevis or Band Hangers: Insert and shield shall cover lower 180 degrees of pipe.

F. Insert Length: Extend 2 inches beyond sheet metal shield for piping operating below ambient air temperature.

G. Metal shield shall be galvanized steel sheet metal for shields outside the Wash Bay and Type 304 Stainless Steel sheet metal for shields inside the Wash Bay.

2.5 FASTENER SYSTEMS

A. Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened portland cement concrete with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

B. Mechanical-Expansion Anchors: Insert-wedge-type, zinc-coated steel anchors, for use in hardened portland cement concrete; with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

C. Materials shall be stainless steel for products installed inside the Wash Bay.

2.6 PIPE POSITIONING SYSTEMS

A. Description: IAPMO PS 42, positioning system of metal brackets, clips, and straps for positioning piping in pipe spaces; for plumbing fixtures in commercial applications.

2.7 EQUIPMENT SUPPORTS

A. Description: Welded, shop- or field-fabricated equipment support made from structural carbon-steel shapes for supports located outside the Wash Bay and Stainless Steel for products installed inside the Wash Bay.

2.8 MISCELLANEOUS MATERIALS

A. Structural Steel: ASTM A 36/A 36M, carbon-steel plates, shapes, and bars; black and galvanized for products installed outside the Wash Bay and type 304 stainless steel for products installed inside the Wash Bay.

B. Grout: ASTM C 1107, factory-mixed and -packaged, dry, hydraulic-cement, nonshrink and nonmetallic grout; suitable for interior and exterior applications.

2. Design Mix: 5000-psi, 28-day compressive strength.
PART 3 - EXECUTION

3.1 HANGER AND SUPPORT INSTALLATION

A. Metal Pipe-Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Install hangers, supports, clamps, and attachments as required to properly support piping from the building structure.

B. Metal Trapeze Pipe-Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Arrange for grouping of parallel runs of horizontal piping, and support together on field-fabricated trapeze pipe hangers.

1. Pipes of Various Sizes: Support together and space trapezes for smallest pipe size or install intermediate supports for smaller diameter pipes as specified for individual pipe hangers.
2. Field fabricate from ASTM A 36/A 36M, carbon-steel shapes selected for loads being supported. Weld steel according to AWS D1.1/D1.1M.

C. Metal Framing System Installation: Arrange for grouping of parallel runs of piping, and support together on field-assembled metal framing systems.

D. Thermal-Hanger Shield Installation: Install in pipe hanger and shield for insulated piping.

E. Fastener System Installation:

1. Install powder-actuated fasteners for use in lightweight concrete or concrete slabs less than 4 inches thick in concrete after concrete is placed and completely cured. Use operators that are licensed by powder-actuated tool manufacturer. Install fasteners according to powder-actuated tool manufacturer's operating manual.
2. Install mechanical-expansion anchors in concrete after concrete is placed and completely cured. Install fasteners according to manufacturer's written instructions.

F. Pipe Positioning-System Installation: Install support devices to make rigid supply and waste piping connections to each plumbing fixture.

G. Install hangers and supports complete with necessary attachments, inserts, bolts, rods, nuts, washers, and other accessories.

I. Install hangers and supports to allow controlled thermal and seismic movement of piping systems, to permit freedom of movement between pipe anchors, and to facilitate action of expansion joints, expansion loops, expansion bends, and similar units.

J. Install lateral bracing with pipe hangers and supports to prevent swaying.
K. Install building attachments within concrete slabs or attach to structural steel. Install additional attachments at concentrated loads, including valves, flanges, and strainers, 2-1/2” and larger and at changes in direction of piping. Install concrete inserts before concrete is placed; fasten inserts to forms and install reinforcing bars through openings at top of inserts.

L. Load Distribution: Install hangers and supports so that piping live and dead loads and stresses from movement will not be transmitted to connected equipment.

M. Pipe Slopes: Install hangers and supports to provide indicated pipe slopes and to not exceed maximum pipe deflections allowed by ASME B31.9 for building services piping.

N. Insulated Piping:

1. Attach clamps and spacers to piping.
 a. Piping Operating above Ambient Air Temperature: Clamp may project through insulation.
 b. Piping Operating below Ambient Air Temperature: Use thermal-hanger shield insert with clamp sized to match OD of insert.
 c. Do not exceed pipe stress limits allowed by ASME B31.9 for building services piping.

2. Install MSS SP-58, Type 39, protection saddles if insulation without vapor barrier is indicated. Fill interior voids with insulation that matches adjoining insulation.
 a. Option: Thermal-hanger shield inserts may be used. Include steel weight-distribution plate for pipe 4” and larger if pipe is installed on rollers.

3. Install MSS SP-58, Type 40, protective shields on cold piping with vapor barrier. Shields shall span an arc of 180 degrees.
 a. Option: Thermal-hanger shield inserts may be used. Include steel weight-distribution plate for pipe 4” and larger if pipe is installed on rollers.

4. Shield Dimensions for Pipe: Not less than the following:
 a. ¼” to 3-1/2: 12 inches long and 0.048 inch thick.
 b. 4”: 12 inches long and 0.06 inch thick.

5. Thermal-Hanger Shields: Install with insulation same thickness as piping insulation.
3.2 EQUIPMENT SUPPORTS
A. Fabricate structural-steel stands to suspend equipment from structure overhead or to support equipment above floor.
B. Grouting: Place grout under supports for equipment and make bearing surface smooth.
C. Provide lateral bracing, to prevent swaying, for equipment supports.

3.3 METAL FABRICATIONS
A. Cut, drill, and fit miscellaneous metal fabrications for trapeze pipe hangers and equipment supports.
B. Fit exposed connections together to form hairline joints. Field weld connections that cannot be shop welded because of shipping size limitations.
C. Field Welding: Comply with AWS D1.1/D1.1M procedures for shielded, metal arc welding; appearance and quality of welds; and methods used in correcting welding work; and with the following:
 1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
 2. Obtain fusion without undercut or overlap.
 3. Remove welding flux immediately.
 4. Finish welds at exposed connections so no roughness shows after finishing and so contours of welded surfaces match adjacent contours.

3.4 ADJUSTING
A. Hanger Adjustments: Adjust hangers to distribute loads equally on attachments and to achieve indicated slope of pipe.
B. Trim excess length of continuous-thread hanger and support rods to 1-1/2 inches.

3.5 PAINTING
A. Touchup: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.
 1. Apply paint by brush or spray to provide a minimum dry film thickness of 2.0 mils.
B. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.
3.6 HANGER AND SUPPORT SCHEDULE

A. Specific hanger and support requirements are in Sections specifying piping systems and equipment.

B. Comply with MSS SP-69 for pipe-hanger selections and applications that are not specified in piping system Sections.

C. Use hangers and supports with galvanized metallic coatings for piping and equipment that will not have field-applied finish.

D. Use nonmetallic coatings on attachments for electrolytic protection where attachments are in direct contact with copper tubing.

E. Use carbon-steel materials outside the Wash Bay and type 304 stainless steel materials inside the Wash Bay for pipe hangers and supports, metal trapeze pipe hangers, and metal framing systems and attachments for general service applications.

F. Use stainless-steel clevis type pipe hangers and stainless-steel attachments for all hanger and pipe support systems inside the Wash Bay area. Use copper-plated pipe hangers and copper attachments for copper piping and tubing.

G. Use thermal-hanger saddle inserts for insulated piping and tubing.

H. Horizontal-Piping Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types (Use Type 304 stainless steel for Wash Bay.):

1. Adjustable, Steel and stainless-steel Clevis Hangers (MSS Type 1): For suspension of noninsulated or insulated, stationary pipes NPS 1/2 to NPS 6.
2. Steel and stainless-steel Pipe Clamps (MSS Type 4): For suspension of cold and hot pipes NPS 1/2 to NPS 24 if little or no insulation is required.
3. Adjustable Pipe Saddle Supports (MSS Type 38): For stanchion-type support for pipes NPS 2-1/2 to NPS 36 if vertical adjustment is required, with steel-pipe base stanchion support and cast-iron floor flange.

I. Vertical-Piping Clamps: Unless otherwise indicated and except as specified in piping system Sections, install the following types (Use Type 304 stainless steel for Wash Bay.):

1. Extension Pipe or Riser Clamps (MSS Type 8): For support of pipe risers NPS 3/4 to NPS 6.
2. Carbon- or Alloy-Steel Riser Clamps (MSS Type 42): For support of pipe risers NPS 3/4 to NPS 6 if longer ends are required for riser clamps.

J. Hanger-Rod Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types (Use Type 304 stainless steel for Wash Bay.):

1. Steel Turnbuckles (MSS Type 13): For adjustment up to 6 inches for heavy loads.
2. Steel Clevises (MSS Type 14):
3. Steel Swivel Turnbuckles (MSS Type 15): For use with MSS Type 11, split pipe rings.

K. Building Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types. (Use Type 304 stainless steel for Wash Bay.):

1. Steel or Malleable Concrete Inserts (MSS Type 18): For upper attachment to suspend pipe hangers from concrete ceiling.
2. C-Clamps (MSS Type 23): For structural shapes.
3. Top-Beam Clamps (MSS Type 25): For top of beams if hanger rod is required tangent to flange edge.
4. Side-Beam Clamps (MSS Type 27): For bottom of steel I-beams.
5. Steel-Beam Clamps with Eye Nuts (MSS Type 28): For attaching to bottom of steel I-beams for heavy loads.
6. Linked-Steel Clamps with Eye Nuts (MSS Type 29): For attaching to bottom of steel I-beams for heavy loads, with link extensions.
7. Malleable-Beam Clamps with Extension Pieces (MSS Type 30): For attaching to structural steel.
8. Welded-Steel Brackets: For support of pipes from below or for suspending from above by using clip and rod. Use one of the following for indicated loads:
 a. Light (MSS Type 31): 750 lb.
 b. Medium (MSS Type 32): 1500 lb.
 c. Heavy (MSS Type 33): 3000 lb.
9. Side-Beam Brackets (MSS Type 34): For sides of steel or wooden beams.
10. Plate Lugs (MSS Type 57): For attaching to steel beams if flexibility at beam is required.
11. Horizontal Travelers (MSS Type 58): For supporting piping systems subject to linear horizontal movement where headroom is limited.

L. Saddles and Shields: Unless otherwise indicated and except as specified in piping system Sections, install the following types (Use Type 304 stainless steel for Wash Bay.):

1. Steel-Pipe-Covering Protection Saddles (MSS Type 39): To fill interior voids with insulation that matches adjoining insulation.
2. Protection Shields (MSS Type 40): Of length recommended in writing by manufacturer to prevent crushing insulation. Shields shall be banded to pipe insulation by means of 2 stainless steel bands, one on each side of the hanger support.
3. Thermal-Hanger Shield Inserts: For supporting insulated pipe.

M. Spring Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types (Use Type 304 stainless steel for Wash Bay.):
1. **Restraint-Control Devices (MSS Type 47):** Where indicated to control piping movement.
2. **Spring Cushions (MSS Type 48):** For light loads if vertical movement does not exceed 1-1/4 inches.
3. **Spring-Cushion Roll Hangers (MSS Type 49):** For equipping Type 41, roll hanger with springs.
4. **Spring Sway Braces (MSS Type 50):** To retard sway, shock, vibration, or thermal expansion in piping systems.
5. **Variable-Spring Hangers (MSS Type 51):** Preset to indicated load and limit variability factor to 25 percent to allow expansion and contraction of piping system from hanger.
6. **Variable-Spring Base Supports (MSS Type 52):** Preset to indicated load and limit variability factor to 25 percent to allow expansion and contraction of piping system from base support.
7. **Variable-Spring Trapeze Hangers (MSS Type 53):** Preset to indicated load and limit variability factor to 25 percent to allow expansion and contraction of piping system from trapeze support.
8. **Constant Supports:** For critical piping stress and if necessary to avoid transfer of stress from one support to another support, critical terminal, or connected equipment. Include auxiliary stops for erection, hydrostatic test, and load-adjustment capability. These supports include the following types:
 a. **Horizontal (MSS Type 54):** Mounted horizontally.
 b. **Vertical (MSS Type 55):** Mounted vertically.
 c. **Trapeze (MSS Type 56):** Two vertical-type supports and one trapeze member.

N. Comply with MSS SP-69 for trapeze pipe-hanger selections and applications that are not specified in piping system Sections.

O. Comply with MFMA-103 for metal framing system selections and applications that are not specified in piping system Sections.

P. Use powder-actuated fasteners or mechanical-expansion anchors instead of building attachments where required in concrete construction.

Q. Use pipe positioning systems in pipe spaces behind plumbing fixtures to support supply and waste piping for plumbing fixtures.

END OF SECTION
SECTION 220553

IDENTIFICATION FOR PLUMBING PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

1. Equipment labels.
2. Warning signs and labels.
3. Pipe labels.
4. Valve Tags

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

1. Brady Corporation
2. Kolrabi Pipe Marker
3. Seton Identification Products

2.2 EQUIPMENT LABELS

A. Metal Labels for Equipment and valve tags:

1. Material and Thickness: Brass, 0.032-inch minimum thickness, and having predrilled or stamped holes for attachment hardware. Use Stainless Steel labels and tags in the Wash Bay.
3. Background Color: ANSI standard
4. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
5. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-quarters the size of principal lettering.
6. Fasteners: Stainless-steel rivets or stainless steel self-tapping screws. Valve tags may be attached with brass chain; use Stainless Steel Chain in the Wash Bay.
7. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

B. Plastic Labels for Equipment:

1. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/16-inch-thick, and having predrilled holes for attachment hardware.
2. Letter Color: ANSI standard
3. Background Color: ANSI Standard
4. Maximum Temperature: Able to withstand temperatures up to 160 deg F.
5. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
6. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-quarters the size of principal lettering.
7. Fasteners: Stainless-steel rivets or self-tapping screws.
8. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

C. Label Content: Include equipment's Drawing designation or unique equipment number, drawing numbers where equipment is indicated (plans, details, and schedules), and the Specification Section number and title where equipment is specified.

D. Equipment Label Schedule: For each item of equipment to be labeled, on 8-1/2-by-11-inch bond paper. Tabulate equipment identification number, and identify Drawing numbers where equipment is indicated (plans, details, and schedules) and the Specification Section number and title where equipment is specified. Equipment schedule shall be included in operation and maintenance data.

2.3 WARNING SIGNS AND LABELS

A. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/16-inch-thick, and having predrilled holes for attachment hardware.

C. Background Color: ANSI standard.

D. Maximum Temperature: Able to withstand temperatures up to 160 deg F.

E. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.

F. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches 1/2 inch for viewing distances up to 72 inches and proportionately larger lettering
for greater viewing distances. Include secondary lettering two-thirds to three-quarters the size of principal lettering.

G. Fasteners: Stainless-steel rivets or self-tapping screws.

H. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

I. Label Content: Include caution and warning information plus emergency notification instructions.

2.4 PIPE LABELS

A. General Requirements for Manufactured Pipe Labels: Preprinted, color-coded, with lettering indicating service, and showing flow direction.

B. Pre-tensioned Pipe Labels: Pre-coiled, semi-rigid plastic formed to cover full circumference of pipe and to attach to pipe without fasteners or adhesive.

C. Pipe Label Contents: Include identification of piping service using same designations or abbreviations as used on Drawings; also include pipe size and an arrow indicating flow direction.

1. Flow-Direction Arrows: Integral with piping-system service lettering to accommodate both directions or as separate unit on each pipe label to indicate flow direction.

2. Lettering Size: Size letters according to ASME A13.1 for piping. At least 1/2 inch for viewing distances up to 72 inches and proportionately larger lettering for greater viewing distances.

2.5 VALVE TAGS

A. Valve Tags: Stamped or engraved with 1/4-inch letters for piping system abbreviation and 1/2-inch numbers.

1. Tag Material: anodized aluminum, 0.032-inch minimum thickness, and having predrilled or stamped holes for attachment hardware.

2. Fasteners: Brass wire-link chain or beaded chain or S-hook.

B. Valve Schedules: For each piping system, on 8-1/2-by-11-inch (A4) bond paper. Tabulate valve number, piping system, system abbreviation (as shown on valve tag), location of valve (room or space), normal-operating position (open, closed, or modulating), and variations for identification. Mark valves for emergency shutoff and similar special uses.

1. Valve-tag schedule shall be included in operation and maintenance data.

2. Provide a valve tag schedule framed under glass and mounted at a location as directed by the owner prior to commencing startup of any equipment.
PART 3 - EXECUTION

3.1 PREPARATION

A. Clean piping and equipment surfaces of substances that could impair bond of identification devices, including dirt, oil, grease, release agents, and incompatible primers, paints, and encapsulants.

3.2 GENERAL INSTALLATION REQUIREMENTS

A. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be applied.

B. Coordinate installation of identifying devices with locations of access panels and doors.

3.3 EQUIPMENT LABEL INSTALLATION

A. Install or permanently fasten labels on each major item of mechanical equipment.

B. Locate equipment labels where accessible and visible.

3.4 WARNING TAG INSTALLATION

A. Write required message on, and attach warning tags to, equipment and other items where required.

3.5 PIPE LABEL INSTALLATION

A. Piping Color Coding: Painting of piping is specified in Section 099123 "Interior Painting."

B. Pipe Label Locations: Locate pipe labels where piping is exposed; machine rooms; accessible maintenance spaces such as shafts, tunnels, and plenums; and exterior exposed locations as follows:

1. Near each valve and control device.
2. Near each branch connection, excluding short takeoffs for fixtures and terminal units. Where flow pattern is not obvious, mark each pipe at branch.
3. Near penetrations and on both sides of through walls, floors, ceilings, and inaccessible enclosures.
4. At access doors, manholes, and similar access points that permit view of concealed piping.
5. Near major equipment items and other points of origination and termination.
6. Spaced at maximum intervals of 25 along each run, including piping above suspended ceilings or in concealed areas.
C. Pipe Label Color Schedule:

1. Domestic Water Piping
 a. Use ANSI color coding.

2. Sanitary and Vent Piping
 a. Use ANSI color coding.

3.6 VALVE-TAG INSTALLATION

A. Install tags on valves and control devices in piping systems, except check valves, valves within factory-fabricated equipment units, shutoff valves, faucets, convenience and lawn-watering hose connections, and similar roughing-in connections of end-use fixtures and units. List tagged valves in a valve schedule.

B. Valve-Tag Application Schedule: Tag valves according to size, shape, and color scheme and with captions similar to those indicated in the following subparagraphs:

1. Valve-Tag Size and Shape:

2. Valve-Tag Colors:

3. Letter Colors:

END OF SECTION
SECTION 220719
PLUMBING PIPING INSULATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section includes insulating the following plumbing piping services:
 1. Domestic cold-water piping.
 2. Domestic hot-water piping.
 3. Domestic hot-water recirculation piping
 4. Supplies and drains for handicap-accessible lavatories and sinks.

B. Related Sections:
 1. Section 221116 Domestic Water Piping
 2. Section 221119 Domestic Water Piping Specialties

1.3 ACTION SUBMITTALS
A. Product Data: For each type of product indicated. Include thermal conductivity, water-vapor permeance thickness, and jackets (both factory- and field-applied, if any).

1.4 INFORMATIONAL SUBMITTALS
A. Qualification Data: For qualified Installer.

B. Material Test Reports: From a qualified testing agency acceptable to authorities having jurisdiction indicating, interpreting, and certifying test results for compliance of insulation materials, sealers, attachments, cements, and jackets, with requirements indicated. Include dates of tests and test methods employed.

C. Field quality-control reports.

1.5 QUALITY ASSURANCE
A. Installer Qualifications: Skilled mechanics who have successfully completed an apprenticeship program or another craft training program certified by the Department of Labor, Bureau of Apprenticeship and Training.
B. Surface-Burning Characteristics: For insulation and related materials, as determined by testing identical products according to ASTM E 84 by a testing agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing agency.

1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.
2. Insulation Installed Outdoors: Flame-spread index of 75 or less, and smoke-developed index of 150 or less.

C. Comply with the following applicable standards and other requirements specified for miscellaneous components:

1.6 DELIVERY, STORAGE, AND HANDLING

A. Packaging: Insulation material containers shall be marked by manufacturer with appropriate ASTM standard designation, type and grade, and maximum use temperature.

1.7 COORDINATION

A. Coordinate sizes and locations of supports, hangers, and insulation shields specified in Section 220529 "Hangers and Supports for Plumbing Piping and Equipment."

B. Coordinate clearance requirements with piping Installer for piping insulation application. Before preparing piping Shop Drawings, establish and maintain clearance requirements for installation of insulation and field-applied jackets and finishes and for space required for maintenance.

1.8 SCHEDULING

A. Schedule insulation application after pressure testing systems and, where required, after installing and testing heat tracing. Insulation application may begin on segments that have satisfactory test results.

B. Complete installation and concealment of plastic materials as rapidly as possible in each area of construction.

PART 2 - PRODUCTS

2.1 INSULATION MATERIALS

A. Comply with requirements in section 3.9 thru 3.11 for where insulating materials shall be applied.

B. Products shall not contain asbestos, lead, mercury, or mercury compounds.
C. Products that come in contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested according to ASTM C 871.

D. Insulation materials for use on austenitic stainless steel shall be qualified as acceptable according to ASTM C 795.

E. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process.

F. Mineral-Fiber, Preformed Pipe Insulation:

1. Products: Subject to compliance with requirements, provide one of the following:
 a. Johns Manville; Micro-Lok.
 b. Knauf Insulation; 1000-Degree Pipe Insulation.
 c. Owens Corning; Fiberglas Pipe Insulation.

2. Type I, 850 Deg F (454 Deg C) Materials: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 547, Type I, Grade A, with factory-applied ASJ-SSL. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.

2.2 ADHESIVES

A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated, unless otherwise indicated.

B. Mineral-Fiber Adhesive: Comply with MIL-A-3316C, Class 2, Grade A.

1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 b. Eagle Bridges - Marathon Industries; 225.
 d. Mon-Eco Industries, Inc.; 22-25.

2. For indoor applications, adhesive shall have a VOC content of 80 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

3. Adhesive shall comply with the testing and product requirements of the California Department of Health Services "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 b. Eagle Bridges - Marathon Industries; 225.
 d. Mon-Eco Industries, Inc.; 22-25.

2. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

3. Adhesive shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

D. PVC Jacket Adhesive: Compatible with PVC jacket.

1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 a. Dow Corning Corporation; 739, Dow Silicone.
 d. Speedline Corporation; Polyco VP Adhesive.

2. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

3. Adhesive shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

2.3 MASTICS

A. Materials shall be compatible with insulation materials, jackets, and substrates; comply with MIL-PRF-19565C, Type II.

1. For indoor applications, use mastics that have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

B. Vapor-Barrier Mastic: Water based; suitable for indoor use on below-ambient services.

1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
2. Water-Vapor Permeance: ASTM E 96/E 96M, Procedure B, 0.013 perm (0.009 metric perm) at 43-mil (1.09-mm) dry film thickness.
3. Service Temperature Range: Minus 20 to plus 180 deg F (Minus 29 to plus 82 deg C).
4. Solids Content: ASTM D 1644, 58 percent by volume and 70 percent by weight.

C. Vapor-Barrier Mastic: Solvent based; suitable for indoor use on below-ambient services.
1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 b. Eagle Bridges - Marathon Industries; 501.
 d. Mon-Eco Industries, Inc.; 55-10.

2. Water-Vapor Permeance: ASTM F 1249, 0.05 perm (0.03 metric perm) at 35-mil (0.9-mm) dry film thickness.
3. Service Temperature Range: 0 to 180 deg F (Minus 18 to plus 82 deg C).

2.4 SEALANTS

A. ASJ Flashing Sealants, and Vinyl, PVDC, and PVC Jacket Flashing Sealants:
1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:

2. Materials shall be compatible with insulation materials, jackets, and substrates.
3. Fire- and water-resistant, flexible, elastomeric sealant.
4. Service Temperature Range: Minus 40 to plus 250 deg F (Minus 40 to plus 121 deg C).
6. For indoor applications, sealants shall have a VOC content of 420 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
7. Sealants shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."
2.5 FIELD-APPLIED JACKETS

A. Field-applied jackets shall comply with ASTM C 921, Type I, unless otherwise indicated.

B. PVC Jacket: High-impact-resistant, UV-resistant PVC complying with ASTM D 1784, Class 16354-C; thickness as scheduled; roll stock ready for shop or field cutting and forming. Thickness is indicated in field-applied jacket schedules.

1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 a. Johns Manville; Zeston.
 b. Proto Corporation; LoSmoke.
 c. Speedline Corporation; SmokeSafe.

2. Adhesive: As recommended by jacket material manufacturer.

4. Factory-fabricated fitting covers to match jacket if available; otherwise, field fabricate.
 a. Shapes: 45- and 90-degree, short- and long-radius elbows, tees, valves, flanges, unions, reducers, end caps, soil-pipe hubs, traps, mechanical joints, and P-trap and supply covers for lavatories.

2.6 TAPES

A. ASJ Tape: White vapor-retarder tape matching factory-applied jacket with acrylic adhesive, complying with ASTM C 1136.

1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 a. ABI, Ideal Tape Division; 428 AWF ASJ.
 b. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0836.
 c. Venture Tape; 1540 CW Plus, 1542 CW Plus, and 1542 CW Plus/SQ.

2. Width: 3 inches (75 mm).

3. Thickness: 11.5 mils (0.29 mm).

4. Adhesion: 90 ounces force/inch (1.0 N/mm) in width.

5. Elongation: 2 percent.

6. Tensile Strength: 40 lbf/inch (7.2 N/mm) in width.

7. ASJ Tape Disks and Squares: Precut disks or squares of ASJ tape.

B. FSK Tape: Foil-face, vapor-retarder tape matching factory-applied jacket with acrylic adhesive; complying with ASTM C 1136.

1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
a. ABI, Ideal Tape Division; 491 AWF FSK.
b. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0827.
c. Venture Tape; 1525 CW NT, 1528 CW, and 1528 CW/SQ.

2. Width: 3 inches (75 mm).
3. Thickness: 6.5 mils (0.16 mm).
4. Adhesion: 90 ounces force/inch (1.0 N/mm) in width.
5. Elongation: 2 percent.
6. Tensile Strength: 40 lbf/inch (7.2 N/mm) in width.
7. FSK Tape Disks and Squares: Precut disks or squares of FSK tape.

C. PVC Tape: White vapor-retarder tape matching field-applied PVC jacket with acrylic adhesive; suitable for indoor and outdoor applications.

1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 a. ABI, Ideal Tape Division; 370 White PVC tape.
 b. Compac Corporation; 130.
 c. Venture Tape; 1506 CW NS.

2. Width: 2 inches (50 mm).
3. Thickness: 6 mils (0.15 mm).
4. Adhesion: 64 ounces force/inch (0.7 N/mm) in width.
5. Elongation: 500 percent.
6. Tensile Strength: 18 lbf/inch (3.3 N/mm) in width.

D. Aluminum-Foil Tape: Vapor-retarder tape with acrylic adhesive.

1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 a. ABI, Ideal Tape Division; 488 AWF.
 b. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0800.
 c. Compac Corporation; 120.
 d. Venture Tape; 3520 CW.

2. Width: 2 inches (50 mm).
3. Thickness: 3.7 mils (0.093 mm).
4. Adhesion: 100 ounces force/inch (1.1 N/mm) in width.
5. Elongation: 5 percent.
6. Tensile Strength: 34 lbf/inch (6.2 N/mm) in width.

2.7 SECUREMENTS

A. Bands:

1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
a. ITW Insulation Systems; Gerrard Strapping and Seals.
b. RPR Products, Inc.; Insul-Mate Strapping and Seals.

2. Stainless Steel: ASTM A 167 or ASTM A 240/A 240M, Type 304; 0.015 inch (0.38 mm) thick, 1/2 inch (13 mm) wide with wing seal

3. Aluminum: ASTM B 209 (ASTM B 209M), Alloy 3003, 3005, 3105, or 5005; Temper H-14, 0.020 inch (0.51 mm) thick, 1/2 inch (13 mm) wide with closed seal.

B. Staples: Outward-clinching insulation staples, nominal 3/4-inch- (19-mm-) wide, stainless steel or Monel.

C. Wire: 0.062-inch (1.6-mm) soft-annealed, galvanized steel.

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

2.8 PROTECTIVE SHIELDING GUARDS

A. Protective Shielding Pipe Covers

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

 a. Engineered Brass Company.

 b. Truebro; a brand of IPS Corporation.

 c. Zurn Industries, LLC; Tubular Brass Plumbing Products Operation.

2. Description: Manufactured plastic wraps for covering plumbing fixture hot- and cold-water supplies and trap and drain piping. Comply with Americans with Disabilities Act (ADA) requirements.

B. Protective Shielding Piping Enclosures:

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

 a. Truebro; a brand of IPS Corporation.

 b. Zurn Industries, LLC; Tubular Brass Plumbing Products Operation.

2. Description: Manufactured plastic enclosure for covering plumbing fixture hot- and cold-water supplies and trap and drain piping. Comply with ADA requirements.
PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates and conditions for compliance with requirements for installation tolerances and other conditions affecting performance of insulation application.
 1. Verify that systems to be insulated have been tested and are free of defects.
 2. Verify that surfaces to be insulated are clean and dry.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.

B. Mix insulating cements with clean potable water; if insulating cements are to be in contact with stainless-steel surfaces, use demineralized water.

3.3 GENERAL INSTALLATION REQUIREMENTS

A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of piping including fittings, valves, and specialties.

B. Install insulation materials, forms, vapor barriers or retarders, jackets, and thicknesses required for each item of pipe system as specified in insulation system schedules.

C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.

D. Install insulation with longitudinal seams at top and bottom of horizontal runs.

E. Install multiple layers of insulation with longitudinal and end seams staggered.

F. Do not weld brackets, clips, or other attachment devices to piping, fittings, and specialties.

G. Keep insulation materials dry during application and finishing.

H. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.

I. Install insulation with least number of joints practical.

J. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.
1. Install insulation continuously through hangers and around anchor attachments.

2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.

3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.

4. Cover inserts with jacket material matching adjacent pipe insulation. Install shields over jacket, arranged to protect jacket from tear or puncture by hanger, support, and shield.

K. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.

L. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness.

M. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.

N. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches (100 mm) beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.

O. For above-ambient services, do not install insulation to the following:
 1. Vibration-control devices.
 2. Testing agency labels and stamps.
 3. Nameplates and data plates.

3.4 PENETRATIONS

A. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.

3.5 GENERAL PIPE INSULATION INSTALLATION

A. Requirements in this article generally apply to all insulation materials except where more specific requirements are specified in various pipe insulation material installation articles.

B. Insulation Installation on Fittings, Valves, Strainers, Flanges, and Unions:
 1. Install insulation over fittings, valves, strainers, flanges, unions, and other specialties with continuous thermal and vapor-retarder integrity unless otherwise indicated.
2. Insulate pipe elbows using preformed fitting insulation or mitered fittings made from same material and density as adjacent pipe insulation. Each piece shall be butted tightly against adjoining piece and bonded with adhesive. Fill joints, seams, voids, and irregular surfaces with insulating cement finished to a smooth, hard, and uniform contour that is uniform with adjoining pipe insulation.

3. Insulate tee fittings with preformed fitting insulation or sectional pipe insulation of same material and thickness as used for adjacent pipe. Cut sectional pipe insulation to fit. Butt each section closely to the next and hold in place with tie wire. Bond pieces with adhesive.

4. Insulate valves using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. For valves, insulate up to and including the bonnets, valve stuffing-box studs, bolts, and nuts. Fill joints, seams, and irregular surfaces with insulating cement.

5. Insulate strainers using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. Fill joints, seams, and irregular surfaces with insulating cement. Insulate strainers so strainer basket flange or plug can be easily removed and replaced without damaging the insulation and jacket. Provide a removable reusable insulation cover. For below-ambient services, provide a design that maintains vapor barrier.

6. Insulate flanges and unions using a section of oversized preformed pipe insulation. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker.

7. Cover segmented insulated surfaces with a layer of finishing cement and coat with a mastic. Install vapor-barrier mastic for below-ambient services and a breather mastic for above-ambient services. Reinforce the mastic with fabric-reinforcing mesh. Trowel the mastic to a smooth and well-shaped contour.

8. For services not specified to receive a field-applied jacket except for flexible elastomeric and polyolefin, install fitted PVC cover over elbows, tees, strainers, valves, flanges, and unions. Terminate ends with PVC end caps. Tape PVC covers to adjoining insulation facing using PVC tape.

9. Stencil or label the outside insulation jacket of each union with the word "union." Match size and color of pipe labels.

C. Insulate instrument connections for thermometers, pressure gages, pressure temperature taps, test connections, flow meters, sensors, switches, and transmitters on insulated pipes. Shape insulation at these connections by tapering it to and around the connection with insulating cement and finish with finishing cement, mastic, and flashing sealant.

D. Install removable insulation covers at locations indicated. Installation shall conform to the following:

1. Make removable flange and union insulation from sectional pipe insulation of same thickness as that on adjoining pipe. Install same insulation jacket as adjoining pipe insulation.
2. When flange and union covers are made from sectional pipe insulation, extend insulation from flanges or union long at least two times the insulation thickness over adjacent pipe insulation on each side of flange or union. Secure flange cover in place with stainless-steel or aluminum bands. Select band material compatible with insulation and jacket.

3. Construct removable valve insulation covers in same manner as for flanges, except divide the two-part section on the vertical center line of valve body.

4. When covers are made from block insulation, make two halves, each consisting of mitered blocks wired to stainless-steel fabric. Secure this wire frame, with its attached insulation, to flanges with tie wire. Extend insulation at least 2 inches (50 mm) over adjacent pipe insulation on each side of valve. Fill space between flange or union cover and pipe insulation with insulating cement. Finish cover assembly with insulating cement applied in two coats. After first coat is dry, apply and trowel second coat to a smooth finish.

5. Unless a PVC jacket is indicated in field-applied jacket schedules, finish exposed surfaces with a metal jacket.

3.6 INSTALLATION OF MINERAL-FIBER INSULATION

A. Insulation Installation on Straight Pipes and Tubes:

1. Secure each layer of preformed pipe insulation to pipe with wire or bands and tighten bands without deforming insulation materials.

2. Where vapor barriers are indicated, seal longitudinal seams, end joints, and protrusions with vapor-barrier mastic and joint sealant.

3. For insulation with factory-applied jackets on above-ambient surfaces, secure laps with outward clinched staples at 6 inches (150 mm) o.c.

4. For insulation with factory-applied jackets on below-ambient surfaces, do not staple longitudinal tabs. Instead, secure tabs with additional adhesive as recommended by insulation material manufacturer and seal with vapor-barrier mastic and flashing sealant.

B. Insulation Installation on Pipe Flanges:

1. Install preformed pipe insulation to outer diameter of pipe flange.

2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.

3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with mineral-fiber blanket insulation.

4. Install jacket material with manufacturer's recommended adhesive, overlap seams at least 1 inch (25 mm), and seal joints with flashing sealant.

C. Insulation Installation on Pipe Fittings and Elbows:

1. Install preformed sections of same material as straight segments of pipe insulation when available.
2. When preformed insulation elbows and fittings are not available, install mitered sections of pipe insulation, to a thickness equal to adjoining pipe insulation. Secure insulation materials with wire or bands.

D. Insulation Installation on Valves and Pipe Specialties:

1. Install preformed sections of same material as straight segments of pipe insulation when available.
2. When preformed sections are not available, install mitered sections of pipe insulation to valve body.
3. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
4. Install insulation to flanges as specified for flange insulation application.

3.7 FINISHES

A. Insulation with ASJ, Glass-Cloth, or Other Paintable Jacket Material: Paint jacket with paint system identified below and as specified in Section 09912 "Interior Painting."

1. Flat Acrylic Finish: Two finish coats over a primer that is compatible with jacket material and finish coat paint. Add fungicidal agent to render fabric mildew proof.

B. Flexible Elastomeric Thermal Insulation: After adhesive has fully cured, apply two coats of insulation manufacturer's recommended protective coating.

C. Color: Final color as selected by Architect. Vary first and second coats to allow visual inspection of the completed Work.

D. Do not field paint aluminum or stainless-steel jackets.

3.8 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

B. Perform tests and inspections.

C. Tests and Inspections:
 1. Inspect pipe, fittings, strainers, and valves, randomly selected by Architect, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to three locations of straight pipe, three locations of threaded fittings, three locations of welded fittings, two locations of threaded strainers, two locations of welded strainers, three locations of threaded valves, and three locations of flanged valves for each pipe service defined in the "Piping Insulation Schedule, General" Article.
D. All insulation applications will be considered defective Work if sample inspection reveals noncompliance with requirements.

3.9 PIPING INSULATION SCHEDULE, GENERAL

A. Acceptable preformed pipe and tubular insulation materials and thicknesses are identified for each piping system and pipe size range. If more than one material is listed for a piping system, selection from materials listed is Contractor's option.

B. Items Not Insulated: Unless otherwise indicated, do not install insulation on the following:

1. Underground piping.
2. Chrome-plated pipes and fittings unless there is a potential for personnel injury.

3.10 INDOOR PIPING INSULATION SCHEDULE

A. Domestic Cold Water:
 1. Insulation shall be the following:
 a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1 inch (25 mm) think.

B. Domestic Hot and Recirculated Hot Water:
 1. Insulation shall be the following:
 a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1 inch (25 mm) think.

C. Exposed Sanitary Drains, Domestic Water, Domestic Hot Water, and Stops for Plumbing Fixtures for People with Disabilities:
 1. All Pipe Sizes: Insulation shall be the following:
 a. Protective shielding guards per Section 2.8.

3.11 INDOOR, FIELD-APPLIED JACKET SCHEDULE

A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket.

B. If more than one material is listed, selection from materials listed is Contractor's option.

C. Piping, Concealed:
 1. None.

D. Piping, Exposed:
 1. Domestic Cold and Hot Water: PVC, 20 mils (0.5 mm) thick.
 2. Exposed Sanitary Drains, Domestic Water, Domestic Hot Water, and Stops for Plumbing Fixtures for People with Disabilities: PVC, 20 mils (0.5 mm) thick.

END OF SECTION
SECTION 221116
DOMESTIC WATER PIPING

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Under-building slab and aboveground domestic water pipes, tubes, fittings, and specialties inside the building.
 2. Encasement for piping.

B. Related Sections:
 1. Division 22 Section “Identification for Plumbing Piping and Equipment”.
 2. Division 22 Section “Hangers and Supports for Plumbing Piping and Equipment”.
 3. Division 22 Section “Plumbing Piping Insulation”.

1.2 REFERENCES

A. American National Standards Institute:

B. American Society of Mechanical Engineers:
 1. ASME B16.18 - Cast Copper Alloy Solder Joint Pressure Fittings.
 2. ASME B16.22 - Wrought Copper and Copper Alloy Solder Joint Pressure Fittings.
 3. ASME B16.26 - Cast Copper Alloy Fittings for Flared Copper Tubes.

C. American Society of Sanitary Engineering:
 1. ASSE 1010 - Performance Requirements for Water Hammer Arresters.
 2. ASSE 1011 - Performance Requirements for Hose Connection Vacuum Breakers.
 3. ASSE 1012 - Performance Requirements for Backflow Preventer with Intermediate Atmospheric Vent.
 4. ASSE 1013 - Performance Requirements for Reduced Pressure Principle Backflow Preventers.
 5. ASSE 1019 - Performance Requirements for Wall Hydrants, Freezeless, Automatic Draining, Anti-Backflow Types.
D. ASTM International:

E. Manufacturers Standardization Society of the Valve and Fittings Industry:
 1. MSS SP 58 - Pipe Hangers and Supports - Materials, Design and Manufacturer.
 2. MSS SP 69 - Pipe Hangers and Supports - Selection and Application.
 3. MSS SP 89 - Pipe Hangers and Supports - Fabrication and Installation Practices.

1.3 SUBMITTALS

A. Section 013300 - Submittal Procedures: Submittal procedures.

B. Product Data:
 1. Piping: Submit data on pipe materials, fittings, and accessories. Submit manufacturer's catalog information.
 2. Valves: Submit manufacturers catalog information with valve data and ratings for each service.
 3. Hangers and Supports: Submit manufacturers catalog information including load capacity.
 4. Domestic Water Specialties: Submit manufacturers catalog information, component sizes, rough-in requirements, service sizes, and finishes.

C. Manufacturer's Installation Instructions: Submit installation instructions for pumps, valves and accessories.

D. Manufacturer's Certificate: Certify products meet or exceed specified requirements.

1.4 CLOSEOUT SUBMITTALS

A. Section 017300 - Execution: Closeout procedures.

B. Project Record Documents: Record actual locations of valves and equipment.

C. Operation and Maintenance Data: Submit spare parts list, exploded assembly views and recommended maintenance intervals.

1.5 QUALIFICATIONS

A. Manufacturer: Company specializing in manufacturing products specified in this section with minimum three years documented experience.

1.6 DELIVERY, STORAGE, AND HANDLING

A. Accept valves and equipment on site in shipping containers with labeling in place. Inspect for damage.
B. Provide temporary protective coating on cast iron and steel valves.

C. Provide temporary end caps and closures on piping and fittings. Maintain in place until installation.

D. Protect piping systems from entry of foreign materials by temporary covers, completing sections of the Work, and isolating parts of completed system.

1.7 ENVIRONMENTAL REQUIREMENTS

A. Do not install underground piping when bedding is wet or frozen.

1.8 FIELD MEASUREMENTS

A. Verify field measurements prior to fabrication.

1.9 WARRANTY

A. Section 017300 - Execution: Product warranties and product bonds.

B. Furnish one-year manufacturer warranty for domestic water piping.

PART 2 - PRODUCTS

2.1 DOMESTIC WATER PIPING

A. Copper Tubing: ASTM B88 (ASTM B88M), Type K for below ground and Type L for above ground, for piping 2 ½ inches NPS and smaller.

1. Fittings: ASME B16.18, cast copper alloy or ASME B16.22, wrought copper and bronze.

2. Joints: Solder, lead free, ASTM B32, 95-5 tin-antimony, or tin and silver, with melting range 430 to 535 degrees F (220 to 280 degrees C).

3. Unions:
 a. Copper Piping: Class 150, bronze unions with soldered
 b. Dielectric Connections: Union with galvanized or plated steel threaded end, copper solder end, water impervious isolation barrier.

B. Galvanized Steel Pipe: ASTM A 53/A 53M, Type E, Grade B, Standard Weight for Above ground 3 inch and larger.

1. Flanges: ASME B16.1, Class 125, cast iron

2. Fittings for Grooved-End, Galvanized-Steel Pipe: Galvanized, ASTM A 47/A 47M, malleable-iron casting; ASTM A 106/A 106M, steel pipe; or ASTM A 536, ductile-iron casting; with dimensions matching steel pipe.

3. Fittings for Grooved-End, Galvanized-Steel Pipe:
a. AWWA C606 for steel-pipe dimensions.
b. Ferrous housing sections.
c. EPDM-rubber gaskets suitable for hot and cold water.
d. Bolts and nuts.
e. Minimum Pressure Rating 600 psig

C. Ductile Iron Pipe: Below ground 3 inches and larger:

1. Mechanical Joints:
 a. AWWA C151/A21.51, with mechanical-joint bell and plain spigot end unless grooved or flanged ends are indicated.
 b. Glands, Gaskets, and Bolts: AWWA C111/A21.11, ductile- or gray-iron glands, rubber gaskets, and steel bolts.

2. Grooved-End Pipe:

4. Mechanical Couplings for Grooved-End, Ductile-Iron-Piping:
 a. AWWA C606 for ductile-iron-pipe dimensions.
 b. Ferrous housing sections.
 c. EPDM-rubber gaskets suitable for hot and cold water.
 d. Bolts and nuts.
 e. Minimum Pressure Rating 250 psig

PART 3 - EXECUTION

3.1 EXAMINATION

 A. Section 013100 - Administrative Requirements: Coordination and project conditions.

3.2 PREPARATION

 A. Ream pipe and tube ends. Remove burrs. Bevel plain end ferrous pipe.

 B. Remove scale and dirt, on inside and outside, before assembly.

3.3 INSTALLATION - HANGERS AND SUPPORTS

 A. Inserts:

 1. Provide inserts for placement in concrete forms.
 2. Provide inserts for suspending hangers from reinforced concrete slabs and sides of reinforced concrete beams.
 3. Where concrete slabs form finished ceiling, locate inserts flush with slab surface.
4. Where inserts are omitted, drill through concrete slab from below and provide through-bolt with recessed square steel plate and nut above recessed into and grouted flush with slab.

B. Pipe Hangers and Supports:

1. Install in accordance with ASME B31.9, ASTM F708 and MSS SP 89 as specified in 15060.
2. Support horizontal piping as schedule.
3. Install hangers to provide minimum 1/2-inch (15 mm) space between finished covering and adjacent work.
4. Place hangers within 12 inches (300 mm) of each horizontal elbow.
5. Use hangers with 1-1/2 inch (40 mm) minimum vertical adjustment. Design hangers for pipe movement without disengagement of supported pipe.
7. Where piping is installed in parallel and at same elevation, provide multiple pipe or trapeze hangers.

3.4 INSTALLATION – BELOW GROUND PIPING

A. Install copper and ductile-iron piping under building slab with restrained joints according to AWWA C600 and AWWA M41.

B. Install underground copper and ductile-iron pipe in PE encasement according to ASTM A674 or AWWA C105/A21.5.

3.5 INSTALLATION - ABOVE GROUND PIPING

A. Install non-conducting dielectric connections wherever jointing dissimilar metals.

B. Route piping in orderly manner and maintain gradient. Route parallel and perpendicular to walls.

C. Install piping to maintain headroom without interfering with use of space or taking more space than necessary.

D. Group piping whenever practical at common elevations.

E. Slope piping and arrange systems to drain at low points.

F. Install piping to allow for expansion and contraction without stressing pipe, joints, or connected equipment.

G. Provide clearance in hangers and from structure and other equipment for installation of insulation and access to valves and fittings.

H. Provide access where valves and fittings are not accessible.
I. Where pipe support members are welded to structural building framing, scrape, brush clean, and apply one coat of zinc rich primer to welding.

J. Install domestic water piping in accordance with ASME B31.9.

K. Sleeve pipes passing through partitions, walls and floors.

L. Install unions downstream of valves and at equipment or apparatus connections.

M. Install valves with stems upright or horizontal, not inverted.

N. Install brass male adapters each side of valves in copper piped system. Solder adapters to pipe.

O. Install valves for shut-off and to isolate equipment, part of systems, or vertical risers.

P. Install valves for throttling, bypass, or manual flow control services.

Q. Install potable water protection devices on plumbing lines where contamination of domestic water may occur; on boiler feed water lines, janitor rooms, fire sprinkler systems, premise isolation, irrigation systems, flush valves, interior and exterior hose bibs.

R. Pipe relief from valves, back-flow preventers and drains to nearest floor drain.

3.6 FIELD QUALITY CONTROL

A. 017300 - Execution: Field inspecting, testing, adjusting, and balancing.

3.7 PRESSURE TESTING

A. The entire piping system shall be subjected to a pressure test. Testing is allowed to be broken up into sections, but the entire system must be tested.

B. The system shall be provided tight by an air test of not less than 50 psig. The pressure shall be held for a period of not less than 15 minutes.

C. The testing shall be witnessed by an independent third party.

D. The contractor shall submit testing forms to document testing.

E. This procedure shall be repeated if the system does not pass.

F. Results of pipe pressure tests shall be submitted to Engineer, Owner, and Owner’s Representative for review prior to closing in walls, floors, or ceilings that will prevent access to piping for repairs.
3.8 CLEANING

A. Clean and disinfect potable domestic water piping as follows:

1. Purge new piping and parts of existing piping that have been altered, extended, or repaired before using.
2. Use purging and disinfecting procedures prescribed by authorities having jurisdiction; if methods are not prescribed, use the procedures described below:

 a. Flush piping system with clean, potable water until dirty water does not appear at outlets.
 b. Fill and isolate system according to either of the following:

 1) Fill system or part thereof with water/chlorine solution with at least 50 ppm (50 mg/L) of chlorine. Isolate with valves and allow to stand for 24 hours.
 2) Fill system or part thereof with water/chlorine solution with at least 200 ppm (200 mg/L) of chlorine. Isolate and allow to stand for three hours.

 c. Following the required standing time, the system shall be flushed with clean, potable water until no chlorine is in water coming from system after the standing time.
 d. Repeat procedures if biological examination shows contamination.
 e. Submit water samples in sterile bottles to authorities having jurisdiction.

END OF SECTION
SECTION 221119
DOMESTIC WATER PIPING SPECIALTIES

PART 1 - DESCRIPTION

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. This Section includes the following domestic water piping specialties:
 1. Vacuum breakers.
 2. Backflow preventers.
 5. Temperature-actuated water mixing valves.
 7. Electronic Trap Primer Systems
 8. Hose bibbs.
 9. Wall hydrants.
 10. Drain valves.
 12. Air vents.

B. Related Sections include the following:
 1. Division 22 Section "Domestic Water Piping".

1.3 PERFORMANCE REQUIREMENTS
A. Minimum Working Pressure for Domestic Water Piping Specialties: 150 psig, unless otherwise indicated.

1.4 SUBMITTALS
A. Product Data: For each type of product indicated.
B. Shop Drawings: Diagram power, signal, and control wiring.
C. Field quality-control test reports.
D. Operation and Maintenance Data: For domestic water piping specialties to include in emergency, operation, and maintenance manuals.
1.5 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

B. NSF Compliance:
 2. Comply with NSF 61, "Drinking Water System Components - Health Effects; Sections 1 through 9."

PART 2 - PRODUCTS

2.1 VACUUM BREAKERS

A. Pipe-Applied, Atmospheric-Type Vacuum Breakers:
 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Conbraco Industries, Inc.
 c. Zurn Plumbing Products Group; Wilkins Div.
 3. Size: NPS 1/4 to NPS 3, as required to match connected piping.
 5. Inlet and Outlet Connections: Threaded.

B. Hose-Connection Vacuum Breakers:
 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Conbraco Industries, Inc.
 b. MIFAB, Inc.
 d. Zurn Plumbing Products Group; Wilkins Div.
 5. Finish: Chrome or nickel plated.
2.2 BACKFLOW PREVENTERS

A. Reduced-Pressure-Principle Backflow Preventers:

1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. FEBCO; SPX Valves & Controls.
 c. Zurn Plumbing Products Group; Wilkins Div.

3. Operation: Continuous-pressure applications.

4. Pressure Loss: 12 psig maximum, through middle 1/3 of flow range.

5. Body: Bronze for NPS 2 and smaller; cast iron with interior lining complying with AWWA C550 or that is FDA approved for NPS 2-1/2 and larger.

6. End Connections: Threaded for NPS 2 and smaller; flanged for NPS 2-1/2 and larger.

7. Configuration: Designed for horizontal, straight through flow.

8. Accessories:
 a. Valves: Ball type with threaded ends on inlet and outlet of NPS 2 and smaller; outside screw and yoke gate-type with flanged ends on inlet and outlet of NPS 2-1/2 and larger.

9. Provide for:
 a. Incoming water service
 b. Fire protection water service
 c. Make-up water for the ground loop system

2.3 WATER PRESSURE-REDUCING VALVES

A. Water Regulators

1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Conbraco Industries, Inc.
 c. Zurn Plumbing Products Group; Wilkins Div.

3. Pressure Rating: Initial working pressure of 150 psig (1035 kPa).

4. Body: Bronze with chrome-plated finish for NPS 2 (DN 50) and smaller.
5. End Connections: Threaded for NPS 2 (DN 50) and smaller.
6. Refer to drawing for required size, flow rate, and pressures.

2.4 BALANCING VALVES

A. Memory-Stop Balancing Valves:

1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Conbraco Industries, Inc.
 b. Crane Co.; Crane Valve Group; Crane Valves.
 c. Milwaukee Valve Company.
 d. NIBCO INC.

2. Standard: MSS SP-110 for two-piece, copper-alloy ball valves.
3. Pressure Rating: 400-psig minimum CWP.
4. Size: NPS 2 or smaller.
5. Body: Copper alloy.
6. Port: Standard or full port.
7. Ball: Chrome-plated brass.
8. Seats and Seals: Replaceable.
9. End Connections: Solder joint or threaded.

2.5 TEMPERATURE-ACTUATED WATER MIXING VALVES

A. Thermostatic, Water Mixing Valve Assemblies:

1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 b. Lawler Manufacturing Company, Inc.
 c. Powers; a Watts Industries Co.
 d. Symmons Industries, Inc.

4. Type: Exposed-mounting, thermostatically controlled water mixing valve.
5. Material: Bronze body with corrosion-resistant interior components.
6. Connections: Threaded union inlets and outlet.
7. Accessories: Manual temperature control, check stops on hot- and cold-water supplies, and adjustable, temperature-control handle.
8. Valve Pressure Rating: 125 psig minimum, unless otherwise indicated.
2.6 STRAINERS FOR DOMESTIC WATER PIPING

A. Y-Pattern Strainers:
 1. Pressure Rating: 125 psig minimum, unless otherwise indicated.
 2. Body: Bronze for NPS 2 and smaller; cast iron with interior lining complying with AWWA C550 or FDA-approved, epoxy coating for NPS 2-1/2 and larger.
 3. End Connections: Threaded for NPS 2 and smaller; flanged for NPS 2-1/2 and larger.
 4. Screen: Stainless steel with round perforations, unless otherwise indicated.
 5. Perforation Size:
 a. Strainers NPS 2 and Smaller: 0.020 inch.
 b. Strainers NPS 2-1/2 and larger: 0.045 inch.

2.7 ELECTRONIC TRAP PRIMER SEAL VALVES

A. Electronic Trap-Seal Primer Valves:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Sioux Chief Manufacturing Co.
 b. MIFAB, Inc.
 c. PPP Inc.
 2. Standard: ASSE 1044.
 3. Pressure Rating: 100 psig minimum.
 5. Inlet and Outlet Connections: NPS 1/2 threaded, union, or solder joint.
 8. 120V/1 phase.

2.8 HOSE BIBBS

A. Hose Bibbs:
 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 c. Watts Drainage Products Inc.
 d. Woodford Manufacturing Company.
 e. Zurn Plumbing Products Group; Specification Drainage Operation.
2. Standard: ASME A112.18.1 for sediment faucets.
9. Finish for Equipment Rooms: Rough bronze, or chrome or nickel plated.
10. Finish for Service Areas: Rough bronze with Wheel handle.
11. Finish for Finished Rooms: Chrome or nickel plated with Wheel handle.

2.9 WALL HYDRANTS

A. Nonfreezing Wall Hydrants:

1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 c. Watts Drainage Products Inc.
 d. Woodford Manufacturing Company.
 e. Zurn Plumbing Products Group; Specification Drainage Operation.

5. Casing and Operating Rod: Of length required to match wall thickness. Include wall clamp.
6. Inlet: NPS 3/4 or NPS 1.
8. Nozzle and Wall-Plate Finish: Chrome plated.

2.10 DRAIN VALVES

A. Ball-Valve-Type, Hose-End Drain Valves:

2. Pressure Rating: 400-psig minimum CWP.
4. Body: Copper alloy.
5. Ball: Chrome-plated brass.
8. Inlet: Threaded or solder joint.

2.11 WATER HAMMER ARRESTERS

A. Water Hammer Arresters:

1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 b. MIFAB, Inc.
 c. PPP Inc.
 e. Zurn Plumbing Products Group; Specification Drainage Operation.

3. Type: Metal bellows.
4. Size: ASSE 1010, Sizes AA and A through F or PDI-WH 201, Sizes A through F.

2.12 AIR VENTS

A. Bolted-Construction Automatic Air Vents:

1. Body: Bronze.
2. Pressure Rating: 125-psig minimum pressure rating at 140 deg F.
3. Float: Replaceable, corrosion-resistant metal.
5. Size: NPS 1/2 minimum inlet.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Refer to Division 22 Section "Common Work Results for Plumbing" for piping joining materials, joint construction, and basic installation requirements.

B. Install backflow preventers in each water supply to mechanical equipment and systems and to other equipment and water systems that may be sources of contamination. Comply with authorities having jurisdiction.

1. Locate backflow preventers in same room as connected equipment or system.
2. Install drain for backflow preventers with atmospheric-vent drain connection with air-gap fitting, fixed air-gap fitting, or equivalent positive pipe separation of at least two pipe diameters in drain piping and pipe to floor drain. Locate air-gap...
device attached to or under backflow preventer. Simple air breaks are not acceptable for this application.

3. Do not install bypass piping around backflow preventers.

C. Install water regulators with inlet and outlet shutoff valves and bypass with memory-stop balancing valve. Install pressure gages on inlet and outlet.

D. Install water control valves with inlet and outlet shutoff valves. Install pressure gages on inlet and outlet.

E. Install balancing valves in locations where they can easily be adjusted.

F. Install temperature-actuated water mixing valves with check stops or shutoff valves on inlets and with shutoff valve on outlet.
 1. Install thermometers and water regulators if specified.
 2. Install cabinet-type units recessed in or surface mounted on wall as specified.

G. Install Y-pattern strainers for water on supply side of each thermostatic mixing valve, balancing valve, and pump.

H. Install water hammer arresters in water piping according to PDI-WH 201.

I. Install air vents at high points of water piping.

J. Install trap-seal primer systems with outlet piping pitched down toward drain trap a minimum of 1 percent, and connect to floor-drain body, trap, or inlet fitting. Adjust system for proper flow.

3.2 CONNECTIONS

A. Piping installation requirements are specified in other Division 22 Sections. Drawings indicate general arrangement of piping and specialties.

B. Ground equipment according to Division 26 Section for Grounding and Bonding for Electrical Systems.

C. Connect wiring according to Division 26 Section for Low-Voltage Electrical Power Conductors and Cables.

3.3 LABELING AND IDENTIFYING

A. Equipment Nameplates and Signs: Install engraved plastic-laminate equipment nameplate or sign on or near each of the following:
 1. Pressure vacuum breakers.
 2. Reduced-pressure-principle backflow preventers.
 3. Water pressure-reducing valves
 4. Thermostatic, water mixing valves.
 5. Trap-seal primer systems.
B. Distinguish among multiple units, inform operator of operational requirements, indicate safety and emergency precautions, and warn of hazards and improper operations, in addition to identifying unit. Nameplates and signs are specified in Division 23 Section "Identification for Mechanical Piping and Equipment."

3.4 FIELD QUALITY CONTROL

A. Perform the following tests and prepare test reports:

1. Test each vacuum breaker and reduced-pressure-principle backflow preventer according to authorities having jurisdiction and the device's reference standard.

B. Remove and replace malfunctioning domestic water piping specialties and retest as specified above.

C. Domestic water piping specialties will be considered defective if they do not pass tests and inspections.

D. Prepare test and inspection reports.

3.5 ADJUSTING

A. Set field-adjustable pressure set points of water pressure-reducing valves.

B. Set field-adjustable flow set points of balancing valves.

C. Set field-adjustable temperature set points of temperature-actuated water mixing valves.

END OF SECTION
THIS PAGE INTENTIONALLY LEFT BLANK
SECTION 221316
SANITARY WASTE AND VENT PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Pipe, tube, and fittings.
 2. Specialty pipe fittings.
 3. Encasement for underground metal piping.

1.3 PERFORMANCE REQUIREMENTS
A. Components and installation shall be capable of withstanding the following minimum working pressure unless otherwise indicated:

1.4 SUBMITTALS
A. Product Data: For each type of product indicated.
 B. Field quality-control reports.

1.5 QUALITY ASSURANCE
A. Piping materials shall bear label, stamp, or other markings of specified testing agency.

1.6 PROJECT CONDITIONS
A. Interruption of Existing Sanitary Waste Service: Do not interrupt service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary service according to requirements indicated:
 1. Notify Owner no fewer than two days in advance of proposed interruption of sanitary waste service.
 2. Do not proceed with interruption of sanitary waste service without Owner's written permission.
PART 2 - PRODUCTS

2.1 PIPING MATERIALS

A. Comply with requirements in "Piping Schedule" Article for applications of pipe, tube, fitting materials, and joining methods for specific services, service locations, and pipe sizes.

B. Comply with requirements in "Piping Schedule" Article for applications of pipe, tube, fitting materials, and joining methods for specific services, service locations, and pipe sizes.

2.2 HUB-AND-SPIGOT, CAST-IRON SOIL PIPE AND FITTINGS

A. Pipe and Fittings: ASTM A 74, Service class.

B. Gaskets: ASTM C 564, rubber.

C. Calking Materials: ASTM B 29, pure lead and oakum or hemp fiber.

2.3 HUBLESS, CAST-IRON SOIL PIPE AND FITTINGS

A. Pipe and Fittings: ASTM A 888 or CISPI 301.

B. Stack Fittings: ASME B16.45 or ASSE 1043, hubless, cast-iron aerator and deaerator drainage fittings.

C. Hubless-Piping Couplings:

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

 a. ANACO-Husky.
 c. Fernco Inc.
 d. MIFAB, Inc.
 e. Tyler Pipe.

3. Description: Stainless-steel corrugated shield with stainless-steel bands and tightening devices; and ASTM C 564, rubber sleeve with integral, center pipe stop.

2.4 COPPER TUBE AND FITTINGS

A. Copper DWV Tube: ASTM B 306, drainage tube, drawn temper.
B. Copper Drainage Fittings: ASME B16.23, cast copper or ASME B16.29, wrought copper, solder-joint fittings.

C. Hard Copper Tube: ASTM B 88, Type L, water tube, drawn temper.

D. Soft Copper Tube: ASTM B 88, Type L, water tube, annealed temper.

E. Copper Pressure Fittings:
 2. Copper Unions: MSS SP-123, copper-alloy, hexagonal-stock body with ball-and-socket, metal-to-metal seating surfaces, and solder-joint or threaded ends.

F. Copper Flanges: ASME B16.24, Class 150, cast copper with solder-joint end.
 1. Flange Gasket Materials: ASME B16.21, full-face, flat, nonmetallic, asbestos-free, 1/8-inch maximum thickness unless thickness or specific material is indicated.
 2. Flange Bolts and Nuts: ASME B18.2.1, carbon steel unless otherwise indicated.

G. Solder: ASTM B 32, lead free with ASTM B 813, water-flushable flux.

2.5 SPECIALTY PIPE FITTINGS

A. Transition Couplings:
 1. General Requirements: Fitting or device for joining piping with small differences in OD's or of different materials. Include end connections same size as and compatible with pipes to be joined.
 2. Fitting-Type Transition Couplings: Manufactured piping coupling or specified piping system fitting.
 3. Unshielded, Nonpressure Transition Couplings:
 a. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 2) Fernco Inc.
 3) Mission Rubber Company; a division of MCP Industries, Inc.
 4) Plastic Oddities; a division of Diverse Corporate Technologies, Inc.
 c. Description: Elastomeric, sleeve-type, reducing or transition pattern. Include shear ring and corrosion-resistant-metal tension band and tightening mechanism on each end.
 d. Sleeve Materials:
2) For Plastic Pipes: ASTM F 477, elastomeric seal or ASTM D 5926, PVC.
3) For Dissimilar Pipes: ASTM D 5926, PVC or other material compatible with pipe materials being joined.

2.6 ENCASEMENT FOR UNDERGROUND METAL PIPING

A. Standard: ASTM A 674 or AWWA C105/A 21.5.
B. Material: Linear low-density polyethylene film of 0.008-inch or high-density, cross-laminated polyethylene film of 0.004-inch minimum thickness.
C. Form: Sheet or tube.

PART 3 - EXECUTION

3.1 EARTH MOVING

A. Refer to site plans and associated DelDOT specifications for earth moving requirements.

3.2 PIPING INSTALLATION

A. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems.
 1. Indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations.
 2. Install piping as indicated unless deviations to layout are approved on coordination drawings.
B. Install piping in concealed locations unless otherwise indicated and except in equipment rooms and service areas.
C. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
D. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.
E. Install piping to permit valve servicing.
F. Install piping at indicated slopes.
G. Install piping free of sags and bends.
H. Install fittings for changes in direction and branch connections.
I. Install piping to allow application of insulation.

J. Make changes in direction for soil and waste drainage and vent piping using appropriate branches, bends, and long-sweep bends. Sanitary tees and short-sweep 1/4 bends may be used on vertical stacks if change in direction of flow is from horizontal to vertical. Use long-turn, double Y-branch and 1/8-bend fittings if two fixtures are installed back to back or side by side with common drain pipe. Straight tees, elbows, and crosses may be used on vent lines. Do not change direction of flow more than 90 degrees. Use proper size of standard increasers and reducers if pipes of different sizes are connected. Reducing size of drainage piping in direction of flow is prohibited.

K. Lay buried building drainage piping beginning at low point of each system. Install true to grades and alignment indicated, with unbroken continuity of invert. Place hub ends of piping upstream. Install required gaskets according to manufacturer's written instructions for use of lubricants, cements, and other installation requirements. Maintain swab in piping and pull past each joint as completed.

L. Install soil and waste drainage and vent piping at the following minimum slopes unless otherwise indicated:

1. Horizontal Sanitary Drain: 2 percent minimum downward in direction of flow for piping NPS 3 and smaller; 1 percent minimum downward in direction of flow for piping NPS 4 and larger.
2. Vent Piping: 1 percent down toward vertical fixture vent or toward vent stack.

M. Install cast-iron soil piping according to CISPI's "Cast Iron Soil Pipe and Fittings Handbook," Chapter IV, "Installation of Cast Iron Soil Pipe and Fittings."

1. Install encasement on underground piping according to ASTM A 674 or AWWA C105/A 21.5.

N. Install aboveground copper tubing according to CDA's "Copper Tube Handbook."

O. Plumbing Specialties:

1. Install cleanouts at grade and extend to where building sanitary drains connect to building sanitary sewers in sanitary drainage gravity-flow piping. Install cleanout fitting with closure plug inside the building in sanitary drainage force-main piping. Comply with requirements for cleanouts specified in Division 22 Section "Sanitary Waste Piping Specialties."
2. Install drains in sanitary drainage gravity-flow piping. Comply with requirements for drains specified in Division 22 Section "Sanitary Waste Piping Specialties."

P. Do not enclose, cover, or put piping into operation until it is inspected and approved by authorities having jurisdiction.

Q. Install sleeves for piping penetrations of walls, ceilings, and floors.
R. Install sleeve seals for piping penetrations of concrete walls and slabs.
S. Install escutcheons for piping penetrations of walls, ceilings, and floors.

3.3 JOINT CONSTRUCTION

B. Join hubless, cast-iron soil piping according to CISPI 310 and CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for hubless-piping coupling joints.

C. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is specified.
 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.

D. Join copper tube and fittings with soldered joints according to ASTM B 828. Use ASTM B 813, water-flushable, lead-free flux and ASTM B 32, lead-free-alloy solder.

3.4 SPECIALTY PIPE FITTING INSTALLATION

A. Transition Couplings:
 1. Install transition couplings at joints of piping with small differences in OD's.
 2. In Drainage Piping: Shielded, nonpressure transition couplings.

3.5 VALVE INSTALLATION

A. General valve installation requirements are specified in Division 22 Section "Domestic Water Piping Specialties."

B. Check Valves: Install swing check valve, between pump and shutoff valve, on each sewage pump discharge.

C. Backwater Valves: Install backwater valves in piping subject to backflow.
 1. Horizontal Piping: Horizontal backwater valves
 2. Floor Drains: Drain outlet backwater valves unless drain has integral backwater valve.
 3. Install backwater valves in accessible locations.
 4. Comply with requirements for backwater valve specified in Division 22 Section "Sanitary Waste Piping Specialties."
3.6 HANGER AND SUPPORT INSTALLATION

A. Comply with requirements for pipe hanger and support devices and installation specified in Division 23 Section "Hangers and Supports for Piping and Equipment."

1. Install carbon-steel pipe hangers for horizontal piping.
2. Install carbon-steel pipe support clamps for vertical piping.
3. Vertical Piping: MSS Type 8 or Type 42, clamps.
4. Install individual, straight, horizontal piping runs:
 a. MSS Type 1, adjustable, steel clevis hangers.

B. Support horizontal piping and tubing within 12 inches of each fitting and coupling.

C. Support vertical piping and tubing at base and at floor.

D. Rod diameter may be reduced one size for double-rod hangers, with 3/8-inch minimum rods.

E. Install hangers for cast-iron soil piping with the following maximum horizontal spacing and minimum rod diameters:

 1. NPS 1-1/2 and NPS 2: 60 inches with 3/8-inch rod.
 2. NPS 3: 60 inches with 1/2-inch rod.
 3. NPS 4 to NPS 6: 60 inches with 5/8-inch rod.

F. Install supports for vertical cast-iron soil piping every 15 feet.

G. Install hangers for copper tubing with the following maximum horizontal spacing and minimum rod diameters:

 1. NPS 1-1/4: 72 inches with 3/8-inch rod.
 2. NPS 1-1/2 and NPS 2: 96 inches with 3/8-inch rod.
 3. NPS 2-1/2: 108 inches with 1/2-inch rod.
 4. NPS 3 to NPS 6: 10 feet with 5/8-inch rod.

H. Install supports for vertical copper tubing every 10 feet.

I. Support piping and tubing not listed above according to MSS SP-69 and manufacturer's written instructions.

3.7 CONNECTIONS

A. Drawings indicate general arrangement of piping, fittings, and specialties.

B. Connect soil and waste piping to exterior sanitary sewerage piping. Use transition fitting to join dissimilar piping materials.

C. Connect drainage and vent piping to the following:
1. **Plumbing Fixtures**: Connect drainage piping in sizes indicated, but not smaller than required by plumbing code.
2. **Plumbing Fixtures and Equipment**: Connect atmospheric vent piping in sizes indicated, but not smaller than required by authorities having jurisdiction.
3. **Plumbing Specialties**: Connect drainage and vent piping in sizes indicated, but not smaller than required by plumbing code.
4. **Install test tees (wall cleanouts)** in conductors near floor and floor cleanouts with cover flush with floor.
5. **Install horizontal backwater valves** with cleanout cover flush with floor.
6. **Comply with requirements** for backwater valves, cleanouts, and drains specified in Division 22 Section "Sanitary Waste Piping Specialties."
7. **Equipment**: Connect drainage piping as indicated. Provide shutoff valve if indicated and union for each connection. Use flanges instead of unions for connections NPS 2-1/2, and larger.

D. **Where installing piping adjacent to equipment**, allow space for service and maintenance of equipment.

E. **Make connections according to the following unless otherwise indicated**:

1. Install unions, in piping NPS 2 and smaller at final connection to each piece of equipment.
2. Install flanges, in piping NPS 2-1/2 and larger at final connection to each piece of equipment.

3.8 IDENTIFICATION

A. **Identify exposed sanitary waste and vent piping**. Comply with requirements for identification specified in Division 22 Section "Identification for Plumbing Piping and Equipment."

3.9 FIELD QUALITY CONTROL

A. **During installation**, notify authorities having jurisdiction at least 24 hours before inspection must be made. Perform tests specified below in presence of authorities having jurisdiction.

1. **Roughing-in Inspection**: Arrange for inspection of piping before concealing or closing-in after roughing-in and before setting fixtures.
2. **Final Inspection**: Arrange for final inspection by authorities having jurisdiction to observe tests specified below and to ensure compliance with requirements.

B. **Reinspection**: If authorities having jurisdiction find that piping will not pass test or inspection, make required corrections and arrange for reinspection.

C. **Reports**: Prepare inspection reports and have them signed by authorities having jurisdiction.
D. Test sanitary drainage and vent piping according to procedures of authorities having jurisdiction or, in absence of published procedures, as follows:

1. Test for leaks and defects in new piping and parts of existing piping that have been altered, extended, or repaired. If testing is performed in segments, submit separate report for each test, complete with diagram of portion of piping tested.

2. Leave uncovered and unenclosed new, altered, extended, or replaced drainage and vent piping until it has been tested and approved. Expose work that was covered or concealed before it was tested.

3. Roughing-in Plumbing Test Procedure: Test drainage and vent piping except outside leaders on completion of roughing-in. Close openings in piping system and fill with water to point of overflow, but not less than 10-foot head of water. From 15 minutes before inspection starts to completion of inspection, water level must not drop. Inspect joints for leaks.

4. Finished Plumbing Test Procedure: After plumbing fixtures have been set and traps filled with water, test connections and prove they are gastight and watertight. Plug vent-stack openings on roof and building drains where they leave building. Introduce air into piping system equal to pressure of 1-inch wg. Use U-tube or manometer inserted in trap of water closet to measure this pressure. Air pressure must remain constant without introducing additional air throughout period of inspection. Inspect plumbing fixture connections for gas and water leaks.

5. Repair leaks and defects with new materials and retest piping, or portion thereof, until satisfactory results are obtained.

6. Prepare reports for tests and required corrective action.

7. Results of pipe pressure tests shall be submitted to Engineer, Owner, and Owner’s Representative for review prior to closing in walls, floors, or ceilings that will prevent access to piping for repairs.

3.10 CLEANING AND PROTECTION

A. Clean interior of piping. Remove dirt and debris as work progresses.

B. Protect drains during remainder of construction period to avoid clogging with dirt and debris and to prevent damage from traffic and construction work.

C. Place plugs in ends of uncompleted piping at end of day and when work stops.

D. Following the installation of the sanitary piping system and overall construction, the sanitary piping system shall be jet cleaned to remove debris from the piping system.

E. Repair damage to adjacent materials caused by waste and vent piping installation.

3.11 PIPING SCHEDULE

A. Flanges and unions may be used on aboveground pressure piping unless otherwise indicated.

B. Aboveground, soil and waste piping shall be any of the following:

1. Service class, cast-iron soil pipe and fittings; gaskets; and gasketed joints.
2. Hubless, cast-iron soil pipe and fittings; hubless-piping couplings; and coupled joints.
3. Copper DWV tube, copper drainage fittings, and soldered joints.

C. Aboveground, vent piping shall be any of the following:
 1. Service class, cast-iron soil pipe and fittings; gaskets; and gasketed joints.
 2. Hubless, cast-iron soil pipe and fittings; hubless-piping couplings; and coupled joints.
 3. Copper DWV tube, copper drainage fittings, and soldered joints.

D. Underground, soil, waste, and vent piping shall be any of the following:
 1. Extra Heavy class, cast-iron soil piping; gaskets joints.

END OF SECTION
SECTION 221319
SANITARY WASTE PIPING SPECIALTIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Cleanouts.
 2. Floor drains.

1.3 DEFINITIONS
B. FOG: Fats, oils, and greases.
C. FRP: Fiberglass-reinforced plastic.
D. HDPE: High-density polyethylene plastic.
E. PE: Polyethylene plastic.
F. PP: Polypropylene plastic.
G. PVC: Polyvinyl chloride plastic.

1.4 SUBMITTALS
A. Product Data: For each type of product indicated.

1.5 INFORMATIONAL SUBMITTALS
A. Field quality-control reports.

1.6 CLOSEOUT SUBMITTALS
A. Operation and Maintenance Data: For drainage piping specialties to include in emergency, operation, and maintenance manuals.
1.7 QUALITY ASSURANCE

A. Drainage piping specialties shall bear label, stamp, or other markings of specified testing agency.

PART 2 - PRODUCTS

2.1 CLEANOUTS

A. Exposed Metal Cleanouts:

 1. ASME A112.36.2M, Cast-Iron Cleanouts:

 a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 1) Josam Company.
 3) Zurn Plumbing Products Group.

B. Metal Floor Cleanouts:

 1. ASME A112.36.2M, Cast-Iron Cleanouts:

 a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 1) Josam Company.
 3) Zurn Plumbing Products Group.

C. Cast-Iron Wall Cleanouts:

 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 c. Zurn Plumbing Products Group;

2. Standard: ASME A112.36.2M. Include wall access.
3. Size: Same as connected drainage piping.
4. Body: Hub-and-spigot, cast-iron soil pipe T-branch or hubless, cast-iron soil pipe test tee as required to match connected piping.
5. Closure: Countersunk plug.
6. Closure Plug Size: Same as or not more than one size smaller than cleanout size.
D. Plastic Floor Cleanouts

1. Size: Same as connected branch.
2. Body: PVC.
3. Closure Plug: PVC.
4. Riser: Drainage pipe fitting and riser to cleanout of same material as drainage piping.

2.2 FLOOR DRAINS

A. Cast-Iron Floor Drains:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Zurn Plumbing Products Group.
 b. Watts

2. Standard Floor Drain (FDR): Basis of Design – Zurn Z415S
 a. Standard: ASME A112.6.3.
 b. Pattern: Floor drain.
 c. Body Material: Cast Iron
 d. Outlet: Bottom.
 e. Backwater Valve: None
 f. Coating on Interior and Exposed Exterior Surfaces: None
 g. Sediment Bucket: Not required.
 h. Top or Strainer Material: Polished Nickel Bronze, vandal resistant.
 i. Top Shape: Round.
 j. Dimensions of Top or Strainer: 6” Round.
 k. Trap Material: Cast iron
 l. Provide with trap primer connection.

2.3 MISCELLANEOUS SANITARY DRAINAGE PIPING SPECIALTIES

A. Air-Gap Fittings:

1. Standard: ASME A112.1.2, for fitting designed to ensure fixed, positive air gap between installed inlet and outlet piping.
2. Body: Bronze or cast iron.
3. Inlet: Opening in top of body.
4. Outlet: Larger than inlet.
5. Size: Same as connected waste piping and with inlet large enough for associated indirect waste piping.
PART 3 - EXECUTION

3.1 INSTALLATION

A. Install cleanouts in aboveground piping and building drain piping according to the following, unless otherwise indicated:
 1. Size same as drainage piping up to NPS 4 (DN 100). Use NPS 4 (DN 100) for larger drainage piping unless larger cleanout is indicated.
 2. Locate at each change in direction of piping greater than 45 degrees.
 3. Locate at minimum intervals of 50 feet (15 m) for piping NPS 4 (DN 100) and smaller and 100 feet (30 m) for larger piping.
 4. Locate at base of each vertical soil and waste stack.

B. For floor cleanouts for piping below floors, install cleanout deck plates with top flush with finished floor.

C. For cleanouts located in concealed piping, install cleanout wall access covers, of types indicated, with frame and cover flush with finished wall.

D. Install floor drains at low points of surface areas to be drained. Set grates of drains flush with finished floor, unless otherwise indicated.
 1. Position floor drains for easy access and maintenance.
 2. Set floor drains below elevation of surrounding finished floor to allow floor drainage. Set with grates depressed according to the following drainage area radii:
 a. Radius, 30 Inches (750 mm) or Less: Equivalent to 1 percent slope, but not less than 1/4-inch (6.35-mm) total depression.
 b. Radius, 30 to 60 Inches (750 to 1500 mm): Equivalent to 1 percent slope.
 c. Radius, 60 Inches (1500 mm) or Larger: Equivalent to 1 percent slope, but not greater than 1-inch (25-mm) total depression.
 3. Install floor-drain flashing collar or flange so no leakage occurs between drain and adjoining flooring. Maintain integrity of waterproof membranes where penetrated.
 4. Install individual traps for floor drains connected to sanitary building drain, unless otherwise indicated.

E. Install deep-seal traps on floor drains and other waste outlets, if indicated.

F. Install floor-drain, trap-seal primer fittings on inlet to floor drains that require trap-seal primer connection.
 1. Exception: Fitting may be omitted if trap has trap-seal primer connection.
 2. Size: Same as floor drain inlet.

G. Install air-gap fittings on draining-type backflow preventers and on indirect-waste piping discharge into sanitary drainage system.
3.2 CONNECTIONS
A. Comply with requirements in Section 221316 "Sanitary Waste and Vent Piping" for piping installation requirements. Drawings indicate general arrangement of piping, fittings, and specialties.
B. Install piping adjacent to equipment to allow service and maintenance.

3.3 FLASHING INSTALLATION
A. Install sheet flashing on pipes, sleeves, and specialties passing through or embedded in floors and roofs with waterproof membrane.
 1. Pipe Flashing: Sleeve type, matching pipe size, with minimum length of 10 inches (250 mm), and skirt or flange extending at least 8 inches (200 mm) around pipe.
 2. Sleeve Flashing: Flat sheet, with skirt or flange extending at least 8 inches (200 mm) around sleeve.
 3. Embedded Specialty Flashing: Flat sheet, with skirt or flange extending at least 8 inches (200 mm) around specialty.
B. Set flashing on floors and roofs in solid coating of bituminous cement.
C. Secure flashing into sleeve and specialty clamping ring or device.

3.4 FIELD QUALITY CONTROL
A. Tests and Inspections:
 1. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.
 2. Test and adjust controls and safety. Replace damaged and malfunctioning controls and equipment.

3.5 PROTECTION
A. Protect drains during remainder of construction period to avoid clogging with dirt or debris and to prevent damage from traffic or construction work.
B. Place plugs in ends of uncompleted piping at end of each day or when work stops.

END OF SECTION
THIS PAGE INTENTIONALLY LEFT BLANK
SECTION 221429
PLUMBING PUMPS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 REFERENCE STANDARDS
A. HI 1.4-2000: Hydraulic Institute Centrifugal Pumps for Installation, Operation and Maintenance.

1.3 SUMMARY
A. Section Includes:
 1. Domestic water recirculation pumps
B. Related Section:
 1. Division 22 Section “Common Motor Requirements for Plumbing Equipment”.
 2. Division 22 Section “Identification for Plumbing Piping and Equipment”.
 3. Division 22 Section “Hangers and Supports for Plumbing Piping and Equipment”.

1.4 SUBMITTALS
A. Product Data: For each type of product indicated. Include construction details, material descriptions, dimensions of individual components and profiles. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.
B. Wiring Diagrams: For power, signal, and control wiring.
C. Operation and Maintenance Data: For pumps and controls, to include in operation and maintenance manuals.

1.5 QUALITY ASSURANCE
A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
B. UL Compliance: Comply with UL 778 for motor-operated water pumps.

1.6 DELIVERY, STORAGE, AND HANDLING

A. Retain shipping flange protective covers and protective coatings during storage.
B. Protect bearings and couplings against damage.
C. Comply with pump manufacturer's written rigging instructions for handling.

PART 2 - PRODUCTS

2.1 DOMESTIC WATER RECIRCULATION - CLOSE-COUPLED, IN-LINE CENTRIFUGAL PUMPS

A. Subject to compliance with requirements, provide comparable product by one of the following:
 1. ITT Corporation; Bell & Gossett
 2. Armstrong Pumps Inc.
 3. TACO Incorporated.

B. Description: Factory-assembled and -tested, centrifugal, overhung-impeller, close-coupled, in-line pump as defined in HI 1.1-1.2 and HI 1.3; designed for installation with pump and motor shafts mounted horizontally or vertically.

C. Pump Construction:
 1. Casing: Radially split, cast bronze, with threaded gage tappings at inlet and outlet, replaceable bronze wear rings, and threaded companion-flange or union-end connections to match piping connections.
 2. Impeller: ASTM B 584, cast bronze; statically and dynamically balanced, keyed to shaft, and secured with a locking cap screw. For constant-speed pumps, trim impeller to match specified performance.
 4. Seal: Mechanical seal consisting of carbon rotating ring against a ceramic seat held by a stainless-steel spring, and Buna-N bellows and gasket. Include water slinger on shaft between motor and seal.
 5. Pump Bearings: Permanently lubricated ball bearings.

D. Motor: Single speed and rigidly mounted to pump casing with integral pump support.
 1. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 2. Comply with NEMA designation, temperature rating, service factor, and efficiency requirements for motors specified in Section 230513 "Common Motor Requirements for Mechanical Equipment." Motor shall be inverter duty rated.
2.2 MOTORS

A. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements for motors specified in Division 23 Section "Common Motor Requirements for Mechanical Equipment."

1. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.

2. Controllers, Electrical Devices, and Wiring: Comply with requirements for electrical devices and connections specified in Division 26 Sections.

B. Motors for submersible pumps shall be hermetically sealed.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine roughing-in for plumbing piping to verify actual locations of piping connections before pump installation.

3.2 INSTALLATION

A. Pump Installation Standards: Comply with HI 1.4 for installation of pumps.

3.3 CONNECTIONS

A. Comply with requirements for piping specified in Division 22 Section Drawings indicate general arrangement of piping, fittings, and specialties.

B. Install piping adjacent to equipment to allow service and maintenance.

3.4 FIELD QUALITY CONTROL

A. Perform tests and inspections.

1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

B. Tests and Inspections:

1. Perform each visual and mechanical inspection.

2. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.

3. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.

4. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
C. Pumps and controls will be considered defective if they do not pass tests and inspections.

D. Prepare test and inspection reports.

3.5 ADJUSTING

A. Adjust pumps to function smoothly, and lubricate as recommended by manufacturer.

B. Adjust control set points.

END OF SECTION
SECTION 223400
DOMESTIC WATER HEATERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes the following for domestic water systems:
 1. Commercial, electric water heaters.
 2. Compression tanks.
 3. Accessories.

B. Related Sections:
 1. Division 2 Section “Identification for Plumbing Piping and Equipment”.
 2. Division 2 Section “Hangers and Supports for Plumbing Piping and Equipment”.

1.3 SUBMITTALS

A. Product Data: For each type and size of water heater. Include rated capacities; shipping, installed, and operating weights; furnished specialties; and accessories.

B. Shop Drawings: Detail water heater assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.

C. Product Certificates: Signed by manufacturers of water heaters certifying that products furnished comply with requirements.

D. Maintenance Data: For water heaters to include in maintenance manuals specified in Division 1.

E. Warranties: Special warranties specified in this Section.
1.4 QUALITY ASSURANCE

A. Source Limitations: Obtain same type of water heaters through one source from a single manufacturer.

B. Product Options: Drawings indicate size, profiles, and dimensional requirements of water heaters and are based on specific units indicated. Other manufacturers' products complying with requirements may be considered. Refer to Division 1 Section "Substitutions."

C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by testing agency acceptable to authorities having jurisdiction, and marked for intended use.

D. ASME Compliance: Fabricate and label water heater, hot-water storage tanks to comply with ASME Boiler and Pressure Vessel Code: Section VIII, "Pressure Vessels, Division 1."

E. ASHRAE Standards: Comply with performance efficiencies prescribed for the following:

1.5 WARRANTY

A. General Warranty: Special warranty specified in this Article shall not deprive Owner of other rights Owner may have under other provisions of the Contract Documents and shall be in addition to, and run concurrently with, other warranties made by Contractor under requirements of the Contract Documents.

B. Special Warranty: Written warranty, executed by manufacturer agreeing to repair or replace components of water heaters that fail in materials or workmanship within specified warranty period.

1. Failures include heating elements and storage tanks.
2. Warranty Period: From date of Substantial Completion:
 b. Storage Tanks: 10 years.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
1. Commercial, Storage, Electric Water Heaters:
 a. A. O. Smith Water Products Co. (Basis of Design)
 b. Bradford White Corp.

2. Compression Tanks:
 a. Bell and Gossett.
 b. Amtrol, Inc.
 c. Taco, Inc.

2.2 COMMERCIAL, STORAGE, ELECTRIC WATER HEATERS

A. Description: Comply with UL 1453.

B. Storage Tank Construction: ASME-code steel with 150-psig (1035-kPa) working-pressure rating.

 1. Tappings: Factory fabricated of materials compatible with tank for piping connections, relief valve, pressure gage, thermometer, drain, anode rods, and controls as required. Attach tappings to tank shell before testing and labeling.
 a. NPS 2 (DN50) and Smaller: Threaded ends according to ASME B1.20.1, pipe threads.

 2. Interior Finish: Materials and thicknesses complying with NSF 61, barrier materials for potable-water tank linings. Extend finish into and through tank fittings and outlets.

 3. Insulation: Comply with ASHRAE 90.1. Surround entire storage tank except connections and controls.

C. Heating Elements: Electric, screw-in or bolt-on, immersion type arranged in multiples of three.

 1. Exception: Water heaters up to 9-kW input may have 2 or 3 elements.
 2. Temperature Control: Adjustable immersion thermostat.

 3. Safety Controls: Automatic, high-temperature-limit and low-water cutoff devices or systems.

D. Drain Valve: ASSE 1005, corrosion-resistant metal, factory installed.

E. Anode Rods: Factory installed magnesium.

F. Dip Tube: Factory installed. Not required if cold-water inlet is near bottom of storage tank.
2.3 COMPRESSION TANKS

A. Description: Steel, pressure-rated tank constructed with welded joints and factory-installed, butyl-rubber diaphragm. Include air pre-charge to minimum system-operating pressure at tank.

B. Construction: 150-psig (1035-kPa) working-pressure rating.

C. Tappings: Factory-fabricated steel, welded to tank before testing and labeling. Include ASME B1.20.1, pipe thread.

D. Tank Interior Finish: Materials and thicknesses complying with NSF 61, barrier materials for potable-water tank linings. Extend finish into and through tank fittings and outlets.

E. Tank Exterior Finish: Manufacturer's standard, unless finish is indicated.

F. Air-Charging Valve: Factory installed.

2.4 WATER HEATER ACCESSORIES

A. Combination Temperature and Pressure Relief Valves: ASME rated and stamped and complying with ASME PTC 25.3. Include relieving capacity at least as great as heat input and include pressure setting less than water heater working-pressure rating. Select relief valve with sensing element that extends into tank.

1. Option: Separate temperature and pressure relief valves are acceptable instead of combination relief valve.

B. Pressure Relief Valves: ASME rated and stamped and complying with ASME PTC 25.3. Include pressure setting less than heat-exchanger working-pressure rating.

C. Vacuum Relief Valves: Comply with ASME PTC 25.3. Furnish for installation in piping.

1. Exception: Omit if water heater has integral vacuum-relieving device.

D. Water Regulators: ASSE 1003, water-pressure reducing valve. Set at 25-psig (172.5-kPa) maximum outlet pressure.

E. Shock Absorbers: ASSE 1010 or PDI WH 201, Size A water hammer arrester.

F. Drain Pans: Corrosion-resistant metal with raised edge. Include dimensions not less than base of water heater and include drain outlet not less than NPS 3/4 (DN20).

G. Piping-Type Heat Traps: Field-fabricated piping arrangement according to ASHRAE 90.1 or ASHRAE 90.2.
PART 3 - EXECUTION

3.1 WATER HEATER INSTALLATION

A. Install commercial water heaters on concrete bases.

B. Install water heaters, level and plumb, according to layout drawings, original design, and referenced standards. Maintain manufacturer's recommended clearances. Arrange units so controls and devices needing service are accessible.

C. Anchor water heaters to substrate.

D. Install seismic restraints for water heaters. Anchor to substrate.

E. Install temperature and pressure relief valves in top portion of storage tanks. Use relief valves with sensing elements that extend into tanks. Extend relief valve outlet with water piping in continuous downward pitch and discharge onto closest floor drain.

F. Install water heater drain piping as indirect waste to spill into open drains or over floor drains. Install hose-end drain valves at low points in water piping for water heaters that do not have tank drains.

G. Install pressure gages on water heater piping. Refer to Division 22 Section "Meters and Gages for Plumbing" for pressure gages.

H. Install water regulator, with integral bypass relief valve, in booster-heater inlet piping and water hammer arrester in booster-heater outlet piping.

I. Install piping-type heat traps on inlet and outlet piping of water heater storage tanks without integral or fitting-type heat traps.

J. Fill water heaters with water.

K. Charge compression tanks with air.

3.2 CONNECTIONS

A. Piping installation requirements are specified in other Division 22 Sections. Drawings indicate general arrangement of piping, fittings, and specialties.

B. Install piping adjacent to machine to allow service and maintenance.

C. Connect hot- and cold-water piping with shutoff valves and unions. Connect hot-water-circulating piping with shutoff valve, check valve, and union.

D. Make connections with dielectric fittings where piping is made of dissimilar metal.

E. Electrical Connections: Power wiring and disconnect switches are specified in Division 26 Sections. Arrange wiring to allow unit service.
F. Ground equipment.

1. Tighten electrical connectors and terminals according to manufacturer's published torque-tightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A and UL 486B.

3.3 FIELD QUALITY CONTROL

A. In addition to manufacturer's written installation and startup checks, perform the following:

1. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
2. Verify that piping system tests are complete.
3. Check for piping connection leaks.
4. Check for clear relief valve inlets, outlets, and drain piping.
5. Check operation of circulators.
6. Test operation of safety controls, relief valves, and devices.
7. Energize electric circuits.
8. Adjust operating controls.
9. Adjust hot-water-outlet temperature settings. Do not set above 140 deg F (60 deg C) unless piping system application requires higher temperature.

3.4 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain water heaters.

1. Train Owner's maintenance personnel on procedures for starting and stopping, troubleshooting, servicing, and maintaining equipment.
2. Review data in maintenance manuals. Refer to Division 1 Section "Closeout Procedures."
3. Review data in maintenance manuals. Refer to Division 1 Section "Operation and Maintenance Data."
4. Schedule training with Owner, through Architect, with at least seven days' advance notice.

END OF SECTION
SECTION 223620
DIESEL FUEL SYSTEM

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Provide a complete operational diesel fuel distribution system serving the new parallel diesel-fired generators. The system shall include an aboveground storage tank a pedestal mounted tank filling system, a fuel filtering system, above ground piping and leak detection and monitoring system. System shall include, at a minimum, remote fill, fuel filtering system, and piping accessories to include valves, fittings, hangers, and access ladders. Diesel fuel capacity shall be 4,000 gallons.

B. This Section includes diesel fuel distribution systems and the following:

1. Pipes, tubes, and fittings.
2. Piping and tubing joining materials.
3. Piping specialties.
4. Valves.
5. Diesel fuel ASTs.
6. Diesel fuel ASTs accessories.
7. Pedestal Mounted Tank Filling System
8. Fuel Filtration System
9. Tank Labels
10. Leak-detection and monitoring system.

1.3 DEFINITIONS

A. AST: Aboveground storage tank.

B. Exposed, Interior Installations: Exposed to view indoors. Examples include finished occupied spaces and mechanical equipment rooms.

C. Exposed, Exterior Installations: Exposed to view outdoors or subject to outdoor ambient temperatures and weather conditions. Examples include rooftop locations.

D. FPM: Vinlylidene fluoride-hexafluoropropylene copolymer rubber.

E. FRP: Glass-fiber-reinforced plastic.
1.4 PERFORMANCE REQUIREMENTS

A. Delegated Design: Design restraint and anchors for diesel fuel piping, ASTs, and equipment, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.

1.5 ACTION SUBMITTALS

A. Product Data: For each type of product indicated. Include construction details, material descriptions, and dimensions of individual components and profiles. Also include, where applicable, rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.

1. Piping specialties.
2. Valves: Include pressure rating, capacity, settings, and electrical connection data of selected models.
3. Each type and size of diesel fuel storage tank. Indicate dimensions, weights, loads, components, and location and size of each field connection.
4. Diesel fuel storage tank accessories.
5. Fleet diesel fuel dispenser accessories and hardware.
7. Leak-detection and monitoring system.
8. Dispenser containment sump.

1.6 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Plans and details, drawn to scale, on which diesel fuel piping is shown and coordinated with other installations, using input from installers of the items involved.

B. Site Survey: Plans, drawn to scale, on which diesel fuel piping and tanks are shown and coordinated with other services and utilities.

C. Qualification Data: For qualified professional engineer.

D. Field quality-control reports.

E. Warranty: Sample of special warranty.

1.7 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For diesel fuel equipment and accessories to include in emergency, operation, and maintenance manuals.

1.8 REFERENCE STANDARDS

A. Diesel system shall comply with the latest editions of the following:
2. NFPA 30A: Automotive and Marine Service Stations.

C. Underwriters Laboratories (UL).

1.9 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. Comply with ASME B31.9, "Building Services Piping," for diesel fuel piping materials, installation, testing, and inspecting.

C. Comply with requirements of the EPA, the State of Delaware Department of Environmental Protection (DEP), the Delaware Department of Natural Resources and Environmental Control (DNREC), and local authorities having jurisdiction. Include recording of diesel fuel storage tanks and monitoring of tanks and piping.

1.10 DELIVERY, STORAGE, AND HANDLING

A. Lift and support diesel fuel storage tanks only at designated lifting or supporting points, as shown on Shop Drawings. Do not move or lift tanks unless empty.

B. Deliver pipes and tubes with factory-applied end caps. Maintain end caps through shipping, storage, and handling to prevent pipe end damage and to prevent entrance of dirt, debris, and moisture.

1.11 WARRANTY

A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components of diesel fuel storage tanks and piping and related equipment that fail in materials or workmanship within specified warranty period.

1. Storage Tanks:

 a. Failures include, but are not limited to, the following when used for storage of diesel fuel at temperatures not exceeding 150 deg F:

 1) Structural failures including cracking, breakup, and collapse.

 b. Warranty Period: 30 years from date of Substantial Completion.
PART 2 - PRODUCTS

2.1 PIPES, TUBES, AND FITTINGS

A. See Part 3 piping schedule articles for where pipes, tubes, fittings, and joining materials are applied in various services.

B. Steel Pipe: ASTM A 53/A 53M, black steel, Schedule 40, Type E or S, Grade B.
 2. Wrought-Steel Welding Fittings: ASTM A 234/A 234M, for butt and socket welding.
 4. Forged-Steel Flanges and Flanged Fittings: ASME B16.5, minimum Class 150, including bolts, nuts, and gaskets of the following material group, end connections, and facings:
 b. End Connections: Threaded or butt welding to match pipe.
 c. Lapped Face: Not permitted underground.
 d. Gasket Materials: Asbestos free, ASME B16.20 metallic, or ASME B16.21 nonmetallic, gaskets compatible with fuel oil.
 e. Bolts and Nuts: ASME B18.2.1, cadmium-plated steel.

2.2 PIPING SPECIALTIES

A. Flexible Connectors: Comply with UL 567.
 1. Metallic Connectors:
 a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1) FLEX-ING, Inc.
 2) Metraflex Company (The).
 3) Tru-Flex Metal Hose Corp.
 b. Listed and labeled for aboveground and underground applications by an NRTL acceptable to authorities having jurisdiction.
 c. Stainless-steel bellows with woven, or stainless-steel, wire-reinforcing protective jacket.
 d. Minimum Operating Pressure: 150 psig.
 e. Maximum Operating Temperature: 250 deg F.
 f. End Connections: Socket, flanged, or threaded end to match connected piping.
 g. Maximum Length: 30 inches
h. Swivel end, 50-psig maximum operating pressure.
i. Factory-furnished anode.

B. Y-Pattern Strainers:
1. Body: ASTM A 126, Class B, cast iron with bolted cover and bottom drain connection.
2. End Connections: Threaded ends for NPS 2 and smaller.
3. Strainer Screen: 60-mesh startup strainer and perforated stainless-steel basket with 50 percent free area and bottom drain connection.

C. Manual Air Vents:
1. Body: Bronze.
2. Internal Parts: Nonferrous.
3. Operator: Screwdriver or thumbscrew.
4. Inlet Connection: NPS 1/2.
7. Maximum Operating Temperature: 225 deg F.

2.3 JOINING MATERIALS
A. Joint Compound and Tape: Suitable for diesel fuel.
B. Bonding Adhesive for Fiberglass Piping: As recommended by fiberglass piping manufacturer.

2.4 MANUAL DIESEL FUEL SHUTOFF VALVES
A. See valve schedule in Part 3 for where each valve type is applied in various services.
B. General Requirements for Metallic Valves, NPS 2 and Smaller for Liquid Service: Comply with UL 842.
1. CWP Rating: 125 psig.
3. Dryseal Threads on Flare Ends: Comply with ASME B1.20.3.
4. Tamperproof Feature: Locking feature for valves indicated in the valve schedule.
5. Service Mark: Initials "WOG" shall be permanently marked on valve body.
C. Two-Piece, Full-Port, Bronze Ball Valves with Bronze Trim: MSS SP-110.
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. BrassCraft Manufacturing Company; a Masco company.
c. Lyall, R. W. & Company, Inc.

3. Ball: Chrome-plated bronze.
4. Stem: Bronze; blowout proof.
5. Seats: Reinforced TFE; blowout proof.
6. Packing: Threaded-body packnut design with adjustable-stem packing.
7. Ends: Threaded, flared, or socket as indicated in the valve schedule.
8. CWP Rating: 600 psig.
9. Service Mark: Initials "WOG" shall be permanently marked on valve body.

2.5 SPECIALTY VALVES

A. Pressure Relief Valves: Comply with UL 842.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Anderson Greenwood; Division of Tyco Flow Control.
 b. Fulflo Specialties, Inc.
 c. Webster Fuel Pumps & Valves; a division of Capital City Tool, Inc.
 2. Listed and labeled for diesel fuel service by an NRTL acceptable to authorities having jurisdiction.
 3. Body: Brass, bronze, or cast steel.
 5. Seat and Seal: Nitrile rubber.
 9. Relief Pressure Setting: 60 psig.

B. Emergency Shutoff Valves: Comply with UL 842.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Ameron International; Fiberglass Pipe Group.
 b. Conley Corporation.
 c. EMCO Wheaton; a Gardner Denver Company.
 d. Environ Products, Inc.
 2. Listed and labeled for diesel fuel service by an NRTL acceptable to authorities having jurisdiction.
 3. Double poppet valve.
 5. Disk: FPM.
7. Stem: Plated brass.
8. O-Ring: FPM.
10. Fusible link to close valve at 165 deg F.
11. Thermal relief to vent line pressure buildup due to fire.
12. Air test port.
13. Maximum Operating Pressure: 0.5 psig.

2.6 DIESEL FUEL ABOVEGROUND STORAGE TANKS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

1. Highland Tank (Fireguard)
2. Substitutions: See Section 012500 – Substitution Procedures

B. Description: Provide and install a 4,000-gallon Highland Tank UL-2085 Fireguard® Thermally Insulated, FG Double-Wall Steel Aboveground Storage Tank. Tank storage volume shall be 4,000 gallons. Tank shall be 5’ 4” in diameter x 24’ 0” long.

C. The tank shall be designed for aboveground storage of flammable and combustible liquids at atmospheric pressure. Tank shall include integral steel secondary containment and thermal insulation that provides a minimum two-hour fire rating.

D. Each tank shall be delivered as a complete UL-listed assembly with two factory supplied, welded-on saddles. Size and location of saddles shall be as required by the manufacturer. Saddles to be set level on a solid foundation.

E. Tank shall be designed for possible relocation at a future date. Concrete encased tank designs are not equal and will NOT be permitted.

F. Tank shall comply with the latest edition of National Fire Protection Association NFPA 30 Flammable and Combustible Liquids Code. The tank’s secondary containment must be tested for tightness in the factory and in the field before commissioning.

G. Tank shall be supplied with emergency vents for the primary and the secondary containment tanks. Emergency venting by "form of construction" is not equal and will NOT be permitted.

H. Inner and Outer Tank shall be manufactured in accordance with UL-142 Standard for Steel Aboveground Tanks for Flammable and Combustible Liquids. Entire tank shall be labeled for Underwriters Laboratories UL 2085 Standard for Insulated Secondary Containment Aboveground Tank for Flammable Liquids. The tank design shall comply with UL 2085 "Protected" Tank standard and shall be tested for Ballistics, Impact, Hose Stream, and Pool Fire UL-2085 performance standards.
I. Tank shall be manufactured and labeled in strict accordance with Steel Tank Institute (STI) Fireguard® Thermally Insulated, Double Wall Steel Aboveground Storage Tank standards as applied by a licensee of the STI. Tank shall be subject to the STI’s Quality Assurance program and shall be backed by the STI 30-year limited warranty.

J. Construction

1. Tank shall be fabricated per UL-142 of mild carbon steel with shell seams of continuous lap weld construction.
2. Tank shall be of double wall construction and provide complete secondary containment of the primary storage tank’s contents by an impervious steel outer wall.
3. A minimum of 3” of porous, lightweight monolithic thermal insulation material shall be installed at the factory within the interstitial space between the inner and outer wall.
4. Thermal insulating material shall be in accordance with ASTM Standards C-332 and C-495, shall allow liquid to migrate through it to the monitoring point, and shall not be exposed to weathering and shall be protected by the steel secondary containment outer wall.
5. Lifting lugs shall be provided at balancing points to facilitate handling and installation.
6. Exterior protective coating:
 a. Surface preparation: Grit blast – SSPC-SP-6 White Blast
 b. Finish: White finish paint system 5-7 DFT on the shell and heads.
7. Threaded fitting with thread protectors shall be supplied as follows (all fittings located on tank top per UL):
 a. One (1) 2" - Interstitial Monitoring.
 b. One (1) 2" - Normal Vent, Primary Tank.
 c. One (1) 8" - Emergency Vent, Primary Tank.
 d. One (1) 4" - Emergency Vent, Secondary Tank.
 e. One (1) 4" - Product Fill.
 f. One (1) 4" - Product Pump or Supply.
 g. One (1) 4" - Product Return or Auxiliary.
 h. One (1) 4" - Liquid Level Gauge.
 i. One (1) 4" - Stage 1 Vapor Recovery, Electronic Level Stage 1 Gauge, or Auxiliary.
 j. One (1) 18" Manway (min.) with emergency vent.

K. Tank Accessories:

1. Diesel Tank
 a. Freestanding stairs
 b. 24” wide catwalk w/handrail on one side and fiberglass grating
 c. Standard diesel package
d. Standard emergency generator package
e. Electronic overfill detection sensors alarms and panels
f. 7-gallon spill/overfill containment with 4” fill nipple.

2.7 PEDESTAL MOUNTED TANK FILLING SYSTEM (DIESEL)

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 1. Simplex, Model FuelPort
 2. Substitutions: See Section 012500 – Substitution Procedures

B. Description: Remote fuel port with 7-gallon spill catchment basin, hand sump pump, post assembly with base and post clamps and 2” hose connection. Provide tank level transmitter.

C. Provide with steel, weatherproof, lockable box with hinged doors in white industrial enamel. Provide with an external stainless-steel ground stud for attachment of delivery truck ground cable, and a ground stud for connection to earth ground.

D. Provide dry disconnect adapter, post clamps, post assembly, and hydrostatic level gauge.

E. Provide with 3” quick detachable coupling for attachment of delivery hose, an inlet check valve, 3” inlet motorized ball valve for closure on AST high level and leak conditions, and a 3” threaded outlet fitting for attachment of fill pipe to AST.

2.8 FUEL FILTRATION SYSTEM

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 1. Simplex, Model SmartFilter
 2. Substitutions: See Section 012500 – Substitution Procedures

B. System includes the following:
 1. Outdoor, weatherproof, pad-mountable enclosure, also suitable for indoor installation. 1-inch NPT.
 2. On-board, integrated controller, UL508. See Controller Section
 3. Inlet, outlet ball-type shutoff valves
 4. Check valve
 5. Pressure differential gauges across pre-filter and across final filter-separator
 6. Differential pressure switches, high water detector. See Controller Section
 7. Circulation pump, 5GPM
 8. Filtration elements:
 9. Strainer, 40 mesh, wye-type
10. Pre-filter, 10-micron, spin-on type, disposable media
11. Final filter-separator, 5-micron, 10 PPM, canister type with replaceable cartridge
12. 120v cabinet heater with thermostat
13. 5-gallon, aluminum construction, water retention tank with secondary containment. Includes control solenoid valve and check valve. Includes gauge and vent. Includes pump-out hand pump with hose. Includes dual redundant high-level sensing float switches
14. Controller, UL 508 listed and NEMA 3R enclosed. Controller includes the following:
 a. Auto-off-manual switch
 b. Time of day, day of week, interval programmable timing
 c. Control devices
 1) Pump motor starter
 2) Control power fuses
 3) Terminal blocks
 4) Valve control relays
 d. Automatic water drain control
 1) Water detection sensor
 2) Back-up oil detection sensor to prevent transfer of fuel to holding tank
 3) Automatic control of water drain solenoid valve
 4) High level, water tank alarm
 e. Heated control box with thermostatic control
 f. High pressure differential alarms
 g. Main power disconnect switch

2.9 TANK LABELS
 A. Tanks shall be labeled according to UL 2085 standards, Federal, State, and Local Codes.
 B. In addition, tanks shall be labeled with tank capacity, fuel type, and “FLAMMABLE” or “COMBUSTIBLE” depending on the fuel type.

2.10 LEAK-DETECTION AND MONITORING SYSTEM
 A. Basis-of-Design Product: Subject to compliance with requirements, provide Omntec Model OEL8000IIIKP or comparable product by one of the following:
 1. Raychem Corp; Tyco Electronics Corporation.
 2. Tuthill Corporation; Tuthill Transfer Systems; Sotera Systems.
 3. Veeder-Root.
 B. Provide and install one common remote tank gauging and leak detection system for all
tanks that is capable of simultaneously monitoring product levels, water levels, temperatures, and leaks in up to eight tanks.

C. System shall be UL listed and provide intrinsically safe outputs for use in Class 1, Group C & D Hazardous Locations when wired in accordance with manufacturers control drawing. System shall also be Third Party Certified and listed to meet EPA leak detection requirements. Locate monitor console where shown on project drawings.

D. Central Processing and Indicating Instrument – Controller shall have a backlit 7-inch color touchscreen display and 32-character thermal printer. System must be capable of driving single or multi-tank 12 VDC NEMA 4 X remote audio-visual high-level alarms and/or remote displays. System must be capable of providing up to three individually programmed isolated relay contacts for any alarm event.

E. The main console will be preprogrammed by the factory and field adjusted as required. Console shall be equipped with (1) RS-232 port, Ethernet, and e-mail capability for communication. System shall also be capable of serving up a web page making current inventory, sensor status and alarms available from any web browser or smart phone.

F. Panel shall come equipped with three LED lights for Ok, Warning, and Alarm status. Alarms shall be displayed visually on a 7” color touch screen with wide viewing angle as well as Warning and Alarm lights on face of panel. System shall have an 85dB piezoelectric horn for audible alarm indication.

G. Include fittings and devices required for testing.

H. Controls: Electrical, operating on 120-V ac.

I. Calibrated, liquid-level gage complying with UL 1238 with probes or other sensors.

J. Cable and Sensor System: Comply with UL 1238.

K. ATG Remote Monitor

1. Provide a 7” color touch screen graphic remote display as manufactured by OMNTEC Mfg., Inc. Display must utilize industry standard protocol for use with most Automatic Tank Gauge monitoring systems. The remote ATG monitor shall display current tank inventory and leak sensor alarms in up to 8 tanks. Display shall come equipped with three LED lights on panel face for Ok, Warning, and Alarm Status.

2. Alarms shall be displayed visually on a 7” color touch screen with wide viewing angle as well as Warning and Alarm lights on face of panel. System shall have 85dB piezoelectric horn for audible alarm indication. Enclosure shall be powder coated industrial steel for indoor mounting. Must be capable of flush mount or recess mounting as required. Enclosure shall be compact in size, not to exceed (H) 7.63” (W) 8.08” (D) 3.20”.

3. System must operate on 120/240 VAC or 12VDC via power cord kit.

4. Provide an RS-232 booster kit for extended range up to 3,000’.

5. The remote monitor will be connected wirelessly to the main system installed.
near the fuel tank as indicated on the project drawings. Provide a wireless link that will allow line of site communication between main ATG and remote monitor as manufactured by OMNTEC Mfg., Inc. Provide WRS-232XR extended length wireless transceiver for extended range up to 1 mile.

L. Liquid Level Probe

1. Shall consist of a 316-grade stainless steel IP68 rated rigid model MTG level probes or model MTG-F Kynar flexible level probes where overhead clearance is not available. Probe shall use magnetostrictive technology with 6 temperature sensing devices and an accuracy of .01 inches in inventory mode and .001 inches in leak detection mode. Probe shall simultaneously provide product levels, water levels, and temperature within the storage tanks.

2. The level probe shall be installed in an accessible 4” NPT male riser pipe. Probe shall include a 4” cap with integral cable gland, floats, and installation kit. All splices must use supplied splice kits. Field wiring from probe to controller must be OMNTEC EC-2 or Belden 8761 cable in suitable conduit. Basis of design for level probes shall be as supplied by OMNTEC Mfg., Inc.

M. Product Discriminating Smart Leak Sensors

1. All leak sensors shall be microprocessor based and capable of recognizing its unique serial number, part number, and function. All sensors (up to 16) shall be capable of being installed on (1) four conductor cable back to the main controller. The sensors principle of operation shall be electro optic for liquid detection and conductivity to discriminate fuel and water. Sensors shall be remotely testable from console via touch screen Test button icon. Sensors shall be capable of detecting liquid at any angle. Float technology will not be accepted. Interstitial sensors shall be model # BX-PDWS for steel tank interstitials. All sensors are to be wired thru conduits using OMNTEC EC-4 cable or 22 gauge four conductors, shielded cable with drain wire. Do not run OEL8000IIIKP intrinsically safe low voltage wiring in the same conduit with any other wiring. All sensors shall be as manufactured by OMNTEC Mfg., Inc.

N. Overfill Station

1. Provide near each tank fill terminal as shown on project drawings a low voltage audio/visual NEMA 4X overfill alarm and silencing station. Remote annunciator light shall illuminate, and horn shall sound when the liquid level in the tank rises above a pre-programmed high-level point. The horn will remain on until the silence button is pressed or can be programmed to time out. Visual light will remain lit until the level in the tank drops below the high-level point. Remote annunciator shall be RAS series for single or multi-tanks and shall be manufactured by OMNTEC Mfg., Inc.

2.11 SOURCE QUALITY CONTROL
A. Affix standards organization's code stamp.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine roughing-in for diesel fuel piping system to verify actual locations of piping connections before equipment installation.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 EARTHWORK

A. Refer to site plans and associated DelDOT specifications for earth moving requirements.

3.3 PREPARATION

A. Close equipment shutoff valves before turning off diesel fuel to premises or piping section.

B. Comply with NFPA 30 and NFPA 31 requirements for prevention of accidental ignition.

3.4 INSTALLATION

A. System: Provide a complete, functional diesel fueling system including double wall aboveground storage tanks, leak detection and monitoring system, interconnecting piping, pedestal mounted filling system, and fuel filtering system. Design and installation shall comply with all local, state and federal codes. System configuration, valves, pumps and piping shall comply with manufacturer’s recommendations.

3.5 PIPING INSTALLATION

A. Use eccentric reducer fittings to make reductions in pipe sizes. Install fittings with level side down.

B. Install strainer on inlet side of control valves, pressure-reducing valves and pumps.

C. Assemble and install entry boots for pipe penetrations through sump sidewalls for liquid-tight joints.

D. Install fittings for changes in direction in rigid pipe.

E. Install system components with pressure rating equal to or greater than system operating pressure.

F. Install sediment traps at points where sediment or condensate may collect. Locate where readily accessible to permit cleaning and emptying.
1. Construct sediment traps using tee fitting with bottom outlet plugged or capped. Use minimum-length nipple of 3 pipe diameters, but not less than 3 inches (75 mm) long, and same size as connected pipe. Install with space between bottom of drip and grade for removal of plug or cap.

G. Install supports for horizontal steel piping with the following maximum spacing:
 1. NPS 2 (DN 50) and larger: Maximum span, 5 feet (1.5m).

H. Support vertical steel pipe at spacing not greater than 10 feet (3.25 m).

3.6 VALVE INSTALLATION
A. Install valves in accessible locations.
B. Protect valves from physical damage.
C. Install ball valves at connections to mains and at equipment.
D. Install drain valves at piping low points.
E. Install manual air vents at high points in diesel fuel piping.
F. Install emergency shutoff valves at dispensers.

3.7 PIPING JOINT CONSTRUCTION
A. Ream ends of pipes and tubes and remove burrs.
B. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.
C. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is specified.
 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.
D. Flanged Joints: Install gasket material, size, type, and thickness for service application. Install gasket concentrically positioned.
E. Flared Joints: Comply with SAE J513. Tighten finger tight, then use wrench according to fitting manufacturer's written recommendations. Do not overtighten.

3.8 ABOVEGROUND STORAGE TANK INSTALLATION
A. Install tank bases and supports

B. Concrete Bases: Anchor AST to concrete base according to equipment manufacturer’s written instructions and according to seismic codes at Project.
 1. Construct concrete bases of dimensions indicated on the site plans.
 2. Install epoxy-coated anchor bolts for supported equipment that extend through concrete base, and anchor into-structural concrete floor.
 3. Place and secure anchorage devices. Use supported equipment manufacturer’s setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
 4. Install anchor bolts to elevations required for proper attachment to supported equipment.

C. Connect piping and vent fittings.

D. Install ground connections.

E. Install tank leak-detection and monitoring devices.

F. Install steel ASTs according to STI R912.

3.9 TANK ACCESSORIES

A. Install the fill pipe adapter and fill cap that matches the tight fill connector used by the supplier of fuel to the Facility.

B. Fuel Identification: Attach laminated plastic nameplate to each tank fill pipe to identify the fuel in the tank.

C. Tank Identification: Affix tank identification stencil, label, or plate permanently to tanks and fill ports.

D. Install padlocks on all lockable caps on fill and vapor recovery piping.

E. Terminate vent lines with vent caps.

F. Overfill Alarm Device Sign: Mount sign adjacent to alarm horn in a location easily readable from ground level.

3.10 LIQUID-LEVEL GAGE SYSTEM INSTALLATION

A. Install liquid-level gage system. Locate panel inside building where designated by Owner.

3.11 LEAK-DETECTION AND MONITORING SYSTEM INSTALLATION

A. Install leak-detection and monitoring system.
1. Double-Wall, Diesel fuel Storage Tanks: Install probes or use factory-installed integral probes in interstitial space.
2. Install liquid-level gage.

3.12 CONNECTIONS

A. Ground equipment according to Division 26 Section "Grounding and Bonding."
B. Connect wiring according to Division 26 Section "Conductors and Cables."
C. Install piping adjacent to equipment to allow service and maintenance.
D. Install unions, in piping NPS 2 and smaller, adjacent to each valve and at final connection to each piece of equipment having threaded pipe connection.
E. Connect piping to equipment with ball valve and union. Install union between valve and equipment.

3.13 LABELING AND IDENTIFYING

A. Equipment Nameplates and Signs: Install engraved plastic-laminate equipment nameplates and signs on or near each service regulator, service meter, and earthquake valve.
 1. Text: In addition to identifying unit, distinguish between multiple units, inform operator of operational requirements, indicate safety and emergency precautions, and warn of hazards and improper operations.

 B. Install detectable warning tape directly above diesel fuel piping, 12 inches below finished grade, except 6 inches below subgrade under pavements and slabs. Terminate tracer wire in an accessible area and identify as "tracer wire" for future use with plastic-laminate sign.
 1. Piping: Over underground diesel fuel distribution piping.

3.14 FIELD PAINTING OF ABOVEGROUND PIPING

A. Paint exposed, exterior metal piping, valves, and piping specialties, except components with factory-applied paint or protective coating.
 1. Alkyd System: MPI EXT 5.1D.
 d. Color: Gray.

 B. Damage and Touchup: Repair marred and damaged factory-applied finishes with materials and by procedures to match original factory finish.
3.15 FIELD QUALITY CONTROL

A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections.

B. Perform tests and inspections.

1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

2. Tests and Inspections.

 a. Tanks: Minimum hydrostatic or compressed-air test pressures for diesel fuel storage tanks that have not been factory tested and do not bear the ASME code stamp or a listing mark acceptable to authorities having jurisdiction:

 1) The primary tank shall be pressure tested to UL 142 Standard (minimum 3 to maximum 5 psi) at the factory, and shall be field-tested by the contractor to a maximum 3- psi, according to the company’s recommended testing procedure.

 2) The secondary tank shall be tested liquid tight at the factory (minimum 3 to maximum 5 psi), and shall also be field-tested by the contractor to a maximum 3-psi according to the company’s field testing procedure.

 3) Where vertical height of fill and vent pipes is such that the static head imposed on the bottom of the tank is greater than 10 psig, hydrostatically test the tank and fill and vent pipes to a pressure equal to the static head thus imposed.

 4) Maintain the test pressure for one hour.

 b. Piping: Minimum hydrostatic or pneumatic test-pressures measured at highest point in system:

 1) Diesel fuel Distribution Piping: Minimum 5 psig for minimum 30 minutes.

 2) Suction Piping: Minimum 20-in. Hg for minimum 30 minutes.

 3) Isolate storage tanks if test pressure in piping will cause pressure in storage tanks to exceed 10 psig.

 4) Inspect and test diesel fuel piping according to NFPA 31, "Tests of Piping" Paragraph; and according to requirements of authorities having jurisdiction.

 c. Test liquid-level gage for accuracy by manually measuring diesel fuel levels at not less than four different depths while filling tank and checking against gage indication.

 d. Test leak-detection and monitoring system for accuracy by manually
operating sensors and checking against alarm panel indication.
e. Start diesel fuel transfer pumps to verify for proper operation of pump and check for leaks.
f. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
g. Bleed air from diesel fuel piping using manual air vents.

C. Provide final flush of the piping system to eliminate all initial particulate matter in the distribution piping. Then after flushing, fill the distribution piping system and allow a calcification period of a few days. Upon settlement, then flush the system again to ensure that the fluid piping system is completely ready for a quality maintenance use program.

D. Diesel fuel piping and equipment will be considered defective if it does not pass tests and inspections.

E. Prepare test and inspection reports.

3.16 DEMONSTRATION
A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain liquid-level gage systems, leak-detection and monitoring systems and diesel fuel dispensers.

3.17 OUTDOOR PIPING SCHEDULE
A. Aboveground diesel fuel-tank vent piping shall be the following:
 1. NPS 4 and Smaller: Steel pipe, steel or malleable-iron threaded fittings, and threaded joints. Vent piping exposed to view shall be painted.

B. Aboveground diesel fuel piping shall be the following:
 1. NPS 2 and Smaller: Steel pipe, steel or malleable-iron threaded fittings, and threaded joints.

3.18 ABOVEGROUND MANUAL DIESEL FUEL SHUTOFF VALVE SCHEDULE
A. Distribution piping valves for pipe NPS 2 and smaller shall be the following:
 1. Two-piece, full-port, bronze ball valves with bronze trim.

B. Valves in branch piping for single appliance shall be the following:
 1. Two-piece, full-port, bronze ball valves with bronze trim.

END OF SECTION
SECTION 224000
PLUMBING FIXTURES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes the following conventional plumbing fixtures and related components:

1. Water Closets
2. Urinals
3. Lavatories
4. Sinks
5. Showers
6. Ice Machines
7. Fixture supports.

1.3 DEFINITIONS

B. Accessible Fixture: Plumbing fixture that can be approached, entered, and used by people with disabilities.

C. Cast Polymer: Cast-filled-polymer-plastic material. This material includes cultured-marble and solid-surface materials.

D. Fitting: Device that controls the flow of water into or out of the plumbing fixture. Fittings specified in this Section include supplies and stops, faucets and spouts, shower heads and tub spouts, drains and tailpieces, and traps and waste pipes. Piping and general-duty valves are included where indicated.

E. FRP: Fiberglass-reinforced plastic.

F. PMMA: Polymethyl methacrylate (acrylic) plastic.

G. PVC: Polyvinyl chloride plastic.

1.4 SUBMITTALS

A. Product Data: For each type of plumbing fixture indicated. Include selected fixture and trim, fittings, accessories, appliances, appurtenances, equipment, and supports. Indicate materials and finishes, dimensions, construction details, and flow-control rates.

B. Shop Drawings: Diagram power, signal, and control wiring.

C. Operation and Maintenance Data: For plumbing fixtures to include in emergency, operation, and maintenance manuals.

D. Warranty: Special warranty specified in this Section.

1.5 QUALITY ASSURANCE

A. Source Limitations: Obtain plumbing fixtures, faucets, and other components of each category through one source from a single manufacturer.

1. Exception: If fixtures, faucets, or other components are not available from a single manufacturer, obtain similar products from other manufacturers specified for that category.

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

E. Select combinations of fixtures and trim, faucets, fittings, and other components that are compatible.

F. Comply with the following applicable standards and other requirements specified for plumbing fixtures:

1. Enameled, Cast-Iron Fixtures: ASME A112.19.1M.
2. Porcelain-Enameled, Formed-Steel Fixtures: ASME A112.19.4M.
6. Vitreous-China Fixtures: ASME A112.19.2M.
8. ANSI Standard: Comply with ANSI Z358.1, "Emergency Eyewash and Shower Equipment"
G. Comply with the following applicable standards and other requirements specified for lavatory and sink faucets:

1. Faucets: ASME A112.18.1.

H. Comply with the following applicable standards and other requirements specified for miscellaneous fittings:

2. Brass and Copper Supplies: ASME A112.18.1.

I. Comply with the following applicable standards and other requirements specified for miscellaneous components:

2. Floor Drains: ASME A112.6.3.
4. Off-Floor Fixture Supports: ASME A112.6.1M.

1.6 EXTRA MATERIALS

A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Faucet Washers and O-Rings: Equal to 10 percent of amount of each type and size installed.
2. Faucet Cartridges and O-Rings: Equal to 5 percent of amount of each type and size installed.
3. Flushometer Valve, Repair Kits: Equal to 10 percent of amount of each type installed, but no fewer than 2 of each type.
4. Provide hinged-top wood or metal box, or individual metal boxes, with separate compartments for each type and size of extra materials listed above.
5. Toilet Seats: Equal to 1 of each type installed.
PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. The following sections list basis of design. Equals by the below listed manufacturers may be submitted for review:

1. American Standard
2. Kohler
3. Crane
4. Zurn
5. Delaney
6. Chicago
7. Fiat
8. Speakman
9. Elkay

2.2 ADA WATER CLOSET (P-1)

A. Water Closet: American Standard Madera Flowise 3043.001, vitreous china, elongated bowl, High Efficiency (1.28 gpf) and seat (American Standard 5901.100).

B. Flush Valve: Sloan Royal model 111-1.28, complete with vacuum breaker, NPS 1.5” top spud connection and flanges, 1.28 gallon (4.8 L) per flushing cycle. Include cast escutcheon, vandal-resistant stop cap and ADA-compliant handle operation.

2.3 WATER CLOSET (P-2)

A. Water Closet: American Standard Madera Flowise 2234.001, vitreous china, elongated bowl, High Efficiency (1.28 gpf) and seat (American Standard 5901.100).

B. Flush Valve: Sloan Royal model 111-1.28, complete with vacuum breaker, NPS 1.5” top spud connection and flanges, 1.28 gallon (4.8 L) per flushing cycle. Include cast escutcheon, vandal-resistant stop cap and ADA-compliant handle operation.

2.4 URINAL (P-3)

A. Urinal: American Standard Allbrook 6550.001, ADA Compliant, High Efficiency (0.5 gpf) wall-mounting, back-outlet, vitreous-china fixture washout with extended shields. Mounting height as indicated on architectural drawings.

B. Flush Valve: Sloan Royal model 186-0.5, complete with vacuum breaker, ¾” top spud connection and flanges, 0.5 gallon (1.9 L) per flushing cycle. Include cast escutcheon, vandal-resistant stop cap and ADA-compliant handle operation.

2.5 ADA LAVATORY SINK (P-4)

A. Lavatory Sink: American Standard Lucerne 0355.012, ADA Compliant, vitreous china, wall-mount fixture, with 4” center faucet holes at rear with front overflow. Fixture shall include wall hanger and concealed arm support. Mounting height as indicated on architectural drawings.
B. Faucet: Speakman Commander SC-4074 centerset lavatory faucet. Faucet will be deck mounted with vandal resistant 4” wrist blade handles, brass construction, two inlets, and grid strainer. Separate hot and cold water supply, flow rate of 0.5 GPM non-aerating spray. ADA Compliant.

2.6 LAVATORY SINK (P-5)

A. Lavatory Sink: American Standard Lucerne 0355.012, ADA Compliant, vitreous china, wall-mount fixture, with 4” center faucet holes at rear with front overflow. Fixture shall include wall hanger and concealed arm support. Mounting height as indicated on architectural drawings.

B. Faucet: Speakman Commander SC-4072 centerset lavatory faucet. Faucet will be deck mounted with vandal resistant lever handles, brass construction, two inlets, and grid strainer. Separate hot and cold water supply, flow rate of 0.5 GPM non-aerating spray. ADA Compliant.

2.7 ADA SHOWER (P-6)

B. Accessories:
 1. Stainless steel curtain rod
 2. Symmons pressure balance mixing valve with concealed check stops
 3. Moen hand held shower head with hose and stainless steel slide bar/grab bar.
 4. Stainless steel corner grab bar.
 5. Stainless steel recessed soap dish.
 6. 2” brass drain.
 7. White naugahyde folding wheelchair transfer seat.

2.8 SERVICE SINK (P-7)

A. Service Sink: Fiat MSB 2424, molded-stone, single compartment, floor mount fixture. Unit shall have 10” high walls, not less than 1” wide. Provide with a combination dome strainer and lint basket made from stainless steel.

B. Faucet: Speakman Commander SC-5812 service sink faucet. Faucet will be deck mounted with vandal resistant 6” lever handles with color-coded indexes, brass construction, chrom plated finish, and separate hot and cold water supply. Provide with optional 5’ vinyl hose with wall hook.

2.9 COUNTERTOP SINK (P-8)

A. Countertop Sink: Elkay LRQ2219, 25x22x7-5/8” single bowl, 18 gauge self rimming type 304 stainless steel sink fixture, with 3-hole faucet ledge at rear with 8-inch faucet centers.
B. Faucet: Speakman Commander SC-5724 centerset kitchen faucet. Faucet will be deck mounted with vandal resistant 4” wrist blade handles, brass construction, two inlets, and grid strainer. Separate hot and cold water supply, flow rate of 2.2 GPM non-aerating spray. ADA Compliant.

2.10 ICE MACHINE (P-9)

A. Ice Machine: Manitowoc UD-0240W with 80 lb. ice storage capacity, stainless steel exterior, and R-404A refrigerant. Energy Star rated and capable of producing up to 225 lbs. of ice per 24 hours.

2.11 FIXTURE SUPPORTS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Josam Company.
 2. MIFAB Manufacturing Inc.

B. Supports:
 1. Description: carrier with fixture support plates and coupling with seal and fixture bolts and hardware matching fixture for wall-mounting fixture. Include steel uprights with feet.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine roughing-in of water supply and sanitary drainage and vent piping systems to verify actual locations of piping connections before plumbing fixture installation.

3.2 INSTALLATION

A. Assemble plumbing fixtures, trim, fittings, and other components according to manufacturers' written instructions.

B. Fixture mounting heights shall be ADA compliant as required. Coordinate with architectural plans for individual fixture heights.

C. Install wall-mounting fixtures with tubular waste piping attached to supports.

D. Install fixtures level and plumb according to roughing-in drawings.
E. Install water-supply piping with stop on each supply to each fixture to be connected to water distribution piping. Attach supplies to supports or substrate within pipe spaces behind fixtures. Install stops in locations where they can be easily reached for operation.

1. Exception: Use ball valves if supply stops are not specified with fixture. Valves are specified in Division 22 Section "Ball Valves for Plumbing Piping."

F. Install trap and tubular waste piping on drain outlet of each fixture to be directly connected to sanitary drainage system.

G. Install tubular waste piping on drain outlet of each fixture to be indirectly connected to drainage system.

H. Install water-supply flow-control fittings with specified flow rates in fixture supplies at stop valves.

I. Install faucet flow-control fittings with specified flow rates and patterns in faucet spouts if faucets are not available with required rates and patterns. Include adapters if required.

J. Install traps on fixture outlets.

1. Exception: Omit trap on fixtures with integral traps.
2. Exception: Omit trap on indirect wastes, unless otherwise indicated.

K. Install escutcheons at piping wall ceiling penetrations in exposed, finished locations and within cabinets and millwork. Use deep-pattern escutcheons if required to conceal protruding fittings. Escutcheons are specified in Division 22 Section "Common Work Results for Plumbing."

L. Seal joints between fixtures and walls, floors, and countertops using sanitary-type, one-part, mildew-resistant silicone sealant. Match sealant color to fixture color.

3.3 CONNECTIONS

A. Piping installation requirements are specified in other Division 22 Sections. Drawings indicate general arrangement of piping, fittings, and specialties.

B. Connect fixtures with water supplies, stops, and risers, and with traps, soil, waste, and vent piping. Use size fittings required to match fixtures.

3.4 FIELD QUALITY CONTROL

A. Verify that installed plumbing fixtures are categories and types specified for locations where installed.

B. Check that plumbing fixtures are complete with trim, faucets, fittings, and other specified components.
C. Inspect installed plumbing fixtures for damage. Replace damaged fixtures and components.

D. Test installed fixtures after water systems are pressurized for proper operation. Replace malfunctioning fixtures and components, then retest. Repeat procedure until units operate properly.

3.5 ADJUSTING

A. Operate and adjust faucets and controls. Replace damaged and malfunctioning fixtures, fittings, and controls.

B. Adjust water pressure at faucets and flushometer valves to produce proper flow and stream.

C. Replace washers and seals of leaking and dripping faucets and stops.

D. Install fresh batteries in sensor-operated mechanisms.

3.6 CLEANING

A. Clean fixtures, faucets, and other fittings with manufacturers' recommended cleaning methods and materials. Do the following:
 1. Remove faucet spouts and strainers, remove sediment and debris, and reinstall strainers and spouts.
 2. Remove sediment and debris from drains.

B. After completing installation of exposed, factory-finished fixtures, faucets, and fittings, inspect exposed finishes and repair damaged finishes.

3.7 PROTECTION

A. Provide protective covering for installed fixtures and fittings.

B. Do not allow use of plumbing fixtures for temporary facilities unless approved in writing by Owner.

END OF SECTION
SECTION 230000
BASIC MECHANICAL MATERIALS AND METHODS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. This Section includes the following:
 1. Piping materials and installation instructions common to most piping systems.
 2. Dielectric fittings.
 3. Equipment installation requirements common to equipment sections.
 4. Supports and anchorages.

1.3 DEFINITIONS
A. Finished Spaces: Spaces other than mechanical and electrical equipment rooms, furred spaces, pipe and duct chases, unheated spaces immediately below roof, spaces above ceilings, unexcavated spaces, crawlspace, and tunnels.
B. Exposed, Interior Installations: Exposed to view indoors. Examples include finished occupied spaces and mechanical equipment rooms.
C. Exposed, Exterior Installations: Exposed to view outdoors or subject to outdoor ambient temperatures and weather conditions. Examples include rooftop locations.
D. Concealed, Interior Installations: Concealed from view and protected from physical contact by building occupants. Examples include above ceilings and chases.
E. Concealed, Exterior Installations: Concealed from view and protected from weather conditions and physical contact by building occupants but subject to outdoor ambient temperatures. Examples include installations within unheated shelters.

1.4 SUBMITTALS
A. Welding certificates.

1.5 QUALITY ASSURANCE
A. Steel Support Welding: Qualify processes and operators according to AWS D1.1, "Structural Welding Code--Steel."
B. Steel Pipe Welding: Qualify processes and operators according to ASME Boiler and Pressure Vessel Code: Section IX, "Welding and Brazing Qualifications."

1. Comply with provisions in ASME B31 Series, "Code for Pressure Piping."
2. Certify that each welder has passed AWS qualification tests for welding processes involved and that certification is current.

PART 2 - PRODUCTS

2.1 PIPE, TUBE, AND FITTINGS
A. Refer to individual Division 23 piping Sections for pipe, tube, and fitting materials and joining methods.
B. Pipe Threads: ASME B1.20.1 for factory-threaded pipe and pipe fittings.

2.2 JOINING MATERIALS
A. Refer to individual Division 23 piping Sections for special joining materials not listed below.
B. Pipe-Flange Gasket Materials: Suitable for chemical and thermal conditions of piping system contents.
 1. ASME B16.21, nonmetallic, flat, asbestos-free, 1/8-inch maximum thickness unless thickness or specific material is indicated.
C. Solder Filler Metals: ASTM B 32, lead-free alloys. Include water-flushable flux according to ASTM B 813.
D. Brazing Filler Metals: AWS A5.8, BCuP Series, copper-phosphorus alloys for general-duty brazing, unless otherwise indicated; and AWS A5.8, BAg1, silver alloy for refrigerant piping, unless otherwise indicated.
E. Welding Filler Metals: Comply with AWS D10.12.

2.3 DIELECTRIC FITTINGS
A. Description: Combination fitting of copper alloy and ferrous materials with threaded, solder-joint, plain, or weld-neck end connections that match piping system materials.
B. Insulating Material: Suitable for system fluid, pressure, and temperature.
C. Dielectric Unions: Factory-fabricated, union assembly, for 250-psig minimum working pressure at 180 deg F.
D. Dielectric Flanges: Factory-fabricated, companion-flange assembly, for 150- or 300-psig minimum working pressure as required to suit system pressures.
E. Dielectric Couplings: Galvanized-steel coupling with inert and noncorrosive, thermoplastic lining; threaded ends; and 300-psig minimum working pressure at 225 deg F.

F. Dielectric Nipples: Electroplated steel nipple with inert and noncorrosive, thermoplastic lining; plain, threaded, or grooved ends; and 300-psig minimum working pressure at 225 deg F.

2.4 SLEEVES

A. Galvanized-Steel Sheet: 0.0239-inch minimum thickness; round tube closed with welded longitudinal joint.

B. Steel Pipe: ASTM A 53, Type E, Grade B, Schedule 40, galvanized, plain ends.

C. Cast Iron: Cast or fabricated "wall pipe" equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop, unless otherwise indicated.

PART 3 - EXECUTION

3.1 PIPING SYSTEMS - COMMON REQUIREMENTS

A. Install piping according to the following requirements and Division 23 Sections specifying piping systems.

B. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.

C. Install piping in concealed locations, unless otherwise indicated and except in equipment rooms and service areas.

D. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.

E. Install piping to permit valve servicing.

F. Install piping at indicated slopes.

G. Install piping free of sags and bends.

H. Install fittings for changes in direction and branch connections.

I. Install piping to allow application of insulation.

J. Select system components with pressure rating equal to or greater than system operating pressure.
K. Install escutcheons for penetrations of walls, ceilings, and floors
L. Install sleeves for pipes passing through concrete and masonry walls and concrete floor and roof slabs.

3.2 PIPING JOINT CONSTRUCTION

A. Join pipe and fittings according to the following requirements and Division 23 Sections specifying piping systems.
B. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.
C. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.
D. Soldered Joints: Apply ASTM B 813, water-flushable flux, unless otherwise indicated, to tube end. Construct joints according to ASTM B 828 or CDA's "Copper Tube Handbook," using lead-free solder alloy complying with ASTM B 32.
F. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
G. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is specified.
H. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.
I. Welded Joints: Construct joints according to AWS D10.12, using qualified processes and welding operators according to Part 1 "Quality Assurance" Article.
J. Flanged Joints: Select appropriate gasket material, size, type, and thickness for service application. Install gasket concentrically positioned. Use suitable lubricants on bolt threads.

3.3 PIPING CONNECTIONS

A. Make connections according to the following, unless otherwise indicated:
1. Install unions, in piping NPS 2 and smaller, adjacent to each valve and at final connection to each piece of equipment.
2. Install flanges, in piping NPS 2-1/2 (DN 65) and larger, adjacent to flanged valves and at final connection to each piece of equipment.
3. Piping Systems: Install dielectric coupling and nipple fittings to connect piping materials of dissimilar metals.
3.4 EQUIPMENT INSTALLATION - COMMON REQUIREMENTS

A. Install equipment to allow maximum possible headroom unless specific mounting heights are not indicated.

B. Install equipment according to approved submittal data. Portions of the Work are shown only in diagrammatic form.

C. Install equipment level and plumb, parallel and perpendicular to other building systems and components in exposed interior spaces, unless otherwise indicated.

D. Install Mechanical equipment to facilitate service, maintenance, and repair or replacement of components. Connect equipment for ease of disconnecting, with minimum interference to other installations. Extend grease fittings to accessible locations.

E. Install equipment to allow right of way for piping installed at required slope.

F. Install flexible connectors on equipment side of shutoff valves, horizontally and parallel to equipment shafts if possible.

3.5 ERECTION OF METAL SUPPORTS AND ANCHORAGES

A. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor HVAC materials and equipment.

B. Field Welding: Comply with AWS D1.1.

3.6 LABELING AND IDENTIFYING

A. Piping Systems: Install pipe markers on each system. Include arrows showing normal direction of flow.

2. Plastic markers, with application systems. Install on insulation segment if required for hot, uninsulated piping.
3. Locate pipe markers as follows if piping is exposed in finished spaces, machine rooms, and accessible maintenance spaces, such as shafts, tunnels, plenums, and exterior non-concealed locations:

 a. Near each valve and control device.
 b. Near each branch, excluding short takeoffs for fixtures and terminal units. Mark each pipe at branch, if flow pattern is not obvious.
 c. Near locations if pipes pass through walls, floors, ceilings, or enter non-accessible enclosures.
 d. At access doors, manholes, and similar access points that permit view of concealed piping.
 e. Near major equipment items and other points of origination and termination.
 f. Spaced at maximum of 50-foot (15-m) intervals along each run. Reduce intervals to 25 feet (7.5 m) in congested areas of piping and equipment.
g. On piping above removable acoustical ceilings, except omit intermediately spaced markers.

B. Equipment: Install engraved plastic-laminate sign or equipment marker on or near each major item of mechanical equipment.
 1. Lettering Size: Minimum 1/4-inch- (6.4-mm-) high lettering for name of unit if viewing distance is less than 24 inches (610 mm), 1/2-inch- (12.7-mm-) high lettering for distances up to 72 inches (1800 mm), and proportionately larger lettering for greater distances. Provide secondary lettering two-thirds to three-fourths of size of principal lettering.
 2. Text of Signs: Provide name of identified unit. Include text to distinguish between multiple units, inform user of operational requirements, indicate safety and emergency precautions, and warn of hazards and improper operations.

C. Adjusting: Relocate identifying devices as necessary for unobstructed view in finished construction.

3.7 PAINTING AND FINISHING
A. Apply paint to exposed piping according to the following, unless otherwise indicated:
 1. Interior, Ferrous Supports: Use semi-gloss, acrylic-enamel finish. Include finish coat over enamel undercoat and primer.

B. Do not paint piping specialties with factory-applied finish.

C. Damage and Touchup: Repair marred and damaged factory-painted finishes with materials and procedures to match original factory finish.

3.8 ERECTION OF METAL SUPPORTS AND ANCHORAGES
A. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor HVAC materials and equipment.

B. Field Welding: Comply with AWS D1.1.

3.9 CUTTING AND PATCHING
A. Cut, channel, chase, and drill floors, walls, partitions, ceilings, and other surfaces necessary for mechanical installations. Perform cutting by skilled mechanics of trades involved.

B. Repair cut surfaces to match adjacent surfaces.

END OF SECTION
SECTION 230513
COMMON MOTOR REQUIREMENTS FOR MECHANICAL EQUIPMENT

PART 1 - DESCRIPTION

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes general requirements for single-phase and polyphase, general-purpose, horizontal, small and medium, squirrel-cage induction motors for use on ac power systems up to 600 V and installed at equipment manufacturer's factory or shipped separately by equipment manufacturer for field installation.

1.3 COORDINATION

A. Coordinate features of motors, installed units, and accessory devices to be compatible with the following:

1. Motor controllers.
2. Torque, speed, and horsepower requirements of the load.
3. Ratings and characteristics of supply circuit and required control sequence.
4. Ambient and environmental conditions of installation location.

PART 2 - PRODUCTS

2.1 GENERAL MOTOR REQUIREMENTS

A. Comply with requirements in this Section except when stricter requirements are specified in HVAC equipment schedules or Sections.

B. Comply with NEMA MG 1 unless otherwise indicated.

2.2 MOTOR CHARACTERISTICS

A. Duty: Continuous duty at ambient temperature of 40 deg C and at altitude of 2500 feet above sea level.

B. Capacity and Torque Characteristics: Sufficient to start, accelerate, and operate connected loads at designated speeds, at installed altitude and environment, with indicated operating sequence, and without exceeding nameplate ratings or considering service factor.
2.3 POLYPHASE MOTORS

A. Description: NEMA MG 1, Design B, medium induction motor.

B. Efficiency: Energy efficient, as defined in NEMA MG 1.

C. Service Factor: 1.15.

D. Multispeed Motors: Variable torque.
 1. For motors with 2:1 speed ratio, consequent pole, single winding.
 2. For motors with other than 2:1 speed ratio, separate winding for each speed.

E. Multispeed Motors: Separate winding for each speed.

F. Rotor: Random-wound, squirrel cage.

G. Bearings: Regreasable, shielded, antifriction ball bearings suitable for radial and thrust loading.

H. Temperature Rise: Match insulation rating.

I. Insulation: Class F.

J. Code Letter Designation:
 1. Motors Smaller than 15HP: Manufacturer's standard starting characteristic.

K. Enclosure Material: Cast iron for motor frame sizes 324T and larger; rolled steel for motor frame sizes smaller than 324T.

2.4 POLYPHASE MOTORS WITH ADDITIONAL REQUIREMENTS

A. Motors Used with Reduced-Voltage and Multispeed Controllers: Match wiring connection requirements for controller with required motor leads. Provide terminals in motor terminal box, suited to control method.

2.5 ELECTRONICALLY COMMUTATED MOTORS FOR HEAT PUMP FANS

A. The fan motor shall be an ECM variable speed ball bearing type motor. The ECM fan motor shall provide soft starting, maintain constant CFM over its static operating range and provide airflow adjustment on its control board. The fan motor shall be isolated from the housing by rubber grommets. The motor shall be permanently lubricated and have thermal overload protection.

2.6 SINGLE-PHASE MOTORS

A. Motors larger than 1/20 hp shall be one of the following, to suit starting torque and requirements of specific motor application:
1. Permanent-split capacitor.
2. Split phase.
3. Capacitor start, inductor run.
4. Capacitor start, capacitor run.

B. Multispeed Motors: Variable-torque, permanent-split-capacitor type.

C. Bearings: Pre-lubricated, antifriction ball bearings or sleeve bearings suitable for radial and thrust loading.

D. Motors 1/20 HP and Smaller: Shaded-pole type.

E. Thermal Protection: Internal protection to automatically open power supply circuit to motor when winding temperature exceeds a safe value calibrated to temperature rating of motor insulation. Thermal-protection device shall automatically reset when motor temperature returns to normal range.

PART 3 - EXECUTION (Not Applicable)

END OF SECTION
THIS PAGE INTENTIONALLY LEFT BLANK
SECTION 230519
METERS AND GAGES FOR MECHANICAL PIPING

PART 1 - DESCRIPTION

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Thermometers.
 2. Pressure gages.
 4. Test plugs.

1.3 SUBMITTALS
A. Product Data: For each type of product indicated.
B. Product Certificates: For each type of meter and gage, from manufacturer.
C. Operation and Maintenance Data: For meters and gages to include in operation and maintenance manuals.

PART 2 - PRODUCTS

2.1 LIQUID-IN-GLASS THERMOMETERS
A. Metal-Case, Compact-Style, Liquid-in-Glass Thermometers:
 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Trerice, H. O. Co.
 b. Miljoco
 c. Dwyer Instruments
 3. Case: Cast aluminum; 6-inch nominal size.
 4. Case Form: Back angle unless otherwise indicated.
5. Tube: Glass with magnifying lens and blue or red organic liquid.
6. Tube Background: Nonreflective aluminum with permanently etched scale markings graduated in deg F.
7. Window: Glass or plastic.
8. Stem: Aluminum or brass and of length to suit installation.
 b. Design for thermowell installation: Bare stem.
10. Accuracy: Plus or minus 1 percent of scale range or one scale division, to a maximum of 1.5 percent of scale range.

2.2 THERMOWELLS
A. Thermowells:
 2. Description: Pressure-tight, socket-type fitting made for insertion into piping tee fitting.
 3. Material for Use with Copper Tubing: CNR or CUNI.
 4. Material for Use with Steel Piping: CRES.
 5. Type: Stepped shank unless straight or tapered shank is indicated.
 6. Bore: Diameter required to match thermometer bulb or stem.
 7. Insertion Length: Length required to match thermometer bulb or stem.
 8. Lagging Extension: Include on thermowells for insulated piping and tubing.
 9. Bushings: For converting size of thermowell’s internal screw thread to size of thermometer connection.
B. Heat-Transfer Medium: Mixture of graphite and glycerin.

2.3 PRESSURE GAGES
A. Direct-Mounted, Metal-Case, Dial-Type Pressure Gages:
 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Trerice, H. O. Co.
 b. Miljoco
 c. Dwyer Instruments
 3. Case: Sealed cast aluminum or drawn steel; 4-1/2-inch nominal diameter.
 4. Pressure-Element Assembly: Bourdon tube unless otherwise indicated.
 5. Pressure Connection: Brass, with NPS 1/4, ASME B1.20.1 pipe threads and bottom-outlet type unless back-outlet type is indicated.
 6. Movement: Mechanical, with link to pressure element and connection to pointer.
7. Dial: Nonreflective aluminum with permanently etched scale markings graduated in psi.
9. Window: Glass or plastic.
10. Ring: Metal.
11. Accuracy: plus or minus 1 percent of middle half of scale range.

2.4 GAGE ATTACHMENTS

A. Valves: Brass or stainless-steel needle, with NPS 1/4, ASME B1.20.1 pipe threads.

2.5 TEST PLUGS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

1. Trerice, H. O. Co.
2. Miljoco
3. Dwyer Instruments

B. Description: Test-station fitting made for insertion into piping tee fitting.

C. Body: Brass or stainless steel with core inserts and gasketed and threaded cap. Include extended stem on units to be installed in insulated piping.

D. Thread Size: NPS 1/4, ASME B1.20.1 pipe thread.

E. Minimum Pressure and Temperature Rating: 500 psig at 200 deg F.

F. Core Inserts: Chlorosulfonated polyethylene synthetic and EPDM self-sealing rubber.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install thermowells with socket extending one-third of pipe diameter and in vertical position in piping tees.

B. Install thermowells of sizes required to match thermometer connectors. Include bushings if required to match sizes.

C. Install thermowells with extension on insulated piping.

D. Fill thermowells with heat-transfer medium.

E. Install direct-mounted thermometers in thermowells and adjust vertical and tilted positions.
F. Install remote-mounted thermometer bulbs in thermowells and install cases on panels; connect cases with tubing and support tubing to prevent kinks. Use minimum tubing length.

G. Install direct-mounted pressure gages in piping tees with pressure gage located on pipe at the most readable position.

H. Install valve in piping for each pressure gage.

I. Install test plugs in piping tees.

J. Install connection fittings in accessible locations for attachment to portable indicators.

K. Install thermometers in the following locations:

1. Inlet and outlet of each hydronic heat pump units.
2. Inlet to pumps.
3. As indicated on the drawings.

L. Install pressure gages in the following locations:

1. Suction and discharge of each pump.
2. As indicated on the drawings.

3.2 CONNECTIONS

A. Install meters and gages adjacent to machines and equipment to allow service and maintenance of meters, gages, machines, and equipment.

3.3 ADJUSTING

A. After installation, calibrate meters according to manufacturer's written instructions.

B. Adjust faces of meters and gages to proper angle for best visibility.

3.4 THERMOMETER SCALE-RANGE SCHEDULE

A. Scale Range for Heat Pump Water Piping: 0 to 100 deg F.

3.5 PRESSURE-GAGE SCALE-RANGE SCHEDULE

A. Scale Range for Heat Pump Water Piping: 0 to 150 psi.

END OF SECTION
SECTION 230523

VALVES

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 2. Ball valves.
 3. Check valves.

B. Related Sections:
 1. Section 230529 - Hangers and Supports.
 2. Section 230716 – Mechanical Piping and Equipment Insulation.
 3. Section 232116 – Mechanical Piping Specialties.
 4. Section 232113 – Mechanical Piping.

1.2 REFERENCES

A. ASTM International:

B. Manufacturers Standardization Society of the Valve and Fittings Industry:
 1. MSS SP 67 - Butterfly Valves.
 2. MSS SP 71 - Cast Iron Swing Check Valves, Flanged and Threaded Ends.
 3. MSS SP 80 - Bronze Gate, Globe, Angle and Check Valves.
 4. MSS SP 110 - Ball Valves Threaded, Socket-Welding, Solder Joint, Grooved and Flared Ends.

C. Underwriters Laboratories Inc.:
 1. UL 842 - Valves for Flammable Fluids.

1.3 SUBMITTALS

A. Section 013300 - Submittal Procedures: Requirements for submittals.
B. Product Data: Submit manufacturers catalog information with valve data and ratings for each service.

C. Manufacturer's Installation Instructions: Submit hanging and support methods, joining procedures.

D. Manufacturer's Certificate: Certify products meet or exceed specified requirements.

E. Grooved joint couplings and fittings, where used, shall be shown on drawings and product submittals and shall be specifically identified with the applicable Victaulic style or series designation.

1.4 CLOSEOUT SUBMITTALS

A. Section 017300 - Execution Requirements: Requirements for submittals.

B. Project Record Documents: As-Built Record Drawings indicating actual locations of valves.

C. Operation and Maintenance Data: Submit installation instructions, spare parts lists, exploded assembly views.

1.5 QUALIFICATIONS

A. Manufacturer: Company specializing in manufacturing Products specified in this section with minimum three years documented experience.

B. Installer: Company specializing in performing work of this section with minimum three years documented experience.

C. All grooved joint valves shall be the products of the same manufacturer as the adjoining couplings.

1.6 DELIVERY, STORAGE, AND HANDLING

A. Section 016000 - Product Requirements: Requirements for transporting, handling, storing, and protecting products.

B. Accept valves on site in shipping containers with labeling in place. Inspect for damage.

C. Provide temporary protective coating on cast iron and steel valves.

1.7 ENVIRONMENTAL REQUIREMENTS

A. Section 016000 - Product Requirements: Environmental conditions affecting products on site.

B. Do not install valves underground when bedding is wet or frozen.
1.8 WARRANTY

A. Section 017300 - Execution Requirements: Requirements for warranties.

B. Furnish five-year manufacturer warranty for valves excluding packing.

1.9 EXTRA MATERIALS

A. Section 017300 - Execution Requirements: Requirements for extra materials.

PART 2 - PRODUCTS

2.1 BALANCING VALVES

A. Manufacturers:

1. Flow Design, Inc.
3. Crane Valve, North America.

B. Manual balancing valve 2 inches and less shall include a venturi element and a bronze or brass body and stainless-steel ball valve which shall provide both shut-off and manual throttling venturi service with large diameter plated ball and Teflon seats. Valve stem shall be blowout proof with EPDM O-ring, Teflon packing with packing nut and union end connection. Micro handle shall utilize a standard adjustable memory stop for shut-off and resetting and vinyl coated grip. Dual pressure / temperature ports with air vent shall be provided on each side of the venturi. Balancing valve shall have an accuracy of +/- 3% across the full range of readings. Circuit balancing valve shall be Flowset Accusetter Model U, by Flow Design, Inc or approved equal.

2.2 BALL VALVES

A. Manufacturers:

1. Flow Design, Inc.
3. Crane Valve, North America.

B. 2 inches (50 mm) and Smaller:

1. MSS SP 110, Class 150, bronze, three-piece body, type 316 stainless steel ball, full port, teflon seats, blow-out proof stem, solder or threaded ends, locking lever handle with balancing stops.
2.3 CHECK VALVES

A. Horizontal Swing Check Valves:

1. Manufacturers:
 b. Victaulic Co. of America
 c. Crane Valve, North America
 d. Milwaukee Valve Company

2. 2 inches (50 mm) and Smaller: MSS SP 80, Class 150, bronze body and cap, bronze seat, bronze disc, solder or threaded ends.

B. Spring Loaded Check Valves:

1. Manufacturers:
 a. Victaulic Co. of America.
 b. Crane Valve, North America.
 c. Milwaukee Valve Company.

2. 2 inches (50 mm) and Smaller: MSS SP 80, Class 150, bronze body, in-line spring lift check, silent closing, Buna-N teflon disc, integral seat, push-to-connect, solder or threaded ends.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Verification of existing conditions before starting work.

B. Verify piping system is ready for valve installation.

3.2 INSTALLATION

A. Install balancing valves with appropriate upstream and downstream dimensions from elbows and pumps as required by the manufacturers.

B. Install service valves prior to all specialties for pipe connections to all equipment. For equipment with both supply and return water piping provide service valves on return piping connections after all other specialties.

C. Install valves with stems upright or horizontal, not inverted.
D. Install brass male adapters each side of valves in copper piped system. Solder adapters to pipe.

E. Install 3/4-inch (20 mm) gate ball valves with cap for drains at main shut-off valves, low points of piping, bases of vertical risers, and at equipment.

F. Install valves with clearance for installation of insulation and allowing access.

G. Provide access where valves and fittings are not accessible.

H. Refer to Section 230529 for pipe hangers.

I. Refer to Section 230719 for insulation requirements for valves.

3.3 VALVE APPLICATIONS

A. Install shutoff and drain valves at locations indicated on Drawings and in accordance with this Section.

B. Install ball valves for shut-off and to isolate equipment, part of systems, or vertical risers.

C. Install ball valves for throttling, bypass, or manual flow control services.

D. Install spring loaded check valves on discharge of pumps.

E. Install grooved or lug end butterfly valves adjacent to equipment when functioning to isolate equipment.

END OF SECTION
SECTION 220529
HANGERS AND SUPPORTS FOR PLUMBING PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
1. Metal pipe hangers and supports.
2. Trapeze pipe hangers.
3. Metal framing systems.
4. Thermal-hanger shield inserts.
5. Fastener systems.
6. Pipe stands.
7. Pipe positioning systems.
8. Equipment supports.

B. Related Sections:
1. Section 055000 "Metal Fabrications" for structural-steel shapes and plates for trapeze hangers for pipe and equipment supports.

1.3 DEFINITIONS
A. MSS: Manufacturers Standardization Society of the Valve and Fittings Industry, Inc.

1.4 PERFORMANCE REQUIREMENTS
A. Delegated Design: Design trapeze pipe hangers and equipment supports, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.

B. Structural Performance: Hangers and supports for plumbing piping and equipment shall withstand the effects of gravity loads and stresses within limits and under conditions indicated according to ASCE/SEI 7.

1. Design supports for multiple pipes, including pipe stands, capable of supporting combined weight of supported systems, system contents, and test water.
2. Design equipment supports capable of supporting combined operating weight of supported equipment and connected systems and components.
3. Design seismic-restraint hangers and supports for piping and equipment.

1.5 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

B. Shop Drawings: Show fabrication and installation details and include calculations for the following; include Product Data for components:

1. Trapeze pipe hangers.
2. Metal framing systems.
3. Pipe stands.
4. Equipment supports.

C. Delegated-Design Submittal: For trapeze hangers indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

1. Detail fabrication and assembly of trapeze hangers.
2. Design Calculations: Calculate requirements for designing trapeze hangers.

1.6 INFORMATIONAL SUBMITTALS

A. Welding certificates.

1.7 QUALITY ASSURANCE

A. Structural Steel Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."

B. Pipe Welding Qualifications: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code.

PART 2 - PRODUCTS

2.1 METAL PIPE HANGERS AND SUPPORTS

A. Copper Pipe Hangers:

1. Description: MSS SP-58, Types 1 through 58, copper-coated-steel, factory-fabricated components.
2.2 TRAPEZE PIPE HANGERS

A. Description: MSS SP-69, Type 59, shop- or field-fabricated pipe-support assembly made from structural carbon-steel shapes with MSS SP-58 carbon-steel hanger rods, nuts, saddles, and U-bolts.

2.3 METAL FRAMING SYSTEMS

A. MFMA Manufacturer Metal Framing Systems:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Allied Tube & Conduit.
 b. Cooper B-Line, Inc.
 c. Flex-Strut Inc.
 d. Unistrut Corporation; Tyco International, Ltd.

2. Description: Shop- or field-fabricated pipe-support assembly for supporting multiple parallel pipes.

4. Channels: Continuous slotted steel channel with inturned lips.

5. Channel Nuts: Formed or stamped steel nuts or other devices designed to fit into channel slot and, when tightened, prevent slipping along channel.

7. Metallic Coating: Electroplated zinc and Hot-dipped galvanized

2.4 THERMAL-HANGER SHIELD INSERTS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Carpenter & Paterson, Inc.
2. ERICO International Corporation.
4. Pipe Shields, Inc.; a subsidiary of Piping Technology & Products, Inc.
5. Piping Technology & Products, Inc.
6. Rilco Manufacturing Co., Inc.

B. Insulation-Insert Material for Cold Piping: ASTM C 552, Type II cellular glass with 100-psig or ASTM C 591, Type VI, Grade 1 polyisocyanurate with 125-psig minimum compressive strength and vapor barrier.

C. Insulation-Insert Material for Hot Piping: ASTM C 552, Type II cellular glass with 100-psig or ASTM C 591, Type VI, Grade 1 polyisocyanurate with 125-psig minimum compressive strength.
D. For Trapeze or Clamped Systems: Insert and shield shall cover entire circumference of pipe.
E. For Clevis or Band Hangers: Insert and shield shall cover lower 180 degrees of pipe.
F. Insert Length: Extend 2 inches beyond sheet metal shield for piping operating below ambient air temperature.
G. Metal shield shall be galvanized steel sheet metal.

2.5 FASTENER SYSTEMS
A. Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened portland cement concrete with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.
B. Mechanical-Expansion Anchors: Insert-wedge-type, zinc-coated steel anchors, for use in hardened portland cement concrete; with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

2.6 PIPE POSITIONING SYSTEMS
A. Description: IAPMO PS 42, positioning system of metal brackets, clips, and straps for positioning piping in pipe spaces; for plumbing fixtures in commercial applications.

2.7 EQUIPMENT SUPPORTS
A. Description: Welded, shop- or field-fabricated equipment support made from structural carbon-steel shapes.

2.8 MISCELLANEOUS MATERIALS
A. Structural Steel: ASTM A 36/A 36M, carbon-steel plates, shapes, and bars; black and galvanized.
B. Grout: ASTM C 1107, factory-mixed and -packaged, dry, hydraulic-cement, nonshrink and nonmetallic grout; suitable for interior and exterior applications.
 2. Design Mix: 5000-psi, 28-day compressive strength.

PART 3 - EXECUTION
3.1 HANGER AND SUPPORT INSTALLATION
A. Metal Pipe-Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Install hangers, supports, clamps, and attachments as required to properly support piping from the building structure.
B. Metal Trapeze Pipe-Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Arrange for grouping of parallel runs of horizontal piping, and support together on field-fabricated trapeze pipe hangers.

1. Pipes of Various Sizes: Support together and space trapezes for smallest pipe size or install intermediate supports for smaller diameter pipes as specified for individual pipe hangers.
2. Field fabricate from ASTM A 36/A 36M, carbon-steel shapes selected for loads being supported. Weld steel according to AWS D1.1/D1.1M.

C. Metal Framing System Installation: Arrange for grouping of parallel runs of piping, and support together on field-assembled metal framing systems.

D. Thermal-Hanger Shield Installation: Install in pipe hanger and shield for insulated piping.

E. Fastener System Installation:

1. Install powder-actuated fasteners for use in lightweight concrete or concrete slabs less than 4 inches thick in concrete after concrete is placed and completely cured. Use operators that are licensed by powder-actuated tool manufacturer. Install fasteners according to powder-actuated tool manufacturer's operating manual.
2. Install mechanical-expansion anchors in concrete after concrete is placed and completely cured. Install fasteners according to manufacturer's written instructions.

F. Pipe Positioning-System Installation: Install support devices to make rigid supply and waste piping connections to each plumbing fixture.

G. Install hangers and supports complete with necessary attachments, inserts, bolts, rods, nuts, washers, and other accessories.

I. Install hangers and supports to allow controlled thermal and seismic movement of piping systems, to permit freedom of movement between pipe anchors, and to facilitate action of expansion joints, expansion loops, expansion bends, and similar units.

J. Install lateral bracing with pipe hangers and supports to prevent swaying.

K. Install building attachments within concrete slabs or attach to structural steel. Install additional attachments at concentrated loads, including valves, flanges, and strainers, 2-1/2" and larger and at changes in direction of piping. Install concrete inserts before concrete is placed; fasten inserts to forms and install reinforcing bars through openings at top of inserts.

L. Load Distribution: Install hangers and supports so that piping live and dead loads and stresses from movement will not be transmitted to connected equipment.
M. Pipe Slopes: Install hangers and supports to provide indicated pipe slopes and to not exceed maximum pipe deflections allowed by ASME B31.9 for building services piping.

N. Insulated Piping:

1. Attach clamps and spacers to piping.
 a. Piping Operating above Ambient Air Temperature: Clamp may project through insulation.
 b. Piping Operating below Ambient Air Temperature: Use thermal-hanger shield insert with clamp sized to match OD of insert.
 c. Do not exceed pipe stress limits allowed by ASME B31.9 for building services piping.

2. Install MSS SP-58, Type 39, protection saddles if insulation without vapor barrier is indicated. Fill interior voids with insulation that matches adjoining insulation.
 a. Option: Thermal-hanger shield inserts may be used. Include steel weight-distribution plate for pipe 4” and larger if pipe is installed on rollers.

3. Install MSS SP-58, Type 40, protective shields on cold piping with vapor barrier. Shields shall span an arc of 180 degrees.
 a. Option: Thermal-hanger shield inserts may be used. Include steel weight-distribution plate for pipe 4” and larger if pipe is installed on rollers.

4. Shield Dimensions for Pipe: Not less than the following:
 a. ¼” to 3-1/2: 12 inches long and 0.048 inch thick.
 b. 4”: 12 inches long and 0.06 inch thick.

5. Thermal-Hanger Shields: Install with insulation same thickness as piping insulation.

3.2 EQUIPMENT SUPPORTS

A. Fabricate structural-steel stands to suspend equipment from structure overhead or to support equipment above floor.

B. Grouting: Place grout under supports for equipment and make bearing surface smooth.

C. Provide lateral bracing, to prevent swaying, for equipment supports.
3.3 METAL FABRICATIONS

A. Cut, drill, and fit miscellaneous metal fabrications for trapeze pipe hangers and equipment supports.

B. Fit exposed connections together to form hairline joints. Field weld connections that cannot be shop welded because of shipping size limitations.

C. Field Welding: Comply with AWS D1.1/D1.1M procedures for shielded, metal arc welding; appearance and quality of welds; and methods used in correcting welding work; and with the following:

1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
2. Obtain fusion without undercut or overlap.
3. Remove welding flux immediately.
4. Finish welds at exposed connections so no roughness shows after finishing and so contours of welded surfaces match adjacent contours.

3.4 ADJUSTING

A. Hanger Adjustments: Adjust hangers to distribute loads equally on attachments and to achieve indicated slope of pipe.

B. Trim excess length of continuous-thread hanger and support rods to 1-1/2 inches.

3.5 PAINTING

A. Touchup: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.

1. Apply paint by brush or spray to provide a minimum dry film thickness of 2.0 mils.

B. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.

3.6 HANGER AND SUPPORT SCHEDULE

A. Specific hanger and support requirements are in Sections specifying piping systems and equipment.

B. Comply with MSS SP-69 for pipe-hanger selections and applications that are not specified in piping system Sections.

C. Use hangers and supports with galvanized metallic coatings for piping and equipment that will not have field-applied finish.
D. Use nonmetallic coatings on attachments for electrolytic protection where attachments are in direct contact with copper tubing.

E. Use carbon-steel materials for pipe hangers and supports, metal trapeze pipe hangers, and metal framing systems and attachments for general service applications.

F. Use copper-plated pipe hangers and copper attachments for copper piping and tubing.

G. Use thermal-hanger saddle inserts for insulated piping and tubing.

H. Horizontal-Piping Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 1. Adjustable, Steel and stainless-steel Clevis Hangers (MSS Type 1): For suspension of noninsulated or insulated, stationary pipes NPS 1/2 to NPS 6.
 2. Steel and stainless-steel Pipe Clamps (MSS Type 4): For suspension of cold and hot pipes NPS 1/2 to NPS 24 if little or no insulation is required.
 3. Adjustable Pipe Saddle Supports (MSS Type 38): For stanchion-type support for pipes NPS 2-1/2 to NPS 36 if vertical adjustment is required, with steel-pipe base stanchion support and cast-iron floor flange.

I. Vertical-Piping Clamps: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 1. Extension Pipe or Riser Clamps (MSS Type 8): For support of pipe risers NPS 3/4 to NPS 6.
 2. Carbon- or Alloy-Steel Riser Clamps (MSS Type 42): For support of pipe risers NPS 3/4 to NPS 6 if longer ends are required for riser clamps.

J. Hanger-Rod Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 1. Steel Turnbuckles (MSS Type 13): For adjustment up to 6 inches for heavy loads.
 2. Steel Clevises (MSS Type 14):
 3. Steel Swivel Turnbuckles (MSS Type 15): For use with MSS Type 11, split pipe rings.

K. Building Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 1. Steel or Malleable Concrete Inserts (MSS Type 18): For upper attachment to suspend pipe hangers from concrete ceiling.
 2. C-Clamps (MSS Type 23): For structural shapes.
 3. Top-Beam Clamps (MSS Type 25): For top of beams if hanger rod is required tangent to flange edge.
 4. Side-Beam Clamps (MSS Type 27): For bottom of steel I-beams.
 5. Steel-Beam Clamps with Eye Nuts (MSS Type 28): For attaching to bottom of steel I-beams for heavy loads.
6. Linked-Steel Clamps with Eye Nuts (MSS Type 29): For attaching to bottom of steel I-beams for heavy loads, with link extensions.
7. Malleable-Beam Clamps with Extension Pieces (MSS Type 30): For attaching to structural steel.
8. Welded-Steel Brackets: For support of pipes from below or for suspending from above by using clip and rod. Use one of the following for indicated loads:
 a. Light (MSS Type 31): 750 lb.
 b. Medium (MSS Type 32): 1500 lb.
 c. Heavy (MSS Type 33): 3000 lb.
9. Side-Beam Brackets (MSS Type 34): For sides of steel or wooden beams.
10. Plate Lugs (MSS Type 57): For attaching to steel beams if flexibility at beam is required.
11. Horizontal Travelers (MSS Type 58): For supporting piping systems subject to linear horizontal movement where headroom is limited.

L. Saddles and Shields: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

 1. Steel-Pipe-Covering Protection Saddles (MSS Type 39): To fill interior voids with insulation that matches adjoining insulation.
 2. Protection Shields (MSS Type 40): Of length recommended in writing by manufacturer to prevent crushing insulation. Shields shall be banded to pipe insulation by means of 2 stainless steel bands, one on each side of the hanger support.
 3. Thermal-Hanger Shield Inserts: For supporting insulated pipe.

M. Spring Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

 1. Restraint-Control Devices (MSS Type 47): Where indicated to control piping movement.
 2. Spring Cushions (MSS Type 48): For light loads if vertical movement does not exceed 1-1/4 inches.
 3. Spring-Cushion Roll Hangers (MSS Type 49): For equipping Type 41, roll hanger with springs.
 4. Spring Sway Braces (MSS Type 50): To retard sway, shock, vibration, or thermal expansion in piping systems.
 5. Variable-Spring Hangers (MSS Type 51): Preset to indicated load and limit variability factor to 25 percent to allow expansion and contraction of piping system from hanger.
 6. Variable-Spring Base Supports (MSS Type 52): Preset to indicated load and limit variability factor to 25 percent to allow expansion and contraction of piping system from base support.
 7. Variable-Spring Trapeze Hangers (MSS Type 53): Preset to indicated load and limit variability factor to 25 percent to allow expansion and contraction of piping system from trapeze support.
8. Constant Supports: For critical piping stress and if necessary to avoid transfer of stress from one support to another support, critical terminal, or connected equipment. Include auxiliary stops for erection, hydrostatic test, and load-adjustment capability. These supports include the following types:

a. Horizontal (MSS Type 54): Mounted horizontally.
b. Vertical (MSS Type 55): Mounted vertically.
c. Trapeze (MSS Type 56): Two vertical-type supports and one trapeze member.

N. Comply with MSS SP-69 for trapeze pipe-hanger selections and applications that are not specified in piping system Sections.

O. Comply with MFMA-103 for metal framing system selections and applications that are not specified in piping system Sections.

P. Use powder-actuated fasteners or mechanical-expansion anchors instead of building attachments where required in concrete construction.

Q. Use pipe positioning systems in pipe spaces behind plumbing fixtures to support supply and waste piping for plumbing fixtures.

END OF SECTION
SECTION 230548

VIBRATION CONTROLS FOR MECHANICAL PIPING AND EQUIPMENT

PART 1 - DESCRIPTION

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes the following:

1. Isolation pads.
2. Isolation mounts.
3. Elastomeric hangers.
4. Spring hangers.
5. Pipe riser resilient supports.

1.3 DEFINITIONS

1.4 SUBMITTALS

A. Product Data: For the following:

1. Include rated load, rated deflection, and overload capacity for each vibration isolation device.
2. Illustrate and indicate style, material, strength, fastening provision, and finish for each type and size of component used.
 a. Tabulate types and sizes of restraints, complete with report numbers and rated strength in tension and shear.
 b. Annotate to indicate application of each product submitted and compliance with requirements.
3. Interlocking Snubbers: Include ratings for horizontal, vertical, and combined loads.

1.5 QUALITY ASSURANCE

A. All devices shall have horizontal and vertical load testing and analysis and shall bear anchorage preapproval OPA number from OSHPD, preapproval by ICC-ES, or preapproval by another agency acceptable to authorities having jurisdiction, showing maximum ratings. Ratings based on independent testing are preferred to ratings based on calculations. If preapproved ratings are not available, submittals based on independent testing are preferred.
PART 2 - PRODUCTS

2.1 VIBRATION ISOLATORS

A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

1. Amber/Booth Company, Inc.
2. Isolation Technology, Inc.
4. Vibration Mountings & Controls, Inc.

B. Pads: Arranged in single or multiple layers of sufficient stiffness for uniform loading over pad area, molded with a nonslip pattern and galvanized-steel baseplates, and factory cut to sizes that match requirements of supported equipment.

1. Resilient Material: Oil- and water-resistant neoprene.

C. Mounts: Double-deflection type, with molded neoprene isolator elements with factory-drilled, encapsulated top plate for bolting to equipment and with baseplate for bolting to structure. Color-code or otherwise identify to indicate capacity range.

1. Materials: Cast-ductile-iron or welded steel housing containing two separate and opposing, oil-resistant rubber or neoprene elements that prevent central threaded element and attachment hardware from contacting the housing during normal operation.
2. Neoprene: Shock-absorbing materials compounded according to the standard for bridge-bearing neoprene as defined by AASHTO.

D. Elastomeric Hangers: Single or double-deflection type, fitted with molded, oil-resistant elastomeric isolator elements bonded to steel housings with threaded connections for hanger rods. Color-code or otherwise identify to indicate capacity range.

E. Spring Hangers: Combination coil-spring and elastomeric-insert hanger with spring and insert in compression.

1. Frame: Steel, fabricated for connection to threaded hanger rods and to allow for a maximum of 30 degrees of angular hanger-rod misalignment without binding or reducing isolation efficiency.
2. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
3. Minimum Additional Travel: 50 percent of the required deflection at rated load.
4. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
5. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
6. Elastomeric Element: Molded, oil-resistant rubber or neoprene. Steel-washer-reinforced cup to support spring and bushing projecting through bottom of frame.
7. Self-centering hanger rod cap to ensure concentricity between hanger rod and support spring coil.
F. Pipe Riser Resilient Support: All-directional, acoustical pipe anchor consisting of 2 steel tubes separated by a minimum of 1/2-inch thick neoprene. Include steel and neoprene vertical-limit stops arranged to prevent vertical travel in both directions. Design support for a maximum load on the isolation material of 500 psig and for equal resistance in all directions.

2.2 FACTORY FINISHES

A. Finish: Manufacturer's standard prime-coat finish ready for field painting.

B. Finish: Manufacturer's standard paint applied to factory-assembled and -tested equipment before shipping.

1. Powder coating on springs and housings.
2. All hardware shall be galvanized. Hot-dip galvanize metal components for exterior use.
3. Baked enamel or powder coat for metal components on isolators for interior use.
4. Color-code or otherwise mark vibration isolation and control devices to indicate capacity range.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas and equipment to receive vibration isolation and control devices for compliance with requirements for installation tolerances and other conditions affecting performance.

B. Examine roughing-in of reinforcement and cast-in-place anchors to verify actual locations before installation.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 VIBRATION-CONTROL DEVICE INSTALLATION

A. Comply with requirements in Division 07 Section "Roof Accessories" for installation of roof curbs, equipment supports, and roof penetrations.

B. Equipment Restraints:

1. Install resilient bolt isolation washers on equipment anchor bolts where clearance between anchor and adjacent surface exceeds 0.125 inch.
2. Install devices using methods approved by OSHPD providing required submittals for component.

C. Piping Restraints:

1. Comply with requirements in MSS SP-127.
2. Space lateral supports a maximum of 40 feet o.c., and longitudinal supports a maximum of 80 feet o.c.
3. Brace a change of direction longer than 12 feet.
D. Install bushing assemblies for mounting bolts for wall-mounted equipment, arranged to provide resilient media where equipment or equipment-mounting channels are attached to wall.

E. Attachment to Structure: If specific attachment is not indicated, anchor bracing to structure at flanges of beams, at upper truss chords of bar joists, or at concrete members.

F. Drilled-in Anchors:

1. Identify position of reinforcing steel and other embedded items prior to drilling holes for anchors. Do not damage existing reinforcing or embedded items during coring or drilling. Notify the structural engineer if reinforcing steel or other embedded items are encountered during drilling. Locate and avoid pre-stressed tendons, electrical and telecommunications conduit, and gas lines.

2. Do not drill holes in concrete or masonry until concrete, mortar, or grout has achieved full design strength.

3. Wedge Anchors: Protect threads from damage during anchor installation. Heavy-duty sleeve anchors shall be installed with sleeve fully engaged in the structural element to which anchor is to be fastened.

4. Adhesive Anchors: Clean holes to remove loose material and drilling dust prior to installation of adhesive. Place adhesive in holes proceeding from the bottom of the hole and progressing toward the surface in such a manner as to avoid introduction of air pockets in the adhesive.

5. Set anchors to manufacturer's recommended torque, using a torque wrench.

6. Install zinc-coated steel anchors for interior and stainless-steel anchors for exterior applications.

3.3 ADJUSTING

A. Adjust isolators after piping system is at operating weight.

B. Adjust limit stops on restrained spring isolators to mount equipment at normal operating height. After equipment installation is complete, adjust limit stops so they are out of contact during normal operation.

C. Adjust active height of spring isolators.

D. Adjust restraints to permit free movement of equipment within normal mode of operation.

END OF SECTION
SECTION 230553

IDENTIFICATION FOR MECHANICAL PIPING AND EQUIPMENT

PART 1 - DESCRIPTION

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Equipment labels.
2. Duct labels.
3. Pipe labels.
4. Stencils.
5. Valve tags.

1.3 SUBMITTALS

A. Product Data: For each type of product indicated.

B. Samples: For color, letter style, and graphic representation required for each identification material and device.

C. Equipment Label Schedule: Include a listing of all equipment to be labeled with the proposed content for each label.

D. Valve numbering scheme.

E. Valve Schedules: For each piping system to include in maintenance manuals.

1.4 COORDINATION

A. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be applied.

B. Coordinate installation of identifying devices with locations of access panels and doors.

C. Install identifying devices before installing acoustical ceilings and similar concealment.
PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

1. Brady Corporation
2. Kolrabi Pipe Marker
3. Seton Identification Products

2.2 EQUIPMENT LABELS

A. Metal Labels for Equipment:

1. Material and Thickness: Aluminum, 0.032-inch or anodized aluminum, 0.032-inch minimum thickness, and having predrilled or stamped holes for attachment hardware.
2. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
5. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

B. Label Content: Include equipment's Drawing designation or unique equipment number, drawing numbers where equipment is indicated (plans, details, and schedules), plus the Specification Section number and title where equipment is specified.

C. Equipment Label Schedule: For each item of equipment to be labeled, on 8-1/2-by-11-inch bond paper. Tabulate equipment identification number and identify Drawing numbers where equipment is indicated (plans, details, and schedules), plus the Specification Section number and title where equipment is specified. Equipment schedule shall be included in operation and maintenance data.

2. DUCT LABELS

A. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/16-inch-thick, and having predrilled holes for attachment hardware.

A. Letter Color: Black

B. Background Color: Yellow

C. Maximum Temperature: Able to withstand temperatures up to 160 deg F.
D. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch (64 by 19 mm).

E. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-quarters the size of principal lettering.

F. Fasteners: Stainless-steel rivets or self-tapping screws.

G. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

H. Duct Label Contents: Include identification of duct service using same designations or abbreviations as used on Drawings; also include duct size and an arrow indicating flow direction.

1. Flow-Direction Arrows: Integral with duct system service lettering to accommodate both directions or as separate unit on each duct label to indicate flow direction.

2.4 PIPE LABELS

A. General Requirements for Manufactured Pipe Labels: Preprinted, color-coded, with lettering indicating service, and showing flow direction.

B. Pre-tensioned Pipe Labels: Pre-coiled, semi-rigid plastic formed to cover full circumference of pipe and to attach to pipe without fasteners or adhesive.

C. Self-Adhesive Pipe Labels: Printed plastic with contact-type, permanent-adhesive backing.

D. Pipe Label Contents: Include identification of piping service using same designations or abbreviations as used on Drawings, pipe size, and an arrow indicating flow direction.

1. Flow-Direction Arrows: Integral with piping system service lettering to accommodate both directions, or as separate unit on each pipe label to indicate flow direction.

2. Lettering Size: At least 1-1/2 inches (38 mm) high.

2.5 STENCILS

A. Stencils: Prepared with letter sizes according to ASME A13.1 for piping; minimum letter height of 1-1/4 inches for ducts; and minimum letter height of 3/4 inch for access panel and door labels, equipment labels, and similar operational instructions.

1. Stencil Paint: Exterior, gloss, black unless otherwise indicated. Paint may be in pressurized spray-can form.

2. Identification Paint: Exterior, [in colors according to ASME A13.1 unless otherwise indicated.]
2.6 VALVE TAGS

A. Valve Tags: Stamped or engraved with 1/4-inch letters for piping system abbreviation and 1/2-inch numbers.

1. Tag Material: Aluminum, 0.032-inch or anodized aluminum, 0.032-inch minimum thickness, and having predrilled or stamped holes for attachment hardware.
2. Fasteners: Brass wire-link or beaded chain; or S-hook.

B. Valve Schedules: For each piping system, on 8-1/2-by-11-inch bond paper. Tabulate valve number, piping system, system abbreviation (as shown on valve tag), location of valve (room or space), normal-operating position (open, closed, or modulating), and variations for identification. Mark valves for emergency shutoff and similar special uses.

1. Valve-tag schedule shall be included in operation and maintenance data.

PART 3 - EXECUTION

3.1 PREPARATION

A. Clean piping and equipment surfaces of substances that could impair bond of identification devices, including dirt, oil, grease, release agents, and incompatible primers, paints, and encapsulates.

3.2 GENERAL INSTALLATION REQUIREMENTS

A. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be applied.

B. Coordinate installation of identifying devices with locations of access panels and doors.

C. Install identifying devices before installing acoustical ceilings and similar concealment.

3.3 EQUIPMENT LABEL INSTALLATION

A. Install or permanently fasten labels on each major item of mechanical equipment.

B. Locate equipment labels where accessible and visible.

3.4 DUCT LABEL INSTALLATION

A. Stenciled Duct Label Option: Stenciled labels showing service and flow direction may be provided instead of plastic-laminated duct labels, at Installer's option.

B. Locate labels near points where ducts enter into and exit from concealed spaces and at maximum intervals of 25 feet in each space where ducts are exposed or concealed by removable ceiling system.
3.5 PIPE LABEL INSTALLATION

A. Piping Color-Coding: Painting of piping is specified in Division 09 Section."

B. Stenciled Pipe Label Option: Stenciled labels may be provided instead of manufactured pipe labels, at Installer's option. Install stenciled pipe labels on each piping system.
 1. Identification Paint: Use for contrasting background.

C. Locate pipe labels where piping is exposed or above accessible ceilings in finished spaces; machine rooms; accessible maintenance spaces such as shafts, tunnels, and plenums; and exterior exposed locations as follows:
 1. Near each valve and control device.
 2. Near each branch connection, excluding short takeoffs for fixtures and terminal units. Where flow pattern is not obvious, mark each pipe at branch.
 3. Near penetrations through walls, floors, ceilings, and inaccessible enclosures.
 4. At access doors, manholes, and similar access points that permit view of concealed piping.
 5. Near major equipment items and other points of origination and termination.
 6. Spaced at maximum intervals of 50 feet along each run. Reduce intervals to 25 feet in areas of congested piping and equipment.

D. Pipe Label Color Schedule:

3.6 VALVE-TAG INSTALLATION

A. Install tags on valves and control devices in piping systems, except check valves; valves within factory-fabricated equipment units; shutoff valves; faucets; convenience and lawn-watering hose connections; and HVAC terminal devices and similar roughing-in connections of end-use fixtures and units. List tagged valves in a valve schedule.

B. Valve-Tag Application Schedule: Tag valves according to size, shape, and color scheme and with captions similar to those indicated in the following subparagraphs:
 1. Valve-Tag Size and Shape:

3.7 WARNING-TAG INSTALLATION

A. Write required message on, and attach warning tags to, equipment and other items where required.

END OF SECTION
SECTION 230593
TESTING, ADJUSTING, AND BALANCING FOR HVAC

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes Testing and Balancing (TAB) by an AABC Certified Agency to perform field testing and balancing for the following:

1. Balancing Air Systems:
 a. Constant-volume air systems.

2. Balancing Hydronic Piping Systems:
 a. Constant-flow hydronic systems.

3. HVAC equipment quantitative-performance setting.
4. Sound level measuring.
5. Verify that automatic control devices are functioning properly.
6. Report results of activities and procedures in this section.

1.2 DEFINITIONS

B. Adjust: To regulate fluid flow rate and air patterns at the terminal equipment, such as to reduce fan speed or adjust a damper.

C. Balance: To proportion flows within the distribution system, including submains, branches, and terminals, according to indicated quantities.

D. Barrier or Boundary: Construction, either vertical or horizontal, such as walls, floors, and ceilings that are designed and constructed to restrict the movement of airflow, smoke, odors, and other pollutants.

E. Draft: A current of air, when referring to localized effect caused by one or more factors of high air velocity, low ambient temperature, or direction of airflow, whereby more heat is withdrawn from a person's skin than is normally dissipated.

F. NC: Noise criteria.

H. Procedure: An approach to and execution of a sequence of work operations to yield repeatable results.

I. RC: Room criteria.

J. Report Forms: Test data sheets for recording test data in logical order.

K. Static Head: The pressure due to the weight of the fluid above the point of measurement. In a closed system, static head is equal on both sides of the pump.

L. Suction Head: The height of fluid surface above the centerline of the pump on the suction side.

M. System Effect: A phenomenon that can create undesired or unpredicted conditions that cause reduced capacities in all or part of a system.

N. System Effect Factors: Allowances used to calculate a reduction of the performance ratings of a fan when installed under conditions different from those presented when the fan was performance tested.

O. TAB: Testing, adjusting, and balancing.

P. TABB: Testing, Adjusting, and Balancing Bureau.

Q. TAB Specialist: An independent entity meeting the required qualifications to perform TAB work.

R. TDH: Total dynamic head.

S. Terminal: A point where the controlled medium, such as fluid or energy, enters or leaves the distribution system.

T. Test: A procedure to determine quantitative performance of systems or equipment.

U. Testing, Adjusting, and Balancing (TAB) Firm: The entity responsible for performing and reporting TAB procedures.

1.3 SUBMITTALS

A. Qualification Data: Within 45 days from Contractor's Notice to Proceed, submit 6 copies of evidence that TAB firm and this Project's TAB team members meet the qualifications specified in "Quality Assurance" Article.

B. Strategies and Procedures Plan: Within 90 days from Contractor's Notice to Proceed, submit 6 copies of TAB strategies and step-by-step procedures as specified in Part 3 "Preparation" Article. Include a complete set of report forms intended for use on this Project.
C. Preliminary TAB Reports: Submit a single copy of the preliminary report (i.e., “draft pencil copy”) developed in the field within 5 business days of testing. This preliminary report is intended to assist the Commissioning Authority and Engineering in assessing system performance for preliminary acceptance.

D. Certified TAB Reports: Submit two copies of reports prepared, as specified in this Section, on approved forms certified by TAB firm.

E. Sample Report Forms: Submit two sets of sample TAB report forms.

F. Warranties specified in this Section.

1.4 QUALITY ASSURANCE

A. TAB Firm Qualifications: Engage a TAB firm certified by AABC.

B. Certification of TAB Reports: Certify TAB field data reports. This certification includes the following:
 1. Review field data reports to validate accuracy of data and to prepare certified TAB reports.
 2. Certify that TAB team complied with approved TAB plan and the procedures specified and referenced in this Specification.

D. Instrumentation Type, Quantity, and Accuracy: As described in AABC's "National Standards for Testing and Balancing Heating, Ventilating, and Air Conditioning System."

E. Instrumentation Calibration: Calibrate instruments at least every six months or more frequently if required by instrument manufacturer.
 1. Keep an updated record of instrument calibration that indicates date of calibration and the name of party performing instrument calibration.

F. TAB Specialists Qualifications: Certified by AABC.
 1. TAB Field Supervisor: Employee of the TAB specialist and certified by AABC.
 2. TAB Technician: Employee of the TAB specialist and certified by AABC.

G. Instrumentation Type, Quantity, Accuracy, and Calibration: Comply with requirements in ASHRAE 111, Section 4, "Instrumentation."

H. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1, Section 7.2.2 - "Air Balancing."

I. ASHRAE/IESNA Compliance: Applicable requirements in ASHRAE/IESNA 90.1, Section 6.7.2.3 - "System Balancing."
1.5 PROJECT CONDITIONS

A. Partial Owner Occupancy: Owner may occupy completed areas of building before Substantial Completion. Cooperate with Owner during TAB operations to minimize conflicts with Owner's operations.

1.6 COORDINATION

A. Coordinate the efforts of factory-authorized service representatives for systems, equipment, and other mechanics to operate HVAC systems and equipment to support and assist TAB activities.

B. Notice: Provide seven days' advance notice for each test. Include scheduled test dates and times. Notice shall be provided to Engineer, Owner, and Owner's Representative.

C. Perform TAB after leakage and pressure tests on air and water distribution systems have been satisfactorily completed.

1.7 WARRANTY

A. Provide a guarantee on AABC's "National Standards for Testing and Balancing Heating, Ventilating, and Air Conditioning Systems" forms stating that AABC will assist in completing requirements of the Contract Documents if TAB firm fails to comply with the Contract Documents.

B. The certified TAB firm has tested and balanced systems according to the Contract Documents.

C. Systems are balanced to optimum performance capabilities within design and installation limits.

PART 2 - PRODUCTS (Not Applicable)

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine the contract documents as well as the installed systems to become familiar with Project requirements and to discover conditions in systems' designs that may preclude proper TAB of systems and equipment.

1. Contract Documents are defined in the General and Supplementary Conditions of Contract.

2. Verify that balancing devices, such as test ports, gage cocks, thermometer wells, flow-control devices, balancing valves and fittings, and manual volume dampers, as required by the Contract Documents (both drawings and specifications) are installed. Verify that quantities and locations of these balancing devices are accessible and appropriate for effective balancing and for efficient system and equipment operation.
B. Examine approved submittal data of HVAC systems and equipment.

C. Prior to the start of field activities, examine the Engineer’s final design analysis which includes design data, including HVAC system descriptions, statements of design assumptions for environmental conditions and systems' output, and statements of philosophies and assumptions about HVAC system and equipment controls.

D. Examine equipment performance data including approved fan and pump curves. Relate performance data to project conditions and requirements, including system effects that can create undesired or unpredicted conditions that cause reduced capacities in all or part of a system. Calculate system effect factors to reduce performance ratings of HVAC equipment when installed under conditions different from those presented when the equipment was performance tested at the factory. To calculate system effects for air systems, use tables and charts found in AMCA 201, "Fans and Systems," Sections 7 through 10; or in SMACNA's "HVAC Systems--Duct Design," Sections 5 and 6. Compare this data with the design data and installed conditions.

E. Examine system and equipment installations to verify that they are complete and that testing, cleaning, adjusting, and commissioning specified in individual Sections have been performed.

F. Examine system and equipment test reports.

G. Examine HVAC system and equipment installations to verify that indicated balancing devices, such as test ports, gage cocks, thermometer wells, flow-control devices, balancing valves and fittings, and manual volume dampers, are properly installed, and that their locations are accessible and appropriate for effective balancing and for efficient system and equipment operation.

H. Examine systems for functional deficiencies that cannot be corrected by adjusting and balancing.

I. Examine HVAC equipment to ensure that clean filters have been installed, bearings are greased, belts are aligned and tight, and equipment with functioning controls is ready for operation.

J. Examine strainers for clean screens and proper perforations.

K. Examine heat-transfer coils for correct piping connections and for clean and straight fins.

L. Examine system pumps to ensure absence of entrained air in the suction piping.

M. Examine equipment for installation and for properly operating safety interlocks and controls.

N. Examine automatic temperature system components to verify the following:

1. Dampers, valves, and other controlled devices are operated by the intended controller.
2. Dampers and valves are in the position indicated by the controller.
3. Integrity of valves and dampers for free and full operation and for tightness of fully closed and fully open positions. This includes dampers associated with air handling units, exhaust fans and space temperature control applications.
4. Thermostats are located to avoid adverse effects of sunlight, drafts, and cold walls.
5. Sensors are located to sense only the intended conditions.
6. Sequence of operation for control modes is according to the Contract Documents.
7. Controller set points are set at indicated values.
8. Interlocked systems are operating.
9. Changeover from heating to cooling mode occurs according to indicated values.

O. Report deficiencies discovered before and during performance of TAB procedures. Observe and record system reactions to changes in conditions. Record default set points if different from indicated values.

3.2 PREPARATION

A. Prepare a TAB plan that includes the following:
 1. Equipment and systems to be tested.
 3. Instrumentation to be used.
 4. Sample forms with specific identification for all equipment.

B. Perform system-readiness checks of HVAC systems and equipment to verify system readiness for TAB work. Include, at a minimum, the following:
 1. Airside:
 a. Duct systems are complete with terminals installed.
 b. Volume and fire dampers are open and functional.
 c. Clean filters are installed.
 d. Fans are operating, free of vibration, and rotating in correct direction.
 e. Automatic temperature-control systems are operational.
 f. Ceilings are installed in critical areas where air-pattern adjustments are required and access to balancing devices is provided.
 g. Balance and fire dampers are open.
 h. Equipment and duct access doors are securely closed.
 i. Automatic temperature-control systems are operational.
 j. Permanent electrical power wiring is complete.
 k. Windows and doors are installed.
 l. Suitable access to balancing devices and equipment is provided.
 m. Windows and doors can be closed so indicated conditions for system operations can be met.
2. Hydronics:
 a. Verify leakage and pressure tests on water distribution systems have been satisfactorily completed.
 b. Piping is complete with terminals installed.
 c. Water treatment is complete. For chilled water system, this includes verifying the proper glycol concentration.
 d. Hydronic systems are filled, clean, and free of air.
 e. Systems are flushed, filled, and air purged.
 f. Strainers are pulled and cleaned.
 g. Control valves are functioning per the sequence of operation.
 h. Shutoff and balance valves have been verified to be 100 percent open and control valves are operational.
 i. Pumps are started, and proper rotation is verified.
 j. Pump gage connections are installed directly at pump inlet and outlet flanges or in discharge and suction pipe prior to valves or strainers.
 k. Suitable access to balancing devices and equipment is provided.
 l. Permanent electrical power wiring is complete.

3.3 GENERAL PROCEDURES FOR TESTING AND BALANCING

 A. Perform testing and balancing procedures on each system according to the procedures contained in AABC's "National Standards for Total System Balance and in this Section.
 B. Cut insulation, ducts, pipes, and equipment cabinets for installation of test probes to the minimum extent necessary for TAB procedures.
 1. After testing and balancing, patch probe holes in ducts with same material and thickness as used to construct ducts.
 2. After testing and balancing, install test ports and duct access doors that comply with requirements in Section 233300 "Duct Accessories."
 3. Install and join new insulation that matches removed materials. Restore insulation, coverings, vapor barrier, and finish according to Section 230716 "Mechanical Piping, Ductwork, and Equipment Insulation."
 C. Mark equipment and balancing devices, including damper-control positions, valve position indicators, fan-speed-control levers, and similar controls and devices, with paint or other suitable, permanent identification material to show final settings.
 D. Take and report testing and balancing measurements in inch-pound (IP).

3.4 GENERAL PROCEDURES FOR BALANCING AIR SYSTEMS

 A. Prepare test reports for both fans and outlets. Obtain manufacturer's outlet factors and recommended testing procedures. Cross-check the summation of required outlet volumes with required fan volumes.
 B. Prepare schematic diagrams of systems' "as-built" duct layouts.
C. Determine the best locations in main and branch ducts for accurate duct-airflow measurements.

D. Check airflow patterns from the outdoor-air louvers and dampers and the return- and exhaust-air dampers through the supply-fan discharge and mixing dampers.

E. Locate start-stop and disconnect switches, electrical interlocks, and motor starters.

F. Verify that motor starters are equipped with properly sized thermal protection.

G. Check dampers for proper position to achieve desired airflow path.

H. Check for airflow blockages.

I. Check condensate drains for proper connections and functioning.

J. Check for proper sealing of air-handling-unit components.

K. Verify that air duct system is sealed as specified in Section 233113 "Metal Ducts."

3.5 PROCEDURES FOR CONSTANT-VOLUME AIR SYSTEMS

A. Adjust fans to deliver total indicated airflows within the maximum allowable fan speed listed by fan manufacturer.

1. Measure total airflow and static pressure from Air Handling Units when filters are clean.

 a. Set outside-air, return-air, and relief-air dampers for proper position that simulates minimum outdoor-air conditions.
 b. Where duct conditions allow, measure airflow by Pitot-tube traverse. If necessary, perform multiple Pitot-tube traverses to obtain total airflow.
 c. Where duct conditions are not suitable for Pitot-tube traverse measurements, a coil traverse may be acceptable.
 d. If a reliable Pitot-tube traverse or coil traverse is not possible, measure airflow at terminals and calculate the total airflow.

2. Measure fan static pressures as follows:

 a. Measure static pressure directly at the fan outlet or through the flexible connection.
 b. Measure static pressure directly at the fan inlet or through the flexible connection.
 c. Measure static pressure across each component that makes up the air-handling system. Simulate dirty filter operation and record the point at which maintenance personnel must change filters.
 d. Report artificial loading of filters at the time static pressures are measured.
3. Compare design data with installed conditions to determine variations in design static pressures versus actual static pressures. Compare actual system effect factors with calculated system effect factors to identify where variations occur. Recommend corrective action to align design and actual conditions.

4. Obtain approval from Owner, Engineer, and Commissioning Authority for adjustment of fan speed higher or lower than indicated speed. Make required adjustments to pulley sizes, motor sizes, and electrical connections to accommodate fan-speed changes. Comply with requirements in HVAC Sections for these adjustments.

5. Do not make fan-speed adjustments that result in motor overload. Consult equipment manufacturers about fan-speed safety factors. Modulate dampers and measure fan-motor amperage to ensure that no overload will occur. Measure amperage in full cooling, full heating, economizer, and any other operating modes to determine the maximum required brake horsepower.

B. Adjust volume dampers for main duct, submain ducts, and major branch ducts to indicated airflows within specified tolerances.

1. Measure static pressure at a point downstream from the balancing damper and adjust volume dampers until the proper static pressure is achieved.
 a. Where sufficient space in submain and branch ducts is unavailable for Pitot-tube traverse measurements, measure airflow at terminal outlets and inlets and calculate the total airflow for that zone.

2. Re-measure each submain and branch duct after all have been adjusted. Continue to adjust submain and branch ducts to indicated airflows within specified tolerances.

C. Measure terminal outlets and inlets without making adjustments.

1. Measure terminal outlets using a direct-reading hood or outlet manufacturer's written instructions and calculating factors.

D. Adjust terminal outlets and inlets for each space to indicated airflows within specified tolerances of indicated values. Make adjustments using volume dampers rather than extractors and the dampers at air terminals.

1. Adjust each outlet in same room or space to within specified tolerances of indicated quantities without generating noise levels above the limitations prescribed by the Contract Documents.

2. Adjust patterns of adjustable outlets for proper distribution without drafts.

E. Review Record Documents to determine variations in design static pressures versus actual static pressures. Calculate actual system-effect factors. Recommend adjustments to accommodate actual conditions.

F. Sound Levels: Measure, record and report NC levels in octave bands at each work station.
3.6 GENERAL PROCEDURES FOR HYDRONIC SYSTEMS

A. Prepare test reports for pumps, coils, and heat exchangers. Obtain approved submittals and manufacturer-recommended testing procedures. Crosscheck the summation of required coil and heat exchanger flow rates with pump design flow rate.

B. Prepare schematic diagrams of systems' "as-built" piping layouts.

C. Prepare hydronic systems for testing and balancing according to the following, in addition to the general preparation procedures specified above:

1. Open all manual valves for maximum flow.
2. Check expansion tank liquid level.
3. Check makeup-water-station pressure gage for adequate pressure for highest vent.
4. Check flow-control valves for specified sequence of operation and set at indicated flow.
5. Set system controls so automatic valves are wide open to heat exchangers.
6. Check pump-motor load. If motor is overloaded, throttle main flow-balancing device so motor nameplate rating is not exceeded.
7. Check air vents for a forceful liquid flow exiting from vents when manually operated.

3.7 PROCEDURES FOR CONSTANT-FLOW HYDRONIC SYSTEMS

A. Measure water flow at pumps. Use the following procedures, except for positive-displacement pumps:

1. Verify impeller size by operating the pump with the discharge valve closed. Read pressure differential across the pump. Convert pressure to head and correct for differences in gage heights. Note the point on manufacturer's pump curve at zero flow and verify that the pump has the intended impeller size.
2. Check system resistance. With all valves open, read pressure differential across the pump and mark pump manufacturer's head-capacity curve. Adjust pump discharge valve until indicated water flow is achieved.
3. Verify pump-motor brake horsepower. Calculate the intended brake horsepower for the system based on pump manufacturer's performance data. Compare calculated brake horsepower with nameplate data on the pump motor. Report conditions where actual amperage exceeds motor nameplate amperage.
4. Report flow rates that are not within plus or minus 5 percent of design.

B. Set calibrated balancing valves, if installed, at calculated pre-settings.

C. Measure flow at all stations and adjust, where necessary, to obtain first balance.

1. System components that have Cv rating or an accurately cataloged flow-pressure-drop relationship may be used as a flow-indicating device.
D. Measure flow at main balancing station and set main balancing device to achieve flow that is 5 percent greater than indicated flow.

E. Adjust balancing stations to within specified tolerances of indicated flow rate as follows:
 1. Determine the balancing station with the highest percentage over indicated flow.
 2. Adjust each station in turn, beginning with the station with the highest percentage over indicated flow and proceeding to the station with the lowest percentage over indicated flow.
 3. Record settings and mark balancing devices.

F. Measure pump flow rate and make final measurements of pump amperage, voltage, RPM, pump heads, and systems' pressures and temperatures including outdoor-air temperature.

G. Measure the differential-pressure control valve settings existing at the conclusions of balancing.

H. Check settings and operation of each safety valve. Record settings.

3.8 PROCEDURES FOR MOTORS

A. Motors, 1/2 HP and Larger: Test at final balanced conditions and record the following data:
 1. Manufacturer, model, and serial numbers.
 4. Efficiency rating.
 5. Nameplate and measured voltage, each phase.
 6. Nameplate and measured amperage, each phase.
 7. Starter thermal-protection-element rating.
 8. Service factor and frame size

3.9 PROCEDURES FOR HEAT PUMP UNITS

A. Verify proper rotation of fans.

B. Measure entering and leaving air temperatures.

C. Record compressor data.

3.10 PROCEDURES FOR HEAT-TRANSFER COILS

A. Water Coils: Measure the following data for each coil:
 1. Entering- and leaving-water temperature.
 2. Water flow rate.
 3. Water pressure drop.
4. Dry-bulb temperature of entering and leaving air.
5. Wet-bulb temperature of entering and leaving air for cooling coils.
6. Airflow.
7. Air pressure drop.

B. Electric Coils:
1. Dry-bulb temperature of entering and leaving air.
2. Airflow.
3. Air pressure drop.

3.11 PROCEDURES FOR TEMPERATURE MEASUREMENTS

A. During TAB, report the need for adjustment in temperature regulation within the automatic temperature-control system.

B. Measure indoor wet- and dry-bulb temperatures every other hour for a period of two successive eight-hour days, in each separately controlled zone, to prove correctness of final temperature settings. Measure when the building or zone is occupied.

C. Measure outside-air, wet- and dry-bulb temperatures.

3.12 CONTROL SYSTEM VERIFICATION

A. In coordination with the mechanical contractor, perform the following:

1. Verify that controllers are calibrated and commissioned.
2. Check transmitter and controller locations and note conditions that would adversely affect control functions.
3. Record controller settings and note variances between set points and actual measurements.
4. Check the operation of limiting controllers (i.e., high- and low-temperature controllers).
5. Check free travel and proper operation of control devices such as damper and valve operators.
6. Check the sequence of operation of control devices. Note air pressures and device positions and correlate with airflow and water flow measurements. Note the speed of response to input changes.
7. Check the interaction of electrically operated switch transducers.
8. Check the interaction of interlock and lockout systems.
9. Record voltages of power supply and controller output. Determine whether the system operates on a grounded or non-grounded power supply.
10. Note operation of electric actuators using spring return for proper fail-safe operations.

B. Reporting: Include a summary of verifications performed, remaining deficiencies, and variations from indicated conditions.
3.13 TOLERANCES

A. Set HVAC system's airflow rates and water flow rates within the following tolerances:

1. Outdoor Air and Return Air Dampers to AHU: +5% to –5%
2. Supply and Exhaust Fans and Equipment with Fans: +5% to –5%.
3. Air Outlets and Inlets: +5% to –5%.
4. Heating-Water Flow Rate through Pumps and Coils: +5% to –5%.
5. Chilled-Water Flow Rate through Pumps and Coils: +5% to –5%.

B. Maintaining pressure relationships as designed shall have priority over the tolerances specified above.

3.14 REPORTING

A. Initial Construction-Phase Report: Based on examination of the Contract Documents as specified in "Examination" Article, prepare a report on the adequacy of design for systems' balancing devices. Recommend changes and additions to systems' balancing devices to facilitate proper performance measuring and balancing. Recommend changes and additions to HVAC systems and general construction to allow access for performance measuring and balancing devices.

B. Status Reports: As Work progresses, prepare reports to describe completed procedures, procedures in progress, and scheduled procedures. Include a list of deficiencies and problems found in systems being tested and balanced. Prepare a separate report for each system and each building floor for systems serving multiple floors.

3.15 PRELIMINARY REPORT

A. A Preliminary hand-written copy of the field balancing shall be provided to the owner within 2-business days of the field testing.

B. The preliminary report shall provide, as a minimum, the technical test results of the field testing and balancing.

3.16 FINAL REPORT

A. General: Typewritten, or computer printout in letter-quality font, on standard bond paper, in three-ring binder, tabulated and divided into sections by tested and balanced systems.

B. Include a certification sheet in front of binder signed and sealed by the certified testing and balancing engineer.

1. Include a list of instruments used for procedures, along with proof of calibration.

C. Final Report Contents: In addition to certified field-report data, include the following:

1. Pump curves.
2. Fan curves.
3. Manufacturers' test data.
4. Field test reports prepared by system and equipment installers.
5. Other information relative to equipment performance; do not include Shop Drawings and Product Data.

D. General Report Data: In addition to form titles and entries, include the following data:

1. Title page.
2. Name and address of the TAB specialist.
3. Project name.
4. Project location.
5. Architect's name and address.
6. Engineer's name and address.
7. Contractor's name and address.
9. Signature of TAB supervisor who certifies the report.
10. Table of Contents with the total number of pages defined for each section of the report. Number each page in the report.
11. Summary of contents including the following:
 a. Indicated versus final performance.
 b. Notable characteristics of systems.
 c. Description of system operation sequence if it varies from the Contract Documents.

12. Nomenclature sheets for each item of equipment.
13. Data for terminal units, including manufacturer's name, type, size, and fittings.
14. Notes to explain why certain final data in the body of reports vary from indicated values.
15. Test conditions for fans and pump performance forms including the following:
 a. Settings for outdoor-, return-, and exhaust-air dampers.
 b. Conditions of filters.
 c. Cooling coil, wet- and dry-bulb conditions.
 d. Face and bypass damper settings at coils.
 e. Fan drive settings including settings and percentage of maximum pitch diameter.
 f. Inlet vane settings for variable-air-volume systems.
 g. Settings for supply-air, static-pressure controller.
 h. Other system operating conditions that affect performance.

E. System Diagrams: Include schematic layouts of air and hydronic distribution systems. Present each system with single-line diagram and include the following:

1. Quantities of outdoor, supply, return, and exhaust airflows.
2. Water and steam flow rates.
3. Duct, outlet, and inlet sizes.
4. Pipe and valve sizes and locations.
5. Terminal units.

F. Air-Handling-Unit Test Reports: For air-handling units with coils, include the following:

1. Unit Data:
 a. Unit identification.
 b. Location.
 c. Make and type.
 d. Model number and unit size.
 e. Manufacturer's serial number.
 f. Unit arrangement and class.
 g. Discharge arrangement.
 h. Sheave make, size in inches (mm), and bore.
 i. Center-to-center dimensions of sheave and amount of adjustments in inches (mm).
 j. Number, make, and size of belts.
 k. Number, type, and size of filters.

2. Motor Data:
 a. Make and frame type and size.
 b. Horsepower and rpm.
 c. Volts, phase, and hertz.
 d. Full-load amperage and service factor.
 e. Sheave make, size in inches and bore.
 f. Sheave dimensions, center-to-center, and amount of adjustments in inches.

3. Test Data (Indicated and Actual Values):
 a. Total airflow rate in cfm.
 b. Total system static pressure in inches wg.
 c. Fan rpm.
 d. Discharge static pressure in inches wg.
 e. Filter static-pressure differential in inches wg.
 f. Cooling coil static-pressure differential in inches wg.
 g. Heating coil static-pressure differential in inches wg.
 h. Outside airflow in cfm.
 i. Return airflow in cfm.
 j. Outside-air damper position.
 k. Return-air damper position

G. Apparatus-Coil Test Reports:

1. Coil Data:
a. System identification.
b. Location.
c. Coil type.
d. Number of rows.
e. Fin spacing in fins per inch o.c.
f. Make and model number.
g. Face area in sq. ft.
h. Tube size in NPS.
i. Tube and fin materials.
j. Circuiting arrangement.

2. Test Data (Indicated and Actual Values):

a. Airflow rate in cfm.
b. Average face velocity in fpm.
c. Air pressure drop in inches wg.
d. Outside-air, wet- and dry-bulb temperatures in deg F.
e. Return-air, wet- and dry-bulb temperatures in deg F.
f. Entering-air, wet- and dry-bulb temperatures in deg F.
g. Leaving-air, wet- and dry-bulb temperatures in deg F.
h. Water flow rate in gpm.
i. Water pressure differential in feet of head or psig.
j. Entering-water temperature in deg F.
k. Leaving-water temperature in deg F.
l. Refrigerant expansion valve and refrigerant types.
m. Refrigerant suction pressure in psig.
n. Refrigerant suction temperature in deg F.
o. Inlet steam pressure in psig.

H. Electric-Coil Test Reports: For electric furnaces, duct coils, and electric coils installed in central-station air-handling units, include the following:

1. Unit Data:

a. System identification.
b. Location.
c. Coil identification.
d. Capacity in Btu/h
e. Number of stages.
f. Connected volts, phase, and hertz.
g. Rated amperage.
h. Airflow rate in cfm
i. Face area in sq. ft.
j. Minimum face velocity in fpm.

2. Test Data (Indicated and Actual Values):

a. Heat output in Btu/h.
b. Airflow rate in cfm.
c. Air velocity in fpm.
d. Entering-air temperature in deg F.
e. Leaving-air temperature in deg F.
f. Voltage at each connection.
g. Amperage for each phase.

I. Fan Test Reports: For supply, return, and exhaust fans, include the following:

1. Fan Data:
 a. System identification.
 b. Location.
 c. Make and type.
 d. Model number and size.
 e. Manufacturer's serial number.
 f. Arrangement and class.
 g. Sheave make, size in inches and bore.
 h. Center-to-center dimensions of sheave and amount of adjustments in inches.
 i. Motor Data:
 j. Motor make, and frame type and size.
 k. Horsepower and rpm.
 l. Volts, phase, and hertz.
 m. Full-load amperage and service factor.
 n. Sheave make, size in inches, and bore.
 o. Center-to-center dimensions of sheave, and amount of adjustments in inches.
 p. Number, make, and size of belts.

2. Test Data (Indicated and Actual Values):
 a. Total airflow rate in cfm
 b. Total system static pressure in inches wg.
 c. Fan rpm.
 d. Discharge static pressure in inches wg.
 e. Suction static pressure in inches wg.

J. Round, Flat-Oval, and Rectangular Duct Traverse Reports: Include a diagram with a grid representing the duct cross-section and record the following:

1. Report Data:
 a. System and air-handling-unit number.
 b. Location and zone.
 c. Traverse air temperature in deg F.
 d. Duct static pressure in inches wg.
 e. Duct size in inches.
 f. Duct area in sq. ft.
 g. Indicated airflow rate in cfm.
h. Indicated velocity in fpm.
i. Actual airflow rate in cfm.
j. Actual average velocity in fpm.
k. Barometric pressure in psig.

K. Pump Test Reports: Calculate impeller size by plotting the shutoff head on pump curves and include the following:

1. Unit Data:
 a. Unit identification.
b. Location.
c. Service.
d. Make and size.
e. Model number and serial number.
f. Water flow rate in gpm.
g. Water pressure differential in feet of head or psig.
h. Required net positive suction head in feet of head or psig.
i. Pump rpm.
j. Impeller diameter in inches.
k. Motor make and frame size.
l. Motor horsepower and rpm.
m. Voltage at each connection.
n. Amperage for each phase.
o. Full-load amperage and service factor.
p. Seal type.

2. Test Data (Indicated and Actual Values):
 a. Static head in feet of head or psig.
b. Pump shutoff pressure in feet of head or psig.
c. Actual impeller size in inches.
d. Full-open flow rate in gpm.
e. Full-open pressure in feet of head or psig.
f. Final discharge pressure in feet of head or psig.
g. Final suction pressure in feet of head or psig.
h. Final total pressure in feet of head or psig.
i. Final water flow rate in gpm.
j. Voltage at each connection.
k. Amperage for each phase.

L. Instrument Calibration Reports:

1. Report Data:
 a. Instrument type and make.
b. Serial number.
c. Application.
d. Dates of use.
e. Dates of calibration.

M. Sound Level Data: Measure, record, and report NC level in octave band for each work station, indicated and actual.

3.17 CONDITIONAL ACCEPTANCE INSPECTION

A. After testing and balancing are complete, operate each system. The test and balance engineer, in the presence of the Owner and Engineer shall randomly check measurements to verify that the system is operating according to the final test and balance readings documented in the Final Report.

1. Randomly check the following for each system, in locations as identified by the Commissioning Authority:
 a. Measure airflow and temperature at all water to air heat pumps.
 b. Measure water flow at 100 percent of pumps and 100 percent of hydronic coils.
 c. Measure discharge air temperature at 100 percent of hydronic coils.
 d. Measure duct air temperature at 50 percent of duct temperature sensor locations.
 e. Verify that balancing devices are marked with final balance position.

B. If the rechecks yield measurements that differ from the measurements documented in the final report by more than the tolerances allowed, the measurements shall be noted as "FAILED."

C. If the number of "FAILED" measurements is greater than 10 percent of the total measurements checked during the final inspection, the testing and balancing shall be considered incomplete and shall be rejected.

D. TAB firm shall recheck all measurements and make adjustments. Revise the final report and balancing device settings to include all changes and resubmit the final report.

E. Request a second inspection. If the second inspection also fails, Owner shall contract the services of another TAB firm to complete the testing and balancing in accordance with the Contract Documents and deduct the cost of the services from the final payment.

3.18 ADDITIONAL TESTS

A. Within 90 days of completing TAB, perform additional TAB to verify that balanced conditions are being maintained throughout and to correct unusual conditions.

B. Seasonal Periods: If initial TAB procedures were not performed during near-peak summer and winter conditions, perform additional TAB during near-peak summer and winter conditions and at the shoulder season.

END OF SECTION
THIS PAGE INTENTIONALLY LEFT BLANK
SECTION 230719
MECHANICAL INSULATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes insulating the following systems and equipment:

1. Glycol water piping.
2. Condensate piping, indoors.
3. Ductwork.
4. Insulation Jacket.

B. This Section includes the following:

1. Insulation Materials:
 a. Flexible elastomeric.
 b. Mineral fiber.

2. Insulating cements.
3. Adhesives.
5. Lagging adhesives.
7. Factory-applied jackets.
8. Field-applied jackets.
10. Securements.
11. Corner angles.

C. Related Sections include the following

1. Division 23 Section "Metal Ducts" for duct liners.

1.3 DEFINITIONS

A. ASJ: All-service jacket.

B. FSK: Foil, scrim, kraft paper.
C. FSP: Foil, scrim, polyethylene.
D. PVDC: Polyvinylidene chloride.
E. SSL: Self-sealing lap.

1.4 SUBMITTALS

A. Product Data: For each type of product indicated, identify thermal conductivity, thickness, and jackets (both factory and field applied, if any).

B. Shop Drawings: Show details for the following:
 1. Application of protective shields, saddles, and inserts at hangers for each type of insulation and hanger.
 2. Insulation application at pipe expansion joints for each type of insulation.
 3. Insulation application at elbows, fittings, flanges, valves, and specialties for each type of insulation.
 4. Removable insulation at piping specialties, equipment connections, and access panels.
 5. Application of field-applied jackets.
 6. Application at linkages of control devices.
 7. Field application for each equipment type.

C. Installer Certificates: Signed by Contractor certifying that installers comply with requirements.

D. Material Test Reports: From a qualified testing agency acceptable to authorities having jurisdiction indicating, interpreting, and certifying test results for compliance of insulation materials, sealers, attachments, cements, and jackets, with requirements indicated. Include dates of tests and test methods employed.

E. Field quality-control reports

1.5 QUALITY ASSURANCE

A. Fire-Test-Response Characteristics: Insulation and related materials shall have fire-test-response characteristics indicated, as determined by testing identical products per ASTM E 84, by a testing and inspecting agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, and cement material containers, with appropriate markings of applicable testing and inspecting agency.

 1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.
1.6 DELIVERY, STORAGE, AND HANDLING

A. Packaging: Insulation material containers shall be marked by manufacturer with appropriate ASTM standard designation, type and grade, and maximum use temperature.

1.7 COORDINATION

A. Coordinate size and location of supports, hangers, and insulation shields specified in Division 23 Section "Hangers and Supports."

B. Coordinate clearance requirements with piping Installer for piping insulation application, duct Installer for duct insulation application, and equipment Installer for equipment insulation application. Before preparing piping and ductwork Shop Drawings, establish and maintain clearance requirements for installation of insulation and field-applied jackets and finishes and for space required for maintenance.

1.8 SCHEDULING

A. Schedule insulation application after pressure testing systems. Insulation application may begin on segments that have satisfactory test results.

B. Complete installation and concealment of plastic materials as rapidly as possible in each area of construction.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the manufacturers specified.

2.2 INSULATION MATERIALS

A. Refer to Part 3 schedule articles for requirements about where insulating materials shall be applied.

B. Products shall not contain asbestos, lead, mercury, or mercury compounds.

C. Products that come in contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested according to ASTM C 871.

D. Insulation materials for use on austenitic stainless steel shall be qualified as acceptable according to ASTM C 795.
E. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process.

F. Flexible Elastomeric: Closed-cell, sponge- or expanded-rubber materials. Comply with ASTM C 534, Type I for tubular materials and Type II for sheet materials.

1. Products:
 a. Aeroflex USA Inc.; Aerocel.
 b. Armacell LLC; AP Armaflex.
 c. RBX Corporation; Insul-Sheet 1800 and Insul-Tube 180.

G. Mineral-Fiber, Preformed Pipe Insulation:

1. Products:
 a. Johns Manville; Micro-Lok.
 b. Knauf Insulation; 1000(Pipe Insulation.
 c. Owens Corning; Fiberglas Pipe Insulation

2. Type I, 850 deg F (454 deg C) Materials: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 547, Type I, Grade A, with factory-applied ASJ-SSL. Factory-applied jacket requirements are specified in Part 2 "Factory-Applied Jackets" Article.

H. Mineral-Fiber, Pipe, Round Duct and Tank Insulation: Mineral or glass fibers bonded with a thermosetting resin. Semi rigid board material with factory-applied ASJ complying with ASTM C 1393, Type II or Type IIIA Category 2, or with properties similar to ASTM C 612, Type IB. Nominal density is 2.5 lb/cu. ft. (40 kg/cu. m) or more. Thermal conductivity (k-value) at 100 deg F (55 deg C) is 0.29 Btu x in./h x sq. ft. x deg F (0.042 W/m x K) or less. Factory-applied jacket requirements are specified in Part 2 "Factory-Applied Jackets" Article.

1. Products:
 a. CertainTeed Corp.; CrimpWrap.
 b. Johns Manville; MicroFlex.
 c. Knauf Insulation; Pipe and Tank Insulation.
 d. Owens Corning; Fiberglas Pipe and Tank Insulation.

2.3 INSULATING CEMENTS

1. Available Products:
 a. Insulco, Division of MFS, Inc.; Triple I.
B. Mineral-Fiber, Hydraulic-Setting Insulating and Finishing Cement: Comply with ASTM C 449/C 449M.

1. Products:
 a. Insulco, Division of MFS, Inc.; SmoothKote.
 c. Rock Wool Manufacturing Company; Delta One Shot.

2.4 ADHESIVES

A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated, unless otherwise indicated.

B. For indoor applications, use adhesive that has a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

C. Use adhesive that complies with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers," including 2004 Addenda.

D. Flexible Elastomeric Adhesive: Comply with MIL-A-24179A, Type II, Class I.

1. Products:
 a. Aeroflex USA Inc.; Aerosel.
 b. Armacell LCC; 520 Adhesive.
 c. Foster Products Corporation, H. B. Fuller Company; 85-75.
 d. RBX Corporation; Rubatex Contact Adhesive.

E. Mineral-Fiber Adhesive: Comply with MIL-A-3316C, Class 2, Grade A.

1. Products:
 a. Childers Products, Division of ITW; CP-82.
 c. Marathon Industries, Inc.; 225.
 d. Mon-Eco Industries, Inc.; 22-25.

F. ASJ Adhesive, and FSK and PVDC Jacket Adhesive: Comply with MIL-A-3316C, Class 2, Grade A for bonding insulation jacket lap seams and joints.

1. Products:
 a. Childers Products, Division of ITW; CP-82.
 c. Marathon Industries, Inc.; 225.
 d. Mon-Eco Industries, Inc.; 22-25.
2.5 MASTICS

A. Materials shall be compatible with insulation materials, jackets, and substrates; comply with MIL-C-19565C, Type II.

1. For indoor applications, use mastics that have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

B. Vapor-Barrier Mastic: Solvent based; suitable for indoor use on below ambient services.

1. Products:
 a. Childers Products, Division of ITW; CP-30.
 b. Foster Products Corporation, H. B. Fuller Company; 30-35.
 d. Mon-Eco Industries, Inc.; 55-10.

2. Water-Vapor Permeance: ASTM F 1249, 0.05 perm (0.03 metric perm) at 35-mil (0.9-mm) dry film thickness.

3. Service Temperature Range: 0 to 180 deg F (Minus 18 to plus 82 deg C).

C. Breather Mastic: Water based; suitable for indoor and outdoor use on above ambient services.

1. Products:
 a. Childers Products, Division of ITW; CP-10.
 b. Foster Products Corporation, H. B. Fuller Company; 35-00.

2. Water-Vapor Permeance: ASTM F 1249, 3 perms (2 metric perms) at 0.0625-inch (1.6-mm) dry film thickness.

3. Service Temperature Range: Minus 20 to plus 200 deg F (Minus 29 to plus 93 deg C).

4. Solids Content: 63 percent by volume and 73 percent by weight.

2.6 LAGGING ADHESIVES

A. Description: Comply with MIL-A-3316C Class I, Grade A and shall be compatible with insulation materials, jackets, and substrates.

1. Products:
 a. Childers Products, Division of ITW; CP-52.
 b. Foster Products Corporation, H. B. Fuller Company; 81-42.
c. Marathon Industries, Inc.; 130.
d. Mon-Eco Industries, Inc.; 11-30.

2. Fire-resistant, water-based lagging adhesive and coating for use indoors to adhere fire-resistant lagging cloths over duct, equipment, and pipe insulation.
3. Service Temperature Range: Minus 50 to plus 180 deg F (Minus 46 to plus 82 deg C).

2.7 SEALANTS

A. Joint Sealants:

1. Joint Sealants for Polystyrene Products:
 a. Childers Products, Division of ITW; CP-70.
 c. Marathon Industries, Inc.; 405.
 d. Mon-Eco Industries, Inc.; 44-05.

2. Materials shall be compatible with insulation materials, jackets, and substrates.
3. Permanently flexible, elastomeric sealant.
4. Service Temperature Range: Minus 100 to plus 300 deg F (Minus 73 to plus 149 deg C).
5. Color: White or gray.

B. FSK and Metal Jacket Flashing Sealants:

1. Products:
 a. Childers Products, Division of ITW; CP-76-8.
 b. Foster Products Corporation, H. B. Fuller Company; 95-44.
 c. Marathon Industries, Inc.; 405.
 d. Mon-Eco Industries, Inc.; 44-05.

2. Materials shall be compatible with insulation materials, jackets, and substrates.
3. Fire- and water-resistant, flexible, elastomeric sealant.
4. Service Temperature Range: Minus 40 to plus 250 deg F (Minus 40 to plus 121 deg C).
5. Color: Aluminum.

2.8 FACTORY-APPLIED JACKETS

A. Insulation system schedules indicate factory-applied jackets on various applications. When factory-applied jackets are indicated, comply with the following:

1. ASJ: White, kraft-paper, fiberglass-reinforced scrim with aluminum-foil backing; complying with ASTM C 1136, Type I.
2. ASJ-SSL: ASJ with self-sealing, pressure-sensitive, acrylic-based adhesive covered by a removable protective strip; complying with ASTM C 1136, Type I.
3. FSK Jacket: Aluminum-foil, fiberglass-reinforced scrim with kraft-paper backing; complying with ASTM C 1136, Type II.
4. FSP Jacket: Aluminum-foil, fiberglass-reinforced scrim with polyethylene backing; complying with ASTM C 1136, Type II.
5. Vinyl Jacket: UL-rated white vinyl with a permeance of 1.3 perms (0.86 metric perms) when tested according to ASTM E 96, Procedure A, and complying with NFPA 90A and NFPA 90B.

2.9 FIELD-APPLIED JACKETS

A. Field-applied jackets shall comply with ASTM C 921, Type I, unless otherwise indicated.

B. PVC Jacket: High-impact-resistant, UV-resistant PVC complying with ASTM D 1784, Class 16354-C; thickness as scheduled; roll stock ready for shop or field cutting and forming. Thickness is indicated in field-applied jacket schedules.

1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 a. Johns Manville; Zeston.
 b. Speedline Corporation; SmokeSafe.

2. Adhesive: As recommended by jacket material manufacturer.

3. Color: Custom Color as selected by the Architect

4. Factory-fabricated fitting covers to match jacket if available; otherwise, field fabricate.
 a. Shapes: 45- and 90-degree, short- and long-radius elbows, tees, valves, flanges, unions, reducers, end caps, soil-pipe hubs, traps, mechanical joints, and P-trap and supply covers for lavatories.

C. Metal Jacket:

1. Products:
 a. Childers Products, Division of ITW; Metal Jacketing Systems.
 b. PABCO Metals Corporation; Surefit.
 c. RPR Products, Inc.; Insul-Mate.
 e. Factory cut and rolled to size.
 f. Finish and thickness are indicated in field-applied jacket schedules.
 g. Moisture Barrier for Indoor Applications: 1-mil- (0.025-mm-) thick, heat-bonded polyethylene and kraft paper.
 h. Moisture Barrier for Outdoor Applications: 3-mil- (0.075-mm-) thick, heat-bonded polyethylene and kraft paper.
i. Factory-Fabricated Fitting Covers:

1) Same material, finish, and thickness as jacket.
2) Preformed 2-piece or gore, 45- and 90-degree, short- and long-radius elbows.
3) Tee covers.
4) Flange and union covers.
5) End caps.
6) Beveled collars.
7) Valve covers.
8) Field fabricate fitting covers only if factory-fabricated fitting covers are not available.

2.10 TAPES

A. ASJ Tape: White vapor-retarder tape matching factory-applied jacket with acrylic adhesive, complying with ASTM C 1136 and UL listed.

1. Available Products:

 a. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0835.
 b. Compac Corp.; 104 and 105.
 c. Ideal Tape Co., Inc., an American Biltrite Company; 428 AWF ASJ.
 d. Venture Tape; 1540 CW Plus, 1542 CW Plus, and 1542 CW Plus/SQ.

2. Width: 3 inches (75 mm).
3. Thickness: 11.5 mils (0.29 mm).
4. Adhesion: 90 ounces force/inch (1.0 N/mm) in width.
5. Elongation: 2 percent.
6. Tensile Strength: 40 lbf/inch (7.2 N/mm) in width.
7. ASJ Tape Disks and Squares: Precut disks or squares of ASJ tape.

B. FSK Tape: Foil-face, vapor-retarder tape matching factory-applied jacket with acrylic adhesive; complying with ASTM C 1136 and UL listed.

1. Available Products:

 a. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0827.
 b. Compac Corp.; 110 and 111.
 c. Ideal Tape Co., Inc., an American Biltrite Company; 491 AWF FSK.
 d. Venture Tape; 1525 CW, 1528 CW, and 1528 CW/SQ.

2. Width: 3 inches (75 mm).
3. Thickness: 6.5 mils (0.16 mm).
4. Adhesion: 90 ounces force/inch (1.0 N/mm) in width.
5. Elongation: 2 percent.
6. Tensile Strength: 40 lbf/inch (7.2 N/mm) in width.
7. FSK Tape Disks and Squares: Precut disks or squares of FSK tape.
C. PVC Tape: White vapor-retarder tape matching field-applied PVC jacket with acrylic adhesive. Suitable for indoor and outdoor applications.

1. Available Products:
 a. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0555.
 b. Compac Corp.; 130.
 c. Ideal Tape Co., Inc., an American Biltrite Company; 370 White PVC tape.
 d. Venture Tape; 1506 CW NS.

2. Width: 2 inches (50 mm).
3. Thickness: 6 mils (0.15 mm).
4. Adhesion: 64 ounces force/inch (0.7 N/mm) in width.
5. Elongation: 500 percent.
6. Tensile Strength: 18 lbf/inch (3.3 N/mm) in width.

D. Aluminum-Foil Tape: Vapor-retarder tape with acrylic adhesive and UL listed.

1. Available Products:
 a. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0800.
 b. Compac Corp.; 120.
 c. Ideal Tape Co., Inc., an American Biltrite Company; 488 AWF.
 d. Venture Tape; 3520 CW.

2. Width: 2 inches (50 mm).
3. Thickness: 3.7 mils (0.093 mm).
4. Adhesion: 100 ounces force/inch (1.1 N/mm) in width.
5. Elongation: 5 percent.
6. Tensile Strength: 34 lbf/inch (6.2 N/mm) in width.

2.11 SECUREMENTS

A. Bands:

1. Available Products:
 a. Childers Products; Bands.
 b. PABCO Metals Corporation; Bands.
 c. RPR Products, Inc.; Bands.

2. Stainless Steel: ASTM A 167 or ASTM A 240/A 240M, Type 304 or Type 316; 0.015 inch (0.38 mm) thick, 3/4 inch (19 mm) wide with wing or closed seal.
3. Aluminum: ASTM B 209 (ASTM B 209M), Alloy 3003, 3005, 3105, or 5005; Temper H-14, 0.020 inch (0.51 mm) thick, 3/4 inch (19 mm) wide with wing or closed seal.
B. Insulation Pins and Hangers:

1. Metal, Adhesively Attached, Perforated-Base Insulation Hangers: Baseplate welded to projecting spindle that is capable of holding insulation, of thickness indicated, securely in position indicated when self-locking washer is in place. Comply with the following requirements:

 a. Available Products:

 1) AGM Industries, Inc.; Tactoo Insul-Hangers, Series T.
 2) GEMCO; Perforated Base.
 3) Midwest Fasteners, Inc.; Spindle.

 b. Baseplate: Perforated, galvanized carbon-steel sheet, 0.030 inch (0.76 mm) thick by 2 inches (50 mm) square.

 c. Spindle: Aluminum, fully annealed, 0.106-inch- (2.6-mm-) diameter shank, length to suit depth of insulation indicated.

 d. Adhesive: Recommended by hanger manufacturer. Product with demonstrated capability to bond insulation hanger securely to substrates indicated without damaging insulation, hangers, and substrates.

2. Nonmetal, Adhesively Attached, Perforated-Base Insulation Hangers: Baseplate fastened to projecting spindle that is capable of holding insulation, of thickness indicated, securely in position indicated when self-locking washer is in place. Comply with the following requirements:

 a. Available Products:

 1) GEMCO; Nylon Hangers.
 2) Midwest Fasteners, Inc.; Nylon Insulation Hangers.

 b. Baseplate: Perforated, nylon sheet, 0.030 inch (0.76 mm) thick by 1-1/2 inches (38 mm) in diameter.

 c. Spindle: Nylon, 0.106-inch- (2.6-mm-) diameter shank, length to suit depth of insulation indicated, up to 2-1/2 inches (63 mm).

 d. Adhesive: Recommended by hanger manufacturer. Product with demonstrated capability to bond insulation hanger securely to substrates indicated without damaging insulation, hangers, and substrates.

3. Self-Sticking-Base Insulation Hangers: Baseplate welded to projecting spindle that is capable of holding insulation, of thickness indicated, securely in position indicated when self-locking washer is in place. Comply with the following requirements:

 a. Available Products:

 1) AGM Industries, Inc.; Tactoo Insul-Hangers, Series TSA.
 2) GEMCO; Press and Peel.
 3) Midwest Fasteners, Inc.; Self Stick.
b. Baseplate: Galvanized carbon-steel sheet, 0.030 inch (0.76 mm) thick by 2 inches (50 mm) square.

c. Spindle: [Copper- or zinc-coated, low carbon steel] [Aluminum] [Stainless steel], fully annealed, 0.106-inch- (2.6-mm-) diameter shank, length to suit depth of insulation indicated.

d. Adhesive-backed base with a peel-off protective cover.

4. Insulation-Retaining Washers: Self-locking washers formed from 0.016-inch- (0.41-mm-) thick, aluminum sheet, with beveled edge sized as required to hold insulation securely in place but not less than 1-1/2 inches (38 mm) in diameter.

a. Available Products:

1) AGM Industries, Inc.; RC-150.
2) GEMCO; R-150.
3) Midwest Fasteners, Inc.; WA-150.
4) Nelson Stud Welding; Speed Clips.

b. Protect ends with capped self-locking washers incorporating a spring steel insert to ensure permanent retention of cap in exposed locations.

5. Nonmetal Insulation-Retaining Washers: Self-locking washers formed from 0.016-inch- (0.41-mm-) thick nylon sheet, with beveled edge sized as required to hold insulation securely in place but not less than 1-1/2 inches (38 mm) in diameter.

a. Available Manufacturers:

1) GEMCO.
2) Midwest Fasteners, Inc.

C. Staples: Outward-clinching insulation staples, nominal 3/4-inch- (19-mm-) wide, stainless steel or Monel.

D. Wire: 0.062-inch (1.6-mm) soft-annealed, stainless steel.

1. Available Manufacturers:

a. ACS Industries, Inc.
b. C & F Wire.
c. Childers Products.
d. PABCO Metals Corporation.
e. RPR Products, Inc.

2.12 CORNER ANGLES

A. Aluminum Corner Angles: 0.040 inch (1.0 mm) thick, minimum 1 by 1 inch (25 by 25 mm), aluminum according to ASTM B 209 (ASTM B 209M), Alloy 3003, 3005, 3105 or 5005; Temper H-14.
PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates and conditions for compliance with requirements for installation and other conditions affecting performance of insulation application.

1. Verify that systems and equipment to be insulated have been tested and are free of defects.
2. Verify that surfaces to be insulated are clean and dry.
3. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.

B. Mix insulating cements with clean potable water; if insulating cements are to be in contact with stainless-steel surfaces, use demineralized water.

3.3 COMMON INSTALLATION REQUIREMENTS

A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of equipment, ducts and fittings, and piping including fittings, valves, and specialties.

B. Install insulation materials, forms, vapor barriers or retarders, jackets, and thicknesses required for each item of equipment, duct system, and pipe system as specified in insulation system schedules.

C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.

D. Install insulation with longitudinal seams at top and bottom of horizontal runs.

E. Install multiple layers of insulation with longitudinal and end seams staggered.

F. Do not weld brackets, clips, or other attachment devices to piping, fittings, and specialties.

G. Keep insulation materials dry during application and finishing.

H. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.

I. Install insulation with least number of joints practical.
J. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.

1. Install insulation continuously through hangers and around anchor attachments.
2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.
3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.
4. Cover inserts with jacket material matching adjacent pipe insulation. Install shields over jacket, arranged to protect jacket from tear or puncture by hanger, support, and shield.

K. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.

L. Install insulation with factory-applied jackets as follows:

1. Draw jacket tight and smooth.
2. Cover circumferential joints with 3-inch- (75-mm-) wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip, spaced 4 inches (100 mm) o.c.
3. Overlap jacket longitudinal seams at least 1-1/2 inches (38 mm). Install insulation with longitudinal seams at bottom of pipe. Clean and dry surface to receive self-sealing lap. Staple laps with outward clinching staples along edge at 4 inches o.c.
 a. For below ambient services, apply vapor-barrier mastic over staples.
4. Cover joints and seams with tape as recommended by insulation material manufacturer to maintain vapor seal.
5. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints and at ends adjacent to duct and pipe flanges and fittings.

M. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness.

N. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.

O. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches (100 mm) beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.

P. For above ambient services, do not install insulation to the following:

1. Vibration-control devices.
2. Testing agency labels and stamps.
3. Nameplates and data plates.
4. Handholes.
5. Cleanouts.

3.4 PENETRATIONS

A. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.

B. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Install insulation continuously through penetrations of fire-rated walls and partitions. Terminate insulation at fire damper sleeves for fire-rated wall and partition penetrations. Externally insulate damper sleeves to match adjacent insulation and overlap duct insulation at least 2 inches (50 mm).

1. Firestopping and fire-resistive joint sealers are specified in Division 7 Section "Through-Penetration Firestop Systems."

3.5 GENERAL PIPE INSULATION INSTALLATION

A. Requirements in this Article generally apply to all insulation materials except where more specific requirements are specified in various pipe insulation material installation articles.

B. Insulation Installation on Fittings, Valves, Strainers, Flanges, and Unions:

1. Install insulation over fittings, valves, strainers, flanges, unions, and other specialties with continuous thermal and vapor-retarder integrity, unless otherwise indicated.

2. Insulate pipe elbows using preformed fitting insulation or mitered fittings made from same material and density as adjacent pipe insulation. Each piece shall be butted tightly against adjoining piece and bonded with adhesive. Fill joints, seams, voids, and irregular surfaces with insulating cement finished to a smooth, hard, and uniform contour that is uniform with adjoining pipe insulation.

3. Insulate tee fittings with preformed fitting insulation or sectional pipe insulation of same material and thickness as used for adjacent pipe. Cut sectional pipe insulation to fit. Butt each section closely to the next and hold in place with tie wire. Bond pieces with adhesive.

4. Insulate valves using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. For valves, insulate up to and including the bonnets, valve stuffing-box studs, bolts, and nuts. Fill joints, seams, and irregular surfaces with insulating cement.

5. Insulate strainers using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. Fill joints, seams, and
irregular surfaces with insulating cement. Insulate strainers so strainer basket flange or plug can be easily removed and replaced without damaging the insulation and jacket. Provide a removable reusable insulation cover. For below ambient services, provide a design that maintains vapor barrier.

6. Insulate flanges and unions using a section of oversized preformed pipe insulation. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker.

7. Cover segmented insulated surfaces with a layer of finishing cement and coat with a mastic. Install vapor-barrier mastic for below ambient services and a breather mastic for above ambient services. Reinforce the mastic with fabric-reinforcing mesh. Trowel the mastic to a smooth and well-shaped contour.

8. For services not specified to receive a field-applied jacket except for flexible elastomeric and polyolefin, install fitted PVC cover over elbows, tees, strainers, valves, flanges, and unions. Terminate ends with PVC end caps. Tape PVC covers to adjoining insulation facing using PVC tape.

9. Stencil or label the outside insulation jacket of each union with the word "UNION." Match size and color of pipe labels.

C. Insulate instrument connections for thermometers, pressure gages, pressure temperature taps, test connections, flow meters, sensors, switches, and transmitters on insulated pipes, vessels, and equipment. Shape insulation at these connections by tapering it to and around the connection with insulating cement and finish with finishing cement, mastic, and flashing sealant.

D. Install removable insulation covers at locations indicated. Installation shall conform to the following:

1. Make removable flange and union insulation from sectional pipe insulation of same thickness as that on adjoining pipe. Install same insulation jacket as adjoining pipe insulation.

2. When flange and union covers are made from sectional pipe insulation, extend insulation from flanges or union long at least two times the insulation thickness over adjacent pipe insulation on each side of flange or union. Secure flange cover in place with stainless-steel or aluminum bands. Select band material compatible with insulation and jacket.

3. Construct removable valve insulation covers in same manner as for flanges except divide the two-part section on the vertical center line of valve body.

4. When covers are made from block insulation, make two halves, each consisting of mitered blocks wired to stainless-steel fabric. Secure this wire frame, with its attached insulation, to flanges with tie wire. Extend insulation at least 2 inches (50 mm) over adjacent pipe insulation on each side of valve. Fill space between flange or union cover and pipe insulation with insulating cement. Finish cover assembly with insulating cement applied in two coats. After first coat is dry, apply and trowel second coat to a smooth finish.

5. Unless a PVC jacket is indicated in field-applied jacket schedules, finish exposed surfaces with a metal jacket.
3.6 FLEXIBLE ELASTOMERIC INSULATION INSTALLATION

A. Seal longitudinal seams and end joints with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

B. Insulation Installation on Pipe Flanges:
 1. Install pipe insulation to outer diameter of pipe flange.
 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of sheet insulation of same thickness as pipe insulation.
 4. Secure insulation to flanges and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

C. Insulation Installation on Pipe Fittings and Elbows:
 1. Install mitered sections of pipe insulation.
 2. Secure insulation materials and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

D. Insulation Installation on Valves and Pipe Specialties:
 1. Install preformed valve covers manufactured of same material as pipe insulation when available.
 2. When preformed valve covers are not available, install cut sections of pipe and sheet insulation to valve body. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
 3. Install insulation to flanges as specified for flange insulation application.
 4. Secure insulation to valves and specialties and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

3.7 MINERAL-FIBER INSULATION INSTALLATION

A. Insulation Installation on Straight Pipes and Tubes:
 1. Secure each layer of preformed pipe insulation to pipe with wire or bands and tighten bands without deforming insulation materials.
 2. Where vapor barriers are indicated, seal longitudinal seams, end joints, and protrusions with vapor-barrier mastic and joint sealant.
 3. For insulation with factory-applied jackets on above ambient surfaces, secure laps with outward clinched staples at 6 inches (150 mm) o.c.
 4. For insulation with factory-applied jackets on below ambient surfaces, do not staple longitudinal tabs but secure tabs with additional adhesive as recommended
by insulation material manufacturer and seal with vapor-barrier mastic and flashing sealant.

B. Insulation Installation on Pipe Flanges:
1. Install preformed pipe insulation to outer diameter of pipe flange.
2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with mineral-fiber blanket insulation.
4. Install jacket material with manufacturer's recommended adhesive, overlap seams at least 1 inch (25 mm), and seal joints with flashing sealant.

C. Insulation Installation on Pipe Fittings and Elbows:
1. Install preformed sections of same material as straight segments of pipe insulation when available.
2. When preformed insulation elbows and fittings are not available, install mitered sections of pipe insulation, to a thickness equal to adjoining pipe insulation. Secure insulation materials with wire or bands.

D. Insulation Installation on Valves and Pipe Specialties:
1. Install preformed sections of same material as straight segments of pipe insulation when available.
2. When preformed sections are not available, install mitered sections of pipe insulation to valve body.
3. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
4. Install insulation to flanges as specified for flange insulation application.

3.8 FIELD-APPLIED JACKET INSTALLATION

A. Install PVC jackets on all above grade pipe and equipment to 7'-0" above grade, install with 1-inch overlap at longitudinal seams and end joints; for horizontal applications. Seal with manufacturer's recommended adhesive.

1. Apply two continuous beads of adhesive to seams and joints, one bead under lap and the finish bead along seam and joint edge.

B. Where metal jackets are indicated, install with 2-inch (50-mm) overlap at longitudinal seams and end joints. Overlap longitudinal seams arranged to shed water. Seal end joints with weatherproof sealant recommended by insulation manufacturer. Secure jacket with stainless-steel bands 12 inches (300 mm) o.c. and at end joints.
3.9 FINISHES

A. Flexible Elastomeric Thermal Insulation: After adhesive has fully cured, apply two coats of insulation manufacturer's recommended protective coating.

B. Do not field paint aluminum or stainless-steel jackets.

3.10 FIELD QUALITY CONTROL

A. All insulation applications will be considered defective Work if sample inspection reveals noncompliance with requirements. Remove defective Work.

B. Install new insulation and jackets to replace insulation and jackets removed for inspection. Repeat inspection procedures after new materials are installed.

3.11 DUCT INSULATION SCHEDULE, GENERAL

A. Plenums and Ducts Requiring Insulation:

1. Indoor, concealed supply and outdoor air.
2. Indoor, exposed supply and outdoor air.
3. Indoor, concealed return.
4. Indoor, exposed return.
5. Indoor, concealed exhaust between isolation damper and penetration of building exterior.
6. Indoor, exposed exhaust between isolation damper and penetration of building exterior.

B. Items Not Insulated:

1. Fibrous-glass ducts.
2. Factory-insulated flexible ducts.
3. Factory-insulated plenums and casings.
4. Flexible connectors.
5. Vibration-control devices.
6. Factory-insulated access panels and doors.

3.12 INDOOR DUCT AND PLENUM INSULATION SCHEDULE

A. Concealed, rectangular, round and air plenums, supply-air duct insulation shall be any of the following:

1. Flexible Elastomeric: 1-1/2 inches thick.
2. Mineral-Fiber Blanket: 1-1/2 inches 1.5-lb/cu. ft. (24-kg/cu. m) nominal density.

B. Concealed, rectangular, round and air plenums, return-air duct in non-conditioned spaces (non-return air plenums, mechanical rooms, unconditioned spaces) insulation shall be any of the following:
1. Flexible Elastomeric: 1-1/2 inches thick.
2. Mineral-Fiber Blanket: 1-1/2 inches 1.5-lb/cu. ft. (24-kg/cu. m) nominal density.

C. Exposed, rectangular, round and air plenums, supply-air duct insulation shall be the following:
 1. Flexible Elastomeric: 1-1/2 inches thick.
 2. Mineral-Fiber Blanket: 1-1/2 inches 1.5-lb/cu. ft. (24-kg/cu. m) nominal density.

D. Exposed, rectangular, round and air plenums, return in non-conditioned and outdoor air duct supplying AHU’s, insulation shall be the following:
 1. Flexible Elastomeric: 1-1/2 inches thick.
 2. Mineral-Fiber Blanket: 1-1/2 inches 1.5-lb/cu. ft. (24-kg/cu. m) nominal density.

3.13 PIPING INSULATION SCHEDULE, GENERAL

A. Acceptable preformed pipe and tubular insulation materials and thicknesses are identified for each piping system and pipe size range. If more than one material is listed for a piping system, selection from materials listed is Contractor's option.

3.14 INDOOR PIPING INSULATION SCHEDULE

A. Condensate pipe, and Equipment Drain Water below 60 Deg F (16 Deg C):
 1. All Pipe Sizes: Insulation shall be any of the following:
 a. Flexible Elastomeric: 3/4 inch (19 mm) thick.
 b. Mineral-Fiber Pipe Insulation, Type I: 1 inch (25 mm) thick.

B. Refrigerant Piping
 1. All Pipe Sizes: Insulation shall be any of the following:
 a. Flexible Elastomeric: 3/4 inch (19 mm) thick.

C. Glycol Water, 20 to 110 Deg F:
 1. NPS 1-1/4 (DN 32) and Smaller: Insulation shall be any of the following:
 a. Mineral-Fiber, Preformed Pipe, Type I: 1 inch thick.
 b. Flexible Elastomeric: 1 inch thick
 2. NPS 1-1/2 (DN 40) and Larger: Insulation shall be any of the following:
 a. Mineral-Fiber, Preformed Pipe, Type I: 1.5 inches thick.
 b. Flexible Elastomeric: 1.5 inches thick
3.15 INDOOR EQUIPMENT INSULATION SCHEDULE

A. Equipment: Air Separator
 1. Woven Glass-Fiber Fabric

3.16 INDOOR, FIELD-APPLIED JACKET SCHEDULE

A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket.

B. If more than one material is listed, selection from materials listed is Contractor's option.

C. Piping, Exposed:
 1. PVC: 20 mils thick

D. Piping (Refrigeration), Exposed within Mechanical Room:
 1. Aluminum, Dimpled with Z-Shaped Locking Seam: 0.020 inch thick.

3.17 OUTDOOR, FIELD-APPLIED JACKET SCHEDULE

A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket.

B. Piping (Refrigeration), Exposed:
 1. Aluminum, Dimpled with Z-Shaped Locking Seam: 0.020 inch thick.

END OF SECTION
SECTION 230923
DIRECT DIGITAL CONTROL (DDC) SYSTEM FOR HVAC

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. This Section includes control equipment for HVAC systems and components, including control components for equipment not supplied with factory-wired controls.

1.3 DEFINITIONS
A. DDC: Direct digital control.
B. I/O: Input/Output
C. BACnet: A control network technology platform for designing and implementing interoperable control devices and networks
D. MS/TP: Master slave/token passing.
E. PC: Personal computer.
F. PID: Proportional plus integral plus derivative.
G. RTD: Resistance temperature detector.

1.4 SYSTEM PERFORMANCE
A. The intent is for the system to be controlled by standalone means. Contractor shall supply equipment, sensors, controllers, etc. as required to control systems per sequence or operations on the drawings.

1.5 SEQUENCE OF OPERATION: Refer to Contract Drawings.

1.6 SUBMITTALS
A. Product Data: Include manufacturer’s technical literature for each control device. Indicate dimensions, capacities, performance characteristics, electrical characteristics, finishes for materials, and installation and startup instructions for each type of product indicated.
1. **DDC System Hardware**: Bill of materials of equipment indicating quantity, manufacturer, and model number. Include technical data for operator workstation equipment, interface equipment, control units, transducers/transmitters, sensors, actuators, valves, relays/switches, control panels, and operator interface equipment.

2. **Control System Software**: Include technical data for operating system software, operator interface, color graphics, and other third-party applications.

3. **Controlled Systems**: Instrumentation list with element name, type of device, manufacturer, model number, and product data. Include written description of sequence of operation including schematic diagram.

B. Shop Drawings: Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.

1. Bill of materials of equipment indicating quantity, manufacturer, and model number.
2. Schematic flow diagrams showing fans, pumps, coils, dampers, valves, and control devices.
3. **Wiring Diagrams**: Power, signal, and control wiring.
4. Details of control panel faces, including controls, instruments, and labeling.
5. Written description of sequence of operation.
6. Schedule of dampers including size, leakage, and flow characteristics.
7. Schedule of valves including flow characteristics.
8. **DDC System Hardware**:
 a. Wiring diagrams for control units with termination numbers.
 b. Schematic diagrams and floor plans for field sensors and control hardware.
 c. Schematic diagrams for control, communication, and power wiring, showing trunk data conductors and wiring between operator workstation and control unit locations.
9. **Controlled Systems**:
 a. Schematic diagrams of each controlled system with control points labeled and control elements graphically shown, with wiring.
 b. Scaled drawings showing mounting, routing, and wiring of elements including bases and special construction.
 c. Written description of sequence of operation including schematic diagram.
 d. Points list.

C. Software Upgrade Kit: For Owner to use in modifying software to suit future systems revisions or monitoring and control revisions.

D. Qualification Data: For Installer and manufacturer.

E. Field quality-control test reports.
F. Operation and Maintenance Data: For HVAC instrumentation and control system to include in emergency, operation, and maintenance manuals. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:

1. Maintenance instructions and lists of spare parts for each type of control device and compressed-air station.
2. Interconnection wiring diagrams with identified and numbered system components and devices.
4. Inspection period, cleaning methods, cleaning materials recommended, and calibration tolerances.
5. Calibration records and list of set points.

1.7 QUALITY ASSURANCE

A. Installer Qualifications: Automatic control system manufacturer's authorized representative who is trained and approved for installation of system components required for this Project.

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

1.8 DELIVERY, STORAGE, AND HANDLING

A. Factory-Mounted Components: Where control devices specified in this Section are indicated to be factory mounted on equipment, arrange for shipping of control devices to equipment manufacturer.

B. System Software: Update to latest version of software at Project completion.

1.9 COORDINATION

A. Coordinate location of thermostats, humidistats, and other exposed control sensors with plans and room details before installation.

B. Coordinate supply of conditioned electrical branch circuits for control units and operator workstation.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection:
1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, manufacturers specified.

 a. Honeywell
 b. Johnson Controls
 c. Automated Logic

2.2 CONTROL SYSTEM

 A. Control system shall consist of sensors, indicators, actuators, final control elements, interface equipment, other apparatus, accessories, and software connected to distributed controllers operating in multiuser, multitasking environment on token-passing network and programmed to control mechanical systems.

 B. All systems shall be controlled and networked locally. Provisions shall be provided for future connection to the DelDOT network.

2.3 DDC EQUIPMENT

 A. I/O Interface: Hardwired inputs and outputs may tie into system through controllers. Protect points so that shorting will cause no damage to controllers.

 1. Binary Inputs: Allow monitoring of on-off signals without external power.
 2. Pulse Accumulation Inputs: Accept up to 10 pulses per second.
 3. Analog Inputs: Allow monitoring of low-voltage (0- to 10-V dc), current (4 to 20 mA), or resistance signals.
 4. Binary Outputs: Provide on-off or pulsed low-voltage signal, selectable for normally open or normally closed operation with three-position (on-off-auto) override switches and status lights.
 5. Analog Outputs: Provide modulating signal, either low voltage (0- to 10-V dc) or current (4 to 20 mA) with status lights, two-position (auto-manual) switch, and manually adjustable potentiometer.
 7. Universal I/O’s: Provide software selectable binary or analog outputs.

 B. Power Supplies: Transformers with Class 2 current-limiting type or overcurrent protection; limit connected loads to 80 percent of rated capacity. DC power supply shall match output current and voltage requirements and be full-wave rectifier type with the following:

 1. Output ripple of 5.0 mV maximum peak to peak.
 2. Combined 1 percent line and load regulation with 100-mic.sec. response time for 50 percent load changes.
 3. Built-in overvoltage and overcurrent protection and be able to withstand 150 percent overload for at least 3 seconds without failure.
C. Power Line Filtering: Internal or external transient voltage and surge suppression for workstations or controllers with the following:

1. Minimum dielectric strength of 1000 V.
3. Minimum transverse-mode noise attenuation of 65 dB.
4. Minimum common-mode noise attenuation of 150 dB at 40 to 100 Hz.

2.4 SYSTEM SOFTWARE FEATURES

A. General

1. All necessary software to form a complete operating system as described in this specification shall be provided. Provide a color graphic floor plan for all floors to show the on/off status of lighting zones.
2. The software programs specified in this section shall be provided as an integral part of the DDC panel and shall not be dependent upon any higher-level computer for execution.

B. Graphics Display: Color graphic floor plan displays and system schematic for each piece of mechanical equipment shown on plans shall be provided. Provide a color graphic floor plan for all floors to show the on/off status of lighting zones.

C. Energy Management Applications: DDC Panels shall have the ability to perform any or all of the following energy management routines:

1. Time of Day Scheduling
2. Calendar Based Scheduling
3. Holiday Scheduling
4. Temporary Schedule Overrides
5. Optimal Start
6. Optimal Stop
7. Night Setback Control
8. Heating/Cooling Interlock
9. All programs shall be executed automatically without the need for operator intervention and shall be flexible enough to allow operator customization.

D. Custom Process Programming Capability: DDC panels shall be able to execute custom, job-specific processes defined by the operator, to automatically perform calculations and special control routines.

1. Process Inputs and Variables: It shall be possible to use any of the following in a custom process:

 a. Any system-measured point data or status.
 b. Any calculated data.
 c. Any results from other processes.
 d. User-Defined Constants.
 e. Arithmetic functions (+, -, *, /, square root, exponential, etc.).
f. Boolean logic operators (and, or, exclusive or, etc.).
g. On-delay/Off-delay/One-shot timers.

2. Process Triggers: Custom processes may be triggered based on any combination of the following:
 a. Time interval.
 b. Time of day.
 c. Date.
 d. Other processes.
 e. Time programming.
 f. Events (e.g., point alarms).

E. Alarm Management: Alarm management shall be provided to monitor, buffer, and direct alarm reports to operator devices and memory files. Each DDC panel shall perform distributed, independent alarm analysis and filtering to minimize operator interruptions due to non-critical alarms, minimize network traffic, and prevent alarms from being lost. At no time shall the DDC panel's ability to report alarms be affected by either operator activity at a PC Workstation or local I/O device, or communications with other panels on the network.

1. Point Change Report Description: All alarm or point change reports shall include the point's English language description, and the time and date of occurrence.
2. Prioritization: The user shall be able to define the specific system reaction for each point. Alarms shall be prioritized to minimize nuisance reporting and to speed operator response to critical alarms. A minimum of three priority levels shall be provided. Each DDC panel shall automatically inhibit the reporting of selected alarms during system shutdown and start-up. Users shall have the ability to manually inhibit alarm reporting for each point. The user shall also be able to define under which conditions point changes need to be acknowledged by an operator, and/or sent to follow-up files for retrieval and analysis at a later date.

2.5 ELECTRONIC SENSORS

A. Description: Vibration and corrosion resistant; for wall, immersion, or duct mounting, as required.

B. Thermistor Temperature Sensors and Transmitters:

1. Manufacturers:
 a. BEC Controls Corporation.
 b. Ebtron, Inc.
 c. Heat-Timer Corporation.
 d. I.T.M. Instruments Inc.
 e. MAMAC Systems, Inc.
 f. RDF Corporation.

2. Accuracy: Plus or minus 0.5 deg F at calibration point.
4. Insertion Elements in Ducts: Single point, 8 inches long; use where not affected by temperature stratification or where ducts are smaller than 9 sq. ft.
5. Averaging Elements in Ducts: 36 inches long, flexible or 18 inches long, rigid; use where prone to temperature stratification or where ducts are larger than 10 sq. ft.
6. Insertion Elements for Liquids: Brass or stainless-steel socket with minimum insertion length of 2-1/2 inches.
7. Outside-Air Sensors: Watertight inlet fitting, shielded from direct sunlight.

C. Humidity Sensors: Bulk polymer sensor element.

1. Manufacturers:
 a. BEC Controls Corporation.
 b. General Eastern Instruments.
 c. MAMAC Systems, Inc.
 d. ROTRONIC Instrument Corp.
 e. TCS/Basys Controls.
 f. Vaisala.

2. Accuracy: 5 percent full range with linear output.
3. Room Sensor Range: 20 to 80 percent relative humidity.
4. Room Sensor Cover Construction: Manufacturer's standard locking covers.
 a. Set-Point Adjustment: Concealed.
 b. Set-Point Indication: Concealed.
 c. Thermometer: Concealed.
 d. Orientation: Vertical.

5. Duct Sensor: 20 to 80 percent relative humidity range with element guard and mounting plate.
6. Outside-Air Sensor: 20 to 80 percent relative humidity range with mounting enclosure, suitable for operation at outdoor temperatures of 32 to 120 deg F.
7. Duct and Sensors: With element guard and mounting plate, range of 0 to 100 percent relative humidity.

D. Pressure Transmitters/Transducers:

1. Manufacturers:
 a. BEC Controls Corporation.
 b. General Eastern Instruments.
 c. MAMAC Systems, Inc.
 d. ROTRONIC Instrument Corp.
 e. TCS/Basys Controls.
 f. Vaisala.
2. Static-Pressure Transmitter: Nondirectional sensor with suitable range for expected input, and temperature compensated.
 a. Accuracy: 2 percent of full scale with repeatability of 0.5 percent.
 b. Output: 4 to 20 mA.
 c. Building Static-Pressure Range: 0- to 0.25-inch wg.
 d. Duct Static-Pressure Range: 0- to 5-inch wg.

3. Differential-Pressure Switch (Air or Water): Snap acting, with pilot-duty rating and with suitable scale range and differential.

4. Pressure Transmitters: Direct acting for gas, liquid, or steam service; range suitable for system; linear output 4 to 20 mA.

E. Room sensor accessories include the following:
 1. Insulating Bases: For sensors located on exterior walls.
 2. Adjusting Key: As required for calibration and cover screws.

2.6 STATUS SENSORS

A. Status Inputs for Fans: Differential-pressure switch with pilot-duty rating and with adjustable range of 0- to 5-inch wg.

B. Status Inputs for Pumps: Differential-pressure switch with pilot-duty rating and with adjustable pressure-differential range of 8 to 60 psig, piped across pump.

C. Status Inputs for Electric Motors: Comply with ISA 50.00.01, current-sensing fixed- or split-core transformers with self-powered transmitter, adjustable and suitable for 175 percent of rated motor current.

D. Voltage Transmitter (100- to 600-V ac): Comply with ISA 50.00.01, single-loop, self-powered transmitter, adjustable, with suitable range and 1 percent full-scale accuracy.

E. Power Monitor: 3-phase type with disconnect/shorting switch assembly, listed voltage and current transformers, with pulse kilowatt hour output and 4- to 20-mA kW output, with maximum 2 percent error at 1.0 power factor and 2.5 percent error at 0.5 power factor.

F. Current Switches: Self-powered, solid-state with adjustable trip current, selected to match current and system output requirements.

G. Electronic Valve/Damper Position Indicator: Visual scale indicating percent of travel and 2- to 10-V dc, feedback signal.

2.7 THERMOSTATS

A. Manufacturers:
 1. Erie Controls.
B. Combination Thermostat and Fan Switches: Line-voltage thermostat with push-button or lever-operated fan switch.

1. Label switches "FAN HIGH-LOW-OFF".
2. Mount on single electric switch box.

C. Electric, solid-state, microcomputer-based room thermostat with remote sensor.

1. Automatic switching from heating to cooling.
2. Preferential rate control to minimize overshoot and deviation from set point.
3. Set up for four separate temperatures per day.
4. Instant override of set point for continuous or timed period from 1 hour to 31 days.
5. Short-cycle protection.
6. Programming based on every day of week.
7. Selection features include degree F or degree C display, 12- or 24-hour clock, keyboard disable, remote sensor, and fan on-auto.
8. Battery replacement without program loss.
9. Thermostat display features include the following:
 a. Time of day.
 b. Actual room temperature.
 c. Programmed temperature.
 d. Programmed time.
 e. Duration of timed override.
 f. Day of week.
 g. System mode indications include "heating," "off," "fan auto," and "fan on."

D. Low-Voltage, On-Off Thermostats: NEMA DC 3, 24-V, bimetal-operated, mercury-switch type, with adjustable or fixed anticipation heater, concealed set-point adjustment, 55 to 85 deg F set-point range, and 2 deg F maximum differential.

E. Line-Voltage, On-Off Thermostats: Bimetal-actuated, open contact or bellows-actuated, enclosed, snap-switch or equivalent solid-state type, with heat anticipator; listed for electrical rating; with concealed set-point adjustment, 55 to 85 deg F set-point range, and 2 deg F maximum differential.

1. Electric Heating Thermostats: Equip with off position on dial wired to break ungrounded conductors.
PART 3 - EXECUTION

3.1 EXAMINATION
A. Verify that conditioned power supply is available to control units and operator workstation.

3.2 INSTALLATION
A. Connect and configure equipment and software to achieve sequence of operation specified.
B. Verify location of thermostats and other exposed control sensors with Drawings and room details before installation.
 1. Install averaging elements in ducts and plenums in crossing or zigzag pattern.
C. Install labels and nameplates to identify control components according to Section 230553 “Identification for HVAC piping and equipment”.

3.3 ELECTRICAL WIRING AND CONNECTION INSTALLATION
A. Install building wire, cable, and raceway according to Division 26 specifications.

3.4 FIELD QUALITY CONTROL
A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust field-assembled components and equipment installation, including connections. Report results in writing.
B. Perform the following field tests and inspections and prepare test reports:
 1. Operational Test: After electrical circuitry has been energized, start units to confirm proper unit operation. Remove and replace malfunctioning units and retest.
 2. Test and adjust controls and safeties.
 3. Test calibration of electronic controllers by disconnecting input sensors and stimulating operation with compatible signal generator.
 4. Test each point through its full operating range to verify that safety and operating control set points are as required.
 5. Test each control loop to verify stable mode of operation and compliance with sequence of operation. Adjust PID actions.
 6. Test each system for compliance with sequence of operation.
 7. Test software and hardware interlocks.

3.5 ADJUSTING
A. Calibrating and Adjusting:
1. Calibrate instruments.
2. Make three-point calibration test for both linearity and accuracy for each analog instrument.
3. Calibrate equipment and procedures using manufacturer's written recommendations and instruction manuals. Use test equipment with accuracy at least double that of instrument being calibrated.
4. Control System Inputs and Outputs:
 a. Check analog inputs at 0, 50, and 100 percent of span.
 b. Check analog outputs using milliampere meter at 0, 50, and 100 percent output.
 c. Check digital inputs using jumper wire.
 d. Check digital outputs using ohmmeter to test for contact making or breaking.
 e. Check resistance temperature inputs at 0, 50, and 100 percent of span using a precision-resistant source.
5. Pressure:
 a. Calibrate pressure transmitters at 0, 50, and 100 percent of span.
 b. Calibrate pressure switches to make or break contacts, with adjustable differential set at minimum.
6. Temperature:
 a. Calibrate resistance temperature transmitters at 0, 50, and 100 percent of span using a precision-resistance source.
 b. Calibrate temperature switches to make or break contacts.
7. Stroke and adjust control valves and dampers without positioners, following the manufacturer's recommended procedure, so that valve or damper is 100 percent open and closed.
8. Stroke and adjust control valves and dampers with positioners, following manufacturer's recommended procedure, so that valve and damper is 0, 50, and 100 percent closed.
9. Provide diagnostic and test instruments for calibration and adjustment of system.
10. Provide written description of procedures and equipment for calibrating each type of instrument. Submit procedures review and approval before initiating startup procedures.

B. Adjust initial temperature and humidity set points.

C. Occupancy Adjustments: When requested within 12 months of date of Substantial Completion, provide on-site assistance in adjusting system to suit actual occupied conditions. Provide up to three visits to Project during other than normal occupancy hours for this purpose.
3.6 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain HVAC instrumentation and controls. Refer to 018200 "Demonstration and Training."

B. Contractor shall be responsible for demonstrating the system sequence of operations as described on the contract drawings. Demonstration shall be in the presence of the owner or owner’s representative. A minimum of 7 days’ notice shall be provided in advance of the demonstrations.

END OF SECTION
SECTION 232113
MECHANICAL PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes pipe and fitting materials, joining methods, special-duty valves, and specialties for the following:

1. Glycol-water Piping
2. Condensate-drain piping.

B. Related Sections include the following:

1. Section 232123 "Hydronic Pumps" for pumps, motors, and accessories for hydronic piping.
2. Section 232116 “Mechanical Piping Specialties” for piping underground that interfaces with this piping within the building.
3. Section 232113.13 “Ground Loop Heat Pump Piping” for ground loop piping for the geothermal system.

1.3 PERFORMANCE REQUIREMENTS

A. Hydronic piping components and installation shall be capable of withstanding the following minimum working pressure and temperature:

1. Glycol Water Piping: 150 psig at 180 deg F.
2. Condensate-Drain Piping: 150 deg F.

1.4 SUBMITTALS

A. Product Data: For each type of the following:

1. Piping materials.
2. Air control devices.

B. Shop Drawings: Detail, at 1/4 scale, the piping layout, fabrication of pipe anchors, hangers, supports for multiple pipes, alignment guides, and attachments of the same to the building structure. Detail location of anchors, alignment guides, and expansion joints and loops.
C. Welding certificates.

D. Qualification Data: For Installer.

E. Field quality-control test reports.

F. Operation and Maintenance Data: For air control devices, hydronic specialties, and special-duty valves to include in emergency, operation, and maintenance manuals.

1.5 QUALITY ASSURANCE

A. Welding: Qualify processes and operators according to ASME Boiler and Pressure Vessel Code: Section IX.

1. Comply with provisions in ASME B31 Series, "Code for Pressure Piping."
2. Certify that each welder has passed AWS qualification tests for welding processes involved and that certification is current.

B. ASME Compliance: Comply with ASME B31.9, "Building Services Piping," for materials, products, and installation. Safety valves and pressure vessels shall bear the appropriate ASME label. Fabricate and stamp air separators and expansion tanks to comply with ASME Boiler and Pressure Vessel Code: Section VIII, Division 01.

PART 2 - PRODUCTS

2.1 COPPER TUBE AND FITTINGS

A. Soft Copper Tube: ASTM B 88, Type K water tube, annealed temper.

B. Drawn-Temper Copper Tubing: ASTM B 88, Type L.

C. Wrought-Copper Fittings: ASME B16.22.

1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

 a. Anvil International, Inc.
 b. S. P. Fittings; a division of Star Pipe Products.
 c. Victaulic Company.

D. Wrought-Copper Unions: ASME B16.22.

2.3 JOINING MATERIALS

A. Pipe-Flange Gasket Materials: Suitable for chemical and thermal conditions of piping system contents.
1. ASME B16.21, nonmetallic, flat, asbestos free, 1/8-inch maximum thickness unless thickness or specific material is indicated.
 a. Full-Face Type: For flat-face, Class 125, cast-iron and cast-bronze flanges.
 b. Narrow-Face Type: For raised-face, Class 250, cast-iron and steel flanges.

B. Flange Bolts and Nuts: ASME B18.2.1, carbon steel, unless otherwise indicated.

C. Plastic, Pipe-Flange Gasket, Bolts, and Nuts: Type and material recommended by piping system manufacturer, unless otherwise indicated.

D. Solder Filler Metals: ASTM B 32, lead-free alloys. Include water-flushable flux according to ASTM B 813.

E. Welding Filler Metals: Comply with AWS D10.12/D10.12M for welding materials appropriate for wall thickness and chemical analysis of steel pipe being welded.

2.4 TRANSITION FITTINGS

A. Plastic-to-Metal Transition Unions:

 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

 b. IPEX Inc.
 c. NIBCO INC.

 2. MSS SP-107, PE union. Include brass or copper end, Schedule 80 solvent-cement-joint end, rubber gasket, and threaded union.

2.5 DIELECTRIC FITTINGS

A. General Requirements: Assembly of copper alloy and ferrous materials with separating nonconductive insulating material. Include end connections compatible with pipes to be joined.

B. Dielectric Unions:

 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

 b. Central Plastics Company.
 c. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 d. Wilkins; a Zurn company.
2. Description:
 b. Pressure Rating: 125 psig minimum at 180 deg F.
 c. End Connections: Solder-joint copper alloy and threaded ferrous.

C. Dielectric Flanges:

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 b. Central Plastics Company.
 c. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 d. Wilkins; a Zurn company.

2. Description:
 b. Factory-fabricated, bolted, companion-flange assembly.
 c. Pressure Rating: 125 psig minimum at 180 deg F.
 d. End Connections: Solder-joint copper alloy and threaded ferrous; threaded solder-joint copper alloy and threaded ferrous.

D. Dielectric Nipples:

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Elster Perfection.
 b. Grinnell Mechanical Products.
 c. Precision Plumbing Products, Inc.
 d. Victaulic Company.

2. Description:
 a. Standard: IAPMO PS 66
 b. Electroplated steel nipple. complying with ASTM F 1545.
 c. Pressure Rating: 300 psig.
 d. End Connections: Male threaded or grooved.
 e. Lining: Inert and noncorrosive, propylene.
PART 3 - EXECUTION

3.1 PIPING APPLICATIONS

A. Glycol Water-water piping, aboveground, 2-1/2” and smaller shall be the following:
 1. Type L, drawn-temper copper tubing, wrought-copper fittings, and soldered joints.

B. Condensate-Drain Piping: Type M or DWV, drawn-temper copper tubing, wrought-
 copper fittings, and soldered joints.

C. Ground Loop System Piping: Refer to Specification Section 232113.13.

3.2 VALVE APPLICATIONS

A. Install valves in accordance with Division 23 Section “Valves”.

B. Install shut off-duty valves at each branch connection to supply mains, and at supply
 connection to each piece of equipment.

C. Install, balancing valves in the return pipe of each air handling unit coil.

D. Install check valves at each pump discharge and elsewhere as required to control flow
 direction.

E. Install pressure-reducing valves at makeup-water connection to regulate system fill
 pressure.

3.3 PIPING INSTALLATIONS

A. Drawing plans, schematics, and diagrams indicate general location and arrangement of
 piping systems. Indicate piping locations and arrangements if such were used to size pipe
 and calculate friction loss, expansion, pump sizing, and other design considerations. Install
 piping as indicated unless deviations to layout are approved on Coordination Drawings.

B. Install piping in concealed locations, unless otherwise indicated.

C. Install piping indicated to be exposed at right angles or parallel to building walls.
 Diagonal runs are prohibited unless specifically indicated otherwise.

D. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.

E. Install piping to permit valve servicing.

F. Install piping at indicated slopes.

G. Install piping free of sags and bends.
H. Install fittings for changes in direction and branch connections.
I. Install piping to allow application of insulation.
J. Select system components with pressure rating equal to or greater than system operating pressure.
K. Install groups of pipes parallel to each other, spaced to permit applying insulation and servicing of valves.
L. Install drains, consisting of a tee fitting, NPS 3/4 ball valve, and short NPS 3/4 threaded nipple with cap, at low points in piping system mains and elsewhere as required for system drainage.
M. Install piping at a uniform grade of 0.2 percent upward in direction of flow.
N. Reduce pipe sizes using eccentric reducer fitting installed with level side up.
O. Install branch connections to mains using tee fittings in main pipe, with the branch connected to the bottom of the main pipe. For up-feed risers, connect the branch to the top of the main pipe.
P. Install unions in piping, 2” and smaller, adjacent to valves, at final connections of equipment, and elsewhere as indicated.
Q. Install strainers on inlet side of each control valve, pressure-reducing valve, solenoid valve, in-line pump, and elsewhere as indicated. Install 3/4" nipple and ball valve in blowdown connection of strainers 2” and larger. Match size of strainer blowoff connection for strainers smaller than 2”.
R. Install meters and gages as specified in Division 23 Section "Meters and Gages for Mechanical Piping."
S. Identify piping as specified in Division 23 Section "Identification for Mechanical Piping and Equipment."
T. Install sleeves for piping penetrations of walls, ceilings, and floors.
U. Install escutcheons for piping penetrations of walls, ceilings, and floors.

3.4 HANGERS AND SUPPORTS

A. Hanger, support, and anchor devices are specified in Division 23 Section "Hangers and Supports for Mechanical Piping and Equipment." Comply with the following requirements for maximum spacing of supports.

B. Install the following pipe attachments:
1. Adjustable steel clevis hangers for individual horizontal piping less than 20 feet long.
2. Provide copper-clad hangers and supports for hangers and supports in direct contact with copper pipe.

C. Install hangers for drawn-temper copper piping with the following maximum spacing and minimum rod sizes:
 1. NPS 1 and smaller: Maximum span, 6 feet; minimum rod size, 1/4 inch.
 2. NPS 1-1/2 to 2-1/2: Maximum span, 8 feet; minimum rod size, 3/8 inch.

D. Support vertical runs at floor.

3.5 PIPE JOINT CONSTRUCTION

A. Join pipe and fittings according to the following requirements and Division 23 Sections specifying piping systems.

B. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.

C. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.

D. Soldered Joints: Apply ASTM B 813, water-flushable flux, unless otherwise indicated, to tube end. Construct joints according to ASTM B 828 or CDA's "Copper Tube Handbook," using lead-free solder alloy complying with ASTM B 32.

F. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is specified.
 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.

G. Flanged Joints: Select appropriate gasket material, size, type, and thickness for service application. Install gasket concentrically positioned. Use suitable lubricants on bolt threads.

3.6 HYDRONIC SPECIALTIES INSTALLATION

A. Install manual air vents at high points in piping and elsewhere as required for system air venting.

B. Refer to Specification Section 232116 for additional requirements.
3.7 FIELD QUALITY CONTROL

A. Prepare hydronic piping according to ASME B31.9 and as follows:

1. Leave joints, including welds, uninsulated and exposed for examination during test.
2. Provide temporary restraints for expansion joints that cannot sustain reactions due to test pressure. If temporary restraints are impractical, isolate expansion joints from testing.
3. Flush hydronic piping systems with clean water; then remove and clean or replace strainer screens.
4. Isolate equipment from piping. If a valve is used to isolate equipment, its closure shall be capable of sealing against test pressure without damage to valve. Install blinds in flanged joints to isolate equipment.
5. Install safety valve, set at a pressure no more than one-third higher than test pressure, to protect against damage by expanding liquid or other source of overpressure during test.

B. Perform the following tests on hydronic piping:

1. Use ambient temperature water as a testing medium unless there is risk of damage due to freezing. Another liquid that is safe for workers and compatible with piping may be used.
2. While filling system, use vents installed at high points of system to release air. Use drains installed at low points for complete draining of test liquid.
3. Isolate expansion tanks and determine that hydronic system is full of water.
4. Subject piping system to hydrostatic test pressure that is not less than 1.5 times the system's working pressure. Test pressure shall not exceed maximum pressure for any vessel, pump, valve, or other component in system under test. Verify that stress due to pressure at bottom of vertical runs does not exceed 90 percent of specified minimum yield strength or 1.7 times "SE" value in Appendix A in ASME B31.9, "Building Services Piping."
5. After hydrostatic test pressure has been applied for at least 10 minutes, examine piping, joints, and connections for leakage. Eliminate leaks by tightening, repairing, or replacing components, and repeat hydrostatic test until there are no leaks.
6. Prepare written report of testing.
7. Results of pipe pressure tests shall be submitted to Engineer, Owner, and Owner’s Representative for review prior to closing in walls, floors, or ceilings that will prevent access to piping for repairs.

C. Perform the following before operating the system:

1. Open manual valves fully.
2. Inspect pumps for proper rotation.
3. Set makeup pressure-reducing valves for required system pressure.
4. Inspect air vents at high points of system and determine if all are installed and operating freely (automatic type), or bleed air completely (manual type).
5. Set temperature controls so all coils are calling for full flow.
6. Inspect and set operating temperatures of hydronic equipment to specified values.
7. Verify lubrication of motors and bearings.

D. Flush hydronic piping systems with clean water. Remove and clean or replace strainer screens. After cleaning and flushing hydronic piping systems, but before balancing, remove disposable fine-mesh strainers in pump suction diffusers.

END OF SECTION
SECTION 232113.13
GROUND-LOOP HEAT-PUMP PIPING

PART 1 - DESCRIPTION

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes piping for vertical, direct-buried, ground-loop, heat-pump systems that operate between 23 and 104 deg F.

B. Related Sections include the following:
 1. Division 23 Section "Hydronic Piping" for piping interfaces with this piping within the building.

1.3 PERFORMANCE REQUIREMENTS

A. Components and installation shall be capable of withstanding the following minimum working pressure, unless otherwise indicated:

1.4 SUBMITTALS

A. Product Data: For the following:

 1. Pipe and fittings.
 2. Joining method and equipment.
 3. Propylene glycol solution.

B. Field quality-control test reports.

C. Borehole backfilling and drilling operations reports.

D. Dimensioned site layout.

E. Startup performance results.
PART 2 - PRODUCTS

2.1 PIPES AND FITTINGS

A. HDPE Pipe: ASTM D 3035, SDR 11
 1. Molded HDPE Fittings: ASTM D 2683 or ASTM D 3261, HDPE resin, socket- or butt-fusion type, made to match PE pipe dimensions and class.

B. U-Bend Assembly: Factory fabricated with embossed depth stamp every 24 inches from U-bend.

2.2 BOREHOLE BACKFILL

A. Surface Seal: Bentonite with thermal conductivity greater than 1.0 Btu/h x ft. x deg F.

B. Backfill below Surface Seal: Natural or manufactured sand.

2.3 ANTIFREEZE SOLUTION

A. Propylene Glycol: Minimum 99 percent propylene glycol with corrosion inhibitors and environmental stabilizer additives to be mixed with water to protect the piping circuit and connected equipment from physical damage from freezing or corrosion.

B. Quantity: Sufficient solution for initial system startup and for preventive maintenance for one year from date of Substantial Completion.

C. Dilution Water: Chloride content shall be less than 25 ppm, sulfate less than 25 ppm, and hardness less than 100 ppm.

PART 3 - EXECUTION

3.1 EARTHWORK

A. Refer to site plans and associated DelDOT specifications for earth moving requirements.

3.2 PIPING INSTALLATION

A. Install HDPE piping in boreholes according to ASTM D 2774 or ASTM F 645.
 1. Clean HDPE pipe and fittings and make heat-fusion joints according to ASTM D 2657. Minimize number of joints.

B. Purge, flush, and pressure test piping before backfilling boreholes.

C. After installation of loop pipe in borehole, fill piping loop with water or antifreeze solution, and pump backfill into borehole to discharge at base of borehole.
D. Fill borehole with backfill to a point at least 60 inches below grade and backfill remainder with surface seal material.

E. Extend piping from vertical wells horizontally as shown on drawings and connect to water-source, ground-loop, heat-pump piping systems at inside face of building wall in locations and pipe sizes indicated on the drawings.

1. Backfill to 24 inches above pipe with mud developed from excavated rock-free soil or with sand, pea gravel, or fly ash. Backfill from slurry level to grade with excavated soil, compacting as specified for pipe burial in Division 31 Section "Earth Moving."
2. Extend pipe from trench at an elevation that is at least 12 inches below frost line. Seal membrane after installing piping.
3. Terminate water-service piping at building wall until building water-source, ground-loop, heat-pump piping systems are installed. Terminate piping with caps. Make connections to building water-source, ground-loop, heat-pump piping systems when those systems are installed. Provide sleeve at exterior wall/floor penetrations and seal annular spaces.
4. Install continuous detectable warning tape for underground piping. Locate tape a minimum of 24 inches below finished grade, directly over piping. Underground warning tapes are specified in Division 31 Section "Earth Moving."
5. Purge, flush, and pressure test piping before backfilling trenches.

F. Install sleeves for piping penetrations of walls, ceilings, and floors.

G. Install escutcheons for piping penetrations of walls, ceilings, and floors.

3.3 ANTIFREEZE SOLUTION FILL

A. Fill system with required quantity of propylene glycol.

1. Inhibited propylene glycol and water solution mixed 20 percent glycol – 80 percent water, suitable for operating temperatures from 18 degrees F to 212 degrees F.

B. Test the dilute solution using gas chromatography to verify concentration of propylene glycol, and forward report to Architect.

3.4 CONNECTIONS

A. Drawings indicate general arrangement of piping, fittings, and specialties.

3.5 FIELD QUALITY CONTROL

A. Piping Tests: Fill piping 24 hours before testing and apply test pressure to stabilize piping. Use potable water only.

B. Hydrostatic Tests: Test at not less than 1-1/2 times the pipe working-pressure rating allowing for static pressure of borehole depth.
1. Increase pressure in 50-psig increments and inspect each joint between increments. Hold at test pressure for 30 minutes. Slowly increase to next test pressure increment and hold for 30 minutes. After testing at maximum test pressure, reduce pressure to 30 psig. Hold for 90 minutes, and measure pressure at 30-minute intervals. Repair leaks and retest until no leaks exist.

2. Maintain a minimum pipe velocity of 24 in./s (610 mm/s) for a minimum of 15 minutes to remove all air.

C. Prepare reports of testing activity.

D. Results of pipe pressure tests shall be submitted to Engineer, Owner, and Owner’s Representative for review prior to closing in trenches, walls, floors, or ceilings that will prevent access to piping for repairs.

END OF SECTION
SECTION 232116
MECHANICAL PIPING SPECIALTIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS:

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY:

A. This Section includes the following domestic water piping specialties:

1. Vacuum breakers.
2. Strainers.
3. Drain valves.
4. Air vents.
5. Air Separators
6. Expansion Tanks
7. Cleanouts

B. Related Sections include the following:

1. Section 230523 "Valves"
2. Section 230519 "Meters and Gages for Mechanical Piping"
3. Section 232113 "Mechanical Piping"

1.3 PERFORMANCE REQUIREMENTS:

A. Minimum Working Pressure for Domestic Water Piping Specialties: 125 psig, unless otherwise indicated.

1.4 SUBMITTALS:

A. Product Data: For each type of product indicated.

B. Shop Drawings: Diagram power, signal, and control wiring.

C. Field quality-control test reports.

D. Operation and Maintenance Data: For domestic water piping specialties to include in emergency, operation, and maintenance manuals.
1.5 QUALITY ASSURANCE:

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

B. NSF Compliance:

2. Comply with NSF 61, "Drinking Water System Components - Health Effects; Sections 1 through 9."

PART 2 - PRODUCTS

2.1 VACUUM BREAKERS:

A. Pipe-Applied, Atmospheric-Type Vacuum Breakers:

1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. FEBCO; SPX Valves & Controls.
 c. Zurn Plumbing Products Group; Wilkins Div.

3. Size: NPS 1/4 to NPS 3 (DN 8 to DN 80), as required to match connected piping.
5. Inlet and Outlet Connections: Threaded.

B. Hose-Connection Vacuum Breakers:

1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 b. Woodford Manufacturing Company.
 c. Zurn Plumbing Products Group.

5. Finish: Rough bronze.
C. Pressure Vacuum Breakers:

1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Conbraco Industries, Inc.
 c. Zurn Plumbing Products Group; Wilkins Div.

3. Operation: Continuous-pressure applications.
4. Pressure Loss: 5 psig (35 kPa) maximum, through middle 1/3 of flow range.
5. Accessories:
 a. Valves: Ball type, on inlet and outlet.

2.2 STRAINERS:

A. Y-Pattern and Basket Strainers:

1. Body: Bronze for NPS 2 (DN 50) and smaller; cast iron with interior lining complying with AWWA C550 or FDA-approved, epoxy coating and for NPS 2-1/2 (DN 65) and larger.
2. End Connections: Threaded for NPS 2 (DN 50) and smaller flanged for NPS 2-1/2 (DN 65) and larger.
3. Screen: Stainless steel with round perforations, unless otherwise indicated.
4. Perforation Size:
 a. Strainers NPS 2 (DN 50) and Smaller: 0.020 inch (0.51 mm).
 b. Strainers NPS 2-1/2 to NPS 4 (DN 65 to DN 100): 0.045 inch (1.14 mm).

2.3 DRAIN VALVES:

A. Ball-Valve-Type, Hose-End Drain Valves:

2. Pressure Rating: 400-psig (2760-kPa) minimum CWP.
4. Body: Copper alloy.
5. Ball: Chrome-plated brass.
8. Inlet: Threaded or solder joint.
2.4 AIR CONTROL DEVICES

A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

1. Amtrol, Inc.
2. Armstrong Pumps, Inc.
3. Bell & Gossett; a division of ITT Industries.
4. Taco.

B. AIR VENTS:

1. Manual Air Vents:
 a. Body: Bronze.
 b. Internal Parts: Nonferrous.
 c. Operator: Screwdriver or thumbscrew.
 d. Inlet Connection: NPS 1/2
 f. CWP Rating: 150 psig.

C. Tangential-Type Air Separators:

1. Tank: Cast iron for sizes 2-1/2 inches and smaller, carbon steel for sizes 3 inches and larger. ASME constructed and labeled for 125-psig minimum working pressure and 350 deg F maximum operating temperature.
2. Air Collector Tube: Perforated 304 stainless steel, 3/16” diameter perforations, and free area not less than 5 times the cross-sectional area of the connecting pipe.
3. Tangential Inlet and Outlet Connections: Threaded for NPS 2 and smaller; flanged connections for NPS 2-1/2 and larger.
5. Designed and constructed per ASME Section VIII, Division 1.

2.5 DIAPHRAGM-TYPE EXPANSION TANKS

A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

1. Bell & Gossett; a division of ITT Industries.
2. Amtrol, Inc.
3. Taco.

B. Tank: Carbon steel, rated for 125-psig working pressure and 240 deg F maximum operating temperature. Factory test after taps are fabricated and supports installed and are labeled according to ASME Boiler and Pressure Vessel Code: Section VIII, Division 1.
C. Diaphragm: Heavy duty butyl rubber, securely sealed into tank to separate air charge from system water to maintain required expansion capacity.

D. Air-Charge Fittings: Schrader valve, stainless steel with EPDM seats.

2.6 GLYCOL SYSTEM

A. See Section 232500 for glycol feeder pump specification.

B. Glycol solution:
 1. Inhibited propylene glycol and water solution mixed 20 percent glycol – 80 percent water, suitable for operating temperatures from 18 degrees F to 212 degrees F.

2.7 FLEXIBLE PIPING CONNECTORS

A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 1. BRD Noise and Vibration Control, Inc.; HUSH JOINT
 2. Amber/Booth Company, Inc.
 3. Isolation Technology, Inc.

B. Body: Metallic or elastomeric

C. End Connections: Flanged or slip ends to match equipment.

D. Performance: Capable of misalignment

E. CWP Rating: 150 psig.

F. Maximum Operating Temperature: 250 deg F.

2.8 CLEANOUTS

A. Exposed Cleanouts:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. MIFAB, Inc.
 d. Tyler Pipe; Wade Div.
 2. Standard: ASME A112.36.2M for cleanout test tee.
 3. Size: Same as connected drainage piping
4. Body Material: as required to match connected piping.
5. Closure Countersunk or raised-head plug.
6. Closure Plug Size: Same as or not more than one size smaller than cleanout size.

B. Concealed Cleanouts:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 c. Tyler Pipe; Wade Div.
 d. Watts Drainage Products Inc.
 e. Zurn Plumbing Products Group.
2. Standard: ASME A112.36.2M heavy-duty, threaded, adjustable housing cleanout.
3. Size: Same as connected branch.
4. Type: Heavy-duty, Threaded, adjustable housing.
5. Body or Ferrule: Cast Brass.
7. Outlet Connection: Threaded.
8. Closure: Brass plug with tapered threads.
9. Adjustable Housing Material: Cast brass with set-screws or other device.
12. Frame and Cover Shape: Round.

PART 3 -EXECUTION

3.1 INSTALLATION:
A. Refer to Division 23 Section "Basic Mechanical Materials and Methods" for piping joining materials, joint construction, and basic installation requirements.
B. Install Y-pattern strainers for water on supply side of each control valve, water pressure-reducing valve, solenoid valve, and pump.
C. Install in-line air separators in pump suction. Install drain valve on air separators.
D. Install air vents at high points of water piping, at heat transfer coils, and elsewhere as required for system air venting.
E. Install expansion tanks above the air separator. Install tank fitting in tank bottom and charge tank. Use manual vent for initial fill to establish proper water level in tank.
1. Install tank fittings that are shipped loose.
2. Support tank from structure above with sufficient strength to carry weight of tank, piping connections, fittings, plus tank full of water. Do not overload building components and structural members.

F. Install wood-blocking reinforcement for wall-mounting-type specialties.

G. Install escutcheons at wall, floor, and ceiling penetrations in exposed finished locations and within cabinets and millwork. Use deep-pattern escutcheons if required to conceal protruding pipe fittings.

H. Install cleanouts in aboveground piping and building drain piping according to the following, unless otherwise indicated:
 1. Size same as drainage piping.
 2. Locate at each change in direction of piping greater than 45 degrees.
 3. Locate at minimum intervals of 50 feet.
 4. Locate at base of each vertical stack.

I. For cleanouts located in concealed piping, install cleanout wall access covers, of types indicated, with frame and cover flush with finished wall.

3.2 CONNECTIONS:

A. Piping installation requirements are specified in other Division 23 Sections. Drawings indicate general arrangement of piping and specialties.

B. Ground equipment according to Division 26 Section "Grounding and Bonding."

C. Connect wiring according to Division 26 Section "Conductors and Cables."

3.3 LABELING AND IDENTIFYING:

A. Equipment Nameplates and Signs: Install engraved plastic-laminate equipment nameplate or sign on or near each of the following:
 1. Pressure vacuum breakers.

B. Distinguish among multiple units, inform operator of operational requirements, indicate safety and emergency precautions, and warn of hazards and improper operations, in addition to identifying unit. Nameplates and signs are specified in Division 23 Section "Identification for Mechanical Piping and Equipment."

3.4 FIELD QUALITY CONTROL:

A. Perform the following tests and prepare test reports:
 1. Test each pressure vacuum breaker and backflow preventers according to authorities having jurisdiction and the device's reference standard.
B. Remove and replace malfunctioning domestic water piping specialties and retest as specified above.

3.5 ADJUSTING:

A. Set field-adjustable pressure set points of water pressure-reducing valves.

END OF SECTION
SECTION 232123
HYDRONIC PUMPS

PART 1 - DESCRIPTION

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary
 Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Wet rotor, in-line centrifugal pumps.

1.3 DEFINITIONS
 A. EPT: Ethylene propylene terpolymer.

1.4 ACTION SUBMITTALS
 A. Product Data: For each type of pump. Include certified performance curves and rated
 capacities, operating characteristics, furnished specialties, final impeller dimensions, and
 accessories for each type of product indicated. Indicate pump's operating point on
 curves.
 B. Shop Drawings: For each pump.
 1. Show pump layout and connections.
 2. Include setting drawings with templates for installing foundation and anchor
 bolts and other anchorages.
 3. Include diagrams for power, signal, and control wiring.

1.5 CLOSEOUT SUBMITTALS
 A. Operation and Maintenance Data: For pumps to include in emergency, operation, and
 maintenance manuals.

1.6 DELIVERY, STORAGE, AND HANDLING
 A. Deliver materials to the site in such a manner as to protect the materials from shipping
 and handling damage. Provide materials on factory provided shipping skids and lifting
 lugs if required for handling. Materials which could be damaged by the elements should
 be packaged in such a manner that they could withstand short-term exposure during
 transportation.
B. Store materials in clean, dry place and protect from weather and construction traffic. Handle carefully to avoid damage.

C. Use all means necessary to protect equipment before, during, and after installation.

D. All scratched, dented, and otherwise damaged units shall be repaired or replaced as directed by the Owner.

1.7 WARRANTY
A. Provide a minimum 18-month warranty on materials and installation

1.8 MAINTENANCE MATERIAL SUBMITTALS
A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Mechanical Seals: One mechanical seal for each pump.

PART 2 - PRODUCTS

2.1 WET ROTOR, IN-LINE CENTRIFUGAL PUMPS
A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 1. ITT Corporation; Bell & Gossett.
 2. Armstrong Pumps Inc.
 4. TACO Incorporated.

B. Components
 1. The pumps shall be a wet rotor inline pump, in cast iron or lead free bronze body construction specifically designed for quiet operation. Suitable standard operations at 230° F and 175 PSIG working pressure.
 2. The pump internals shall be capable of being serviced without disturbing piping connections.
 3. Pump shall be equipped with a water-tight seal to prevent leakage.
 4. Pump volute shall be of a cast iron design for heating systems or lead-free bronze for domestic water systems. The connection style on the cast iron and bronze pumps shall be flanged.
 5. Flange dimensions shall be HVAC industry standard 2 or 4 bolts sizes.
 6. Motor shall be a synchronous, permanent-magnet (PM) motor and tested with the pump as one unit. Conventional induction motors will not be acceptable.
7. Each motor shall have an Integrated Variable Frequency Drive tested as one unit by the manufacturer.
8. Integrated motor protection shall be verified by UL to protect the pump against over/under voltage, over temperature of motor and/or electronics, over current, locked rotor and dry run (no load condition).
9. Pump shall have BACnet connections built into the VFD as standard options.
10. Analog inputs, such as 0-10V and 4-20mA, are standard inputs built into the VFD.
11. Pumps shall be UL 778 listed and bear the UL Listed Mark for USA and Canada with on-board thermal overload protection.
12. Each pump shall be factory performance tested before shipment.

C. See below for available operating modes. Refer to the controls sequences on the drawings for actual system sequence of operation.
1. Proportional Pressure – The differential pressure will continuously increase or decrease along a linear curve based on the flow demand.
2. Constant Pressure – The pump maintains a constant differential pressure set by the user at any flow demand until the maximum speed is reached.
3. Constant Speed – The pump maintains a constant speed at any flow rate
4. Night Set Back – The pump will recognize a 10°C water temperature reduction and will switch to nighttime operation.
5. T-Constant – This control will use a PI algorithm to vary the speed of the pump in order to maintain a constant temperature of the fluid media.
6. Delta-T Constant – This control mode will use a PI algorithm to vary the speed of the pump in order to maintain a constant differential temperature between the built-in temperature sensor and external temperature sensor.
7. Delta-P-T – This control mode is paired with proportional or constant pressure mode. The nominal differential pressure setpoint will vary according to the fluid temperature.
8. Delta-P-Delta-T – This control mode is paired with proportional or constant pressure mode. The nominal differential pressure setpoint will vary according to the differential temperature between the built-in temperature sensor and external temperature sensor.

D. Two Pump Control shall be available. See below for available operating modes. Refer to the controls sequences on the drawings for actual system sequence of operation.
1. Backup – This mode will start the second pump in case of failure to the master pump.
2. Alternate Operation – This mode will run one pump at a time. The working time is switched every 24 hrs.
3. Parallel Operation – In this mode, both pumps run simultaneously at the same set point. The master pump determines the behavior of the full system and is able to optimize the performance. To guarantee the required performance with the minimum power consumption the master pump starts or stops the second pump depending on the head and the flow required.

E. Capacities and Characteristics are as scheduled on the drawings.
2.2 PUMP SPECIALTY FITTINGS FOR GEOTHERMAL SYSTEM PUMPS

A. Suction Diffuser:
 1. Angle pattern.
 2. 175-psig pressure rating, cast-iron body and end cap, pump-inlet fitting.
 3. Bronze startup and bronze or stainless-steel permanent strainers.
 4. Bronze or stainless-steel straightening vanes.
 5. Drain plug.
 6. Factory-fabricated support.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine equipment foundations and anchor-bolt locations for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.

B. Examine roughing-in for piping systems to verify actual locations of piping connections before pump installation.

C. Examine foundations and inertia bases for suitable conditions where pumps are to be installed.

D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PUMP INSTALLATION

A. Comply with manufacturer’s requirements.

B. Install pumps to provide access for periodic maintenance including removing motors, impellers, couplings, and accessories.

C. Independently support pumps and piping so weight of piping is not supported by pumps and weight of pumps is not supported by piping.

D. Power and control wiring shall run in separate channel.

E. Pumps are supplied with an integrated VFD and should not be used with any external VFDs.

F. Pumps shall NOT be run dry to check rotation.

G. Equipment Mounting: Install in-line pumps with continuous-thread hanger rods and elastomeric hangers of size required to support weight of in-line pumps.
1. Comply with requirements for seismic-restraint devices specified in Division 23 Section "Vibration and Seismic Controls for Mechanical Piping and Equipment."

2. Comply with requirements for hangers and supports specified in Division 23 Section "Hangers and Supports for Mechanical Piping and Equipment."

3.3 ALIGNMENT

A. Perform alignment service.

B. Comply with requirements in Hydronics Institute standards for alignment of pump and motor shaft. Add shims to the motor feet and bolt motor to base frame. Do not use grout between motor feet and base frame.

C. Comply with pump and coupling manufacturers' written instructions.

D. After alignment is correct, tighten foundation bolts evenly but not too firmly. Completely fill baseplate with non-shrink, nonmetallic grout while metal blocks and shims or wedges are in place. After grout has cured, fully tighten foundation bolts.

3.4 CONNECTIONS

A. Where installing piping adjacent to pump, allow space for service and maintenance.

B. Connect piping to pumps. Install valves that are same size as piping connected to pumps.

C. Install suction and discharge pipe sizes equal to or greater than diameter of pump nozzles.

D. Install check valve and throttling valve with memory stop on domestic hot water recirculating pump. Install similar or triple-duty valve on discharge side of geothermal system pumps.

E. Install Y-type strainer or suction diffuser and shutoff valve on suction side of geothermal system pumps.

F. Install pressure gages on pump suction and discharge for geothermal system pumps.

G. Reduction from line size to pump connection size shall be made with eccentric reducers attached to the pump with tops flat to allow continuity of flow and to avoid air pockets.

H. Furnish and install a line size shut-off valve on the suction and discharge sides of the pumps.

I. Provide temperature gauges where and as detailed or directed.

J. All piping shall be brought to equipment and pump connections in such a manner so as to prevent the possibility of any load or stress being applied to the connections or piping.

K. Ground equipment according to Division 26 Section for Grounding and Bonding for Electrical Systems.
L. Connect wiring according to Division 26 Section for Low-Voltage Electrical Power Conductors and Cables.

3.5 STARTUP SERVICE

A. Perform startup service.

1. Complete installation and startup checks according to manufacturer's written instructions.
2. Check piping connections for tightness.
3. Clean strainers on suction piping.
4. Perform the following startup checks for each pump before starting:
 a. Verify bearing lubrication.
 b. Verify that pump is free to rotate by hand and that pump for handling hot liquid is free to rotate with pump hot and cold. If pump is bound or drags, do not operate until cause of trouble is determined and corrected.
 c. Verify that pump is rotating in the correct direction.
5. Prime pump by opening suction valves and closing drains, and prepare pump for operation.
7. Open discharge valve slowly.

3.6 DEMONSTRATION

A. Train Owner's maintenance personnel to adjust, operate, and maintain hydronic pumps.

B. Contractor shall be responsible for demonstrating the system sequence of operation as described on the contract drawings. Demonstration shall be in the presence of the owner and/or owner’s representative. A minimum of 7 days’ notice shall be provided in advance of the demonstrations.

END OF SECTION
SECTION 232300

REFRIGERANT PIPING

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

1. Refrigerant piping.
2. Refrigerant strainers.
3. Refrigerant pressure relief valves.
4. Refrigerant expansion valves.

B. Related Sections:

1. Section 230529 - Hangers and Supports for Mechanical Piping and Equipment: Product requirements for pipe hangers and supports, sleeves, for placement by this section.
2. Section 230548 – Vibration Controls for Mechanical: Product requirements for Vibration Isolation for placement by this section.
3. Section 230719 - Mechanical Insulation: Product requirements for Piping Insulation for placement by this section.

1.2 PERFORMANCE REQUIREMENTS

A. Line Test Pressure for Refrigerant R-410A:

1.3 REFERENCES

A. Air-Conditioning and Refrigeration Institute:

1. ARI 710 - Liquid-Line Driers.
3. ARI 750 - Thermostatic Refrigerant Expansion Valves.
4. ARI 760 - Solenoid Valves for Use with Volatile Refrigerants.

B. American Society of Heating, Refrigerating and Air-Conditioning Engineers:

C. American Society of Mechanical Engineers:

1. ASME B16.22 - Wrought Copper and Copper Alloy Solder Joint Pressure Fittings.
2. ASME B16.26 - Cast Copper Alloy Fittings for Flared Copper Tubes.
3. ASME B31.5 - Refrigeration Piping.

D. ASTM International:

E. American Welding Society:

1. AWS A5.8 - Specification for Filler Metals for Brazing and Braze Welding.
2. AWS D1.1 - Structural Welding Code - Steel.

F. Manufacturers Standardization Society of the Valve and Fittings Industry:

1. MSS SP 58 - Pipe Hangers and Supports - Materials, Design and Manufacturer.
2. MSS SP 69 - Pipe Hangers and Supports - Selection and Application.
3. MSS SP 89 - Pipe Hangers and Supports - Fabrication and Installation Practices.

1.4 SYSTEM DESCRIPTION

A. Where more than one piping system material is specified, provide compatible system components and joints. Use non-conducting dielectric connections when joining dissimilar metals in systems.

B. Provide flanges, unions, or couplings at locations requiring servicing. Use unions, flanges, or couplings downstream of valves and at equipment connections. Do not use direct welded or threaded connections to valves or equipment.

C. Provide pipe hangers and supports in accordance with ASME B31.5, MSS SP 58, MSS SP 69, MSS SP 89, and as specified in Division 23.

D. Flexible Connectors: Use at or near compressors.
1.5 SUBMITTALS

A. Section 013300 - Submittal Procedures: for submittal process and procedure.

B. Shop Drawings: Indicate layout of refrigeration piping system, including equipment, critical dimensions, and sizes.

C. Product Data:
 1. Piping: Submit data on pipe materials, fittings, and accessories.
 2. Refrigerant Specialties: Submit manufacturers catalog information including capacity, component sizes, rough-in requirements, and service sizes for the following:
 a. Refrigerant strainers.
 b. Refrigerant pressure relief valves.
 c. Refrigerant filter-driers.
 d. Refrigerant expansion valves.

D. Design Data: Indicate pipe size. Indicate load carrying capacity of trapeze, multiple pipe, and riser support hangers.

E. Test Reports: Indicate results of refrigerant leak test and piping system pressure test.

F. Manufacturer’s Installation Instructions: Submit hanging and support methods, joining procedures and isolation.

G. Welders Certificates: Certify welders employed on the Work, verifying AWS qualification within previous 12 months.

1.6 CLOSEOUT SUBMITTALS

A. Section 017300 - Execution Requirements: Closeout procedures.

B. Project Record Documents: Record actual locations of valves, equipment and refrigerant accessories.

C. Operation and Maintenance Data: Submit instructions for installation and changing components, spare parts lists, exploded assembly views.

1.7 QUALITY ASSURANCE

A. Perform Work in accordance with ASME B31.5 code for installation of refrigerant piping systems.

1.8 QUALIFICATIONS

A. Fabricator or Installer: Company specializing in performing Work of this section with minimum three years documented experience.
1.9 DELIVERY, STORAGE, AND HANDLING

A. Section 016000 - Product Requirements: Product storage and handling requirements.

B. Dehydrate and charge refrigeration components including piping and receivers, seal prior to shipment. Maintain seal until connected into system.

C. Accept valves on site in shipping containers with labeling in place. Inspect for damage.

D. Provide temporary end caps and closures on piping and fittings. Maintain in place until installation.

E. Protect piping systems from entry of foreign materials by temporary covers, completing sections of the Work, and isolating parts of completed system.

1.10 FIELD MEASUREMENTS

A. Verify field measurements prior to fabrication.

1.11 COORDINATION

A. Section 013100 - Administrative Requirements: Requirements for coordination.

1.12 WARRANTY

A. Section 017300 - Execution Requirements: Product warranties and product bonds.

B. Furnish two-year manufacturer warranty for valves excluding packing.

1.13 MAINTENANCE MATERIALS

A. Section 017300 - Execution Requirements: Spare parts and maintenance products.

PART 2 - PRODUCTS

2.1 REFRIGERANT PIPING

A. Copper Tubing: ASTM B88, Type K or L.

3. Solder Filler Metals: ASTM B 32. Use 95-5 tin antimony or alloy HB solder to join copper socket fittings on copper pipe.
5. Flexible Connectors:

b. End Connections: Socket ends.
c. Offset Performance: Capable of minimum 3/4-inch misalignment in minimum 7-inch-long assembly.
d. Pressure Rating: Factory test at minimum 500 psig
e. Maximum Operating Temperature: 250 deg F

2.2 UNIONS, FLANGES, AND COUPLINGS

A. 2 inches (50 mm) and Smaller:
 1. Copper Pipe: Bronze, soldered joints.

B. Dielectric Connections: Union with galvanized or plated steel threaded end, copper solder end, water impervious isolation barrier.
 1. Manufacturers:
 c. Sporlan Valve Co. Model.
 d. Straight Through Type:
 e. Spring, neoprene seat.
 f. Maximum working pressure: 500 psig (3450 kPa).
 g. Maximum working temperature: 250 degrees F (121 degrees C).

2.3 VALVES AND SPECIALTIES

A. Diaphragm Packless Valves:
 1. Body and Bonnet: Forged brass or cast bronze; globe design with straight-through or angle pattern.
 3. Operator: Rising stem and hand wheel.
 5. End Connections: Socket, union, or flanged.

B. Packed-Angle Valves:
 1. Body and Bonnet: Forged brass or cast bronze.
 2. Packing: Molded stem, back seating, and replaceable under pressure.
 3. Operator: Rising stem.
 5. Seal Cap: Forged-brass or valox hex cap.
 6. End Connections: Socket, union, threaded, or flanged.
C. Check Valves:

1. Body: Ductile iron, forged brass, or cast bronze; globe pattern.
2. Bonnet: Bolted ductile iron, forged brass, or cast bronze; or brass hex plug.
5. Retain first subparagraph below for optional manual opening feature.
7. End Connections: Socket, union, threaded, or flanged.
8. Maximum Opening Pressure: 0.50 psig (3.4 kPa).

D. Service Valves:

1. Body: Forged brass with brass cap including key end to remove core.
2. Core: Removable ball-type check valve with stainless-steel spring.
4. End Connections: Copper spring.

E. Solenoid Valves: Comply with ARI 760 and UL 429; listed and labeled by an NRTL.

4. End Connections: Threaded.
5. Electrical: Molded, watertight coil in NEMA 250 enclosure of type required by location with 1/2-inch (16-GRC) conduit adapter. Voltage as required by refrigeration equipment.
6. Working Pressure Rating: 400 psig
7. Maximum Operating Temperature: 240 deg F
8. Subparagraph below is an optional feature.

F. Safety Relief Valves: Comply with ASME Boiler and Pressure Vessel Code; listed and labeled by an NRTL.

1. Body and Bonnet: Ductile iron and steel, with neoprene O-ring seal.
4. End Connections: Threaded.

G. Thermostatic Expansion Valves: Comply with ARI 750.

1. Body, Bonnet, and Seal Cap: Forged brass or steel.
4. Capillary and Bulb: Copper tubing filled with refrigerant charge.
5. Suction Temperature: 40 deg F
6. Superheat: Adjustable or Nonadjustable as required by refrigeration equipment.
7. End Connections: Socket, flare, or threaded union.
8. Working Pressure Rating: As required by refrigeration equipment

H. Straight-Type Strainers:
2. Screen: 100-mesh stainless steel.
3. End Connections: Socket or flare.

I. Moisture/Liquid Indicators:
2. Window: Replaceable, clear, fused glass window with indicating element protected by filter screen.
3. Indicator: Color coded to show moisture content in ppm.
5. End Connections: Socket or flare.

J. Filter Dryers (Replaceable and Permanent): Comply with ARI 730.
1. Body and Cover: Painted-steel shell with ductile-iron cover, stainless-steel screws, and neoprene gaskets for replaceable type.
2. Filter Media: 10 micron, pleated with integral end rings; stainless-steel support.
3. Desiccant Media: Activated [alumina] [charcoal].
4. Retain first subparagraph below for heat pumps.
5. Designed for reverse flow (for heat-pump applications).
7. Retain first subparagraph below for suction-line filter dryers.
9. Maximum Pressure Loss: As required by Refrigeration Equipment
10. Rated Flow: As required by Refrigeration Equipment

K. Liquid Accumulators: Comply with ARI 495.
2. End Connections: Socket or threaded.
2.4 REFRIGERANTS

A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Atofina Chemicals, Inc.
2. DuPont Company; Fluorochemicals Div.
3. Honeywell, Inc.; Genetron Refrigerants.
4. INEOS Fluor Americas LLC.

C. ASHRAE 34, R-410A: Pentafluoroethane/Difluoromethane.

2.5 REFRIGERANT STRAINERS

A. Manufacturers:

1. Alco Controls Div, Emerson Electric Co.
3. Sporlan Valve Co.

B. Straight Line, Non-Cleanable Type:

1. Steel shell, copper plated fittings, stainless steel wire screen.

2.6 REFRIGERANT PRESSURE RELIEF VALVES

A. Manufacturers:

1. Alco Controls Div, Emerson Electric Co.
3. Sporlan Valve Co.

B. Straight Through: Brass body and disc, neoprene seat, factory sealed and stamped with ASME UV and National Board Certification NB; for standard 450 psig 2070 kPa setting; selected to ASHRAE 15.

2.7 REFRIGERANT EXPANSION VALVES

A. Manufacturers:

1. Alco Controls Div, Emerson Electric Co.
3. Sporlan Valve Co.
B. Angle or Straight Through Type: ARI 750; design suitable for refrigerant, brass body, internal or external equalizer, bleed hole, mechanical pressure limit (maximum operating pressure MOP feature), adjustable superheat setting, replaceable inlet strainer, with replaceable capillary tube and remote sensing bulb and remote bulb well.

PART 3 - EXECUTION

3.1 PIPING APPLICATIONS FOR REFRIGERANT R-134a, 407C and 410A

A. Suction Lines NPS 1-1/2 (DN 40) and Smaller for Conventional Air-Conditioning Applications: Copper, Type L, drawn-temper tubing and wrought-copper fittings with brazed or soldered joints.

B. Hot-Gas and Liquid Lines

1. NPS 1 and Smaller: Copper, Type L, drawn-temper tubing and wrought-copper fittings with brazed or soldered joints.

C. Safety-Relief-Valve Discharge Piping: Copper, Type K or L, drawn-temper tubing and wrought-copper fittings with soldered joints.

3.2 VALVE AND SPECIALTY APPLICATIONS

A. Install diaphragm packless or packed-angle valves in suction and discharge lines of compressor.

B. Install service valves for gage taps at inlet and outlet of hot-gas bypass valves and strainers if they are not an integral part of valves and strainers.

C. Install a check valve at the compressor discharge and a liquid accumulator at the compressor suction connection.

D. Except as otherwise indicated, install diaphragm packless or packed-angle valves on inlet and outlet side of filter dryers.

E. Install a full-sized, three-valve bypass around filter dryers.

F. Install solenoid valves upstream from each expansion valve and hot-gas bypass valve. Install solenoid valves in horizontal lines with coil at top.

G. Install thermostatic expansion valves as close as possible to distributors on evaporators.

H. Install valve so diaphragm case is warmer than bulb.

I. Secure bulb to clean, straight, horizontal section of suction line using two bulb straps. Do not mount bulb in a trap or at bottom of the line.
J. If external equalizer lines are required, make connection where it will reflect suction-line pressure at bulb location.

K. Install safety relief valves where required by ASME Boiler and Pressure Vessel Code. Pipe safety-relief-valve discharge line to outside according to ASHRAE 15.

L. Install moisture/liquid indicators in liquid line at the inlet of the thermostatic expansion valve or at the inlet of the evaporator coil capillary tube.

M. Install strainers upstream from and adjacent to the following unless they are furnished as an integral assembly for device being protected:
 1. Solenoid valves.
 2. Thermostatic expansion valves.
 3. Hot-gas bypass valves.
 4. Compressor.

N. Install filter dryers in liquid line between compressor and thermostatic expansion valve, and in the suction line at the compressor.

O. Install receivers sized to accommodate pump-down charge.

P. Install flexible connectors at compressors.

3.3 PIPING INSTALLATION

A. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems; indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on Shop Drawings.

B. Install refrigerant piping according to ASHRAE 15.

C. Install piping in concealed locations unless otherwise indicated and except in equipment rooms and service areas.

D. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.

E. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.

F. Install piping adjacent to machines to allow service and maintenance.

G. Install piping free of sags and bends.

H. Install fittings for changes in direction and branch connections.
I. Select system components with pressure rating equal to or greater than system operating pressure.

J. Install piping as short and direct as possible, with a minimum number of joints, elbows, and fittings.

K. Arrange piping to allow inspection and service of refrigeration equipment. Install valves and specialties in accessible locations to allow for service and inspection. Install access doors if valves or equipment requiring maintenance is concealed behind finished surfaces.

L. Slope refrigerant piping as follows:
 1. Install horizontal hot-gas discharge piping with a uniform slope downward away from compressor.
 2. Install horizontal suction lines with a uniform slope downward to compressor.
 3. Install traps and double risers to entrain oil in vertical runs.
 4. Liquid lines may be installed level.

M. When brazing or soldering, remove solenoid-valve coils and sight glasses; also remove valve stems, seats, and packing, and accessible internal parts of refrigerant specialties. Do not apply heat near expansion-valve bulb.

N. Safety-relief-valve discharge piping is not required to be cleaned but is required to be open to allow unrestricted flow.

O. Install piping with adequate clearance between pipe and adjacent walls and hangers or between pipes for insulation installation.

P. Identify refrigerant piping and valves according to Section 230553 "Identification for HVAC Piping and Equipment."

Q. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Section 230500 "Common work Results for HVAC."

3.4 PIPE JOINT CONSTRUCTION

A. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.

B. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.

C. Fill pipe and fittings with an inert gas (nitrogen or carbon dioxide), during brazing or welding, to prevent scale formation.

D. Soldered Joints: Construct joints according to ASTM B 828 or CDA's "Copper Tube Handbook."
E. Brazed Joints: Construct joints according to AWS's "Brazing Handbook," Chapter "Pipe and Tube."

F. Use Type BcuP, copper-phosphorus alloy for joining copper socket fittings with copper pipe.

G. Use Type BAg, cadmium-free silver alloy for joining copper with bronze or steel.

H. Threaded Joints: Thread steel pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:

I. Apply appropriate tape or thread compound to external pipe threads unless dry-seal threading is specified.

J. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.

K. Welded Joints: Construct joints according to AWS D10.12/D10.12M.

L. Flanged Joints: Select appropriate gasket material, size, type, and thickness for service application. Install gasket concentrically positioned. Use suitable lubricants on bolt threads.

3.5 PREPARATION

A. Ream pipe and tube ends. Remove burrs.

B. Remove scale and dirt on inside and outside before assembly.

C. Prepare piping connections to equipment with flanges or unions.

D. Keep open ends of pipe free from scale and dirt. Protect open ends with temporary plugs or caps.

3.6 INSTALLATION - INSERTS

A. Provide inserts for placement in concrete forms.

B. Provide inserts for suspending hangers from reinforced concrete slabs and sides of reinforced concrete beams.

C. Where concrete slabs form finished ceiling, locate inserts flush with slab surface.

D. Where inserts are omitted, drill through concrete slab from below and provide through-bolt with recessed square steel plate and nut above slab.
3.7 INSTALLATION - PIPE HANGERS AND SUPPORTS

A. Install hangers and supports in accordance with ASTM F708, and MSS SP 89, in accordance with Section 230529 “Hangers and Supports for Mechanical Piping and Equipment.”

B. Support horizontal piping hangers as scheduled.

C. Install hangers to provide minimum 1/2-inch (13 mm) space between finished covering and adjacent work.

D. Place hangers within 12 inches (300 mm) of each horizontal elbow.

E. Install hangers to allow 1-1/2 inch (38 mm) minimum vertical adjustment. Design hangers for pipe movement without disengagement of supported pipe.

F. Support vertical piping at every floor. Support riser piping independently of connected horizontal piping.

G. Where installing several pipes in parallel and at same elevation, provide multiple pipe hangers or trapeze hangers.

H. Provide copper plated hangers and supports for copper piping between hanger or support and piping.

3.8 INSTALLATION - ABOVE GROUND PIPING SYSTEMS

A. Route piping parallel to building structure and maintain gradient.

B. Install piping to conserve building space, and not interfere with use of space.

C. Group piping whenever practical at common elevations.

D. Sleeve pipe passing through partitions, walls and floors. Refer to Division 23.

E. Install pipe identification in accordance with Division 23.

F. Install piping to allow for expansion and contraction without stressing pipe, joints, or connected equipment.

G. Provide access where valves and fittings are not exposed. Coordinate size and location of access doors with Division 23.

H. Arrange refrigerant piping to return oil to compressor. Provide traps and loops in piping, and provide double risers as required. Slope horizontal piping 0.40 percent in direction of flow.

I. Flood refrigerant piping system with nitrogen when brazing.

J. Where pipe support members are welded to structural building framing, scrape, brush clean, and apply one coat of zinc rich primer to welds.

K. Prepare unfinished pipe, fittings, supports, and accessories, ready for finish painting.
L. Install valves with stems upright or horizontal, not inverted.
M. Insulate piping; refer to Section 230719 “Mechanical Insulation”.
N. Provide replaceable cartridge filter-dryers, with isolation valves and bypass with valve.
O. Locate expansion valve sensing bulb immediately downstream of evaporator on suction line.
P. Provide external equalizer piping on expansion valves with refrigerant distributor connected to evaporator.
Q. Install flexible connectors at right angles to axial movement of compressor, parallel to crankshaft.
R. Fully charge completed system with refrigerant after testing.
S. Follow ASHRAE 15 procedures for charging and purging of systems and for disposal of refrigerant.
T. Install refrigerant piping in accordance with ASME B31.5.

3.9 INSTALLATION - REFRIGERANT SPECIALTIES

A. Strainers:
 1. Install line size strainer upstream of each automatic valve.
 2. Where multiple expansion valves with integral strainers are used, install single main liquid-line strainer.
 3. On steel piping systems, install strainer in suction line.
 4. Install shut-off valves on each side of strainer.

B. Install pressure relief valves on ASME receivers. Install relief valve discharge piping to terminate outdoors at required location and with required termination type.

3.10 FIELD QUALITY CONTROL

A. Test refrigeration system in accordance with ASME B31.5.
B. Pressure test refrigeration system with dry nitrogen to 200 psig (1470 kPa). Perform final tests at 27 inches (92 kPa) vacuum and 200 psig (1470 kPa) using electronic leak detector.
C. Repair all leaks that are found.
D. Retest until no leaks are detected.
E. Results of pipe pressure tests shall be submitted to Engineer, Owner, and Owner’s Representative for review prior to closing in walls, floors, or ceilings that will prevent access to piping for repairs.

END OF SECTION
SECTION 232500
HVAC WATER TREATMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. This Section includes the following HVAC water-treatment systems to serve the ground loop heat pump water system:
 1. HVAC water-treatment chemicals.
 2. Glycol metering system and controls for:
 a. Ground loop heat pump water system (full water treatment).
B. Related Sections:
 1. Section 017700 “Closeout Procedures”.
 2. Section 232113 “Mechanical Piping”.
 3. Section 232113.13 “Ground Loop Heat Pump Piping”

1.3 DEFINITIONS
A. Low Voltage: As defined in NFPA 70 for circuits and equipment operating at less than 50 V or for remote-control, signaling power-limited circuits
B. TDS: Total dissolved solids.

1.4 PERFORMANCE REQUIREMENTS
A. Water quality for HVAC systems shall minimize corrosion, scale buildup, and biological growth for optimum efficiency of HVAC equipment without creating a hazard to operating personnel or the environment.
B. Base HVAC water treatment on quality of water available at Project site, HVAC system equipment material characteristics and functional performance characteristics, operating personnel capabilities, and requirements and guidelines of authorities having jurisdiction.
C. Closed loop ground loop heat pump water hydronic system shall have the following water qualities:
1. pH: Maintain a value within 9.0 to 10.5
2. "P" Alkalinity: Maintain a value within 100 to 500 ppm.
3. Boron: Maintain a value within 100 to 200 ppm.
4. Soluble Copper: Maintain a maximum value of 0.20 ppm.
5. TDS: Maintain a maximum value of 10 ppm.
6. Ammonia: Maintain a maximum value of 20 ppm.
7. Free Caustic Alkalinity: Maintain a maximum value of 20 ppm.
8. Microbiological Limits:
 a. Total Aerobic Plate Count: Maintain a maximum value of 1000 organisms/ml.
 b. Total Anaerobic Plate Count: Maintain a maximum value of 100 organisms/ml.
 c. Nitrate Reducers: Maintain a maximum value of 100 organisms/ml.
 d. Sulfate Reducers: Maintain a maximum value of 0 organisms/ml.
 e. Iron Bacteria: Maintain a maximum value of 0 organisms/ml.
9. Water Solution:
 a. Inhibited propylene glycol and water solution mixed 20 percent glycol – 80 percent water, suitable for operating temperatures from 18 degrees F to 212 degrees F.

1.5 SUBMITTALS

A. Product Data: Include rated capacities, operating characteristics, furnished specialties, and accessories for the following products:
 1. Inhibitor injection timers.
 2. Chemical solution tanks.
 3. Glycol Feed System
 4. Chemical test equipment.
 5. Chemical material safety data sheets.

B. Shop Drawings: Pretreatment and chemical treatment equipment showing tanks, maintenance space required, and piping connections to HVAC systems. Include plans, elevations, sections, details, and attachments to other work.

C. Field quality-control test reports.

D. Other Informational Submittals:
 1. Water-Treatment Program: Written sequence of operation on an annual basis for the application equipment required to achieve water quality defined in the "Performance Requirements" Article above.
1.6 QUALITY ASSURANCE

A. HVAC Water-Treatment Service Provider Qualifications: An experienced HVAC water-treatment service provider capable of analyzing water qualities, installing water-treatment equipment, and applying water treatment as specified in this Section.

1.7 MAINTENANCE SERVICE

A. Scope of Maintenance Service for Hot Water and Chilled Water System: Provide chemicals and service program to maintain water conditions required above to inhibit corrosion, scale formation, and biological growth for the hot water loop and equipment. Services and chemicals shall be provided for a period of one year from date of Substantial Completion, and shall include the following:

1. Initial water analysis and HVAC water-treatment recommendations.
2. Startup assistance for Contractor to flush the systems, clean with detergents, and initially fill systems with required chemical treatment prior to operation.
3. Periodic field service and consultation.
5. Laboratory technical analysis.
6. Analyses and reports of all chemical items concerning safety and compliance with government regulations.

PART 2 - PRODUCTS

2.1 GLYCOL SOLUTION METERING PUMP

A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

1. Neptune Chemical Pump Company.
2. Pulsafeeder, Inc.

B. System automatically maintains pressure in the loop by adding glycol solution to make up for losses. Glycol addition is controlled by a pressure switch with adjustable low and high set points. The system includes:

1. 50-gallon polyethylene tank mounted in a steel frame.
2. Bronze rotary gear pump (1.5 gpm @ 100 psi).
3. Float switch for low level pump shutoff.
4. NEMA 4X control panel.

 b. Pump “on” indicator light.
 c. “Low” tank level indicator light.
 d. Dry contact for low level indication.
 e. Power cord with plug, 115V.
2.3 CHEMICAL TREATMENT TEST EQUIPMENT

A. Test Kit: Manufacturer-recommended equipment and chemicals in a wall-mounting cabinet for testing pH, TDS, inhibitor, chloride, alkalinity, and hardness; sulfite and testable polymer tests for chillers systems.

2.4 CHEMICALS

A. Chemicals shall be as recommended by water-treatment system manufacturer that are compatible with piping system components and connected equipment, and that can attain water quality specified in Part 1 "Performance Requirements" Article.

PART 3 - EXECUTION

3.1 WATER ANALYSIS

A. Perform an analysis of supply water to determine quality of water available at Project site.

3.2 INSTALLATION

A. Install chemical application equipment on concrete bases, level and plumb. Maintain manufacturer's recommended clearances. Arrange units so controls and devices that require servicing are accessible. Anchor tanks and floor-mounting accessories to substrate.

B. Install water testing equipment on wall near water chemical application equipment.

C. Provide pipe coupon inside of bypass feeder as recommended by chemical treatment supplier.

D. Glycol Solution Metering Pump: Installed in the closed hydronic loops. Include piping accessories indicated on drawings.

3.3 CONNECTIONS

A. Piping installation requirements are specified in other Division 23 Sections. Drawings indicate general arrangement of piping, fittings, and specialties.

B. Install piping adjacent to equipment to allow service and maintenance.

C. Make piping connections between HVAC water-treatment equipment and dissimilar-metal piping with dielectric fittings. Dielectric fittings are specified in Division 23.

D. Install shutoff valves on HVAC water-treatment equipment inlet and outlet. Metal general-duty valves are specified in Division 23.

E. Refer to Division 23 for backflow preventers required in makeup water connections to potable-water systems.
3.4 FIELD QUALITY CONTROL

A. Perform tests and inspections and prepare test reports.

 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

B. Tests and Inspections:

 1. Inspect field-assembled components and equipment installation, including piping and electrical connections.

 2. Inspect piping and equipment to determine that systems and equipment have been cleaned, flushed, and filled with water, and are fully operational before introducing chemicals for water-treatment system.

 3. Place HVAC water-treatment system into operation and calibrate controls during the preliminary phase of HVAC systems' startup procedures.

 4. Do not enclose, cover, or put piping into operation until it is tested and satisfactory test results are achieved.

 5. Test for leaks and defects. If testing is performed in segments, submit separate report for each test, complete with diagram of portion of piping tested.

 6. Leave uncovered and unconcealed new, altered, extended, and replaced water piping until it has been tested and approved. Expose work that has been covered or concealed before it has been tested and approved.

 7. Cap and subject piping to static water pressure of 50 psig above operating pressure, without exceeding pressure rating of piping system materials. Isolate test source and allow test pressure to stand for four hours. Leaks and loss in test pressure constitute defects.

 8. Repair leaks and defects with new materials and retest piping until no leaks exist.

C. Remove and replace malfunctioning units and retest as specified above.

D. Comply with ASTM D 3370 and with the following standards:

3.5 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain HVAC water-treatment systems and equipment. Refer to Division 01 Section "Demonstration and Training."

B. Training: Provide a "how-to-use" self-contained breathing apparatus video that details exact operating procedures of equipment.

END OF SECTION
SECTION 233113
METAL DUCTS

PART 1 - DESCRIPTION

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Single-wall rectangular ducts and fittings.
 2. Duct liner.
 3. Sealants and gaskets.
 4. Hangers and supports.

B. Related Sections:
 1. Division 23 Section "Testing, Adjusting, and Balancing for Mechanical" for testing, adjusting, and balancing requirements for metal ducts.
 2. Division 23 Section "Air Duct Accessories" for dampers, sound-control devices, duct-mounting access doors and panels, turning vanes, and flexible ducts.

1.3 PERFORMANCE REQUIREMENTS

A. Delegated Duct Design: Duct construction, including sheet metal thicknesses, seam and joint construction, reinforcements, and hangers and supports, shall comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" and performance requirements and design criteria indicated in "Duct Schedule" Article.

B. Structural Performance: Duct hangers and supports shall withstand the effects of gravity loads and stresses within limits and under conditions described in SMACNA’s "HVAC Duct Construction Standards - Metal and Flexible".

C. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.

1.4 SUBMITTALS

A. Product Data: For each type of the following products:
 1. Liners and adhesives.
 2. Sealants and gaskets.
B. Shop Drawings:

1. Factory- and shop-fabricated ducts and fittings.
2. Fittings.
3. Reinforcement and spacing.
4. Seam and joint construction.
5. Penetrations through fire-rated and other partitions.
6. Duct accessories, including dampers, turning vanes, and access doors and panels.
7. Hangers and supports, including methods for duct and building attachment and vibration isolation.

C. Delegated-Design Submittal:

1. Sheet metal thicknesses.
2. Joint and seam construction and sealing.
3. Reinforcement details and spacing.
4. Materials, fabrication, assembly, and spacing of hangers and supports.

D. Coordination Drawings: Plans, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:

1. Duct installation layouts for duct connections through the roof through to primary discharge ductwork for the Heating and Ventilating units and any other congested spaces, indicating coordination with general construction, building components, and other building services. Indicate proposed changes to duct layout.

E. Welding certificates.

F. Field quality-control reports.

1.5 QUALITY ASSURANCE

A. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1, Section 5 - "Systems and Equipment" and Section 7 - "Construction and System Start-Up."

B. ASHRAE/IESNA Compliance: Applicable requirements in ASHRAE/IESNA 90.1, Section 6.4.4 - "HVAC System Construction and Insulation."

PART 2 - PRODUCTS

2.1 SINGLE-WALL RECTANGULAR DUCTS AND FITTINGS

A. General Fabrication Requirements: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" based on indicated static-pressure class unless otherwise indicated.
B. Transverse Joints: Select joint types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 2-1, "Rectangular Duct/Transverse Joints," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

C. Longitudinal Seams: Select seam types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 2-2, "Rectangular Duct/Longitudinal Seams," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

D. Elbows, Transitions, Offsets, Branch Connections, and Other Duct Construction: Select types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Chapter 4, "Fittings and Other Construction," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

2.2 SHEET METAL MATERIALS

A. General Material Requirements: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" for acceptable materials, material thicknesses, and duct construction methods unless otherwise indicated. Sheet metal materials shall be free of pitting, seam marks, roller marks, stains, discolorations, and other imperfections.

B. Galvanized Sheet Steel: Comply with ASTM A 653/A 653M.

2. Finishes for Surfaces Exposed to View: Mill phosphatized.

C. Reinforcement Shapes and Plates: ASTM A 36/A 36M, steel plates, shapes, and bars; black and galvanized.

1. Where black- and galvanized-steel shapes and plates are used to reinforce aluminum ducts, isolate the different metals with butyl rubber, neoprene, or EPDM gasket materials.

D. Tie Rods: Galvanized steel, 1/4-inch minimum diameter.

2.3 DUCT LINER

A. Flexible Elastomeric Duct Liner: Preformed, cellular, closed-cell, sheet materials complying with ASTM C 534, Type II, Grade 1; and with NFPA 90A or NFPA 90B.

1. Products: Subject to compliance with requirements, provide one of the following:
 a. Aeroflex USA, Inc.
 b. Armacell LLC.
2. Surface-Burning Characteristics: Maximum flame-spread index of 25 and maximum smoke-developed index of 50 when tested according to UL 723; certified by an NRTL.

3. Liner Adhesive: As recommended by insulation manufacturer and complying with NFPA 90A or NFPA 90B.
 a. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 b. Adhesive shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

B. Install duct lining in locations indicated on the plan drawings.

C. Shop Application of Duct Liner: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 7-11, "Flexible Duct Liner Installation."

1. Adhere a single layer of indicated thickness of duct liner with at least 90 percent adhesive coverage at liner contact surface area. Attaining indicated thickness with multiple layers of duct liner is prohibited.

2. Apply adhesive to transverse edges of liner facing upstream that do not receive metal nosing.

3. Butt transverse joints without gaps, and coat joint with adhesive.

4. Fold and compress liner in corners of rectangular ducts or cut and fit to ensure butted-edge overlapping.

5. Do not apply liner in rectangular ducts with longitudinal joints, except at corners of ducts, unless duct size and dimensions of standard liner make longitudinal joints necessary.

6. Apply adhesive coating on longitudinal seams in ducts with air velocity of 2500 fpm.

7. Secure liner with mechanical fasteners 4 inches from corners and at intervals not exceeding 12 inches transversely; at 3 inches from transverse joints and at intervals not exceeding 18 inches longitudinally.

8. Secure transversely oriented liner edges facing the airstream with metal nosings that have either channel or "Z" profiles or are integrally formed from duct wall. Fabricate edge facings at the following locations:
 a. Fan discharges.
 b. Intervals of lined duct preceding unlined duct.
 c. Upstream edges of transverse joints in ducts where air velocities are higher than 2500 fpm or where indicated.
9. Secure insulation between perforated sheet metal inner duct of same thickness as specified for outer shell. Use mechanical fasteners that maintain inner duct at uniform distance from outer shell without compressing insulation.

a. Sheet Metal Inner Duct Perforations: 3/32-inch diameter, with an overall open area of 23 percent.

10. Terminate inner ducts with buildouts attached to fire-damper sleeves, dampers, turning vane assemblies, or other devices. Fabricated buildouts (metal hat sections) or other buildout means are optional; when used, secure buildouts to duct walls with bolts, screws, rivets, or welds.

2.4 SEALANT AND GASKETS

A. General Sealant and Gasket Requirements: Surface-burning characteristics for sealants and gaskets shall be a maximum flame-spread index of 25 and a maximum smoke-developed index of 50 when tested according to UL 723; certified by an NRTL.

B. Water-Based Joint and Seam Sealant:

1. Application Method: Brush on.
2. Solids Content: Minimum 65 percent.
5. Mold and mildew resistant.
6. VOC: Maximum 75 g/L (less water).
7. Maximum Static-Pressure Class: 2-inch wg, positive and negative.
8. Service: Indoor or outdoor.
9. Substrate: Compatible with galvanized sheet steel or aluminum sheets.

C. Flanged Joint Sealant: Comply with ASTM C 920.

2. Type: S.
3. Grade: NS.
5. Use: O.
6. For indoor applications, use sealant that has a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

D. Flange Gaskets: Butyl rubber, neoprene, or EPDM polymer with polyisobutylene plasticizer.

2.5 HANGERS AND SUPPORTS

A. Hanger Rods for Noncorrosive Environments: Cadmium-plated steel rods and nuts.

B. Hanger Rods for Corrosive Environments: Electrogalvanized, all-thread rods or galvanized rods with threads painted with zinc-chromate primer after installation.
C. **Strap and Rod Sizes:** Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible.

D. **Duct Attachments:** Sheet metal screws, blind rivets, or self-tapping metal screws; compatible with duct materials.

E. **Trapeze and Riser Supports:**
 2. Supports for Aluminum Ducts: Aluminum or galvanized steel coated with zinc chromate.

PART 3 - EXECUTION

3.1 **DUCT INSTALLATION**

A. Drawing plans, schematics, and diagrams indicate general location and arrangement of duct system. Indicated duct locations, configurations, and arrangements were used to size ducts and calculate friction loss for air-handling equipment sizing and for other design considerations. Install duct systems as indicated unless deviations to layout are approved on Shop Drawings and Coordination Drawings.

B. Install ducts according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" unless otherwise indicated.

C. Install ducts with fewest possible joints.

D. Install factory- or shop-fabricated fittings for changes in direction, size, and shape and for branch connections.

E. Unless otherwise indicated, install ducts vertically and horizontally, and parallel and perpendicular to building lines.

F. Install ducts close to walls, overhead construction, columns, and other structural and permanent enclosure elements of building.

G. Install ducts with a clearance of 1 inch, plus allowance for insulation thickness.

H. Route ducts to avoid passing through electrical equipment rooms and enclosures.

I. Where ducts pass through non-fire-rated interior partitions and are exposed to view, cover the opening between the partition and duct or duct insulation with sheet metal flanges of same metal thickness as the duct. Overlap openings on four sides by at least 1-1/2 inches.

J. Where ducts pass through fire-rated interior partitions, install fire dampers. Comply with requirements in Division 23 Section "Air Duct Accessories" for fire dampers.
K. Protect duct interiors from moisture, construction debris and dust, and other foreign materials. Comply with SMACNA's "IAQ Guidelines for Occupied Buildings Under Construction".

3.2 INSTALLATION OF EXPOSED DUCTWORK

A. Protect ducts exposed in finished spaces from being dented, scratched, or damaged.

B. Trim duct sealants flush with metal. Create a smooth and uniform exposed bead. Do not use two-part tape sealing system.

C. Grind welds to provide smooth surface free of burrs, sharp edges, and weld splatter. When welding stainless steel with a No. 3 or 4 finish, grind the welds flush, polish the exposed welds, and treat the welds to remove discoloration caused by welding.

D. Maintain consistency, symmetry, and uniformity in the arrangement and fabrication of fittings, hangers and supports, duct accessories, and air outlets.

E. Repair or replace damaged sections and finished work that does not comply with these requirements.

3.3 DUCT SEALING

A. Seal ducts for duct static-pressure, seal classes, and leakage classes specified in "Duct Schedule" Article according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

B. Seal ducts to the following seal classes according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible":

1. Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

2. Outdoor Ducts: Seal Class B.

3. Indoor Ducts: Seal Class B.

3.4 HANGER AND SUPPORT INSTALLATION

A. Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Chapter 5, "Hangers and Supports."

B. Building Attachments: Concrete inserts, powder-actuated fasteners, or structural-steel fasteners appropriate for construction materials to which hangers are being attached.

1. Do not use powder-actuated concrete fasteners.

C. Hanger Spacing: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" for maximum hanger spacing; install hangers and supports within 24 inches of each elbow and within 48 inches of each branch intersection.
D. Hangers Exposed to View: Threaded rod and angle or channel supports.

E. Support vertical ducts with steel angles or channel secured to the sides of the duct with welds, bolts, sheet metal screws, or blind rivets; support at each floor and at a maximum interval of 16 feet.

F. Install upper attachments to structures. Select and size upper attachments with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

3.5 CONNECTIONS

A. Make connections to equipment with flexible connectors complying with Division 23 Section "Air Duct Accessories."

B. Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" for branch, outlet and inlet, and terminal unit connections.

3.6 FIELD QUALITY CONTROL

A. Perform tests and inspections.

B. Leakage Tests:

2. Disassemble, reassemble, and seal segments of systems to accommodate leakage testing and for compliance with test requirements.
3. Test for leaks before applying external insulation.
4. Conduct tests at static pressures equal to maximum design pressure of system or section being tested. If static-pressure classes are not indicated, test system at maximum system design pressure. Do not pressurize systems above maximum design operating pressure.
5. Give seven days’ advance notice for testing.

C. Duct System Cleanliness Tests:

1. Visually inspect duct system to ensure that no visible contaminants are present.
2. Test sections of metal duct system, chosen randomly by Owner, for cleanliness according to "Vacuum Test" in NADCA ACR, "Assessment, Cleaning and Restoration of HVAC Systems."

 a. Acceptable Cleanliness Level: Net weight of debris collected on the filter media shall not exceed 0.75 mg/100 sq. cm.

D. Duct system will be considered defective if it does not pass tests and inspections.

E. Prepare test and inspection reports.
F. Results of tests shall be submitted to Engineer, Owner, and Owner’s Representative for review prior to closing in walls, floors, or ceilings that will prevent access to piping for repairs.

3.7 DUCT CLEANING

A. Clean existing duct system(s) before testing, adjusting, and balancing.

B. Use service openings for entry and inspection.
 1. Create new openings and install access panels appropriate for duct static-pressure class if required for cleaning access. Provide insulated panels for insulated or lined duct. Patch insulation and liner as recommended by duct liner manufacturer. Comply with Division 23 Section "Air Duct Accessories" for access panels and doors.
 2. Disconnect and reconnect flexible ducts as needed for cleaning and inspection.
 3. Remove and reinstall ceiling to gain access during the cleaning process.
 4. Return-air ducts, dampers, actuators, and turning vanes except in ceiling plenums and mechanical equipment rooms.
 5. Supply-air ducts, dampers, actuators, and turning vanes.

3.8 START UP

A. Air Balance: Comply with requirements in Division 23 Section "Testing, Adjusting, and Balancing for Mechanical."

3.9 DUCT SCHEDULE

A. Supply, Return, and Outside Air Ducts:
 1. Ducts Connected to Heating & Ventilating Units, Heat Pumps, and Heat Exchangers:
 a. Pressure Class: Positive 2-inch wg.
 b. Minimum SMACNA Seal Class: B.

B. Exhaust Ducts:
 1. Ducts Connected to Fans Exhausting (ASHRAE 62.1, Class 1 and 2) Air:
 a. Pressure Class: Negative 2-inch wg.
 b. Minimum SMACNA Seal Class: B.

C. Liner:
 1. Flexible Elastomeric, 1 inch thick.

END OF SECTION
SECTION 233300
DUCT ACCESSORIES

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Duct Accessories
 2. Backdraft dampers.
 3. Volume dampers.
 4. Turning vanes.
 5. Duct-mounting access doors.
 6. Flexible connectors.
 7. Flexible ducts.

B. Related Sections:
 1. Section 230000 “Basic Mechanical Materials and Methods”.
 2. Section 230529 “Hangers and Supports”.
 3. Section 233113 “Metal Ducts”.
 4. Section 230593 “Testing, Adjusting, and Balancing for HVAC”.

1.2 REFERENCES

A. National Fire Protection Association:
 2. NFPA 92A - Recommended Practice for Smoke-Control Systems.

B. Sheet Metal and Air Conditioning Contractors:
 1. SMACNA - HVAC Duct Construction Standard - Metal and Flexible.

1.3 SUBMITTALS

A. Section 013300 - Submittal Procedures: Submittal procedures.

B. Shop Drawings: Indicate for shop fabricated assemblies including volume control dampers duct access doors and duct test holes.

C. Product Data: Submit data for shop fabricated assemblies including backdraft dampers, volume control dampers, duct access doors, duct test holes, and hardware used.

D. Manufacturer's Certificate: Certify products meet or exceed specified requirements.
1.4 QUALIFICATIONS
A. Manufacturer: Company specializing in manufacturing products specified in this section with minimum three years documented experience.

1.5 DELIVERY, STORAGE, AND HANDLING
A. Section 016000 - Product Requirements: Product storage and handling requirements.
B. Protect dampers from damage to operating linkages and blades.

1.6 FIELD MEASUREMENTS
A. Verify field measurements prior to fabrication.

1.7 COORDINATION
A. Section 013100 – Product Management and Coordination: Coordination and project conditions.
B. Coordinate Work where appropriate with building control Work.

1.8 WARRANTY
A. Section 017300 - Execution Requirements: Product warranties and product bonds.
B. Furnish one-year manufacturer warranty for duct accessories.

PART 2 – PRODUCTS

2.1 DUCT ACCESSORIES
A. Manufacturers: In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection:

1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, manufacturers specified.
2. Manufacturers: Subject to compliance with requirements, provide products by one of the manufacturers specified.

2.2 BACKDRAFT DAMPERS
A. Available Manufacturers:

1. Greenheck.
2. Penn Ventilation Company, Inc.
3. Ruskin Company.
B. Description: Multiple-blade, parallel action gravity balanced, with center-pivoted blades of maximum 6-inch (150-mm) width, with sealed edges, assembled in rattle-free manner with 90-degree stop, steel ball bearings, and axles; adjustment device to permit setting for varying differential static pressure.

C. Frame: 0.063-inch- (1.6-mm-) thick extruded aluminum, with welded corners and mounting flange.

D. Blades: 0.050-inch- (1.2-mm-) thick aluminum sheet.

E. Blade Seals: Vinyl.

F. Blade Axles: Nonferrous.

G. Tie Bars and Brackets: Aluminum.

H. Return Spring: Adjustable tension.

2.3 VOLUME DAMPERS

A. Available Manufacturers:

1. Nailor Industries Inc.
2. Penn Ventilation Company, Inc.
3. Ruskin Company.

B. General Description: Factory fabricated, with required hardware and accessories. Stiffen damper blades for stability. Include locking device to hold single-blade dampers in a fixed position without vibration. Close duct penetrations for damper components to seal duct consistent with pressure class.

1. Pressure Classes of 4-Inch wg or Higher: End bearings or other seals for ducts with axles full length of damper blades and bearings at both ends of operating shaft.

C. Standard Volume Dampers: Multiple- or single-blade, parallel- or opposed-blade design as indicated, standard leakage rating and suitable for horizontal or vertical applications.

1. Steel Frames: Hat-shaped, galvanized sheet steel channels, minimum of 0.064-inch-thick, with mitered and welded corners; frames with flanges where indicated for attaching to walls and flangeless frames where indicated for installing in ducts.
2. Roll-Formed Steel Blades: 0.064-inch-thick, galvanized sheet steel.
3. Aluminum Frames: Hat-shaped, 0.10-inch-thick, aluminum sheet channels; frames with flanges where indicated for attaching to walls; and flangeless frames where indicated for installing in ducts.
4. Roll-Formed Aluminum Blades: 0.10-inch-thick aluminum sheet.
5. Extruded-Aluminum Blades: 0.050-inch-thick extruded aluminum.
7. **Bearings**: Oil-impregnated bronze.
8. **Tie Bars and Brackets**: Galvanized steel.

D. **Jackshaft**: 1-inch- diameter, galvanized-steel pipe rotating within pipe-bearing assembly mounted on supports at each mullion and at each end of multiple-damper assemblies.

1. **Length and Number of Mountings**: Appropriate to connect linkage of each damper in multiple-damper assembly.

E. **Damper Hardware**: Zinc-plated, die-cast core with dial and handle made of 3/32-inch-thick zinc-plated steel, and a 3/4-inch hexagon locking nut. Include center hole to suit damper operating-rod size. Include elevated platform for insulated duct mounting.

2.4 TURNING VANES

A. Fabricate to comply with SMACNA's "HVAC Duct Construction Standards--Metal and Flexible" for vanes and vane runners. Vane runners shall automatically align vanes.

B. **Manufactured Turning Vanes**: Fabricate 1-1/2-inch- wide, double-vane, curved blades of galvanized sheet steel set 3/4-inch o.c.; support with bars perpendicular to blades set 2 inches o.c.; and set into vane runners suitable for duct mounting.

1. **Available Manufacturers**:
 a. Ductmate Industries, Inc.
 b. METALAIRE, Inc.

2.5 DUCT-MOUNTING ACCESS DOORS

A. **General Description**: Fabricate doors airtight and suitable for duct pressure class.

B. **Door**: Double wall, insulated, duct mounting, and rectangular; fabricated of galvanized sheet metal with insulation fill and thickness as indicated for duct pressure class. Include vision panel where indicated. Include 1-by-1-inch butt or piano hinge and cam latches.

1. **Available Manufacturers**:
 a. Ductmate Industries, Inc.
 b. Flexmaster U.S.A., Inc.
 c. Greenheck.
 e. Nailor Industries Inc.

2. **Frame**: Galvanized sheet steel, with bend-over tabs and foam gaskets.
3. **Provide number of hinges and locks as follows**:
 a. Less than 12 Inches Square: Secure with two sash locks.
 b. Up to 18 Inches Square: Two hinges and two sash locks.
c. Up to 24 by 48 Inches: Three hinges and two compression latches with outside and inside handles.
d. Sizes 24 by 48 Inches and Larger: One additional hinge.

C. Door: Double wall, duct mounting, and round; fabricated of galvanized sheet metal with insulation fill and 1-inch thickness. Include cam latches.

1. Available Manufacturers:
 a. Ductmate Industries, Inc.
 b. Flexmaster U.S.A., Inc.

2. Frame: Galvanized sheet steel, with spin-in notched frame.

D. Seal around frame attachment to duct and door to frame with neoprene or foam rubber.

E. Insulation: 1-inch- (25-mm-) thick, fibrous-glass or polystyrene-foam board.

2.6 FLEXIBLE CONNECTORS

A. Available Manufacturers:

1. Ductmate Industries, Inc.
2. Ventfabrics, Inc.

B. General Description: Flame-retardant or noncombustible fabrics, coatings, and adhesives complying with UL 181, Class 1.

C. Metal-Edged Connectors: Factory fabricated with a fabric strip 3-1/2 inches (89 mm wide attached to two strips of 2-3/4-inch- (70-mm-) wide, 0.028-inch- (0.7-mm-) thick, galvanized sheet steel or 0.032-inch- (0.8-mm-) thick aluminum sheets. Select metal compatible with ducts.

1. Minimum Weight: 26 oz./sq. yd. (880 g/sq. m).
2. Tensile Strength: 480 lbf/inch (84 N/mm) in the warp and 360 lbf/inch (63 N/mm) in the filling.
3. Service Temperature: Minus 40 to plus 200 deg F (Minus 40 to plus 93 deg C).

2.7 FLEXIBLE DUCTS

A. Available Manufacturers:

1. Flexmaster U.S.A., Inc.
2. Hart & Cooley, Inc.
2.8 DUCT ACCESSORY HARDWARE

A. Instrument Test Holes: Cast iron or cast aluminum to suit duct material, including screw cap and gasket. Size to allow insertion of pitot tube and other testing instruments and of length to suit duct insulation thickness.

B. Adhesives: High strength, quick setting, neoprene based, waterproof, and resistant to gasoline and grease.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Verify ducts and equipment installation are ready for accessories.

B. Check location of air outlets and inlets and make necessary adjustments in position to conform to architectural features, symmetry, and lighting arrangement.

C. Inspect areas to receive dampers. Notify the Engineer of conditions that would adversely affect the installation or subsequent utilization of the dampers. Do not proceed with installation until unsatisfactory conditions are corrected.

3.2 INSTALLATION

A. Install in accordance with NFPA 90A, and follow SMACNA HVAC Duct Construction Standards - Metal and Flexible. Refer to Section 233113 for duct construction and pressure class.

B. Install duct accessories according to applicable details in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" for metal ducts.

C. Install back-draft dampers on exhaust fans or exhaust ducts nearest to outside and where indicated on Drawings.

D. Install temporary duct test holes, where indicated on Drawings, and required for testing and balancing purposes. Cut or drill in ducts. Cap with neat patches, neoprene plugs, threaded plugs, or threaded or twist-on metal caps.
E. Install dampers at locations indicated on the drawings and in accordance with manufacturer's UL approved installation instructions.

F. Install dampers square and free from racking with blades running horizontally.

G. Do not compress or stretch damper frame into duct or opening.

H. Handle damper using sleeve or frame. Do not lift damper using blades, actuator, or jackshaft.

I. Install bracing for multiple section assemblies to support assembly weight and to hold against system pressure. Install bracing as needed.

J. Provide duct access panel, size as required to access and service duct interior components.

3.3 DEMONSTRATION

A. Section 017300 - Execution Requirements: Requirements for demonstration and training.

END OF SECTION
SECTION 233423
HVAC POWER VENTILATORS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. In-line Centrifugal Fans

1.3 PERFORMANCE REQUIREMENTS
A. Project Altitude: Base fan-performance ratings on sea level.
B. Operating Limits: Classify according to AMCA 99.

1.4 SUBMITTALS
A. Product Data: For each type of product indicated. Include rated capacities, operating characteristics, and furnished specialties and accessories. Also include the following:
 1. Certified fan performance curves with system operating conditions indicated.
 2. Certified fan sound-power ratings.
 3. Motor ratings and electrical characteristics, plus motor and electrical accessories.
 4. Material thickness and finishes, including color charts.
 5. Dampers, including housings, linkages, and operators.
 6. Roof curbs.
 7. Fan speed controllers.
B. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.
 1. Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 2. Wiring Diagrams: For power, signal, and control wiring.
C. Delegated-Design Submittal: For unit hangars and supports indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
1. Vibration Isolation Base Details: Detail fabrication including anchorages and attachments to structure and to supported equipment. Include adjustable motor bases, rails, and frames for equipment mounting.
2. Design Calculations: Calculate requirements for selecting vibration isolators and for designing vibration isolation bases.

1.5 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Reflected ceiling plans and other details, drawn to scale, on which the following items are shown and coordinated with each other, using input from Installers of the items involved:
 1. Roof framing and support members relative to duct penetrations.
 2. Ceiling suspension assembly members.
 3. Size and location of initial access modules for acoustical tile.
 4. Ceiling-mounted items including light fixtures, diffusers, grilles, speakers, sprinklers, access panels, and special moldings.

B. Field quality-control reports.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For power ventilators to include in emergency, operation, and maintenance manuals.

1.7 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. AMCA Compliance: Fans shall have AMCA-Certified performance ratings and shall bear the AMCA-Certified Ratings Seal.

C. UL Standards: Power ventilators shall comply with UL 705. Power ventilators for use for restaurant kitchen exhaust shall also comply with UL 762.

1.8 COORDINATION

A. Coordinate size and location of structural-steel support members.

B. Coordinate sizes and locations of concrete bases with actual equipment provided.

C. Coordinate sizes and locations of roof curbs, equipment supports, and roof penetrations with actual equipment provided.
PART 2 - PRODUCTS

2.1 IN-LINE CENTRIFUGAL FANS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

1. Greenheck Fan Corporation
3. Loren Cook Company.

B. Housing: Spun aluminum with aluminum straightening vanes, inlet and outlet flanges, and support bracket adaptable to floor, side wall, or ceiling mounting.

1. Provide housing with industrial epoxy coating.

C. A bolted and gasketed access door shall be supplied in the fan housing allowing for impeller inspection or removal of impeller, shaft and bearings without removal of the fan housing.

D. Provide housing drain for removal of rain and condensation.

E. Direct-Drive Units: Motor mounted in airstream, factory wired to disconnect switch located on outside of fan housing.

F. Fan Wheels:

1. Fan impeller shall be centrifugal, backward inclined, with non-stall characteristics. The impeller shall be electronically balanced both statically and dynamically per AMCA Standard 204.
2. Fan impeller shall be manufactured of aluminum (AMCA type B spark resistant), fully welded.

G. Accessories:

1. Variable-Speed Controller (direct drive units): Solid-state control to reduce speed from 100 to less than 50 percent.
2. Volume-Control Damper: Manually operated with quadrant lock, located in fan outlet.
3. Companion Flanges: For inlet and outlet duct connections.
4. Fan Guards: 1/2- by 1-inch (13- by 25-mm) mesh of galvanized steel in removable frame. Provide guard for inlet or outlet for units not connected to ductwork.
5. Motors shall be premium efficiency, standard NEMA frame, 1800 or 3600 RPM, TEFC with a 1.15 service factor. A factory-mounted disconnect switch shall be provided for each fan. Motor maintenance shall be accomplished without fan impeller removal or requiring maintenance personnel to access the contaminated exhaust components.
6. Fan shaft to be turned and polished of 1040 steel material (optional 316 stainless steel) as standard, coated with corrosion resistant coating.

7. Fan shaft bearings shall be ball or roller pillow block type and be sized for an L-10 life of no less than 100,000 hours. Bearings shall be fixed to the fan shaft using concentric mounting locking collars, which reduce vibration, increase service life, and improve serviceability. Bearings that use set screws shall not be allowed.

8. All shaft bearings shall have extended lube lines with zerk fittings.

9. Removable access panels.

H. Capacities and Characteristics shall be as scheduled on the drawings.

2.2 MOTORS

A. Comply with NEMA designation, temperature rating, service factor, and efficiency requirements for motors specified in Division 23 Section "Common Motor Requirements for Mechanical Equipment."

2.3 SOURCE QUALITY CONTROL

A. Sound-Power Level Ratings: Comply with AMCA 301, "Methods for Calculating Fan Sound Ratings from Laboratory Test Data." Factory test fans according to AMCA 300, "Reverberant Room Method for Sound Testing of Fans." Label fans with the AMCA-Certified Ratings Seal.

B. Fan Performance Ratings: Establish flow rate, pressure, power, air density, speed of rotation, and efficiency by factory tests and ratings according to AMCA 210/ASHRAE 51, "Laboratory Methods of Testing Fans for Certified Aerodynamic Performance Rating."

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install power ventilators level and plumb.

B. Disassemble and reassemble units, as required for moving to the final location, according to manufacturer’s written instructions.

C. Equipment Mounting:

1. Comply with requirements for vibration isolation devices specified in Section 230548 "Vibration Control for Mechanical Piping and Equipment."

D. Install units with clearances for service and maintenance.

E. Lift and support units with manufacturer’s designated lifting or supporting points.
F. Label units according to requirements specified in Section 230553 "Identification for Mechanical Piping and Equipment."

3.2 CONNECTIONS

A. Drawings indicate general arrangement of ducts and duct accessories. Make final duct connections with flexible connectors. Flexible connectors are specified in Section 233300 "Duct Accessories."

B. Install ducts adjacent to power ventilators to allow service and maintenance.

C. Ground equipment according to Section 260526 "Grounding and Bonding for Electrical Systems."

D. Connect wiring according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

3.3 FIELD QUALITY CONTROL

A. Tests and Inspections:
 1. Verify that shipping, blocking, and bracing are removed.
 2. Verify that unit is secure on mountings and supporting devices and that connections to ducts and electrical components are complete. Verify that proper thermal-overload protection is installed in motors, starters, and disconnect switches.
 3. Verify that cleaning and adjusting are complete.
 4. Disconnect fan drive from motor, verify proper motor rotation direction, and verify fan wheel free rotation and smooth bearing operation. Reconnect fan drive system.
 5. Adjust damper linkages for proper damper operation.
 6. Verify lubrication for bearings and other moving parts.
 7. Verify that manual and automatic volume control and fire and smoke dampers in connected ductwork systems are in fully open position.
 8. Disable automatic temperature-control operators, energize motor and adjust fan to indicated rpm, and measure and record motor voltage and amperage.
 9. Shut unit down and reconnect automatic temperature-control operators.
 10. Remove and replace malfunctioning units and retest as specified above.

B. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

C. Prepare test and inspection reports.

3.4 HOLD DOWN BRACKETS

A. Install in accordance with manufacturer’s requirements and recommendations
3.5 ADJUSTING

A. Adjust damper linkages for proper damper operation.

B. Comply with requirements in Section 230593 "Testing, Adjusting, and Balancing for HVAC" for testing, adjusting, and balancing procedures.

C. Adjust speed controllers as required to achieve design airflow.

D. Replace fan and motor pulleys as required to achieve design airflow.

E. Lubricate bearings.

3.6 DEMONSTRATION

A. Train Owner's maintenance personnel to adjust, operate, and maintain the system.

B. Contractor shall be responsible for demonstrating the system sequence of operation as described on the contract drawings. Demonstration shall be in the presence of the owner or owner's representative. A minimum of 7 days’ notice shall be provided in advance of the demonstrations.

END OF SECTION
SECTION 233713
DIFFUSERS, REGISTERS, AND GRILLES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Rectangular and square ceiling diffusers.
 2. Registers and Grilles.
B. Related Sections:
 1. Section 233300 "Duct Accessories" for volume-control dampers not integral to diffusers, registers, and grilles.

1.3 SUBMITTALS
A. Product Data: For each type of product indicated, include the following:
 1. Data Sheet: Indicate materials of construction, finish, and mounting details; and performance data including throw and drop, static-pressure drop, and noise ratings.
 2. Diffuser, Register, and Grille Schedule: Indicate drawing designation, room location, quantity, model number, size, and accessories furnished.
B. Samples for Initial Selection: For diffusers, registers, and grilles with factory-applied color finishes.
C. Delegated Design: It is the responsibility of the GRD manufacturer to review the GRD selections and reselect the GRD’s for site specific performance achievement.
 1. Manufacturer shall provide a written guarantee that grilles, registers and diffusers (GRD’s) will distribute air uniformly through the conditioned space with a 20-degree F temperature differential between average room temperature and supply air temperature and that the grilles, registers and diffusers will provide proper throws suitable for actual room dimensions without dead spots or excessive room terminal velocities within the occupied zone.
2. Prior to submitting a proposal for the work, the GRD manufacturer’s representative shall review the drawings, and system design and re-select the proper GRD sizes for actual project space requirements. Manufacturer shall determine the sizes of GRD’s necessary for proper air distribution and guarantee that all grilles, registers, and diffusers furnished will perform as required for the intended application, without drafts, stagnant spots, or excessive velocity airflows throughout the entire space. If necessary, change the GRD sizes to meet the specific jobsite air distribution requirements.

D. Provide a GRD schedule for approval clearly indicating the room, CFM, size, static pressure drop, throw and NC level delineating the manufacturer’s specific performance of the proposed GRD. Note: failure to provide a tabulated schedule will result in the automatic rejection of the submittal.

1.4 INFORMATIONAL SUBMITTALS

A. Source quality-control reports.

PART 2 - PRODUCTS

2.1 CEILING DIFFUSERS

A. Square Ceiling Diffusers (D-1,2,3):

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

 a. Basis of Design: Titus TMS-AA
 b. Price.
 c. Hart & Cooley Inc.
 d. Krueger.

2. Description:

 a. Square ceiling diffusers
 b. The diffuser shall have three cones, which give a uniform face size and appearance when different neck sizes are used in the same area. All cones shall be one-piece precision die-stamped; the back cone shall also include an integrally drawn. The two inner cones shall be constructed as a single, removable inner cone assembly for easy installation and cleaning. The inner cone assembly must have a hole with removable plug in the center to allow quick adjustment of an inlet damper without removing the inner cone assembly. Diffusers shall be constructed of 0.040 aluminum.
 c. The finish shall be #26 white. The finish shall be an anodic acrylic paint, baked at 315°F for 30 minutes. The pencil hardness must be HB to H.
d. The paint must pass a 100-hour ASTM B117 Corrosive Environments Salt Spray Test without creepage, blistering or deterioration of film. The paint must pass a 250-hour ASTM D870 Water Immersion Test. The paint must also pass the ASTM D2794 Reverse Impact Cracking Test with a 50-inch pound force applied.

e. Round damper shall be constructed of heavy gauge steel. Damper shall be operable from the face of the diffuser. Sectorizing baffles shall be provided to restrict the discharge air in certain directions.

f. Provide molded insulation blanket. The insulation will be R-6, foil-backed and provided an additional 1-inch gap around the neck to install insulated flex duct.

g. The manufacturer shall provide published performance data for the square diffuser. The diffuser shall be tested in accordance with ANSI/ASHRAE Standard 7

4. Finish: Baked enamel, white.
5. Face Style: Plaque.

2.2 SQUARE CEILING REGISTER (R-1,2,3,)

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

1. Basis of Design: Titus PAR-AA
2. Price.
3. Hart & Cooley Inc.

B. Description:

1. Return, Flush Face

 a. Perforated ceiling diffusers steel, flush face, for return. The return models shall have the same face and border construction as the supply models for harmonious appearance in the room. Diffusers shall have a perforated face with 3/16-inch diameter holes on ¼-inch staggered centers and no less than 51 percent free area. Perforated face shall be aluminum. The back pan shall be one piece stamped heavy gauge steel of the sizes and mounting types shown on the plans and outlet schedule. The diffuser neck shall have 1-1/8-inch depth for easy duct connection.

 b. Diffusers must discharge a uniform horizontal blanket of air into the room and protect ceiling against smudging. Pattern controllers in the supply models shall be mounted on the back of the perforated face and must be field adjustable to allow the discharged air to enter the room in
either vertical or one-, two-, three- or four-way horizontal jets. The perforated face must be easily un-latchable from the backpan to facilitate option of the face for pattern controller adjustment or to access an optional damper.

c. The finish shall be #26 white. The finish shall be an anodic acrylic paint, baked at 315°F for 30 minutes. The pencil hardness must be HB to H.

d. The paint must pass a 100-hour ASTM B117 Corrosive Environments Salt Spray Test without creepage, blistering or deterioration of film. The paint must pass a 250-hour ASTM D870 Water Immersion Test. The paint must also pass the ASTM D2794 Reverse Impact Cracking Test with a 50-inch pound force applied.

e. Damper shall be constructed of heavy gauge steel. Damper shall be operable from the face of the diffuser by unlatching the diffuser face. The diffuser must be designed such that complete removal of the face is not required during damper adjustment.

f. The manufacturer shall provide published performance data for the perforated diffuser. The diffuser shall be tested in accordance with ANSI/ASHRAE Standard 70-1991.

3. Finish: Baked enamel, white.
7. Dampers: Radial opposed blade.

2.3 REGISTERS AND GRILLES

A. Fixed Face Supply Grille (D-4,5)

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

 a. Basis of Design: Titus 122RL
 b. Price.
 c. Hart & Cooley Inc.
 d. Krueger.

2. The manufacturer shall provide published performance data for the grille. The grille shall be tested in accordance with ANSI/ASHRAE Standard 70-1991.

3. Description

 a. Steel supply grilles with 2-inch blade spacing. The double deflection blades shall be available parallel to the long dimension of the grille.
 b. Blade construction shall be of heavy duty aluminum. Hollow blades are not acceptable. Blades shall extend completely through the side frame on each side to ensure stability through the airflow range.
c. Screw holes shall be countersunk for a neat appearance. Corners shall be welded with full penetration resistance welds.
d. Deflection blades shall be contoured to a specifically designed and tested cross-section to meet published test performance data.
e. Opposed-blade volume damper shall be constructed of heavy gauge steel. Damper shall be operable from the face of the grille.
f. The grille finish shall be #26 white. The finish shall be an anodic acrylic paint, baked at 315°F for 30 minutes. The pencil hardness must be HB to H. The paint must pass a 100-hour ASTM B117 Corrosive Environments Salt Spray Test without creepage, blistering or deterioration of film.
g. The paint shall pass a 250-hour ASTM D870 Water Immersion Test. The paint must also pass the ASTM D2794 Reverse Impact Cracking Test with a 50-inch pound force applied.
h. The manufacturer shall provide published performance data for the grille. The grille shall be tested in accordance with ANSI/ASHRAE Standard 70-1991.

4. Material: Steel frame, aluminum blades
5. Finish: Baked enamel, white.
6. Blades: Double deflection, 2” spacing, with front blades parallel to long dimension.
9. Damper Type: Adjustable opposed blade.

B. Fixed Face Exhaust Grille (R-4.5)

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

 a. Basis of Design: Titus 350ZFL
 b. Price.
 c. Hart & Cooley Inc.
 d. Krueger.

2. The manufacturer shall provide published performance data for the grille. The grille shall be tested in accordance with ANSI/ASHRAE Standard 70-1991.

3. Description:

 a. Aluminum return grilles with ½-inch blade spacing. The fixed deflection blades shall be available parallel to the long dimension of the grille. Construction shall be of extruded aluminum with a 1⅛-inch wide border on all sides. Screw holes shall be countersunk for a neat appearance. Corners shall be welded with full penetration resistance welds.
 b. Deflection blades shall be contoured to a specifically designed and tested cross-section to meet published test performance data. Blades shall be
firmly held in place by mullions from behind the grille and fixed to the grille by welding in place. Blade deflection angle shall be available at 0°.

c. Opposed-blade volume damper shall be constructed of aluminum. Damper shall be operable from the face of the grille.

d. The grille finish shall be #26 white. The finish shall be an anodic acrylic paint, baked at 315° F for 30 minutes. The pencil hardness must be HB to H. The paint must pass a 100-hour ASTM B117 Corrosive Environments Salt Spray Test without creepage, blistering or deterioration of film.

e. The paint shall pass a 250-hour ASTM D870 Water Immersion Test. The paint must also pass the ASTM D2794 Reverse Impact Cracking Test with a 50-inch pound force applied.

f. The manufacturer shall provide published performance data for the grille. The grille shall be tested in accordance with ANSI/ASHRAE Standard 70-1991.

4. Material: Aluminum
5. Finish: Baked enamel, white.
6. Blades: Single deflection, 1/2” spacing, with front blades parallel to long dimension.
9. Damper Type: Adjustable opposed blade.

2.4 SOURCE QUALITY CONTROL

A. Verification of Performance: Rate diffusers, registers, and grilles according to ASHRAE 70, "Method of Testing for Rating the Performance of Air Outlets and Inlets."

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas where diffusers, registers, and grilles are to be installed for compliance with requirements for installation tolerances and other conditions affecting performance of equipment.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Install diffusers, registers, and grilles level and plumb.

B. Ceiling-Mounted Outlets and Inlets: Drawings indicate general arrangement of ducts, fittings, and accessories. Air outlet and inlet locations have been indicated to achieve design requirements for air volume, noise criteria, airflow pattern, throw, and pressure drop. Make final locations where indicated, as much as practical. For units installed in lay-in ceiling panels, locate units in the center of panel. Where architectural features or
other items conflict with installation, notify Architect for a determination of final location.

C. Install diffusers, registers, and grilles with airtight connections to ducts and to allow service and maintenance of dampers, air extractors, and fire dampers.

3.3 ADJUSTING

A. After installation, adjust diffusers, registers, and grilles to air patterns indicated, or as directed, before starting air balancing.

END OF SECTION
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

B. Related Sections:
 1. Section 233113 “Metal Ducts”.
 2. Section 233300 “Duct Accessories”.

1.2 SUMMARY

A. Section Includes:
 1. Roof hoods.

1.3 PERFORMANCE REQUIREMENTS

A. Thermal Movements: Allow for thermal movements from ambient and surface temperature changes, without buckling, opening of joints, overstressing of components, failure of connections, or other detrimental effects.
 1. Temperature Change (Range): 120 deg F, ambient; 180 deg F, material surfaces.

B. Water Entrainment: Limit water penetration through unit to comply with ASHRAE 62.1.

1.4 SUBMITTALS

A. Product Data: For each type of product indicated.

1.5 INFORMATIONAL SUBMITTALS

A. Welding certificates.

1.6 QUALITY ASSURANCE

A. Welding Qualifications: Qualify procedures and personnel according to the following:
 1. AWS D1.2/D1.2M, "Structural Welding Code - Aluminum."
 2. AWS D1.3, "Structural Welding Code - Sheet Steel."
1.7 COORDINATION

A. Coordinate sizes and locations of roof curbs, equipment supports, and roof penetrations with actual equipment provided.

PART 2 - PRODUCTS

2.1 MATERIALS

A. Galvanized-Steel Sheet: ASTM A 653/A 653M, G90 (Z275) zinc coating, mill phosphatized.

B. Fasteners: Same basic metal and alloy as fastened metal or 300 Series stainless steel unless otherwise indicated. Do not use metals that are incompatible with joined materials.

1. Use types and sizes to suit unit installation conditions.

C. Post-Installed Fasteners for Concrete and Masonry: Torque-controlled expansion anchors made from stainless-steel components, with capability to sustain without failure a load equal to 4 times the loads imposed for concrete, or 6 times the load imposed for masonry, as determined by testing per ASTM E 488, conducted by a qualified independent testing agency.

D. Bituminous Paint: Cold-applied asphalt emulsion complying with ASTM D 1187.

2.2 FABRICATION, GENERAL

A. Factory or shop fabricate gravity ventilators to minimize field splicing and assembly. Disassemble units to the minimum extent as necessary for shipping and handling. Clearly mark units for reassembly and coordinated installation.

B. Fabricate frames, including integral bases, to fit in openings of sizes indicated, with allowances made for fabrication and installation tolerances, adjoining material tolerances, and perimeter sealant joints.

C. Fabricate units with closely fitted joints and exposed connections accurately located and secured.

D. Fabricate supports, anchorages, and accessories required for complete assembly.

E. Perform shop welding by AWS-certified procedures and personnel.

2.3 ROOF HOODS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
1. Greenheck
2. Loren Cook
3. Penn Barry

B. Fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figures 6-6 and 6-7.

C. Hoods shall be constructed of precision formed, arched panels with interlocking seams.

D. Bases shall be constructed so that the curb cap is 6 inches larger than the throat size.

E. Materials: Galvanized-steel sheet, minimum 0.064-inch- (1.62-mm-) thick base and 0.040-inch- (1.0-mm-) thick hood; suitably reinforced.

F. Roof Curbs: Galvanized-steel sheet; with mitered and welded corners; 1-1/2-inch- (40-mm-) thick, rigid fiberglass insulation adhered to inside walls; and 1-1/2-inch (40-mm) wood nailer. Size as required to fit roof opening and ventilator base.

1. Configuration: Self-flashing without a cant strip, with mounting flange.
2. Overall Height: 12 inches

G. Bird Screening: Galvanized-steel, 1/2-inch- (12.7-mm-) square mesh, 0.041-inch 1.04-mm) wire.

H. Equipment screening: In locations indicated on drawings, install equipment screen equal to Greenheck EES-T200V. Maintain required airflow clearance around roof hood.

1. Equipment screen includes extruded aluminum vertical T style blades as well as horizontal rear supports.
2. The product is shipped in factory-assembled sections.

I. Galvanized-Steel Sheet Finish:

1. Surface Preparation: Clean surfaces of dirt, grease, and other contaminants. Clean welds, mechanical connections, and abraded areas and repair galvanizing according to ASTM A 780. Apply a conversion coating suited to the organic coating to be applied over it.
2. Factory Priming for Field-Painted Finish: Where field painting after installation is indicated, apply an air-dried primer immediately after cleaning and pretreating.
3. Baked-Enamel Finish: Immediately after cleaning and pretreating, apply manufacturer's standard finish consisting of prime coat and thermosetting topcoat, with a minimum dry film thickness of 1 mil (0.025 mm) for topcoat and an overall minimum dry film thickness of 2 mils (0.05 mm).
 a. Color and Gloss: As selected by owner and architect.

J. Capacities and Characteristics:

1. Refer to drawings for equipment dimensions and required capacities.
PART 3 - EXECUTION

3.1 INSTALLATION

A. Install gravity ventilators level, plumb, and at indicated alignment with adjacent work.
B. Install gravity ventilators with clearances for service and maintenance.
C. Install backdraft dampers in ductwork to gravity ventilator for exhaust or relief air.
D. Install perimeter reveals and openings of uniform width for sealants and joint fillers, as indicated.
E. Install concealed gaskets, flashings, joint fillers, and insulation as installation progresses. Comply with Section 079200 "Joint Sealants" for sealants applied during installation.
F. Label gravity ventilators according to requirements specified in Section 230553 "Identification for Mechanical Piping and Equipment."
G. Protect galvanized and nonferrous-metal surfaces from corrosion or galvanic action by applying a heavy coating of bituminous paint on surfaces that will be in contact with concrete, masonry, or dissimilar metals.
H. Repair finishes damaged by cutting, welding, soldering, and grinding. Restore finishes so no evidence remains of corrective work. Return items that cannot be refinished in the field to the factory, make required alterations, and refinish entire unit or provide new units.

3.2 CONNECTIONS

A. Duct installation and connection requirements are specified in Section 233113 "Metal Ducts". Drawings indicate general arrangement of ducts and duct accessories.

3.3 ADJUSTING

A. Adjust damper linkages for proper damper operation.

END OF SECTION
SECTION 238129

VARIABLE REFRIGERANT VOLUME (VRV) HVAC SYSTEM

PART 1 - GENERAL

1.1 SECTION INCLUDES

A. Variable refrigerant volume HVAC system includes:
 1. Outdoor/Condensing unit(s).
 2. Indoor/Evaporator units.
 3. Refrigerant piping.
 4. Control panels.
 5. Control wiring.

1.2 RELATED REQUIREMENTS

A. Section 23 2300 - Refrigerant Piping: Additional requirements for refrigerant piping system.

1.3 REFERENCE STANDARDS

C. NFPA 70 - National Electrical Code; National Fire Protection Association; Most Recent Edition Adopted by Authority Having Jurisdiction, Including All Applicable Amendments and Supplements.

1.4 SUBMITTALS

A. See Section 01 3000 - Administrative Requirements, for submittal procedures.

B. Design Data:
 1. Provide design calculations showing that system will achieve performance specified.
 2. Provide design data required by ASHRAE 90.1.
C. Product Data: Submit manufacturer's standard data sheets showing the following for each item of equipment, marked to correlate to equipment item markings shown in the contract documents:

1. Outdoor/Central Units:
 a. Refrigerant Type and Size of Charge.
 b. Cooling Capacity: Btu/h.
 c. Heating Capacity: Btu/h.
 d. Cooling Input Power: Btu/h.
 e. Heating Input Power: Btu/h.
 f. Operating Temperature Range, Cooling and Heating.
 g. Air Flow: Cubic feet per minute.
 h. Fan Curves.
 i. External Static Pressure (ESP): Inches WG.
 j. Sound Pressure Level: dB(A).
 k. Electrical Data:
 1) Maximum Circuit Amps (MCA).
 2) Maximum Fuse Amps (MFA).
 3) Maximum Starting Current (MSC).
 4) Full Load Amps (FLA).
 5) Total Over Current Amps (TOCA).
 6) Fan Motor: HP.
 l. Weight and Dimensions.
 m. Maximum refrigerant piping run from outdoor/condenser unit to indoor/evaporator unit.
 n. Maximum height difference between outdoor/condenser unit to indoor/evaporator unit, both above and below.
 o. Control Options.

2. Indoor/Evaporator Units:
 a. Cooling Capacity: Btu/h.
 b. Heating Capacity: Btu/h.
 c. Cooling Input Power: Btu/h.
 d. Heating Input Power: Btu/h.
 e. Air Flow: Cubic feet per minute.
 f. Fan Curves.
 g. External Static Pressure (ESP): Inches WG.
 h. Sound Pressure level: dB(A).
 1) Electrical Data: Maximum Circuit Amps (MCA).
 2) Maximum Fuse Amps (MFA).
 3) Maximum Starting Current (MSC).
 4) Full Load Amps (FLA).
 5) Total Over Current Amps (TOCA).
 6) Fan Motor: HP.
i. Weight and Dimensions.
j. Control Options.

3. Control Panels: Complete description of options, control points, zones/groups.

1.5 QUALITY CONTROL

A. Manufacturer Qualifications:

1. Company that has been manufacturing variable refrigerant volume heat pump equipment for at least 5 years.
2. Company that provides system design software to installers.

B. Installer Qualifications: Trained and approved by manufacturer of equipment.

1.6 DELIVERY, STORAGE AND HANDLING

A. Deliver, store, and handle equipment and refrigerant piping according to manufacturer's recommendations.

1.7 WARRANTY

A. Compressors: Provide manufacturer's warranty for six (6) years from date of installation. During the stated period, should any part fail due to defects in material and workmanship, it shall be repaired or replaced at the discretion of the manufacturer. All warranty service work shall be performed by a factory trained service professional.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Basis of Design: The system design shown in the contract documents is based on equipment and system designed by Samsung; www.samsunghvac.com.

B. Mitsubishi.

C. Daikin.

2.2 HVAC SYSTEM DESIGN

A. System Operation: Heating or cooling, selected at system level.

1. Provide a complete functional system that achieves the specified performance based on the specified design conditions and that is designed and constructed according to the equipment manufacturer's requirements.
2. Conditioned spaces are shown on the drawings.
3. Required equipment unit capacities are shown on the drawings.
4. Refrigerant piping sizes are not shown on the drawings.
5. Connect equipment to condensate piping provided by others; condensate piping is shown on the drawings.

B. Outside Air Design Conditions:
1. Summer Outside Air Design Temperature: 95 degrees F dry-bulb; 78 degrees F wet-bulb.
2. Winter Outside Air Design Temperature: 0 degrees F dry-bulb.

C. Energy Design Wind Speed: 25 mph.

D. Operating Temperature Ranges:
1. Cooling Mode Operating Range: 14 degrees F to 115 degrees F dry bulb.
2. Heating Mode Operating Range: -5 degrees F to 75 degrees F dry bulb; minus 4 degrees F to 60 degrees F wet bulb; without low ambient controls or auxiliary heat source.

E. Controls: Provide the following control interfaces:
1. One central remote-control panel for entire system; locate where indicated.

F. Local Controllers: Wall-mounted, wired, containing temperature sensor.

2.3 EQUIPMENT

A. All Units: Factory assembled, wired, and piped and factory tested for function and safety Refrigerant: R-410A.
2. Safety Certification: Tested to UL 1995 by UL or Intertek-ETL and bearing the certification label.
3. Provide outdoor/condensing units capable of serving indoor unit capacity up to 200 percent of the capacity of the outdoor/condensing unit.
4. Provide units capable of serving the zones indicated.
5. Thermal Performance: Provide heating and cooling capacity as indicated, based on the following nominal operating conditions:

B. Electrical Characteristics:
1. Power - Indoor Units: 208 to 230 Volts, single phase, 60 Hz.

C. Refrigerant Piping:
1. Insulate each refrigerant line individually between the condensing and indoor units.
2.4 OUTDOOR/CONDENSING UNITS

A. Outdoor/Condensing Units: Air-cooled DX refrigeration units, designed specifically for use with indoor/evaporator units; factory assembled and wired with all necessary electronic and refrigerant controls; modular design for ganging multiple units.

1. Refrigeration Circuit: Scroll compressors, motors, fans, condenser coil, electronic expansion valves, solenoid valves, 4-way valve, distribution headers, capillaries, filters, shut off valves, oil separators, service ports and refrigerant regulator.
2. Refrigerant: Factory charged.
3. Variable Volume Control: Modulate compressor capacity automatically to maintain constant suction and condensing pressures while varying refrigerant volume to suit heating/cooling loads.
4. Capable of being installed with wiring and piping to the left, right, rear or bottom.
5. Capable of heating operation at low end of operating range as specified, without additional low ambient controls or auxiliary heat source; during heating operation, reverse cycle (cooling mode) oil return or defrost is not permitted, due to potential reduction in space temperature.
6. Sound Pressure Level: As specified, measured at 3 feet from front of unit; provide night setback sound control as a standard feature; three selectable sound level steps of 55 dB, 50 dB, and 45 dB, maximum.
7. Power Failure Mode: Automatically restart operation after power failure without loss of programmed settings.
8. Safety Devices: High pressure sensor and switch, low pressure sensor/switch, control circuit fuses, crankcase heaters, fusible plug, overload relay, inverter overload protector, thermal protectors for compressor and fan motors, over current protection for the inverter and anti-recycling timers.
9. Provide refrigerant sub-cooling to ensure the liquid refrigerant does not flash when supplying to us indoor units.
10. Oil Recovery Cycle: Automatic, occurring 2 hours after start of operation and then every 8 hours of operation; maintain continuous heating during oil return operation.
11. Controls: Provide contacts for electrical demand shedding.
12. Product:
 a. Samsung AR Series ("heat pump").

B. Unit Cabinet: Weatherproof and corrosion resistant; rust-proofed mild steel panels coated with baked enamel finish.

1. Designed to allow side-by-side installation with minimum spacing.

C. Fans: One or more direct-drive propeller type, vertical discharge, with multiple speed operation via DC (digitally commutating) inverter.

1. Provide minimum of 1 fan for each condensing unit.
2. External Static Pressure: Factory set at 0.12 in WG, minimum.
3. Fan Airflow: As indicated for specific equipment.
4. Fan Motors: Factory installed; permanently lubricated bearings; inherent protection; fan guard; output as indicated for specific equipment.

D. Condenser Coils: Copper tubes expanded into aluminum fins to form mechanical bond; waffle louver fin and rifled bore tube design to ensure high efficiency performance.

E. Compressors: Scroll type, hermetically sealed, variable speed inverter-driven and fixed speed in combination to suit total capacity; minimum of one variable speed, inverter driven compressor per condenser unit.

1. Failure Mode: In the event of compressor failure, operate remaining compressor(s) at proportionally reduced capacity; provide microprocessor and associated controls specifically designed to address this condition.
2. Provide each compressor with crankcase heater, high pressure safety switch, and internal thermal overload protector.
3. Provide oil separators and intelligent oil management system.
4. Provide spring mounted vibration isolators.

2.5 INDOOR/EVAPORATOR UNITS

A. All Indoor/Evaporator Units: Factory assembled and tested DX fan-coil units, with electronic proportional expansion valve, control circuit board, factory wiring and piping, self-diagnostics, auto-restart function, 3-minute fused time delay, and test run switch.

1. Refrigerant: Refrigerant circuits factory-charged with dehydrated air, for field charging.
2. Temperature Control Mechanism: Return air thermistor and computerized Proportional-Integral-Derivative (PID) control of superheat.
3. Coils: Direct expansion type constructed from copper tubes expanded into aluminum fins to form a mechanical bond; waffle louver fin and high heat exchange, rifled bore tube design; factory tested.

B. Provide thermistor on liquid and gas lines.

1. Fans: Direct-drive, with statically and dynamically balanced impellers; high and low speeds unless otherwise indicated; motor thermally protected.
2. Return Air Filter: Washable long-life net filter with mildew proof resin, unless otherwise indicated.
3. Condensate Drainage: Built-in condensate drain pan with PVC drain connection.

C. Units Without Built-In Condensate Pump: Provide built-in condensate float switch and wiring connections.

1. Cabinet Insulation: Sound absorbing foamed polystyrene and polyethylene insulation.

D. Wall Surface-Mounted Units: Finished white casing, with removable front grille; foamed polystyrene and polyethylene sound insulation; wall mounting plate; polystyrene condensate drain pan.
1. Airflow Control: Auto-swing louver that closes automatically when unit stops; five (5) steps of discharge angle, set using remote controller; upon restart, discharge angle defaulting to same angle as previous operation.
2. Sound Pressure Range: Measured at low speed at 3.3 feet below and away from unit.
3. Condensate Drain Connection: Back, with piping concealed in wall.
4. Fan: Direct-drive cross-flow type.
5. Products:
 a. Samsung AR Series.

PART 3 - EXECUTION

3.1 EXAMINATION
 A. Verify that required electrical services have been installed and are in the proper locations prior to starting installation.
 B. Verify that condensate piping has been installed and is in the proper location prior to starting installation.

3.2 INSTALLATION
 A. Install in accordance with manufacturer's instructions.
 B. Install refrigerant piping in accordance with equipment manufacturer's instructions.
 C. Perform wiring in accordance with NFPA 70, National Electric Code (NEC).
 D. Coordinate with installers of systems and equipment connecting to this system.
 E. Contractor shall coordinate final pipe routing with manufacturer to determine proper refrigerant charge prior to charging the system.

3.3 FIELD QUALITY CONTROL
 A. Provide manufacturer's field representative to inspect installation prior to startup.

3.4 SYSTEM STARTUP
 A. Prepare and start equipment and system in accordance with manufacturer's instructions and recommendations.
 B. Adjust equipment for proper operation within manufacturer's published tolerances.

3.5 CLEANING
 A. Clean exposed components of dirt, finger marks, and other disfigurements.
3.6 CLOSEOUT ACTIVITIES

A. Demonstration: Demonstrate operation of system to Owner personnel.
 1. Use operation and maintenance data as reference during demonstration.
 2. Briefly describe function, operation, and maintenance of each component.

3.7 PROTECTION

A. Protect installed components from subsequent construction operations.
B. Replace exposed components broken or otherwise damaged beyond repair.

3.8 DEMONSTRATION

A. Train Owner's maintenance personnel to adjust, operate, and maintain the system.
B. Contractor shall be responsible for demonstrating the system sequence of operation as described on the contract drawings. Demonstration shall be in the presence of the owner or owner’s representative. A minimum of 5 days’ notice shall be provided in advance of the demonstrations.

END OF SECTION
SECTION 238146
WATER-SOURCE UNITARY HEAT PUMPS

PART 1 - DESCRIPTION

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. This Section includes the following types of water-source heat pumps:
 1. Water to air, extended range heat pumps

1.3 SUBMITTALS
A. Submit manufacturer’s technical product data including:
 1. Detailed dimensional drawings – provide unit drawings from manufacturer that indicate all necessary dimensional data including: overall unit size and operating weight, unit service access panels and required clearances, ductwork connections, electrical, and plumbing connections.
 2. Complete unit electrical data including: rated operating voltage, total unit full load amperage, minimum circuit amperage, maximum fuse/HACR breaker size and wiring diagrams. Wiring diagrams should clearly differentiate between the portions of the wiring that are factory-installed and portions that are field-installed.
 3. Furnished system specialties and accessories.
 4. Installation instructions – indicating assembly, support details, connection requirements, and system start-up instructions.

B. Operation and Maintenance Data: include emergency, operation, and maintenance manuals.

C. Warranty: Special warranty specified in this Section.

1.4 QUALITY ASSURANCE
A. Manufacturer: Company specializing in manufacturing the Products specified in this section with minimum five (5) years’ experience.

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
C. ASHRAE Compliance:
 1. ASHRAE 15.
 2. Applicable requirements in ASHRAE 62.1-2004, Section 5 - "Systems and Equipment" and Section 7 - "Construction and Startup."

E. Comply with NFPA 70.

F. Comply with safety requirements in UL 484 for assembly of free-delivery water-source heat pumps.

G. Comply with safety requirements in UL 1995 for duct-system connections.

1.5 COORDINATION

A. Coordinate layout and installation of water-source heat pumps and suspension components with other construction that penetrates ceilings or is supported by them, including light fixtures, HVAC equipment, fire-suppression system components, and partition assemblies.

1.6 WARRANTY

A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components, of water-source heat pumps, that fail in materials or workmanship within specified warranty period.

 1. Failures include, but are not limited to, refrigeration components.
 2. Warranty Period: Five years from date of Substantial Completion for the compressor. One year for all other components.

1.7 EXTRA MATERIALS

A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

 1. One set of filters for each unit.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
2.2 FLUID TO AIR EXTENDED RANGE HEAT PUMPS (WTAHP-1.2)

A. Description: Factory assembled and tested, single packaged water-source heat pump consisting of a heavy gauge, galvanized steel cabinet with powder coat paint, sealed refrigerant circuit including a compressor, coaxial refrigerant to water heat exchanger, refrigerant to air heat exchanger, bi-directional thermal expansion valve, reversing valve, and reverse cycle refrigeration controls. The unit and all refrigeration components shall be rated for use with R-410A refrigerant. Field conversion of refrigerants will not be allowed.

B. Cabinet:
 a. Heavy gauge G-60 galvanized steel cabinet.
 b. The interior shall be insulated with $\frac{1}{2}''$ thick, multi-density, aluminum foil coated glass fiber with edges sealed or tucked under flanges to prevent the introduction of glass fibers into the discharge air. Standard cabinet panel insulation must meet NFPA 90A requirements, air erosion and mold growth limits of UL 181, stringent fungal resistance test per ASTM-C1071 and ASTM G21, and shall meet zero level bacteria growth per ASTM G22.
 c. An insulated divider panel shall separate the fan section from the compressor compartment. Removable service panels shall be provided to permit access to the compressor compartment, control box and fan section. The cabinet shall have separate knockouts for the entrance of line voltage and low voltage control wiring.

C. Condensate Drainage: Plastic or stainless-steel drain pan with condensate drain piping projecting through unit cabinet and complying with ASHRAE 62.1-2004.

D. Flanged duct connections: Flanged duct connection shall be provided for both supply and return hard duct connections to cabinet.

E. Filtration: Standard size 1” MERV 13 filters shall be provided with each unit. Units shall have a return air filter rack that is field convertible from 1” to 2”.

F. Refrigerant to Water Heat Exchanger: Coaxial type heat exchanger consisting of a copper inner tube and a steel outer tube capable of withstanding 600 psig working pressure on the refrigerant side and 450 psig on the water side. The inner tube shall be a convoluted design and bead blasted to optimize heat transfer. The heat exchanger shall be insulated to prevent condensation from forming on the outer tube walls.

G. Refrigerant to Air Heat Exchanger: Multiple row copper tube with enhanced aluminum fin heat exchanger design capable of withstanding 650 psig working pressure. The condensate drain pan shall be constructed of high-density polyethylene to inhibit corrosion and bacterial growth.
H. Compressor: Provide hermetic, high efficiency, scroll or rotary type compressor installed on neoprene isolators and double isolated using an acoustically treated mounting bracket to prevent vibration transmission to the cabinet. A factory installed sound attenuating treatment shall be applied to the compressor. Provide high and low temperature cutouts, and compressor motor overload protection. Provide capability to reset compressor lockout circuit at either remote thermostat or circuit breaker.

I. Refrigeration Components: Provide 4-way, electro-magnetically activated solenoid refrigerant reversing valve designed for fail-safe operation in the heating position. The solenoid coil assembly must be detachable from valve body. Provide a bi-directional, thermostatic expansion valve to deliver proper superheat over the complete range of operating water temperatures. Provide a liquid line filter dryer within the refrigerant circuit to maintain system integrity.

J. Blower: The unit shall have a direct drive fan assembly with a dynamically balanced blower wheel. Provide a permanently lubricated high efficiency ECM type motor with internal overload protection. The constant torque motor shall have 5 taps for speed control. The fan motor shall be isolated from the blower housing by rubber grommets.

K. Water Piping Connections: The unit shall have standard female NPT connections flush mounted to the cabinet exterior and shall incorporate an integral back-plate to secure the fitting without the need of a back-up wrench.

L. Hose Kit:
 a. Flexible steel braid hose featuring Kevlar® reinforced EPDM core with ANSI 302/304 stainless steel outer braid and fire rated materials per ASTM E 84-00 (NFPA 255, NASI/UL 723 & UBC 8-1). Ball valve at one end; swivel connection with adapter at the other end (swivel to adapter connection via fiber or EPDM gasket). Swivel connection provides union between heat pump and piping system.
 b. The hoses feature brass fittings and stainless steel ferrules. A “y” strainer is provided on one end for fluid straining and integral blowdown valve. A full port ball valve shall be provided with integral P/T (pressure/temperature) port on supply hose and automatic balancing valve with integral P/T ports and full port ball valve on return hose.

M. Electrical Connection: Single electrical connection with fused disconnect.

N. Hot Gas Reheat: Provide modulating hot gas reheat during cooling mode.

O. Unit Controls
 a. Provide factory-mounted and factory-wired controls for sequenced operation of compressor, blower, reversing valve and system accessories. A 24-volt, minimum 75VA transformer with integral circuit breaker shall provide power to the low voltage controls. Provide safety lockout control with refrigerant high-pressure switch, refrigerant low-pressure or loss of charge switch, and water
freeze protection. The lockout circuit shall be capable of being reset by either re-setting the low voltage power supply or the main unit circuit breaker.

b. Provide a factory installed and tested DDC microprocessor control that sequences the primary unit functions and modes of operation. The controller shall be capable of standalone operation using electro-mechanical temperature controls.

c. Provide factory wall mounted programmable thermostat with LCD display, keypad, automatic changeover, integral humidity sensor, and set point adjustment.

d. Provide BACnet interface with the unit controller for future interface with a BAS on the DelDOT network.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas and conditions for compliance with requirements for installation tolerances and other conditions affecting performance of water-source heat pumps.

B. Examine roughing-in for piping and electric installations for water-source heat pumps to verify actual locations of piping connections and electrical conduit before installation.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Install wall-mounting sensors and switch controls in electrical outlet boxes at heights to match lighting controls.

3.3 CONNECTIONS

A. Drawings indicate general arrangement of piping, fittings, and specialties. Specific connection requirements are as follows:

1. Connect supply and return hydronic piping to heat pump with unions, shutoff valves, and hose kits.

2. Connect heat-pump condensate drain pan to indirect waste connection with condensate trap of adequate depth to seal against the pressure of fan. Install cleanouts in piping at changes of direction.

B. Duct installation requirements are specified in other Division 23 Sections. Drawings indicate general arrangement of ducts. Specific connection requirements are to connect supply and return ducts to water-source heat pumps with flexible duct connectors specified in Division 23 Section "Air Duct Accessories."

C. Install electrical devices furnished by manufacturer but not specified to be factory mounted.

D. Ground Loop Water Piping: Connect supply and return piping to heat pump as indicated, with unions and shutoff valves. All unit supply and return piping is to be insulated.
Provide Field installed water strainers to prevent particulate debris from obstructing water flow through the water to refrigerant heat exchangers.

E. Install piping adjacent to machine to allow service and maintenance.

F. Ground equipment according to Division 26 Section for Grounding and Bonding for Electrical Systems.

G. Connect wiring according to Division 26 Section for Low-Voltage Electrical Power Conductors and Cables.

3.4 FIELD QUALITY CONTROL

A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust field-assembled components and equipment installation, including connections, and to assist in field testing. Report results in writing.

B. Perform the following field tests and inspections and prepare test reports:

 1. After installing water-source heat pumps and after electrical circuitry has been energized, test units for compliance with requirements.
 2. Inspect for and remove shipping bolts, blocks, and tie-down straps.
 3. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
 4. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

C. Remove and replace malfunctioning units and retest as specified above.

3.5 STARTUP SERVICE

A. Engage a factory-authorized service representative to perform startup service.

B. Complete installation and startup checks according to manufacturer's written instructions and do the following:

 1. Inspect for visible damage to unit casing.
 2. Inspect for visible damage to compressor, coils, and fans.
 3. Inspect internal insulation.
 4. Verify that labels are clearly visible.
 5. Verify that clearances have been provided for servicing.
 6. Verify that controls are connected and operable.
 7. Verify that filters are installed.
 8. Adjust vibration isolators.
 9. Inspect operation of barometric dampers.
 10. Verify bearing lubrication on fan.
 11. Inspect fan-wheel rotation for movement in correct direction without vibration and binding.
 12. Start unit according to manufacturer's written instructions.
13. Complete startup sheets and attach copy with Contractor's startup report.
15. Operate unit for an initial period as recommended or required by manufacturer.
16. Verify thermostat calibration.
17. Inspect air dampers for proper stroke and interlock.
18. Inspect controls for correct sequencing of heating, mixing dampers, refrigeration, and normal and emergency shutdown.
19. Start refrigeration system and measure and record the following:
 a. Coil leaving-air, dry- and wet-bulb temperatures.
 b. Coil entering-air, dry- and wet-bulb temperatures.
 c. Outdoor-air, dry-bulb temperature.

3.6 ADJUSTING
A. Adjust initial temperature set points.
B. Set field-adjustable switches and circuit-breaker trip ranges as indicated.
C. Occupancy Adjustments: When requested within 12 months of date of Substantial Completion, provide on-site assistance in adjusting system to suit actual occupied conditions. Provide up to two visits to Project during other than normal occupancy hours for this purpose.

3.7 CLEANING
A. Replace construction filters used during construction prior to air balance and furnish a spare set of filters for each heat pump at substantial completion.
B. After completing installation of exposed, factory-finished water-source heat pumps, inspect exposed finishes and repair damaged finishes.

3.8 DEMONSTRATION
A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain water-source heat pumps. Refer to Division 01 Section "Demonstration and Training."
B. Contractor shall be responsible for demonstrating the system sequence of operation as described on the contract drawings. Demonstration shall be in the presence of the owner or owner's representative. A minimum of 7 days’ notice shall be provided in advance of the demonstrations.

END OF SECTION
SECTION 238239.16
PROPELLER UNIT HEATERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section includes propeller unit heaters with the following heating systems:
 1. Electric heating coils.

1.3 DEFINITIONS
A. CWP: Cold working pressure.
B. PTFE: Polytetrafluoroethylene plastic.
C. TFE: Tetrafluoroethylene plastic.

1.4 SUBMITTALS
A. Product Data: For each type of product.
 1. Include rated capacities, operating characteristics, furnished specialties, and accessories.
B. Shop Drawings:
 1. Include plans, elevations, sections, and details.
 2. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 3. Include equipment schedules to indicate rated capacities, operating characteristics, furnished specialties, and accessories.
 4. Indicate location and arrangement of integral controls.
PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

1. Reznor/Thomas & Betts Corporation.
2. Sterling HVAC Products; Div. of Mestek Technology Inc.

2.2 DESCRIPTION

A. Assembly including casing, coil, fan, and motor in horizontal discharge configuration with adjustable discharge louvers.

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

C. Comply with UL 2021.

D. Comply with UL 823.

2.3 PERFORMANCE REQUIREMENTS

A. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1, Section 5 - "Systems and Equipment" and Section 7 - "Construction and Startup."

B. ASHRAE/IESNA 90.1 Compliance: Applicable requirements in ASHRAE/IESNA 90.1, Section 6 - "Heating, Ventilating, and Air-Conditioning."

2.4 HOUSINGS

A. Casing: 20-gauge die-formed steel.
 1. Casing substrates shall be prepared for finishing with a hot wash, iron phosphatizing clear rinse, chromic acid rinse, and oven drying.
 2. Paint finish shall be lead-free, chromate free, alkyd melamine resin base and applied with an electrostatic two-pass system. Finish shall be baked at 350 degrees F.

B. Finish: Manufacturer's standard baked enamel applied to factory-assembled and -tested propeller unit heaters before shipping.

C. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.

D. Discharge Louver: Adjustable fin diffuser for horizontal units.
2.5 COILS

A. General Coil Requirements: Test and rate hot-water propeller unit-heater coils according to ASHRAE 33.

B. Electric-Resistance Heating Coil: Nickel-chromium heating wire, free from expansion noise and 60-Hz hum, embedded in magnesium oxide refractory and sealed in steel or corrosion-resistant metallic sheath with fins no closer than 0.16 inch (4 mm). Element ends shall be enclosed in terminal box. Fin surface temperature shall not exceed 550 deg F (288 deg C) at any point during normal operation.

2. Wiring Terminations: Stainless-steel or corrosion-resistant material.

2.6 FAN AND MOTOR

A. Fan: Propeller type with aluminum wheel directly mounted on motor shaft in the fan venturi.

B. Motor: Permanently lubricated, totally enclosed, resilient mounted with Class “B” windings. Comply with requirements in Section 230513 "Common Motor Requirements for HVAC Equipment."

2.7 CONTROLS

A. Control Devices:

1. Wall-mounted thermostat.

B. Refer to drawings for individual equipment sequence of operation and required sensors.

2.8 CAPACITIES AND CHARACTERISTICS

A. Refer to drawings for equipment capacity requirements.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas to receive propeller unit heaters for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.

B. Examine roughing-in for electrical connections to verify actual locations before unit-heater installation.

C. Proceed with installation only after unsatisfactory conditions have been corrected.
3.2 INSTALLATION

A. Install propeller unit heaters to comply with NFPA 90A.

B. Install propeller unit heaters level and plumb.

C. Suspend propeller unit heaters from structure with all-thread hanger rods and elastomeric hangers. Hanger rods and attachments to structure are specified in Section 230529 "Hangers and Supports for HVAC Piping and Equipment." Vibration hangers are specified in Section 230548 "Vibration Control for Mechanical Equipment."

D. Install wall-mounted thermostats and switch controls in electrical outlet boxes at heights to match lighting controls. Verify location of thermostats and other exposed control sensors with Drawings and room details before installation.

3.3 CONNECTIONS

A. Comply with safety requirements in UL 1995.

B. Ground equipment according to Section 260526 "Grounding and Bonding for Electrical Systems."

C. Connect wiring according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

3.4 FIELD QUALITY CONTROL

A. Perform the following tests and inspections with the assistance of a factory-authorized service representative:
 1. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
 2. Operate electric heating elements through each stage to verify proper operation and electrical connections.
 3. Test and adjust controls and safety devices. Replace damaged and malfunctioning controls and equipment.

B. Units will be considered defective if they do not pass tests and inspections.

C. Prepare test and inspection reports.

3.5 ADJUSTING

A. Adjust initial temperature set points.

B. Occupancy Adjustments: When requested within 12 months of date of Substantial Completion, provide on-site assistance in adjusting system to suit actual occupied conditions. Provide up to two visits to Project during other-than-normal occupancy hours for this purpose.
3.6 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain propeller unit heaters.

B. Contractor shall be responsible for demonstrating the system sequence of operation as described on the contract drawings. Demonstration shall be in the presence of the owner or owner's representative. A minimum of 7 days’ notice shall be provided in advance of the demonstrations.

END OF SECTION
THIS PAGE INTENTIONALLY LEFT BLANK
SECTION 260000

BASIC ELECTRICAL REQUIREMENTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of Contract, including General and Supplementary Conditions, Division 01 Specification Sections, and Instructions to Bidders apply to this and the other sections of Division 26 and 28. The word drawings is inclusive of all drawings contained in the contract documents. Work pertaining to Division 26 and 28 may be contained in any drawing, any specification section, the General or the Supplementary Conditions. The presentation of requirements in separate specification sections, specification divisions, or individual drawing groupings (M, P, E, S, C, or A) is not intended to scope the work into separate subcontracts nor limit the work in any fashion.

1.2 RULES AND REGULATIONS

A. Work and materials shall conform to and be executed, inspected and tested in accordance with the latest edition of the National Electric Code and with the governing rules and regulations of federal and local governmental agencies.

B. Other codes which will apply to this installation include the current editions of:

1. ANSI C2 - National Electrical Safety Code
2. NEMA Standards
4. Underwriters Laboratories

C. Where governing codes indicate the Drawings and Specifications do not comply with the minimum requirements of applicable codes, be responsible for either notifying the Owner in writing during the bidding period of the revisions required to meet code requirements or providing an installation which will comply with the code requirements.

1.3 SUMMARY

A. This Section includes general administrative, material, and procedural requirements for electrical installations. The following administrative and procedural requirements are included in this Section to expand the requirements specified in Division 01:

1. Electrical, product general requirements and accesses.
2. Submittals.
3. Coordination drawings.
4. Record documents.
5. Maintenance manuals.
6. Rough-ins.
7. Electrical installations.
8. Cutting and patching.

B. Related Sections: The following sections contain requirements that relate to this section:

1. Section 260001 - BASIC ELECTRICAL MATERIALS AND METHODS, for materials and methods common to the remainder of Division 26 and 28, plus general related specifications including:
 a. Access to electrical installations.
 b. Excavation for electrical installations within the building boundaries and from building to utility connections.

2. Division 01 Section “General Commissioning Requirements”, for the commissioning process of all lighting control devices and systems.

1.4 SUBMITTALS

A. Follow the procedures specified in Division 01 Section "Submittals."

B. Equipment and material submittals shall be grouped together to allow review of groups of items whenever possible. All equipment and preconstruction submittals, with the exception of coordination drawings, shall be submitted in no more than four groups. Submittals shall be enclosed in hard back covers (preferably 3 ring binders) identifying the project and name and phone number of the individual responsible for the submittal. First page of each submittal section shall have a blank area to receive the Architects/Engineer shop drawing stamp in addition to the area for the General Contractor’s approval stamp.

C. The Contractor is responsible for complying with all contract requirements. Checking of submittals by the architect or engineer is only for general conformance with the design concept of the project and general compliance with the information given in the contract documents. Any action indicated by the architect or engineer is subject to the requirements of the contract documents. Should the architect or engineer miss catching an error or feature in the submittal that does not comply with the contract requirements the Contractor remains responsible for meeting the requirements of the contract. The Contractor is responsible for: dimensions which shall be confirmed and correlated at the job site; confirming and correlating all quantities; fabrication processes and techniques of construction; coordination of work between all trades; and the satisfactory performance of his work.

D. Submittals marked “No Exception Taken” indicate that the architect or engineer has found no obvious deviations from the contract requirements and that the Contractor may continue the procurement process subject to compliance with the contract requirements.

E. Submittals marked “Make Corrections Noted” indicate that the architect or engineer has made corrective notations on the submittal in response to contract deviations that he has
found and that the Contractor may continue the procurement process subject to compliance with the notations and the contract requirements.

F. Submittals marked “Revise and Resubmit” indicate that the architect or engineer has found significant deviations from the contract requirements and that the Contractor must correct the submittal in accordance with the architect or engineer’s notations and resubmit the submittal for review; however, the likelihood is that the submittal can be corrected to come into compliance with the contract requirements.

G. Submittals marked “Rejected” indicate that the architect or engineer has found deviations from the contract requirements of such magnitude that the submitted cannot be made compliant with the contract requirements and will not be accepted for further consideration; that the Contractor must prepare a new submittal using a different manufacturer, product, model, or process, as applicable, and in accordance with the contract requirements.

H. Submittals marked “Submit Specified Item” indicate that the submittal is rejected and that only the item specified on the plans or in the specifications will be acceptable, and that the Contractor must prepare a new submittal using the specified item.

1.5 DELIVERY, STORAGE, AND HANDLING

A. Deliver products to the project properly identified with names, model numbers, types, grades, compliance labels, and other information needed for identification.

1.6 WARRANTIES

A. All Division 26 and 28 equipment shall be provided with a factory warranty for all parts and labor with 24-hour service. The warranty shall expire 24 months from the date of Substantial Completion, as defined by the date of the Substantial Completion Certificate. This is not necessarily a 24-month warranty period; rather, early start-up of the equipment prior to the substantial completion date should be expected and shall not affect the expiration date. The Contractor shall coordinate this aspect with his suppliers as required.

B. EXTENDED WARRANTIES: Select pieces of equipment may be specified to have extended warranties which expire after the primary project warranty lists in the paragraph above. However, extended warranties shall also be coordinated with the date of substantial completion to expire in time periods relative to the substantial completion certificate.

C. FACTORY START-UP: Provide factory start-up on major pieces of equipment. Start up of all electrical equipment shall be performed by a factory trained technician with at least 40 hours of factory training on said piece of equipment.

1.7 FACTORY TRAINING:

A. Provide factory training on all equipment. Schedule training with at least 21 days notice to the owner and AE, by submitting a draft training schedule. Indicate all proposed training dates with specific equipment descriptions. The Contractor shall then confirm
these dates with the owner and AE, and after received approval of these dates shall submit a final training schedule at least 14 days prior to the agreed upon dates.

PART 2 - PRODUCTS

2.1 MATERIALS

A. All materials, unless otherwise specified, shall be new and be the standard products of the manufacturer. Seconds, rejects, or damaged materials will be rejected.

B. The equipment to be provided under these Specifications shall be essentially the standard commercial grade product of the manufacturer. Where two or more units of the same class of equipment are required, these units shall be products of a single manufacturer.

C. The listing of a manufacturer for certain equipment and systems does not indicate acceptance of a standard or catalogued item of equipment. All equipment and systems shall conform to the Specifications.

2.2 U.L. LISTING

A. All equipment shall bear the Underwriter's Laboratories (UL), or other approved agency, listing label.

B. Wherein an item of equipment is specified to be U.L. Listed, the entire assembly shall be listed by Underwriters Laboratories, Inc. Any modifications to suit the intent of the Specifications, shall be performed in accordance with the National Electrical Code and listed by U.L.

2.3 ACCESS

A. Generally, all concealed junction boxes, control devices, duct mounted heat or smoke detectors and other items of equipment requiring maintenance and/or operation are located above accessible type ceilings. Should any concealed junction boxes, control devices, etc., be inaccessibly located, furnish access doors with flush screwdriver operated lock, of size to permit complete access. Doors shall be of the type suited to the construction into which they are to be installed. Refer to Section 260001 - Basic Electrical Materials and Methods, for acceptable door requirements.

B. Install electrical systems, materials, and equipment and coordinate with all adjacent items so as to maintain the manufacturer’s recommended service clearance requirements. Indicate service clearance requirements on the coordination shop drawings. Advise the Engineer of any service clearance conflicts prior to installation. Remove, relocate, and revise conflicting items that have already been installed without additional cost to the Owner.

C. Locate all equipment which must be serviced, operated or maintained in fully accessible positions. Minor deviations from the drawings may be made to allow for better
accessibility at no additional cost to the Owner, but changes shall not be made without approval of the Engineer.

D. Minimum clearances in front of or around equipment shall conform to the latest applicable code requirements.

PART 3 - EXECUTION

3.1 ROUGH-IN:

A. Verify final locations for rough-ins with field measurements and with the requirements of the actual equipment to be connected.

B. Refer to equipment specifications in Divisions 02 through 28 for rough-in requirements.

3.2 ELECTRICAL INSTALLATIONS

A. General: Sequence, coordinate, and integrate the various elements of electrical systems, materials, and equipment. Comply with the following requirements:

1. Coordinate electrical systems, equipment, and materials installation with other building components. Be responsible for any changes in openings and locations necessitated by the equipment installed.

2. Verify all dimensions by field measurements.

3. Arrange for chases, slots, and openings in other building components during progress of construction, to allow for electrical installations.

4. Coordinate the installation of required supporting devices and sleeves to be set in poured-in-place concrete and other structural components, as they are constructed.

5. Sequence, coordinate, and integrate installations of electrical materials and equipment for efficient flow of the Work. Give particular attention to large equipment requiring positioning prior to closing in the building.

6. Where mounting heights are not detailed or dimensioned, install systems, materials, and equipment to provide the maximum headroom possible.

7. Install systems, materials, and equipment to conform with approved submittal data, including coordination drawings, to greatest extent possible. Conform to arrangements indicated by the Contract Documents, recognizing that portions of the Work are shown only in diagrammatic form. Where coordination requirements conflict with individual system requirements, refer conflict to the Architect.

8. Protect all equipment and materials from the elements, dirt and other damage from the time it is removed from the point of storage until final acceptance.

9. Equipment shall include the component parts thereof such as disconnect switches, motor starters, motors, drives, and guards necessary to the satisfactory and safe operation of the equipment.

10. Installation shall include setting equipment to accurate line and grade, leveling equipment, aligning equipment components, providing and installing couplings, bolts, guards, and anchor bolts.
11. All tolerances in alignment and leveling, and the quality of workmanship for each class and stage of work shall be subject to manufacturer’s installation instructions.

12. All manufacturer’s finished equipment surfaces damaged during construction shall be brought to an "as new" condition by touch up or repainting. Any rust shall be completely removed and the surface primed prior to repainting.

13. Workmanship shall conform to the "Standard of Installation" published by the National Electrical Contractors Association.

14. Division 26 and 28 shall do all trench and pipe excavation and backfilling required for his work inside and outside the building, including repairing of finished surfaces, all required shoring, bracing, pumping, and all protection for safety of persons and property. In addition, the Contractor shall check the indicated elevations of the utilities entering and leaving the building. If such elevations require excavations lower than the footing levels, the Architect shall be notified of such conditions and a redesign shall be made before excavations are commenced. It is also the responsibility of Division 26 and 28 to make the excavations at the minimum required depths in order not to undercut the footings.

15. Provide all scaffolding, rigging, hoisting and services necessary for erection and delivery of equipment and apparatus furnished into the premises. These items shall be removed from the premises when no longer required.

16. No electrical equipment, raceways or other work of any kind shall be covered up or hidden from view before it has been examined and approved. Any unsatisfactory work or materials shall be removed and corrected immediately.

17. Install systems, materials, and equipment level and plumb, parallel and perpendicular to other building systems and components, where installed exposed in finished spaces.

18. Install electrical equipment to facilitate servicing, maintenance, and repair or replacement of equipment components. As much as practical, connect equipment for ease of disconnecting, with minimum of interference with other installations.

19. Install access panel or doors where units are concealed behind finished surfaces. Access panels and doors are specified in Division 08 Section "ACCESS DOORS AND FRAMES" and Section 26 0001 - BASIC ELECTRICAL MATERIALS AND METHODS.

20. Install systems, materials, and equipment giving right-of-way priority to systems required to be installed at a specified slope.

3.3 COORDINATION WITH LOCAL ELECTRICAL UTILITIES AND SERVICES

A. Coordinate connection of electrical systems with exterior underground and overhead utilities and services and meet all of their schedules so that the electrical services proceeds in a timely and orderly fashion. Comply with requirements of governing regulations, franchised service companies, and controlling agencies. Provide required connection for each service.

B. Locations and details required by Division 26 and 28 for the utility shall be the responsibility of Division 26 and 28.
3.4 MANUFACTURER'S DIRECTIONS AND SUPERVISION

A. Where supervision by a manufacturer is specified, follow all instructions and recommendations of the manufacturer. The manufacturer shall supervise the installation, connection, start-up, adjustment, instruction of the Owner and final tests of such equipment or system. Where two or more manufacturer's equipment are interrelated, take responsibility to coordinate their work and provide supervision.

B. Have the manufacturer instruct the Owner in the proper operation and maintenance techniques of all equipment, systems, etc., at the time of completion of all work.

C. Prior to final acceptance by the Owner prepare and submit to the Architect for review 3 copies of operation and maintenance (O and M) instructions in printed form for each item of equipment or system installed in the building. Complete instructions for each system shall be assembled and bound in a brochure. Detailed contents of the O and M manuals are as hereinafter specified. Refer to appropriate Division 01 sections for general requirements affecting this work.

3.5 PAINTING:

A. Provide the prime painting of all equipment and materials furnished under Division 26 and 28 specifications, unless specifically stated otherwise. In general, all equipment except raceways and galvanized boxes that are not provided with a factory-applied final finish shall be delivered to the job site with a shop-applied prime coat of paint.

3.6 TEST AND INSPECTION

A. Upon completion of the work, notify the Architect in writing, that the entire electrical installation has been examined, inspected, tested, calibrated or adjusted as specified and that it is ready for final inspection. Work to be connected prior to final inspection and also include all of the work specified for "Manufacturers' Directions and Supervision." Include specified testing and inspection of documentation.

B. Prior to each inspection, provide a written certification that each system or piece of equipment to be operated during that test has been tested and does meet design performance criteria of the Contract Documents.

C. On completion of the work, obtain Certificates of Compliance, and approval or acceptance from all authorities having jurisdiction over the work, and deliver these certificates to the Architect. The work shall not be deemed to have reached a state of completion until the certificates have been delivered.

3.7 LOOSE EQUIPMENT

A. Provide four keys for every different piece of electrical equipment which is equipped with a lock.

B. Provide all other loose equipment specified/supplied for use with all systems.
3.8 MARKERS

A. Furnish and install punched color tape markers, or color-coded markers as determined by Owner. Affix to ceiling grid or to access panel to indicate which ceiling panel is to be removed to obtain access to what control device, duct mounted heat or smoke detector, etc.

3.9 SUBMITTALS AND SHOP DRAWINGS

A. Refer to Division 01 for quantities and types of submittals and shop drawings.

B. Submittals and shop drawings shall be submitted in groups by systems. For example, all lighting fixtures, lamps, drivers and accessories shall be submitted simultaneously in one package.

C. Where there are no specific submittal requirements in the specification section, provide manufacturer's standard literature showing the submittal items.

D. Shop Drawings and/or Submittals Required:

1. MC cable and associated connectors
2. Automatic transfer switches
3. Ballasts and accessories
4. Batteries and battery chargers
5. Boxes
6. Cable tray
7. Central control and monitoring systems
8. Circuit breakers
9. Dimmers
10. Disconnect switches
11. Duct banks and associated raceways
12. Electrical devices
13. Emergency generators and associated equipment
14. Emergency generator control system
15. Fire alarm systems
16. Firestopping
17. Fuses
18. Grounding materials
19. Intercom systems
20. Interior and exterior lighting fixtures
21. Lamps
22. Lighting control equipment
23. Low voltage wire and cable
24. Motor starters
25. Nameplates and device markings
26. Panelboards and cabinets for Communication/Special Systems
27. Protective devices
28. Public address/staff paging systems
29. Raceway connectors and fittings
30. Raceways
31. Site lighting and interior lighting
3.10 OPERATION AND MAINTENANCE MANUALS

A. Prepare maintenance manuals in accordance with Division 01 Section "PROJECT CLOSEOUT PROCEDURES." In addition to the requirements specified in Division 01, include the following information for equipment items:

B. Description of function, normal operating characteristics and limitations, performance curves, engineering data and tests, and complete nomenclature and commercial numbers of replacement parts.

C. Manufacturer's printed operating procedures to include start-up, break-in, and routine and normal operating instructions; regulation, control, stopping, shutdown, and emergency instructions; and summer and winter operating instructions.

D. Maintenance procedures for routine preventative maintenance and troubleshooting; disassembly, repair, and reassembly; aligning and adjusting instructions.

E. Servicing instructions and lubrication charts and schedules.

F. The minimum information that shall be furnished in the maintenance manual shall include the following:

1. Individual characteristics for trouble shooting sequences for each item of each:
 a. Branch circuit panel.
 b. Communication system.
 c. Distribution panel.
 d. Dry-type transformers.
 e. Emergency generator control system.
 f. Fire alarm system.
 g. Generator set.
 h. Individual motor starter.
 i. Special system.
 j. Switchboard.
 k. Switchgear.

G. Catalog cut sheets for every item for which a shop drawing is required.

H. Schedule of loads served from each:

 1. Automatic transfer switch.
 2. Branch circuit panel
 3. Distribution panel.
 4. Emergency generator control system.
 5. Generator set.
I. On-hand spare parts list and complete parts list for each:
 1. Distribution panel.
 2. Emergency generator control system.
 3. Generator set.
 4. Individual motor starter.
 5. Special system.

J. Tap setting schedule for each:
 1. Transformer.

K. Overload element schedule for each motor starter whether individual or in a motor control center.

L. Bolt tightening torques and inspection intervals on each:
 1. Bolted bus connection.
 2. Cable connection.
 3. Miscellaneous bolted electrical connections.

M. Manufacturers' recommended cleaning intervals and special procedures for each:
 1. Cooling fins.
 2. Dry-type transformer coil assembly.
 3. Electrical equipment interior.
 4. Electrical equipment ventilation opening.
 5. Lighting fixture lenses and reflectors.

N. Main and arcing contact adjustment and replacement for each:
 1. Automatic transfer switch.
 2. Contactor.
 3. Circuit breaker.
 4. Fused switch.
 5. Motor starter.

O. Calibration and exercise procedures and intervals for each:
 1. Automatic transfer switch.
 2. Control system.
 3. Generator set.
 4. Insulated case breaker.
 5. Molded case breaker.
 6. Relay.

P. "As designed" and "as left" relay settings.

Q. Testing interval and target values for ground fault protection circuit relays.
R. Testing and troubleshooting procedures unique to special systems.
S. Approved special construction details that differ from the details shown on Drawings.

3.11 COORDINATION DRAWINGS

A. Prepare coordination drawings in accordance with Division 01 (as applicable), to a scale of 1/4"=1'-0" or larger; detailing major elements, components, and systems of electrical equipment and materials in relationship with other systems, installations, and building components. Indicate locations where space is limited for installation and access and where sequencing and coordination of installations are of importance to the efficient flow of the Work, including (but not necessarily limited to) the following:

B. Indicate the proposed locations of major raceway systems, equipment, and materials. Include the following:

C. Clearances to other equipment, systems, components, ductwork, piping, and structural elements.

D. Clearances for servicing equipment, including space for equipment disassembly required for periodic maintenance.

E. Exterior wall and foundation penetrations.

F. Fire-rated wall and floor penetrations.

G. Equipment connections and support details.

H. Sizes and location of required concrete pads and bases.

I. Mechanical equipment rooms.

J. Electrical equipment rooms.

K. Indicate scheduling, sequencing, movement, and positioning of large equipment into the building during construction.

L. Prepare floor plans, elevations, and details to indicate penetrations in floors, walls, and ceilings and their relationship to other penetrations and installations.

M. Prepare reflected ceiling plans to coordinate and integrate installations, air outlets and inlets, light fixtures, communications systems components, sprinklers, and other ceiling-mounted devices.

3.12 RECORD DOCUMENTS

A. Prepare record documents in accordance with the requirements in Division 01 Section “CLOSEOUT PROCEDURES.” In addition to the requirements specified in Division 01, indicate installed conditions for:

B. Major raceway systems, size and location, for both exterior and interior; locations of
control devices; distribution and branch electrical circuitry; and fuse and circuit breaker size and arrangements.

C. Equipment locations (exposed and concealed), dimensioned from prominent building lines.

D. Contract Modifications and actual equipment and materials installed.

3.13 CUTTING AND PATCHING

A. General: Perform cutting and patching in accordance with Division 01 Section "CUTTING AND PATCHING." In addition to the requirements specified in Division 01, the following requirements apply:

B. Perform cutting, fitting, and patching of electrical equipment and materials required to:

1. Uncover Work to provide for installation of ill-timed Work.
2. Remove and replace defective Work.
3. Remove and replace Work not conforming to requirements of the Contract Documents.
4. Remove samples of installed Work as specified for testing.
5. Install equipment and materials in existing structures.
6. Upon written instructions from the Architect, uncover and restore Work to provide for Architect observation of concealed Work.

C. Cut, remove, and legally dispose of selected electrical equipment, components, and materials as indicated, including but not limited to removal of electrical items indicated to be removed and items made obsolete by the new Work.

D. Protect the structure, furnishings, finishes, and adjacent materials not indicated or scheduled to be removed.

E. Provide and maintain temporary partitions or dust barriers adequate to prevent the spread of dust and dirt to adjacent areas.

F. Protection of Installed Work: During cutting and patching operations, protect adjacent installations.

G. Patch finished surfaces and building components using new materials specified for the original installation and experienced Installers. Installers’ qualifications refer to the materials and methods required for the surface and building components being patched.

3.14 FACTORY TRAINING

A. Provide factory training on all equipment. Schedule training with at least 21 days notice to the owner and AE, by submitting a draft training schedule. Indicate all proposed training dates with specific equipment descriptions. The Contractor shall then confirm these dates with the owner and AE, and after received approval of these dates shall submit a final training schedule at least 14 days prior to the agreed upon dates.

END OF SECTION
PART 1 - GENERAL

1.1 SUMMARY

A. This section outlines the requirements for Basic Electrical Materials and Methods, including but not limited to the following:

1. Basic Materials
2. Connection of Utilization equipment
3. Supports
4. Identification
5. Conduit and fittings
6. Wireway
7. Surface raceway system
8. Electrical boxes, cabinets and enclosures
9. Wire and Cable
10. Wiring Devices
11. Service Fittings

1.2 REGULATORY REQUIREMENTS

A. All materials and installation methods shall comply with NFPA.

PART 2 - PRODUCTS

2.1 BASIC MATERIALS

A. All products shall be UL (Underwriters Laboratories) listed.

B. Nameplates: Engraved, Phenolic laminated plastic, 0.125-inch-thick, black background with white core, with beveled edges. ALL LETTERING SHALL BE UPPERCASE. Shall be attached using self-tapping screws.

1. Nameplate shall be installed on all equipment items. Use ¼” high engravings.
2. Nameplates shall be installed on all feeder circuits and all outdoor circuits.

 a. Attach nameplates to each cable or wire located in pullboxes and at each splice and termination. Use ¼” letters. Cable nameplates shall be secured in place with ¼” cable ties. Nameplates shall indicate which panel and circuit breaker the feeder or circuits is fed from.

3. Phases of all 600V wire shall be identified at all splice and termination points.
using colored tape. Colors shall be black, red, and blue for 208-volt phase conductors, white for neutrals, and green for ground conductors. Utilize orange, brown, and yellow for 480-volt phase conductors, gray for neutrals, and green for ground conductors.

C. Warning Signs: Provide warning signs for electrical equipment per OSHA and NFPA.

D. Label junction boxes with panel #, and circuit breaker # of where circuits originate – use permanent marker.

E. Steel – all steel products shall be galvanized or treated for corrosion.

F. Conduit and fittings.

1. Use only specified raceway in the following indoor and outdoor locations:
 a. Installation in or under concrete slab shall be; galvanized steel (EMT) or schedule 40 PVC. Stub-ups out of concrete shall be galvanized steel (EMT). Applicable for branch circuits and service entrance feeder only.
 b. Exposed outdoor locations: Only rigid galvanized steel conduit shall be used.
 c. Concealed dry interior locations: Electrical metallic tubing or MC cable as allowed below.
 d. Exposed dry interior locations: EMT or rigid steel in areas with motorized vehicles.
 e. Connections to vibration producing equipment or motors shall be liquid tight flexible metallic conduit.
 f. New Construction: raceway/conduit in finished areas shall be concealed by architectural surfaces.

2. Use of the following types of conduits and fittings shall not be permitted in any application for this project:
 a. "Die-cast metal" conduit fittings.
 b. Aluminum Conduit, Cable Tray and fittings.
 c. PVC Type 'EB'.

G. Electrical Boxes

1. Interior – metal only, approved for the specific location and application.
2. Exterior – metal, NEMA approved for outdoor locations.

2.2 WIRE AND CABLE

A. Building Wire:

1. Feeders and Branch Circuits Larger Than 10 AWG: Copper, stranded conductor, 600-volt insulation, THHN/THWN, rated at 75-degree C.
2. Feeders and Branch Circuits 10 AWG and Smaller: Copper, 600-volt insulation,
THHN/THWN solid conductor, rated at 75-degree C. No conductor smaller than #12 AWG is acceptable.

B. Forbidden Cables:
1. Use of BX (Armored) Cable, UF, and Romex Cable is not permitted.

C. Color coding shall be a permanent part of and uniform throughout the entire length of the jacket material of the cable and shall be used throughout the building for feeder circuits. Color applied to the outer surface only is not acceptable. Taping (6” minimum) at termination points is acceptable. Color coding shall be:

<table>
<thead>
<tr>
<th>Phase</th>
<th>208/120 Volts</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>208/120 Volts</td>
<td>Black</td>
</tr>
<tr>
<td>B</td>
<td></td>
<td>Red</td>
</tr>
<tr>
<td>C</td>
<td></td>
<td>Blue</td>
</tr>
<tr>
<td>Neutral</td>
<td></td>
<td>White</td>
</tr>
<tr>
<td>Ground</td>
<td></td>
<td>Green</td>
</tr>
</tbody>
</table>

2.3 WIRING DEVICES AND WALL PLATES

A. Receptacle:
1. Use specification grade receptacles and switches.
2. GFCI Receptacle: Duplex convenience receptacle with integral ground fault current interrupter, test and reset push buttons.
3. Device plates for interior use on flush-mounted devices shall be satin finish type 302 stainless steel.
4. Device plates for interior use on surface-mounted devices shall be galvanized sheet metal with rounded corners.

B. Weatherproof Cover Plate: Match receptacle configuration provided for equipment connection. Gasketed cast metal with gasketed device covers.

1. A receptacle installed in a wet location where the product intended to be plugged into is not attended while in use (e.g. sprinkler system controller, landscape lighting, holiday lights, etc.) shall have an enclosure that is weatherproof with the attachment plug cap inserted or removed.
2. A receptacle installed in a wet location where the product intended to be plugged into is attended while in use (e.g. portable tools, etc.) shall have an enclosure that is weatherproof when the attachment is removed.
PART 3 - EXECUTION

3.1 INSTALLATION

A. Do not drill structural steel members.

B. Install free-standing electrical equipment on 4” concrete pads.

C. Arrange conduit to maintain headroom and to present neat appearance.
 1. Route exposed raceway parallel and perpendicular to walls and adjacent piping.
 2. Maintain minimum 6-inch clearance to heat surfaces such as flues, steam pipes, and heating appliances.
 3. Maintain required fire, acoustic, and vapor barrier rating when penetrating walls, floors, and ceilings.
 4. Use conduit hangers and clamps; do not fasten with wire or perforated pipe straps.

D. Install surface metal raceway and multi-outlet assemblies in accordance with manufacturer’s instructions.
 1. Use flat-head screws or clips and straps suitable for the purpose, to fasten channel to surfaces. Mount plumb and level.
 2. Use suitable insulated bushings and inserts at connections to outlets and corner fittings in metal raceway.
 3. Use fittings and accessories designed for use with raceway system.

E. Use recessed outlet boxes in finished areas or as required.
 1. Secure boxes to interior wall and partition studs, accurately positioning to allow for surface finish thickness.
 2. Do not install boxes back-to-back in walls; provide 6-inch separation, minimum.
 3. In acoustic-rated walls provide 24-inch separation, minimum.

F. Install floor boxes in accordance with manufacturer’s instructions.

G. Minimum conduit size shall be ¾ inches.

H. Install pull strings in all spare raceways. Pull strings shall be multi-strand polypropylene monofilament, with minimum size of 3 strand 3/16-inch diameter and 800-pound breaking strength.

3.2 EXAMINATION AND PREPARATION

A. No wiring shall be installed until the building is under roof. Do not install wire in raceways until after concrete work fireproofing or plastering is completed.
3.3 WIRING DEVICES

A. Install wiring devices in accordance with manufacturer's instructions.

B. Install convenience receptacles 18" inches above finished floor with grounding pole on top.

C. Install duplex convenience receptacles in corridors at 30-foot maximum intervals.

3.4 WIRING FOR LIGHTING FIXTURES, RECEPTACLES

A. Provide EMT for branch lighting in non-exposed areas.

B. Provide EMT for branch power in non-exposed areas.

3.5 LABELING FOR LIGHTING AND POWER EQUIPMENT

A. All electrical equipment shall be labeled as set forth in this section, including but not limited to the following types:

1. Switchgear/Switchboards.
2. Power Distribution Panels/Load Centers.
3. Lighting/Power Panels.
5. Automatic Transfer Switches (ATS).
6. Power Distribution Units (PDU).
7. Motor Control Centers (MCC).
8. Transformer.

B. The labeling shall be in the following format:

 Type Volt/Sys Location Item
 _______ _______ _______ _______
 X X X X X X – X X X X X – X X

1. TYPE - First group of two characters describes the type of power equipment;
 e. “DS”—Disconnect Switch. Fused or non-fused disconnect switch or circuit breaker.
 f. “AT”—Automatic Transfer Switch.
 g. “MC”—Motor Control Center.
 h. “TX”—Transformer.
 i. “PD”—Power Distribution Unit.
“UP”—Uninterruptible Power Supply.

2. Volt/Sys - Second group of two to four characters describe the voltage level and the system providing power.
 a. 1st character is the “Voltage designation.
 1) “1” - 120/240 volt 1 phase.
 2) “2” - 120/208 volt 3 phase.
 3) “4” - 277/480 volt 3 phase.
 b. 2nd and possibly the 3rd and 4th characters are the system power.
 1) “N” - Normal Power.
 2) “E” - Emergency (not segregated into Life Safety, Legally Required, etc.).
 5) “SL” - Site Lighting (controlled by contactor).

3. Location - Third group of four (or five) characters describes the location (room number or nearest room number) within the building.
 a. 1st characters will indicate the floor of the building.
 b. 2nd character will indicate the wing.
 c. 3rd and 4th character will indicate the room number in that wing.
 d. 5th character may be an alpha prefix indicating a sub-basement (SB0123), basement (B0123) or mezzanine (M1123), or an alpha suffix indicating a part of a room or space (1123A).

4. ITEM - Fourth group of two characters
 a. 1st character is the sequence number for the same type equipment (same label designation) within the SAME room.
 b. 2nd character is the section number for multiple section equipment items.

C. Label Samples

 1. “SE-4N-1201-1” is Service Entrance equipment, operating on 277/480 volt “normal” power, situated in Room 1201.
 2. “DP-4N-2301-2” is a Power Distribution Panel, operating at 77/480 volts “normal” power, situated in Room 2310. This panel is the second or two panels of this type within Room 2310.
 3. “DP-2ELS-2310-1” is a Power Distribution Panel, operating at 120/208 volt “Emergency, Life Safety” power, situated in Room 2310.
 4. “PP-2N-3224-1” is a “Branch” Power Panel, operating at 120/208 volt “normal” power, situated in Room 3224.
 5. “MC-4N-0210-1” is a motor Control Center, operating at 277/480 volt “normal power, situated in Room 0210.

END OF SECTION
SECTION 260519

LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes the following:
 1. Building wires and cables rated 600 V and less.
 2. Connectors, splices, and terminations rated 600 V and less.

1.3 SUBMITTALS

A. Product Data: For each type of product indicated.
B. Qualification Data: For testing agency.
C. Field quality-control test reports.

1.4 QUALITY ASSURANCE

A. Testing Agency: Engage a qualified independent testing agency to perform field quality-control testing.
B. Testing: On installation of wires and cables and before electrical circuitry has been energized, demonstrate product capability and compliance with requirements. Procedures: Perform each visual and mechanical inspection and electrical test state din NETA ATS Section 7.3.1. Certify compliance with test parameters.
C. Correct malfunctioning conductors and cables at Project site, where possible, and retest to demonstrate compliance; otherwise, remove and replace with new units and retest.
D. Measure tightness of bolted connections and compare torque measurements with manufacturer’s recommended values.
E. Verify continuity of each branch circuit conductor.
F. Tests: Service Entrance Cables, Power & Lighting Distribution Feeders and Feeders to all major mechanical equipment at 60A and over (i.e., chillers, AHU’s, etc.).
1. Tests shall be performed with a 1000-volt megger, and conductors shall test free from short-circuits and grounds.
2. Conductors shall be tested phase-to-phase and phase-to-ground.
3. Furnish the instruments, materials, and labor required. Perform the tests in the presence of the Contracting Officer.
4. Test readings shall be recorded and delivered to Owner and Engineer in a report.
5. Copy of Test results shall be included in O&M Manuals.

G. Demonstration: Subsequent to wire and cable hook-ups, energize circuit and demonstrate functioning in accordance with requirements. Where necessary, correct malfunctioning units, and then retest to demonstrate compliance.

PART 2 - PRODUCTS

2.1 CONDUCTORS AND CABLES

A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work are the following:

1. Wires and Cables:
 b. Senator Wire & Cable Company.
 c. Southwire Company.

2. Connectors and Accessories for Wires and Cables:
 a. AMP Incorporated.
 b. General Signal; O-Z/Gedney Unit.
 c. 3M Company; Electrical Products Division.

B. Copper Conductors: Comply with NEMA WC 70.

C. Conductor Insulation: Comply with NEMA WC 70 for Types THHN-THWN, XHHW, USE, and SO.

D. Multiconductor Cable: Comply with NEMA WC 70 for metal clad cable, Type MC and Type SO with ground wire.

2.2 CONNECTORS AND SPLICES

A. UL-listed, factory-fabricated wiring connectors of size, ampacity rating, material, type, and class for application and service indicated. Comply with Project's installation requirements and as specified in Part 3 "Wire and Insulation Applications" Article.

B. Split Bolt Connectors: Not Acceptable.
C. Solderless Pressure Connectors: High copper alloy terminal. May be used only for cable termination to equipment pads or terminals. Not approved for splicing.

D. Spring Wire Connectors: Solderless spring type pressure connector with insulating covers for copper wire splices and taps. Use for conductor sizes 10 AWG and smaller.

E. All wire connectors used in underground or exterior pull boxes shall be gel-filled twist connectors or a connector designed for damp and wet locations.

F. Mechanical Connectors: Bolted type tin-plated; high conductivity copper alloy; spacer between conductors; beveled cable entrances.

G. Compression (crimp) Connectors: Long barrel; seamless, tin-plated electrolytic high conductivity copper tubing, internally beveled barrel ends. Connector shall be clearly marked with the wire size and type and proper number and location of crimps.

H. Heat shrinkable tubing shall meet the requirements of ANSI C119.1-1986 for buried connections to 90°C and shall be material flame-retarded per IEEE 383 “Vertical Tray Flame Test”. Motor connection kits shall consist of heat-shrinkable, polymeric insulating material over the connection area and a high dielectric strength mastic to seal the ends against ingress of moisture and contamination. Motor connection kits shall accommodate a range of cable sizes for both in-line and stub-type configurations. Connection kits shall be independent of cable manufacturer’s tolerances.

I. Wire Nut Connectors:
 1. Wire nuts install in wet locations, exterior, etc., shall be self-contained, waterproof and corrosion-proof units incorporating prefilled silicone grease to block out moisture and air.
 2. Connectors shall be UL listed appropriately sized according to manufacturer’s recommendation for the suitable wire sizes and voltage rating (600 volt minimum).
 3. Connectors body shall have a color-coded outer shell.
 4. Connectors shall be as manufactured by King Technology or approved equal.

PART 3 - EXECUTION

3.1 CONDUCTOR MATERIAL APPLICATIONS

A. Feeders: Soft Drawn Copper. 98% conductivity minimum, solid for No. 10 AWG and smaller; stranded for No. 8 AWG and larger.

B. Branch Circuits: Soft Drawn Copper. 98% Conductivity minimum, Solid for No. 10 AWG and smaller; stranded for No. 8 AWG and larger.
3.2 CONDUCTOR INSULATION AND MULTICONDUCTOR CABLE APPLICATIONS AND WIRING METHODS

A. 600 volt, unless otherwise noted, #12 AWG minimum (except control cable may be #14 AWG).

B. Service Entrance: Type THHN-THWN, single conductors in raceway.

C. Exposed Feeders: Type THHN-THWN, single conductors in raceway.

D. Feeders Concealed in Ceilings, Walls, Partitions, and Crawlspace: Type THHN-THWN, single conductors in raceway.

E. Feeders Concealed in Concrete, below Slabs-on-Grade, and Underground: Type THHN-THWN, single conductors in raceway.

F. Exposed Branch Circuits, Including in Crawlspace: Type THHN-THWN, single conductors in raceway.

G. Branch Circuits Concealed in Ceilings, Walls, and Partitions: Metal-clad cable, Type MC.

H. Branch Circuits Concealed in Concrete, below Slabs-on-Grade, and Underground: Type THHN-THWN, single conductors in raceway.

I. Cord Drops and Portable Appliance Connections: Type SO, hard service cord with stainless-steel, wire-mesh, strain relief device at terminations to suit application.

J. Class 1 Control Circuits: Type THHN-THWN, in raceway.

K. Class 2 Control Circuits: Type THHN-THWN, in raceway.

L. Conductors shall be rated 75 deg C in wet locations and 90 deg C in dry locations.

3.3 INSTALLATION OF CONDUCTORS AND CABLES

A. Conceal cables in finished walls, ceilings, and floors, unless otherwise indicated.

B. Use manufacturer-approved pulling compound or lubricant where necessary; compound used must not deteriorate conductor or insulation. Do not exceed manufacturer's recommended maximum pulling tensions and sidewall pressure values.

C. Use pulling means, including fish tape, cable, rope, and basket-weave wire/cable grips, that will not damage cables or raceway.

D. Install exposed cables parallel and perpendicular to surfaces of exposed structural members, and follow surface contours where possible.
E. Support cables according to Section 260429, "Hangers and Supports for Electrical Systems."

F. Identify and color-code conductors and cables according to Section 260553, “Identification for Electrical Systems."

3.4 CONNECTIONS

A. Tighten electrical connectors and terminals according to manufacturer's published torque-tightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A and UL 486B.

B. Make splices and taps that are compatible with conductor material and that possess equivalent or better mechanical strength and insulation ratings than unspliced conductors.

C. Wiring at Outlets: Install conductor at each outlet, with at least 8 inches (200 mm) of slack.

D. Joints of #10 AWG and smaller shall be made with properly insulated solderless type pressure connectors. Where stranded conductors or multiple solid conductors are connected to terminals, solderless lugs manufactured by Thomas and Betts Company or equivalent shall be used.

E. Joints of #8 AWG and larger in power and lighting circuits shall be of the type indented into the conductor by means of a hand or hydraulic pressure tool. Connectors shall be Burndy “Hy-dent”, T&B “St-Kon”, or equivalent. Connectors for control wiring shall be Burndy “Hy-Lug”, or equivalent.

F. All circuits for exterior electric work shall be #10 AWG (minimum) and contain an extra #10 AWG (minimum) copper ground conductor. All exterior wiring shall be installed in conduit as specified above, unless otherwise noted on the Drawings.

3.5 SLEEVE INSTALLATION FOR ELECTRICAL PENETRATIONS

A. Coordinate sleeve selection and application with selection and application of firestopping specified in Division 26 Section "Firestopping." and “Basic Electrical Materials and Methods”.

3.6 SLEEVE-SEAL INSTALLATION

A. Install to seal underground exterior-wall penetrations according to Division 26 Section, “Basic Electrical Materials and Methods”.

3.7 FIRESTOPPING

A. Apply firestopping to electrical penetrations of fire-rated floor and wall assemblies to restore original fire-resistance rating of assembly according to Division 7 Section "Through Penetration Firestop System."
3.8 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified independent testing agency to perform field quality-control testing.

B. Testing: On installation of wires and cables and before electrical circuitry has been energized, demonstrate product capability and compliance with requirements.

 Procedures: Perform each visual and mechanical inspection and electrical test stated in NETA ATS Section 7.3.1. Certify compliance with test parameters.

C. Correct malfunctioning conductors and cables at Project site, where possible, and retest to demonstrate compliance; otherwise, remove and replace with new units and retest.

D. Measure tightness of bolted connections and compare torque measurements with manufacturer’s recommended values.

E. Verify continuity of each branch circuit conductor.

F. Tests: Service Entrance Cables, Power & Lighting Distribution Feeders and Feeders to all major mechanical equipment at 60A and over (i.e., chillers, AHU’s, etc.).

 1. Tests shall be performed with a 1000-volt megger, and conductors shall test free from short-circuits and grounds.
 2. Conductors shall be tested phase-to-phase and phase-to-ground.
 3. Furnish the instruments, materials, and labor required. Perform the tests in the presence of the Contracting Officer.
 4. Test readings shall be recorded and delivered to Owner and Engineer in a report.
 5. Copy of Test results shall be included in O&M Manuals.

G. Demonstration: Subsequent to wire and cable hook-ups, energize circuit and demonstrate functioning in accordance with requirements. Where necessary, correct malfunctioning units, and then retest to demonstrate compliance.

END OF SECTION
SECTION 260526

GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes methods and materials for grounding systems and equipment, plus the following special applications:

 1. Underground distribution grounding.
 2. Common ground bonding with lightning protection system.

1.3 SUBMITTALS

A. Product Data: For each type of product indicated.

B. Other Informational Submittals: Plans showing dimensioned as-built locations of grounding features specified in Part 3 "Field Quality Control" Article, including the following:

 1. Test wells.
 2. Ground rods.
 3. Ground rings.
 4. Grounding arrangements and connections for separately derived systems.
 5. Grounding for sensitive electronic equipment.

C. Qualification Data: For testing agency and testing agency's field supervisor.

D. Field quality-control test reports.

E. Operation and Maintenance Data: For grounding to include the following in emergency, operation, and maintenance manuals:

 1. Instructions for periodic testing and inspection of grounding features at test wells, ground rings, grounding connections for separately derived systems based on NETA MTS.

 a. Tests shall be to determine if ground resistance or impedance values remain within specified maximums, and instructions shall recommend corrective action if they do not.
b. Include recommended testing intervals.

1.4 QUALITY ASSURANCE

A. Testing Agency Qualifications: An independent agency, with the experience and capability to conduct the testing indicated, that is a member company of the InterNational Electrical Testing Association or is a nationally recognized testing laboratory (NRTL) as defined by OSHA in 29 CFR 1910.7, and that is acceptable to authorities having jurisdiction.

1. Testing Agency's Field Supervisor: Person currently certified by the InterNational Electrical Testing Association to supervise on-site testing specified in Part 3.

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

C. Comply with UL 467 for grounding and bonding materials and equipment.

PART 2 - PRODUCTS

2.1 CONDUCTORS

A. Insulated Conductors: Copper wire or cable insulated for 600 V unless otherwise required by applicable Code or authorities having jurisdiction.

B. Bare Copper Conductors:

4. Bonding Cable: 28 kcmil, 14 strands of No. 17 AWG conductor, 1/4 inch (6 mm) in diameter, unless otherwise noted.
5. Bonding Conductor: No. 4 or No. 6 AWG, stranded conductor, unless otherwise noted.
6. Bonding Jumper: Copper tape, braided conductors, terminated with copper ferrules; 1-5/8 inches (41 mm) wide and 1/16 inch (1.6 mm) thick.

C. Grounding Bus: Rectangular bars of annealed copper, 1/4 by 2 inches (6 by 50 mm) in cross section, unless otherwise indicated; with insulators.

2.2 CONNECTORS

A. Listed and labeled by a nationally recognized testing laboratory acceptable to authorities having jurisdiction for applications in which used, and for specific types, sizes, and combinations of conductors and other items connected.
B. Bolted Connectors for Conductors and Pipes: Copper or copper alloy, bolted pressure-type, with at least two bolts.
 1. Pipe Connectors: Clamp type, sized for pipe.
C. Welded Connectors: Exothermic-welding kits of types recommended by kit manufacturer for materials being joined and installation conditions.

2.3 GROUNDING ELECTRODES
A. Ground Rods: Copper-clad steel, sectional type; 3/4 inch by 10 feet (19 mm by 3 m) in diameter.

PART 3 - EXECUTION

3.1 APPLICATIONS
A. Conductors: Install solid conductor for No. 10 AWG and smaller, and stranded conductors for No. 8 AWG and larger, unless otherwise indicated.
B. Underground Grounding Conductors: Install bare tinned-copper conductor, No. 4/0 AWG minimum.
 1. Bury at least 24 inches (600 mm) below grade.
C. Grounding Bus: Install in electrical and telephone equipment rooms, in rooms housing service equipment, and elsewhere as indicated.
 1. Install bus on insulated spacers 1 inch (25 mm), minimum, from wall 6 inches (150 mm) above finished floor, unless otherwise indicated.
D. Conductor Terminations and Connections:
 1. Pipe and Equipment Grounding Conductor Terminations: Bolted connectors.
 2. Underground Connections: Welded connectors, except at test wells and as otherwise indicated.
 3. Connections to Ground Rods at Test Wells: Bolted connectors.

3.2 GROUNDING SEPARATELY DERIVED SYSTEMS
A. Generator: Install grounding electrode(s) at the generator location. The electrode shall be connected to the equipment grounding conductor and to the frame of the generator.
3.3 GROUNDING UNDERGROUND DISTRIBUTION SYSTEM COMPONENTS

A. Comply with IEEE C2 grounding requirements.

B. Grounding Manholes and Handholes: Install a driven ground rod through manhole or handhole floor, close to wall, and set rod depth so 4 inches (100 mm) will extend above finished floor. If necessary, install ground rod before manhole is placed and provide No. 1/0 AWG bare, tinned-copper conductor from ground rod into manhole through a waterproof sleeve in manhole wall. Protect ground rods passing through concrete floor with a double wrapping of pressure-sensitive insulating tape or heat-shrunk insulating sleeve from 2 inches (50 mm) above to 6 inches (150 mm) below concrete. Seal floor opening with waterproof, nonshrink grout.

C. Grounding Connections to Manhole Components: Bond exposed-metal parts such as inserts, cable racks, pulling irons, ladders, and cable shields within each manhole or handhole, to ground rod or grounding conductor. Make connections with No. 4 AWG minimum, stranded, hard-drawn copper bonding conductor. Train conductors level or plumb around corners and fasten to manhole walls. Connect to cable armor and cable shields as recommended by manufacturer of splicing and termination kits.

3.4 EQUIPMENT GROUNDING

A. Install insulated equipment grounding conductors with all feeders and branch circuits of the same type as the circuit conductors. Install in same conduit with circuit conductors.

B. Air-Duct Equipment Circuits: Install insulated equipment grounding conductor to duct-mounted electrical devices operating at 120 V and more, including air cleaners, heaters, dampers, humidifiers, and other duct electrical equipment. Bond conductor to each unit and to air duct and connected metallic piping.

C. Water Heater, Heat-Tracing, and Antifrost Heating Cables: Install a separate insulated equipment grounding conductor to each electric water heater and heat-tracing cable. Bond conductor to heater units, piping, connected equipment, and components.

D. Signal and Communication Equipment: For telephone, alarm, voice and data, and other communication equipment, provide No. 4 AWG minimum insulated grounding conductor in raceway from grounding electrode system to each service location, terminal cabinet, wiring closet, and central equipment location.

2. Terminal Cabinets: Terminate grounding conductor on cabinet grounding terminal.
E. **Metal and Wood Poles Supporting Outdoor Lighting Fixtures:** Install grounding electrode and a separate insulated equipment grounding conductor in addition to grounding conductor installed with branch-circuit conductors.

3.5 **INSTALLATION**

A. **Grounding Conductors:** Route along shortest and straightest paths possible, unless otherwise indicated or required by Code. Avoid obstructing access or placing conductors where they may be subjected to strain, impact, or damage. Where ground lug and bonding conductors installed indoors exceed 3 feet in length, install in EMT conduit.

B. **Common Ground Bonding with Lightning Protection System:** Comply with NFPA 780 and UL 96 when interconnecting with lightning protection system. Bond electrical power system ground directly to lightning protection system grounding conductor at closest point to electrical service grounding electrode. Use bonding conductor sized same as system grounding electrode conductor, and install in conduit.

C. **Ground Rods:** Drive rods until tops are 2 inches (50 mm) below finished floor or final grade, unless otherwise indicated.

1. Interconnect ground rods with grounding electrode conductor below grade and as otherwise indicated. Make connections without exposing steel or damaging coating, if any.

D. **Test Wells:** Ground rod driven through drilled hole in bottom of handhole. Handholes are specified in Division 26 Section "Underground Ductbanks," and shall be at least 12 inches (300 mm) deep, with cover.

1. **Test Wells:** Install at least one test well for each service, unless otherwise indicated. Install at the ground rod electrically closest to service entrance. Set top of test well flush with finished grade or floor. Provide all test wells with twist lock cover, Harger#GAW910 or approved equal.

E. **Bonding Straps and Jumpers:** Install in locations accessible for inspection and maintenance, except where routed through short lengths of conduit.

1. **Bonding to Structure:** Bond straps directly to basic structure, taking care not to penetrate any adjacent parts.
2. **Bonding to Equipment Mounted on Vibration Isolation Hangers and Supports:** Install so vibration is not transmitted to rigidly mounted equipment.
3. Use exothermic-welded connectors for outdoor locations, but if a disconnect-type connection is required, use a bolted clamp.

F. **Grounding and Bonding for Piping:**

1. **Metal Water Service Pipe:** Install insulated copper grounding conductors, in conduit, from building's main service equipment, or grounding bus, to main metal water service entrances to building. Connect grounding conductors to main metal water service pipes, using a bolted clamp connector or by bolting a
lug-type connector to a pipe flange, using one of the lug bolts of the flange. Where a dielectric main water fitting is installed, connect grounding conductor on street side of fitting. Bond metal grounding conductor conduit or sleeve to conductor at each end.

2. Water Meter Piping: Use braided-type bonding jumpers to electrically bypass water meters. Connect to pipe with a bolted connector.

3. Bond each aboveground portion of gas piping system downstream from equipment shutoff valve.

G. Bonding Interior Metal Ducts: Bond metal air ducts to equipment grounding conductors of associated fans, blowers, electric heaters, and air cleaners. Install tinned bonding jumper to bond across flexible duct connections to achieve continuity.

H. Grounding for Steel Building Structure: Install a driven ground rod at base of each corner column and at intermediate exterior columns at distances not more than 60 feet (18 m) apart.

3.6 FIELD QUALITY CONTROL

A. Perform the following tests and inspections and prepare test reports:

1. After installing grounding system but before permanent electrical circuits have been energized, test for compliance with requirements.

2. Test completed grounding system at each location where a maximum ground-resistance level is specified, at service disconnect enclosure grounding terminal, at ground test wells and at individual ground rods. Make tests at ground rods before any conductors are connected.

 a. Measure ground resistance not less than two full days after last trace of precipitation and without soil being moistened by any means other than natural drainage or seepage and without chemical treatment or other artificial means of reducing natural ground resistance.

 b. Perform tests by fall-of-potential method according to IEEE 81.

3. Prepare dimensioned drawings locating each test well, ground rod and ground rod assembly, and other grounding electrodes. Identify each by letter in alphabetical order, and key to the record of tests and observations. Include the number of rods driven and their depth at each location, and include observations of weather and other phenomena that may affect test results. Describe measures taken to improve test results.

B. Report measured ground resistances that exceed the following values:

1. Power and Lighting Equipment or System: 10 ohms.

C. Excessive Ground Resistance: If resistance to ground exceeds specified values, notify Architect promptly and include recommendations to reduce ground resistance.

END OF SECTION
SECTION 260529
HANGERS AND SUPPORTS FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary
 Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. This Section includes the following:
 1. Hangers and supports for electrical equipment and systems.

1.3 DEFINITIONS
A. EMT: Electrical metallic tubing.
B. IMC: Intermediate metal conduit.
C. RMC: Rigid metal conduit.

1.4 PERFORMANCE REQUIREMENTS
A. Design supports for multiple raceways capable of supporting combined weight of
 supported systems and its contents.

1.5 ACTION SUBMITTALS
A. Product Data: For the following:
 1. Steel slotted support systems.
B. Shop Drawings: Show fabrication and installation details and include calculations for the
 following:
 1. Trapeze hangers. Include Product Data for components.
 2. Steel slotted channel systems. Include Product Data for components.
 3. Equipment supports.
C. Comply with NFPA 70.
1.6 COORDINATION

A. Coordinate installation of roof curbs, equipment supports, and roof penetrations. These items are specified in Section 07 7200 "Roof Accessories."

PART 2 - PRODUCTS

2.1 SUPPORT, ANCHORAGE, AND ATTACHMENT COMPONENTS

A. Steel Slotted Support Systems: Comply with MFMA-4, factory-fabricated components for field assembly.

1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

 a. Allied Tube & Conduit.
 b. Cooper B-Line, Inc.
 c. ERICO International Corporation.
 d. GS Metals Corp.
 e. Thomas & Betts Corporation.
 f. Unistrut; Atkore International.
 g. Wesanco, Inc.

2. Metallic Coatings: Hot-dip galvanized after fabrication and applied according to MFMA-4.

3. Channel Dimensions: Selected for applicable load criteria.

B. Raceway and Cable Supports: As described in NECA 1 and NECA 101.

C. Conduit and Cable Support Devices: Steel hangers, clamps, and associated fittings, designed for types and sizes of raceway or cable to be supported.

D. Support for Conductors in Vertical Conduit: Factory-fabricated assembly consisting of threaded body and insulating wedging plug or plugs for non-armored electrical conductors or cables in riser conduits. Plugs shall have number, size, and shape of conductor gripping pieces as required to suit individual conductors or cables supported.

E. Structural Steel for Fabricated Supports and Restraints: ASTM A 36/A 36M, steel plates, shapes, and bars; black and galvanized.

F. Mounting, Anchoring, and Attachment Components: Items for fastening electrical items or their supports to building surfaces include the following:

 1. Mechanical-Expansion Anchors: Insert-wedge-type, zinc-coated steel, for use in hardened portland cement concrete with tension, shear, and pullout capacities appropriate for supported loads and building materials in which used.
a. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

1) Cooper B-Line, Inc.
2) Empire Tool and Manufacturing Co., Inc.
3) Hilti, Inc.
4) ITW Ramset/Red Head; Illinois Tool Works, Inc.
5) MKT Fastening, LLC.

2. Concrete Inserts: Steel or malleable-iron, slotted support system units similar to MSS Type 18; complying with MFMA-4 or MSS SP-58.

3. Clamps for Attachment to Steel Structural Elements: MSS SP-58, type suitable for attached structural element.

4. Through Bolts: Structural type, hex head, and high strength. Comply with ASTM A 325.

5. Toggle Bolts: All-steel springhead type.

PART 3 - EXECUTION

3.1 APPLICATION

A. Comply with NECA 1 and NECA 101 for application of hangers and supports for electrical equipment and systems except if requirements in this Section are stricter.

B. In first paragraph below, support spacings in NECA 1, Table 1, are more detailed and specific and generally stricter than those permitted by NFPA 70 for EMT, IMC, and RMC. Revise to suit Project, and consider retaining reference to NECA table for critical projects.

C. Maximum Support Spacing and Minimum Hanger Rod Size for Raceway: Space supports for EMT, IMC, and RMC as scheduled in NECA 1, where its Table 1 lists maximum spacings less than stated in NFPA 70. Minimum rod size shall be 1/4 inch in diameter.

D. Multiple Raceways or Cables: Install trapeze-type supports fabricated with steel slotted support system, sized so capacity can be increased by at least 25 percent in future without exceeding specified design load limits.

1. Secure raceways and cables to these supports with two-bolt conduit clamps.

3.2 SUPPORT INSTALLATION

A. Comply with NECA 1 and NECA 101 for installation requirements except as specified in this Article.
B. Raceway Support Methods: In addition to methods described in NECA 1, EMT, IMC, and RMC may be supported by openings through structure members, as permitted in NFPA 70.

C. Strength of Support Assemblies: Where not indicated, select sizes of components so strength will be adequate to carry present and future static loads within specified loading limits. Minimum static design load used for strength determination shall be weight of supported components plus 200 lb.

D. Mounting and Anchorage of Surface-Mounted Equipment and Components: Anchor and fasten electrical items and their supports to building structural elements by the following methods unless otherwise indicated by code:

1. To Wood: Fasten with lag screws or through bolts.
2. To New Concrete: Bolt to concrete inserts.
3. To Masonry: Approved toggle-type bolts on hollow masonry units and expansion anchor fasteners on solid masonry units.
4. To Existing Concrete: Expansion anchor fasteners.
5. Retain first subparagraph below if powder-actuated devices are allowed. Consider deleting if Project contains both lightweight and standard-weight concrete or more than one thickness of concrete slab.
6. Instead of expansion anchors, powder-actuated driven threaded studs provided with lock washers and nuts may be used in existing standard-weight concrete 4 inches thick or greater. Do not use for anchorage to lightweight-aggregate concrete or for slabs less than 4 inches thick.
7. To Light Steel: Sheet metal screws.
8. Items Mounted on Hollow Walls and Nonstructural Building Surfaces: Mount cabinets, panelboards, disconnect switches, control enclosures, pull and junction boxes, transformers, and other devices on slotted-channel racks attached to substrate.

E. Drill holes for expansion anchors in concrete at locations and to depths that avoid reinforcing bars.

3.3 INSTALLATION OF FABRICATED METAL SUPPORTS

A. Comply with installation requirements in Section 05 5000 "Metal Fabrications" for site-fabricated metal supports.

B. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor electrical materials and equipment.

C. Field Welding: Comply with AWS D1.1/D1.1M.
3.4 CONCRETE BASES

A. Anchor equipment to concrete base.

1. Place and secure anchorage devices. Use supported equipment manufacturer's setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
2. Install anchor bolts to elevations required for proper attachment to supported equipment.
3. Install anchor bolts according to anchor-bolt manufacturer's written instructions.

3.5 PAINTING

A. Touchup: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.

1. Apply paint by brush or spray to provide minimum dry film thickness of 2.0 mils.

B. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.

END OF SECTION
SECTION 260533

RACEWAYS AND BOXES FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Metal conduits, tubing, and fittings.
 2. Metal wireways and auxiliary gutters.

1.3 DEFINITIONS

A. GRC: Galvanized rigid steel conduit.
 B. IMC: Intermediate metal conduit.

1.4 ACTION SUBMITTALS

A. Product Data: For surface raceways, wireways and fittings, floor boxes, hinged-cover enclosures, and cabinets.

PART 2 - PRODUCTS

2.1 METAL CONDUITS, TUBING, AND FITTINGS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

1. AFC Cable Systems, Inc.
3. Anamet Electrical, Inc.
4. Electri-Flex Company.
5. O-Z/Gedney.
6. Picoma Industries.
7. Republic Conduit.
8. Southwire Company.
10. Western Tube and Conduit Corporation.

B. Listing and Labeling: Metal conduits, tubing, and fittings shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

C. GRC: Comply with ANSI C80.1 and UL 6.

D. IMC: Comply with ANSI C80.6 and UL 1242.

E. EMT: Comply with ANSI C80.3 and UL 797.

F. LFMC: Flexible steel conduit with PVC jacket and complying with UL 360.

G. Fittings for Metal Conduit: Comply with NEMA FB 1 and UL 514B.

1. Fittings for EMT:
 a. Material: Steel.
 b. Type: Compression.

2. Expansion Fittings: Steel to match conduit type, complying with UL 651, rated for environmental conditions where installed, and including flexible external bonding jumper.

H. Joint Compound for IMC or GRC: Approved, as defined in NFPA 70, by authorities having jurisdiction for use in conduit assemblies, and compounded for use to lubricate and protect threaded conduit joints from corrosion and to enhance their conductivity.

I. ENT: Comply with NEMA TC 13 and UL 1653.

J. Fittings for ENT: Comply with NEMA TC 3; match to conduit or tubing type and material.

K. Solvent cements and adhesive primers shall have a VOC content of 510 and 550 g/L or less, respectively, when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

L. Solvent cements and adhesive primers shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

2.2 METAL WIREWAYS AND AUXILIARY GUTTERS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
1. Cooper B-Line, Inc.
2. Hoffman.
4. Square D.

B. Description: Sheet metal, complying with UL 870 and NEMA 250, Type 1 or Type 3R unless otherwise indicated, and sized according to NFPA 70.

1. Metal wireways installed outdoors shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

C. Fittings and Accessories: Include covers, couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, and other fittings to match and mate with wireways as required for complete system.

D. Wireway Covers: Screw-cover type unless otherwise indicated.

E. Finish: Manufacturer's standard enamel finish.

2.3 BOXES, ENCLOSURES, AND CABINETS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

1. Adalet.
2. Cooper Technologies Company; Cooper Crouse-Hinds.
3. EGS/Appleton Electric.
5. FSR Inc.
8. Kraloy.
10. Mono-Systems, Inc.
12. RACO; Hubbell.
13. Robroy Industries.
14. Spring City Electrical Manufacturing Company.
15. Stahlin Non-Metallic Enclosures.
17. Wiremold / Legrand.

B. General Requirements for Boxes, Enclosures, and Cabinets: Boxes, enclosures, and cabinets installed in wet locations shall be listed for use in wet locations.
C. Sheet Metal Outlet and Device Boxes: Comply with NEMA OS 1 and UL 514A.

 1. Listing and Labeling: Metal floor boxes shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

D. Luminaire Outlet Boxes: Nonadjustable, designed for attachment of luminaire weighing 50 lb. Outlet boxes designed for attachment of luminaires weighing more than 50 lb shall be listed and marked for the maximum allowable weight.

E. Small Sheet Metal Pull and Junction Boxes: NEMA OS 1.

F. Box extensions used to accommodate new building finishes shall be of same material as recessed box.

G. Device Box Dimensions: 4 inches square by 2-1/8 inches deep.

H. Gangable boxes are prohibited.

I. Cabinets:

 1. NEMA 250, Type 1 or Type 3R galvanized-steel box with removable interior panel and removable front, finished inside and out with manufacturer's standard enamel.
 2. Hinged door in front cover with flush latch and concealed hinge.
 3. Key latch to match panelboards.
 4. Metal barriers to separate wiring of different systems and voltage.

PART 3 - EXECUTION

3.1 RACEWAY APPLICATION

A. Outdoors: Apply raceway products as specified below unless otherwise indicated:

 1. Exposed Conduit: GRC or IMC.
 2. Connection to Vibrating Equipment (Including Transformers and Hydraulic, Pneumatic, Electric Solenoid, or Motor-Driven Equipment): LFMC.
 3. Boxes and Enclosures, Aboveground: NEMA 250, Type 3R.

B. Indoors: Apply raceway products as specified below unless otherwise indicated:

 1. Exposed, Not Subject to Physical Damage: GRC TO 8'-0" AFF and EMT above 8'-0" AFF.
 2. Exposed and Subject to Physical Damage: GRC. Raceway locations include the following:
 a. Corridors used for traffic of mechanized carts, forklifts, and pallet-handling units.
 b. Mechanical rooms.
3. Concealed in Ceilings and Interior Walls and Partitions: EMT.
4. Connection to Vibrating Equipment (Including Transformers and Hydraulic, Pneumatic, Electric Solenoid, or Motor-Driven Equipment): FMC, except use LFMC in damp or wet locations.
5. Damp or Wet Locations: GRC.
6. Boxes and Enclosures: NEMA 250, Type 1, except use NEMA 250, Type 4 stainless steel in institutional and commercial kitchens and damp or wet locations.

C. Minimum Raceway Size: 3/4-inch trade size.

D. Raceway Fittings: Compatible with raceways and suitable for use and location.
 1. Rigid and Intermediate Steel Conduit: Use threaded rigid steel conduit fittings unless otherwise indicated. Comply with NEMA FB 2.10.
 2. EMT: Use compression, steel fittings. Comply with NEMA FB 2.10.
 3. Flexible Conduit: Use only fittings listed for use with flexible conduit. Comply with NEMA FB 2.20.

3.2 INSTALLATION

A. Comply with NECA 1 and NECA 101 for installation requirements except where requirements on Drawings or in this article are stricter. Comply with NFPA 70 limitations for types of raceways allowed in specific occupancies and number of floors.

B. Keep raceways at least 6 inches away from parallel runs of flues and steam or hot-water pipes. Install horizontal raceway runs above water and steam piping.

C. Complete raceway installation before starting conductor installation.

D. Comply with requirements in Section 26 0529 "Hangers and Supports for Electrical Systems" for hangers and supports.

E. Arrange stub-ups so curved portions of bends are not visible above finished slab.

F. Install no more than the equivalent of three 90-degree bends in any conduit run except for control wiring conduits, for which fewer bends are allowed. Support within 12 inches of changes in direction.

G. Conceal conduit and EMT within finished walls, ceilings, and floors unless otherwise indicated. Install conduits parallel or perpendicular to building lines.

H. Support conduit within 12 inches of enclosures to which attached.

I. Stub-ups to Above Recessed Ceilings:
 1. Use EMT, IMC, or RMC for raceways.
 2. Use a conduit bushing or insulated fitting to terminate stub-ups not terminated in hubs or in an enclosure.
J. Threaded Conduit Joints, Exposed to Wet, Damp, Corrosive, or Outdoor Conditions: Apply listed compound to threads of raceway and fittings before making up joints. Follow compound manufacturer's written instructions.

K. Raceway Terminations at Locations Subject to Moisture or Vibration: Use insulating bushings to protect conductors including conductors smaller than No. 4 AWG.

L. Terminate threaded conduits into threaded hubs or with locknuts on inside and outside of boxes or cabinets. Install bushings on conduits up to 1-1/4-inch trade size and insulated throat metal bushings on 1-1/2-inch trade size and larger conduits terminated with locknuts. Install insulated throat metal grounding bushings on service conduits.

M. Install raceways square to the enclosure and terminate at enclosures with locknuts. Install locknuts hand tight plus 1/4 turn more.

N. Do not rely on locknuts to penetrate nonconductive coatings on enclosures. Remove coatings in the locknut area prior to assembling conduit to enclosure to assure a continuous ground path.

O. Cut conduit perpendicular to the length. For conduits 2-inch trade size and larger, use roll cutter or a guide to make cut straight and perpendicular to the length.

P. Install pull wires in empty raceways. Use polypropylene or monofilament plastic line with not less than 200-lb tensile strength. Leave at least 12 inches of slack at each end of pull wire.

Q. Install raceway sealing fittings at accessible locations according to NFPA 70 and fill them with listed sealing compound. For concealed raceways, install each fitting in a flush steel box with a blank cover plate having a finish similar to that of adjacent plates or surfaces. Install raceway sealing fittings according to NFPA 70.

R. Install devices to seal raceway interiors at accessible locations. Locate seals so no fittings or boxes are between the seal and the following changes of environments. Seal the interior of all raceways at the following points:

1. Where conduits pass from warm to cold locations, such as boundaries of refrigerated spaces.
2. Where otherwise required by NFPA 70.
3. Install expansion fittings at all locations where conduits cross building or structure expansion joints.
4. Install each expansion-joint fitting with position, mounting, and piston setting selected according to manufacturer's written instructions for conditions at specific location at time of installation. Install conduit supports to allow for expansion movement.

S. Flexible Conduit Connections: Comply with NEMA RV 3. Use a maximum of 72 inches of flexible conduit for recessed and semirecessed luminaires, equipment subject to vibration, noise transmission, or movement; and for transformers and motors.
T. Mount boxes at heights indicated on Drawings. If mounting heights of boxes are not individually indicated, give priority to ADA requirements. Install boxes with height measured to center of box unless otherwise indicated.

U. Recessed Boxes in Masonry Walls: Saw-cut opening for box in center of cell of masonry block, and install box flush with surface of wall. Prepare block surfaces to provide a flat surface for a raintight connection between box and cover plate or supported equipment and box.

V. Horizontally separate boxes mounted on opposite sides of walls so they are not in the same vertical channel.

W. Locate boxes so that cover or plate will not span different building finishes.

X. Support boxes of three gangs or more from more than one side by spanning two framing members or mounting on brackets specifically designed for the purpose.

Y. Fasten junction and pull boxes to or support from building structure. Do not support boxes by conduits.

3.3 SLEEVE AND SLEEVE-SEAL INSTALLATION FOR ELECTRICAL PENETRATIONS

A. Install sleeves and sleeve seals at penetrations of exterior floor and wall assemblies. Comply with requirements in Section 26 0544 "Sleeves and Sleeve Seals for Electrical Raceways and Cabling."

3.4 FIRESTOPPING

A. Install firestopping at penetrations of fire-rated floor and wall assemblies. Comply with requirements in Section 07 8413 "Penetration Firestopping."

3.5 PROTECTION

A. Protect coatings, finishes, and cabinets from damage and deterioration.

1. Repair damage to galvanized finishes with zinc-rich paint recommended by manufacturer.

END OF SECTION
SECTION 260543
UNDERGROUND DUCTS AND HANDHOLES

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
1. Conduit, ducts, and duct accessories.
2. Handholes.
3. Pull Boxes

1.2 DEFINITIONS

A. Traffic ways: Locations where vehicular or pedestrian traffic is a normal course of events.
B. Duct: The general term for electrical conduit and other raceway, either metallic or nonmetallic, specified for use underground, embedded in earth or concrete.
C. Duct Bank: A group of two or more ducts in a continuous run between two points

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.
1. Include duct-bank materials, including separators and miscellaneous components.
2. Include ducts and conduits and their accessories, including elbows, end bells, bends, fittings, and solvent cement.
3. Include accessories for handholes and pull boxes.
4. Include warning tape.
5. Include warning planks.

B. Shop Drawings:
1. Precast or Factory-Fabricated Underground Utility Structures:
 a. Include plans, elevations, sections, details, attachments to other work, and accessories.
 b. Include duct entry provisions, including locations and duct sizes.
 c. Include reinforcement details.
 d. Include frame and cover design and manhole frame support rings.
 e. Include ladder details.
 f. Include grounding details.
 g. Include joint details.
1.4 INFORMATIONAL SUBMITTALS

A. Duct-Bank Coordination Drawings: Show duct profiles and coordination with other utilities and underground structures.
 1. Include plans and sections, drawn to scale, and show bends and locations of expansion fittings.
 2. Drawings shall be signed and sealed by a qualified professional engineer.

B. Product Certificates: For concrete and steel used in precast concrete handholes, as required by ASTM C 858.

C. Source quality-control reports.

D. Field quality-control reports.

1.5 MAINTENANCE MATERIALS SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

B. Furnish cable-support stanchions, arms, insulators, and associated fasteners in quantities equal to ten (10) percent of quantity of each item installed.

1.6 QUALITY ASSURANCE

A. Testing Agency Qualifications: Qualified according to ASTM E 329 for testing indicated.

1.7 FIELD CONDITIONS

A. Interruption of Existing Electrical Service: Do not interrupt electrical service to facilities occupied by Owner or others unless permitted under the following conditions, and then only after arranging to provide temporary electrical service according to requirements indicated:
 1. Notify Owner no fewer than fourteen (14) days in advance of proposed interruption of electrical service.
 2. Do not proceed with interruption of electrical service without Owner's written permission.

B. Ground Water: Assume ground-water level is 36 inches below ground surface unless a higher water table is noted on Drawings.
PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR DUCTS
 A. Comply with ANSI C2.
 B. Ducts and duct fittings and accessories shall be UL listed and labeled.

2.2 CONDUIT
 A. RNC: NEMA TC 2, Type EPC-40-PVC, UL 651, with matching fittings by same manufacturer as the conduit, complying with NEMA TC 3 and UL 514B.

2.3 NONMETALLIC DUCTS AND DUCT ACCESSORIES
 A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. AFC Cable Systems, Inc.
 3. Anamet Electrical, Inc.
 4. Electri-Flex Company.
 5. O-Z/Gedney.
 6. Picoma Industries.
 7. Republic Conduit.
 8. Thomas & Betts Corporation.
 9. Western Tube and Conduit Corporation.
 10. Wheatland Tube Company.
 B. Duct Accessories:
 1. Duct Separators: Factory-fabricated rigid PVC interlocking spacers, sized for type and size of ducts with which used, and selected to provide minimum duct spacing indicated while supporting ducts during concreting or backfilling.
 2. Warning Tape: Underground-line warning tape; 6"x4 ml detectable duct bank marking tape (center over duct bank.).
 3. Concrete Warning Planks: Nominal 12 by 24 by 3 inches in size, manufactured from 6000-psi (41-MPa) concrete.
 b. Mark each plank with "ELECTRIC" in 2-inch high, 3/8-inch deep letters.

2.4 PRECAST HANDHOLES
 A. Unless otherwise indicated, precast concrete handholes shall conform to Delaware Department of Transportation standards for conduit and junction wells: T-1; type 1, Type 4 and Type 5, T-2, and T-3; Type 11, Type 14 and Type 15.
 B. Conduit junction well lid shall be precast polymer concrete with a heavy-weave fiberglass frame. Installed on a precast concrete well.
C. Conduit junction well body shall be precast concrete. At least one hole in precast wells will be of a 5” diameter completely through the wall. Unused holes shall be plugged.

D. All conduit junction wells placed in paved areas shall be constructed flush with the finished grade. All conduit junction wells placed in unpaved areas shall be constructed above finished grade and graded to drain away from the well, as detailed.

E. All cracks, gaps, or openings in junction well wall shall be sealed with concrete.

F. Conduit junction wells shall be provided with bolt down checkered steel lid identified as “Del DOT ELECTRIC” or “Del DOT COMMUNICATIONS”, as required.

G. Provide end bells for all duct penetrations.

2.5 SOURCE QUALITY CONTROL

A. Test and inspect precast concrete utility structures according to ASTM C 1037.

PART 3 - EXECUTION

3.1 PREPARATION

A. Coordinate layout and installation of ducts and handholes with final arrangement of other utilities, site grading, and surface features as determined in the field. Notify Architect if there is a conflict between areas of excavation and existing structures or archaeological sites to remain.

B. Coordinate elevations of ducts and duct-bank entrances into manholes with final locations and profiles of ducts and duct banks, as determined by coordination with other utilities, underground obstructions, and surface features. Revise locations and elevations as required to suit field conditions and to ensure that duct runs drain to manholes and as approved by Architect.

3.2 MEDIUM VOLTAGE DUCT BANKS

A. Medium voltage duct banks constructed for medium voltage feeders shall be, 5” diameter (minimum) PVC tubes schedule 80, with a minimum of two tubes.

B. Duct banks shall utilize “long sweep” elbows.

C. Duct banks terminating in pull boxes shall have “bell ends”, where the tubes penetrate the wall, or bushings if terminating in equipment.

D. Duct banks shall have a minimum of 24” cover from the top of the duct bank to the top of grade.

E. Duct banks shall include a minimum of 100% spare tubes.
F. Duct banks should be graded gently sloping down toward each manhole (3” per 100’ minimum).

G. Utilize rigid PVC spacers to provide minimum duct spacing and concrete cover depths while supporting tubes during concrete pours.

H. Install reinforcement in duct banks passing through disturbed earth and when running perpendicular across roadways.

I. Waterproof floor and wall penetrations of the duct tubes, prior to pouring concrete around the tubes

J. Provide 6” of separation in combined duct banks between medium voltage tubes and communication or low voltage tubes.

K. Provide a minimum of 18” separation when crossing steam or hot water lines. Duct banks shall cross under steam and hot water lines, unless depth of duct bank exceeds 8’.

L. Duct banks shall not run parallel to steam lines, unless there is at least a 5’ separation between duct bank and steam line.

M. Empty tubes shall have pull strings installed, and tied off at both ends.

3.3 LOW VOLTAGE DUCT BANKS

A. Low voltage duct banks constructed for service entrance feeders or emergency power feeders shall be concrete-encased, PVC tubes as shown on drawings.

B. Duct banks shall utilize “long sweep” elbows.

C. Duct banks terminating in buildings or junction wells shall have “bell ends”, where the tubes penetrate the wall.

D. Duct banks shall have a minimum of 24” cover from the top of the duct bank to the top of grade.

E. Duct banks shall include a minimum of 50% spare tubes.

3.4 EARTHWORK

A. Excavation and Backfill: Comply with Section 31 2000 "Earth Moving," but do not use heavy-duty, hydraulic-operated, compaction equipment.

B. Restore surface features at areas disturbed by excavation, and re-establish original grades unless otherwise indicated. Replace removed sod immediately after backfilling is completed.
C. Restore areas disturbed by trenching, storing of dirt, cable laying, and other work. Restore vegetation and include necessary top soilng, fertilizing, liming, seeding, sodding, sprigging, and mulching.

D. Cut and patch existing pavement in the path of underground ducts and utility structures according to the "Cutting and Patching" Article in Section 01 7300 "Execution."

3.5 DUCT INSTALLATION

A. Install ducts according to NEMA TCB 2.

B. Slope: Pitch ducts a minimum slope of 3” per 100’ down toward junction wells and away from buildings and equipment. Slope ducts from a high point in runs between two manholes, to drain in both directions.

C. Curves and Bends: Use 5-degree angle couplings for small changes in direction. Use manufactured long sweep bends with a minimum radius of 48 inches, both horizontally and vertically, at other locations unless otherwise indicated.

D. Joints: Use solvent-cemented joints in ducts and fittings and make watertight according to manufacturer's written instructions. Stagger couplings so those of adjacent ducts do not lie in same plane.

E. Installation Adjacent to High-Temperature Steam Lines: Where duct banks are installed parallel to underground steam lines, perform calculations showing the duct bank will not be subject to environmental temperatures above 40 deg C. Where environmental temperatures are calculated to rise above 40 deg C, and anywhere the duct bank crosses above an underground steam line, install insulation blankets listed for direct burial to isolate the duct bank from the steam line.

F. Duct Entrances to handholes:

1. Grout end bells into structure walls from both sides to provide watertight entrances.

G. Building Wall Penetrations: Make a transition from underground duct to rigid steel conduit at least 10 feet (3 m) outside the building wall, without reducing duct line slope away from the building, and without forming a trap in the line. Use fittings manufactured for duct-to-conduit transition.

H. Sealing: Provide temporary closure at terminations of ducts that have cables pulled. Seal spare ducts at terminations. Use sealing compound and plugs to withstand at least 15-psig (1.03-MPa) hydrostatic pressure.

I. Pulling Cord: Install 100-lbf- (445-N-) test nylon cord in empty ducts.
J. Ducts: Support ducts on duct separators.

1. Excavate trench bottom to provide firm and uniform support for duct bank. Prepare trench bottoms as specified for pipes less than 6 inches in nominal diameter.

2. Width: Excavate trench 12 inches wider than duct bank on each side.

3. Width: Excavate trench 3 inches wider than duct bank on each side.

4. Depth: Install top of duct bank at least 24 inches below finished grade in areas not subject to deliberate traffic, and at least 30 inches below finished grade in deliberate traffic paths for vehicles unless otherwise indicated.

5. Support ducts on duct separators coordinated with duct size, duct spacing, and outdoor temperature.

6. Separator Installation: Space separators close enough to prevent sagging and deforming of ducts, with not less than four spacers per 20 feet of duct. Secure separators to earth and to ducts to prevent floating during concreting. Stagger separators approximately 6 inches between tiers. Tie entire assembly together using fabric straps; do not use tie wires or reinforcing steel that may form conductive or magnetic loops around ducts or duct groups.

7. Minimum Space between Ducts: 4 inches between ducts and exterior envelope wall, 4 inches between ducts for like services, and 6 inches between power and signal ducts.

8. Elbows: Use manufactured duct elbows for stub-ups at poles and equipment, at building entrances through floor, and at changes of direction in duct run unless otherwise indicated. Extend concrete encasement throughout length of elbow.

9. Elbows: Use manufactured rigid steel conduit elbows for stub-ups at poles and equipment, at building entrances through floor, and at changes of direction in duct run.

 a. Couple steel conduits to ducts with adapters designed for this purpose, and encase coupling with 3 inches of concrete.

 b. Stub-Ups to Equipment: For equipment mounted on outdoor concrete bases, extend steel conduit horizontally a minimum of 60 inches from edge of base. Install insulated grounding bushings on terminations at equipment.

K. Warning Planks: Bury warning planks approximately 12 inches above direct-buried ducts and duct banks, placing them 24 inches o.c. Align planks along the width and along the centerline of duct bank. Provide an additional plank for each 12-inch increment of duct bank width over a nominal 18 inches. Space additional planks 12 inches apart, horizontally.

L. Warning Tape: Bury warning tape approximately 12 inches above all concrete-encased ducts and duct banks. Align tape parallel to and within 3 inches of centerline of duct bank. Provide an additional warning tape for each 12-inch increment of duct bank width over a nominal 18 inches. Space additional tapes 12 inches apart, horizontally.
3.6 GROUNDING

A. Ground underground ducts and utility structures according to the authority having jurisdiction (AHJ) requirements.

3.7 FIELD QUALITY CONTROL

A. Perform the following tests and inspections and prepare test reports:

1. Demonstrate capability and compliance with requirements on completion of installation of underground ducts and utility structures.

2. Pull solid aluminum or wood test mandrel through duct to prove joint integrity and adequate bend radii, and test for out-of-round duct. Provide a minimum 6-inch long mandrel equal to 80 percent fill of duct. If obstructions are indicated, remove obstructions and retest.

3. Test manhole grounding to ensure electrical continuity of grounding and bonding connections.

B. Correct deficiencies and retest as specified above to demonstrate compliance.

3.8 TESTING

A. All medium voltage components shall be tested after they are placed in their final position. The applicable tests include; Megger, Contact Resistance, and Hi-Pot test.

B. All medium voltage cables, terminations, and splices shall be tested prior to energizing.

3.9 CLEANING

A. Pull leather-washer-type duct cleaner, with graduated washer sizes, through full length of ducts. Follow with rubber duct swab for final cleaning and to assist in spreading lubricant throughout ducts.

B. Clean internal surfaces of manholes, including sump. Remove foreign material.

END OF SECTION
SECTION 260544
SLEEVES AND SLEEVE SEALS FOR ELECTRICAL RACEWAYS AND CABLING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Sleeves for raceway and cable penetration of non-fire-rated construction walls and floors.
 2. Sleeve-seal systems.
 5. Silicone sealants.

B. Related Requirements:
 1. Section 07 8413 "Penetration Firestopping" for penetration firestopping installed in fire-resistance-rated walls, horizontal assemblies, and smoke barriers, with and without penetrating items.

PART 2 - PRODUCTS

2.1 SLEEVES

A. Wall Sleeves:

B. Sleeves for Conduits Penetrating Non-Fire-Rated Gypsum Board Assemblies:
 Galvanized-steel sheet; 0.0239-inch minimum thickness; round tube closed with welded longitudinal joint, with tabs for screw-fastening the sleeve to the board.

C. Sleeves for Rectangular Openings:
 2. Minimum Metal Thickness:
a. For sleeve cross-section rectangle perimeter less than 50 inches and with no side larger than 16 inches, thickness shall be 0.052 inch.
b. For sleeve cross-section rectangle perimeter 50 inches or more and one or more sides larger than 16 inches, thickness shall be 0.138 inch.

2.2 GROUT

A. Description: Nonshrink; recommended for interior and exterior sealing openings in non-fire-rated walls or floors.

C. Design Mix: 5000-psi, 28-day compressive strength.

D. Packaging: Premixed and factory packaged.

2.3 SILICONE SEALANTS

A. Silicone Sealants: Single-component, silicone-based, neutral-curing elastomeric sealants of grade indicated below.

1. Grade: Pourable (self-leveling) formulation for openings in floors and other horizontal surfaces that are not fire rated.

B. Silicone Foams: Multicomponent, silicone-based liquid elastomers that, when mixed, expand and cure in place to produce a flexible, nonshrinking foam.

PART 3 - EXECUTION

3.1 SLEEVE INSTALLATION FOR NON-FIRE-RATED ELECTRICAL PENETRATIONS

A. Comply with NECA 1.

B. Sleeves for Conduits Penetrating Above-Grade Non-Fire-Rated Concrete and Masonry-Unit Floors and Walls:

1. Interior Penetrations of Non-Fire-Rated Walls and Floors:

 a. Seal annular space between sleeve and raceway or cable, using joint sealant appropriate for size, depth, and location of joint. Comply with requirements in Section 07 9200 "Joint Sealants."
 b. Seal space outside of sleeves with mortar or grout. Pack sealing material solidly between sleeve and wall so no voids remain. Tool exposed surfaces smooth; protect material while curing.

2. Use pipe sleeves unless penetration arrangement requires rectangular sleeved opening.
3. Size pipe sleeves to provide 1/4-inch annular clear space between sleeve and raceway or cable unless sleeve seal is to be installed.
4. Install sleeves for wall penetrations unless core-drilled holes or formed openings are used. Install sleeves during erection of walls. Cut sleeves to length for mounting flush with both surfaces of walls. Deburr after cutting.
5. Install sleeves for floor penetrations. Extend sleeves installed in floors 2 inches above finished floor level. Install sleeves during erection of floors.

C. Sleeves for Conduits Penetrating Non-Fire-Rated Gypsum Board Assemblies:
 1. Use circular metal sleeves unless penetration arrangement requires rectangular sleeved opening.
 2. Seal space outside of sleeves with approved joint compound for gypsum board assemblies.

D. Roof-Penetration Sleeves: Seal penetration of individual raceways and cables with flexible boot-type flashing units applied in coordination with roofing work.

E. Aboveground, Exterior-Wall Penetrations: Seal penetrations using steel pipe sleeves and mechanical sleeve seals. Select sleeve size to allow for 1-inch annular clear space between pipe and sleeve for installing mechanical sleeve seals.

3.2 SLEEVE-SEAL-SYSTEM INSTALLATION

A. Install sleeve-seal systems in sleeves in exterior concrete walls and slabs-on-grade at raceway entries into building.

B. Install type and number of sealing elements recommended by manufacturer for raceway or cable material and size. Position raceway or cable in center of sleeve. Assemble mechanical sleeve seals and install in annular space between raceway or cable and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

3.3 SLEEVE-SEAL-FITTING INSTALLATION

A. Install sleeve-seal fittings in new walls and slabs as they are constructed.

B. Assemble fitting components of length to be flush with both surfaces of concrete slabs and walls. Position waterstop flange to be centered in concrete slab or wall.

3.4 Secure nailing flanges to concrete forms.

A. Using grout, seal the space around outside of sleeve-seal fittings.

END OF SECTION
SECTION 260553
IDENTIFICATION FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Identification for raceways.
 2. Identification of power and control cables.
 3. Identification for conductors.
 4. Warning labels and signs.
 5. Instruction signs.
 7. Miscellaneous identification products.

1.3 ACTION SUBMITTALS
A. Product Data: For each electrical identification product indicated.

1.4 QUALITY ASSURANCE
A. Comply with ANSI A13.1.
B. Comply with NFPA 70.
D. Comply with ANSI Z535.4 for safety signs and labels.
E. Adhesive-attached labeling materials, including label stocks, laminating adhesives, and inks used by label printers, shall comply with UL 969.

1.5 COORDINATION
A. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be applied.
B. Coordinate installation of identifying devices with location of access panels and doors.
C. Install identifying devices before installing acoustical ceilings and similar concealment.

PART 2 - PRODUCTS

2.1 POWER AND CONTROL RACEWAY IDENTIFICATION MATERIALS

A. Comply with ANSI A13.1 for minimum size of letters for legend and for minimum length of color field for each raceway size.

B. Colors for Raceways Carrying Circuits at 600 V or Less:
 1. Black letters on an orange field.
 2. Legend: Indicate voltage and system or service type.

C. Write-On Tags: Polyester tag, 0.010-inch-thick, with corrosion-resistant grommet and cable tie for attachment to conductor or cable.
 1. Marker for Tags: Permanent, waterproof, black ink marker recommended by tag manufacturer.

2.2 METAL-CLAD CABLE IDENTIFICATION MATERIALS

A. Comply with ANSI A13.1 for minimum size of letters for legend and for minimum length of color field for each cable size.

B. Colors for Cables Carrying Circuits at 600 V and Less:
 1. Black letters on an orange field.
 2. Legend: Indicate voltage and system or service type.

C. Self-Adhesive Vinyl Tape: Colored, heavy duty, waterproof, fade resistant; 2 inches wide; compounded for outdoor use.

2.3 POWER AND CONTROL CABLE IDENTIFICATION MATERIALS

A. Comply with ANSI A13.1 for minimum size of letters for legend and for minimum length of color field for each cable size.

B. Write-On Tags: Polyester tag, 0.010-inch-thick, with corrosion-resistant grommet and cable tie for attachment to conductor or cable.
 1. Marker for Tags: Permanent, waterproof, black ink marker recommended by tag manufacturer.

2.4 CONDUCTOR IDENTIFICATION MATERIALS

A. Color-Coding Conductor Tape: Colored, self-adhesive vinyl tape not less than 3 mils thick by 1 to 2 inches wide.
B. Marker Tapes: Vinyl or vinyl-cloth, self-adhesive wraparound type, with circuit identification legend machine printed by thermal transfer or equivalent process.

C. Write-On Tags: Polyester tag, 0.010-inch-thick, with corrosion-resistant grommet and cable tie for attachment to conductor or cable.

 1. Marker for Tags: Permanent, waterproof, black ink marker recommended by tag manufacturer.
 2. Labels for Tags: Self-adhesive label, machine-printed with permanent, waterproof, black ink recommended by printer manufacturer, sized for attachment to tag.

2.5 WARNING LABELS AND SIGNS

B. Self-Adhesive Warning Labels: Factory-printed, multicolor, pressure-sensitive adhesive labels, configured for display on front cover, door, or other access to equipment unless otherwise indicated.

C. Baked-Enamel Warning Signs:

 1. Preprinted aluminum signs, punched or drilled for fasteners, with colors, legend, and size required for application.
 2. 1/4-inch grommets in corners for mounting.
 3. Nominal size, 7 by 10 inches.

2.6 EQUIPMENT IDENTIFICATION LABELS

A. Engraved, Laminated Acrylic or Melamine Label: Punched or drilled for screw mounting. White letters on a black background. Minimum letter height shall be 3/8 inch.

B. Stenciled Legend: In nonfading, waterproof, black ink or paint. Minimum letter height shall be 1 inch.

2.7 CABLE TIES

A. General-Purpose Cable Ties: Fungus inert, self-extinguishing, one piece, self-locking, Type 6/6 nylon.

 2. Tensile Strength at 73 deg F. According to ASTM D 638: 12,000 psi.
 3. Temperature Range: Minus 40 to plus 185 deg F.

B. Plenum-Rated Cable Ties: Self-extinguishing, UV stabilized, one piece, self locking.

 2. Tensile Strength at 73 deg F, According to ASTM D 638: 7000 psi.
PART 3 - EXECUTION

3.1 INSTALLATION

A. Verify identity of each item before installing identification products.

B. Location: Install identification materials and devices at locations for most convenient viewing without interference with operation and maintenance of equipment.

C. Apply identification devices to surfaces that require finish after completing finish work.

D. Self-Adhesive Identification Products: Clean surfaces before application, using materials and methods recommended by manufacturer of identification device.

E. Attach signs and plastic labels that are not self-adhesive type with mechanical fasteners appropriate to the location and substrate.

F. Attach plastic raceway and cable labels that are not self-adhesive type with clear vinyl tape with adhesive appropriate to the location and substrate.

G. Cable Ties: For attaching tags. Use general-purpose type, except as listed below:

 1. Outdoors: UV-stabilized nylon.
 2. In Spaces Handling Environmental Air: Plenum rated.

H. Painted Identification: Comply with requirements in painting Sections for surface preparation and paint application.

3.2 IDENTIFICATION SCHEDULE

A. Accessible Raceways and Metal-Clad Cables, 600 V or Less, for Service, Feeder, and Branch Circuits More Than 30 A, and 120 V to ground: Identify with self-adhesive vinyl tape applied in bands. Install labels at 10-foot maximum intervals.

B. Accessible Raceways and Cables within Buildings: Identify the covers of each junction and pull box of the following systems with self-adhesive vinyl labels with the wiring system legend and system voltage. System legends shall be as follows:

 2. Power.

C. Power-Circuit Conductor Identification, 600 V or Less: For conductors in vaults, pull and junction boxes use color-coding conductor tape to identify the phase.
D. Color-Coding for Phase and Voltage Level Identification, 600 V or Less: Use colors listed below for feeder and branch-circuit conductors.

1. Colors for 208/120-V Circuits:
 a. Phase A: Black.
 b. Phase B: Red.
 c. Phase C: Blue.

2. Colors for 480/277-V Circuits:
 b. Phase B: Orange.
 c. Phase C: Yellow.

E. Install instructional sign including the color-code for grounded and ungrounded conductors using adhesive-film-type labels.

F. Control-Circuit Conductor Identification: For conductors and cables in pull and junction boxes, use write-on tags with the conductor or cable designation, origin, and destination.

G. Control-Circuit Conductor Termination Identification: For identification at terminations provide self-adhesive vinyl labels with the conductor designation.

H. Workspace Indication: Install floor marking tape to show working clearances in the direction of access to live parts. Workspace shall be as required by NFPA 70 and 29 CFR 1926.403 unless otherwise indicated. Do not install at flush-mounted panelboards and similar equipment in finished spaces.

I. Warning Labels for Indoor Cabinets, Boxes, and Enclosures for Power and Lighting:
 2. Identify system voltage with black letters on an orange background.
 3. Apply to exterior of door, cover, or other access.

J. Operating Instruction Signs: Install instruction signs to facilitate proper operation and maintenance of electrical systems and items to which they connect. Install instruction signs with approved legend where instructions are needed for system or equipment operation.

K. Equipment Identification Labels: On each unit of equipment, install unique designation label that is consistent with wiring diagrams, schedules, and the Operation and Maintenance Manual. Apply labels to disconnect switches and protection equipment, central or master units, control panels, control stations, terminal cabinets, and racks of each system. Systems include power, lighting, control, communication, signal, monitoring, and alarm systems unless equipment is provided with its own identification.
L. Labeling Instructions:

1. Indoor Equipment: Engraved, laminated acrylic or melamine label. Unless otherwise indicated, provide a single line of text with 1/2-inch high letters on 1-1/2-inch high label; where two lines of text are required, use labels 2 inches high.

2. Outdoor Equipment: Engraved, laminated acrylic or melamine label 4 inches high.

3. Unless provided with self-adhesive means of attachment, fasten labels with appropriate mechanical fasteners that do not change the NEMA or NRTL rating of the enclosure.

4. Equipment to Be Labeled:

a. Panelboards: Typewritten directory of circuits in the location provided by panelboard manufacturer. Panelboard identification shall be engraved, laminated acrylic or melamine label.

b. Enclosures and electrical cabinets.

c. Access doors and panels for concealed electrical items.

d. Transformers: Label that includes tag designation shown on Drawings for the transformer, feeder, and panelboards or equipment supplied by the secondary.

e. Substations.

f. Enclosed switches.

g. Enclosed controllers.

h. Variable-speed controllers.

i. Push-button stations.

j. Contactors.

k. Remote-controlled switches, dimmer modules, and control devices.

l. Battery-inverter units.

m. Monitoring and control equipment.

END OF SECTION
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes computer-based, fault-current and overcurrent protective device coordination studies. Protective devices shall be set based on results of the protective device coordination study. Provide Arc-Flash Hazard Labels on all electrical distribution equipment with level as determined by Study. **Electrical equipment shop drawings will not be reviewed/approved until the overcurrent protective device coordination study has been submitted.**

1.3 SUBMITTALS

A. Product Data: For computer software program to be used for studies.

B. Product Certificates: For coordination-study and fault-current-study computer software programs, certifying compliance with IEEE 399.

C. Qualification Data: For coordination-study specialist.

D. Other Action Submittals: The following submittals shall be made after the approval process for system protective devices has been completed. Submittals may be in digital form.

1. Coordination-study input data, including completed computer program input data sheets.
2. Study and Equipment Evaluation Reports.

1.4 QUALITY ASSURANCE

A. Studies shall use computer programs that are distributed nationally and are in wide use. Software algorithms shall comply with requirements of standards and guides specified in this Section. Manual calculations are not acceptable.
B. Coordination-Study Specialist Qualifications: An entity experienced in the application of computer software used for studies, having performed successful studies of similar magnitude on electrical distribution systems using similar devices.

1. Professional engineer, licensed in the state where Project is located, shall be responsible for the study. All elements of the study shall be performed under the direct supervision and control of engineer.

C. Comply with IEEE 242 for short-circuit currents and coordination time intervals.

D. Comply with IEEE 399 for general study procedures.

PART 2 - PRODUCTS

2.1 COMPUTER SOFTWARE DEVELOPERS

A. Basis-of-Design Product: Subject to compliance with requirements, provide Engineering Analysis and Coordination Study performed by Coordinated Power Engineering, Inc., or a comparable product by one of the following:

1. SKM Systems Analysis, Inc.
2. ETAP
3. CGI CYME
4. EDSA Micro Corporation

2.2 COMPUTER SOFTWARE PROGRAM REQUIREMENTS

A. Comply with IEEE 399.

B. Analytical features of fault-current-study computer software program shall include "mandatory," "very desirable," and "desirable" features as listed in IEEE 399.

C. Computer software program shall be capable of plotting and diagramming time-current-characteristic curves as part of its output. Computer software program shall report device settings and ratings of all overcurrent protective devices and shall demonstrate selective coordination by computer-generated, time-current coordination plots.

1. Optional Features:
 a. Arcing faults.
 b. Simultaneous faults.
PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine Project overcurrent protective device submittals for compliance with electrical distribution system coordination requirements and other conditions affecting performance. Devices to be coordinated are indicated on Drawings.

3.2 POWER SYSTEM DATA

A. Gather and tabulate the following input data to support coordination study:
 1. Product Data for overcurrent protective devices specified in other Division 26 Sections and involved in overcurrent protective device coordination studies. Use equipment designation tags that are consistent with electrical distribution system diagrams, overcurrent protective device submittals, input and output data, and recommended device settings.
 2. Impedance of utility service entrance.
 3. Electrical Distribution System Diagram: In hard-copy and electronic-copy formats, showing the following:
 a. Circuit-breaker and fuse-current ratings and types.
 b. Relays and associated power and current transformer ratings and ratios.
 c. Transformer kilovolt amperes, primary and secondary voltages, connection type, impedance, and X/R ratios.
 d. Generator kilovolt amperes, size, voltage, and source impedance.
 e. Cables: Indicate conduit material, sizes of conductors, conductor material, insulation, and length.
 f. Busway ampacity and impedance.
 g. Motor horsepower and code letter designation according to NEMA MG 1.
 4. Data sheets to supplement electrical distribution system diagram, cross-referenced with tag numbers on diagram, showing the following:
 a. Special load considerations, including starting inrush currents and frequent starting and stopping.
 b. Transformer characteristics, including primary protective device, magnetic inrush current, and overload capability.
 c. Motor full-load current, locked rotor current, service factor, starting time, type of start, and thermal-damage curve.
 d. Generator thermal-damage curve.
 e. Ratings, types, and settings of utility company's overcurrent protective devices.
 f. Special overcurrent protective device settings or types stipulated by utility company.
 g. Time-current-characteristic curves of devices indicated to be coordinated.
h. Manufacturer, frame size, interrupting rating in amperes rms symmetrical, ampere or current sensor rating, long-time adjustment range, short-time adjustment range, and instantaneous adjustment range for circuit breakers.

i. Manufacturer and type, ampere-tap adjustment range, time-delay adjustment range, instantaneous attachment adjustment range, and current transformer ratio for overcurrent relays.

j. Panelboards, switchboards, motor-control center ampacity, and interrupting rating in amperes rms symmetrical.

3.3 FAULT-CURRENT STUDY

A. Calculate the maximum available short-circuit current in amperes rms symmetrical at circuit-breaker positions of the electrical power distribution system. The calculation shall be for a current immediately after initiation and for a three-phase bolted short circuit at each of the following:

1. Switchboard bus.
2. Motor-control center.
3. Distribution panelboard.
5. Automatic Transfer Switch.

B. Study electrical distribution system from normal power sources throughout electrical distribution system for Project.

C. Calculate momentary and interrupting duties on the basis of maximum available fault current.

D. Calculations to verify interrupting ratings of overcurrent protective devices shall comply with IEEE 141, and IEEE 242.

1. Transformers:
 a. IEEE C57.12.00.
 b. IEEE C57.96.

3. Low-Voltage Fuses: IEEE C37.46.

E. Study Report:

1. Show calculated X/R ratios and equipment interrupting rating (1/2-cycle) fault currents on electrical distribution system diagram.

F. Equipment Evaluation Report:

1. For 600-V overcurrent protective devices, ensure that interrupting ratings are equal to or higher than calculated 1/2-cycle symmetrical fault current.
2. For devices and equipment rated for asymmetrical fault current, apply multiplication factors listed in the standards to 1/2-cycle symmetrical fault current.

3. Verify adequacy of phase conductors at maximum three-phase bolted fault currents; verify adequacy of equipment grounding conductors and grounding electrode conductors at maximum ground-fault currents. Ensure that short-circuit withstand ratings are equal to or higher than calculated 1/2-cycle symmetrical fault current.

3.4 COORDINATION STUDY

1. Calculate the maximum and minimum 1/2-cycle short-circuit currents.
2. Calculate the maximum and minimum ground-fault currents.

B. Comply with IEEE 141 and IEEE 242 recommendations for fault currents and time intervals.

C. Transformer Primary Overcurrent Protective Devices:

1. Device shall not operate in response to the following:
 a. Inrush current when first energized.
 b. Self-cooled, full-load current or forced-air-cooled, full-load current, whichever is specified for that transformer.
 c. Permissible transformer overloads according to IEEE C57.96 if required by unusual loading or emergency conditions.

2. Device settings shall protect transformers according to IEEE C57.12.00, for fault currents.

D. Conductor Protection: Protect cables against damage from fault currents according to ICEA P-32-382, ICEA P-45-482, and conductor melting curves in IEEE 242. Demonstrate that equipment withstands the maximum short-circuit current for a time equivalent to the tripping time of the primary relay protection or total clearing time of the fuse. To determine temperatures that damage insulation, use curves from cable manufacturers or from listed standards indicating conductor size and short-circuit current.

E. Coordination-Study Report: Prepare a written report indicating the following results of coordination study:

1. Tabular Format of Settings Selected for Overcurrent Protective Devices:
 a. Device tag.
 b. Relay-current transformer ratios; and tap, time-dial, and instantaneous-pickup values.
c. Circuit-breaker sensor rating; and long-time, short-time, and instantaneous settings.

d. Fuse-current rating and type.

e. Ground-fault relay-pickup and time-delay settings.

2. Coordination Curves: Prepared to determine settings of overcurrent protective devices to achieve selective coordination. Graphically illustrate that adequate time separation exists between devices installed in series, including power utility company's upstream devices. Prepare separate sets of curves for the switching schemes and for emergency periods where the power source is local generation. Show the following information:

 a. Device tag.
 b. Voltage and current ratio for curves.
 c. Three-phase and single-phase damage points for each transformer.
 d. No damage, melting, and clearing curves for fuses.
 e. Cable damage curves.
 f. Transformer inrush points.
 g. Maximum fault-current cutoff point.

F. Completed data sheets for setting of overcurrent protective devices.

3.5 ARC-FLASH HAZARD

 A. Indicate arc-flash hazard, available fault current, and personnel protection level required for each switchboard, panelboard, transformer, automatic transfer switch, etc., in the electrical distribution system. Provide labels corresponding with PPE level per NEC. Contractor shall affix label to respective equipment.

END OF SECTION
SECTION 262213

LOW-VOLTAGE DISTRIBUTION TRANSFORMERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes distribution, dry-type transformers with a nominal primary and secondary rating of 600 V and less, with capacities up to 1500 kVA.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.
 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for each type and size of transformer.
 2. Include rated nameplate data, capacities, weights, dimensions, minimum clearances, installed devices and features, and performance for each type and size of transformer.

B. Shop Drawings:
 1. Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 2. Vibration Isolation Base Details: Detail fabrication including anchorages and attachments to structure and to supported equipment.
 3. Include diagrams for power, signal, and control wiring.

1.4 INFORMATIONAL SUBMITTALS

A. Qualification Data: For testing agency.

B. Source quality-control reports.

C. Field quality-control reports.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For transformers to include in emergency, operation, and maintenance manuals.
1.6 QUALITY ASSURANCE

A. Testing Agency Qualifications: Accredited by NETA.
 1. Testing Agency's Field Supervisor: Certified by NETA to supervise on-site testing.

1.7 DELIVERY, STORAGE, AND HANDLING

A. Inspection: On receipt, inspect for and note any shipping damage to packaging and transformer.
 1. If manufacturer packaging is removed for inspection, and transformer will be stored after inspection, re-package transformer using original or new packaging materials that provide protection equivalent to manufacturer's packaging.

B. Storage: Store in a warm, dry, and temperature-stable location in original shipping packaging.

C. Temporary Heating: Apply temporary heat according to manufacturer's written instructions within the enclosure of each ventilated-type unit, throughout periods during which equipment is not energized and when transformer is not in a space that is continuously under normal control of temperature and humidity.

D. Handling: Follow manufacturer's instructions for lifting and transporting transformers.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Eaton.
 2. General Electric Company.
 3. Square D; by Schneider Electric.

B. Source Limitations: Obtain each transformer type from single source from single manufacturer.

2.2 GENERAL TRANSFORMER REQUIREMENTS

A. Description: Factory-assembled and -tested, air-cooled units for 60-Hz service.

B. Comply with NFPA 70.
 1. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and use.
C. Transformers Rated 15 kVA and Larger:
 1. Comply with 10 CFR 431 (DOE 2016) efficiency levels.
 2. Marked as compliant with DOE 2016 efficiency levels by an NRTL.

D. Shipping Restraints: Paint or otherwise color-code bolts, wedges, blocks, and other restraints that are to be removed after installation and before energizing. Use fluorescent colors that are easily identifiable inside the transformer enclosure.

2.3 DISTRIBUTION TRANSFORMERS

A. Comply with NFPA 70, and list and label as complying with UL 1561.

B. Cores: Electrical grade, non-aging silicon steel with high permeability and low hysteresis losses.
 1. One leg per phase.
 2. Core volume shall allow efficient transformer operation at 10 percent above the nominal tap voltage.
 3. Grounded to enclosure.

C. Coils: Continuous windings except for taps.
 1. Coil Material: Copper.
 2. Internal Coil Connections: Brazed or pressure type.

D. Encapsulation: Transformers smaller than 30 kVA shall have core and coils completely resin encapsulated.

E. Enclosure: Totally enclosed, nonventilated.
 1. NEMA 250, Type 3R: Core and coil shall be encapsulated within resin compound, sealing out moisture and air.
 2. Wiring Compartment: Sized for conduit entry and wiring installation.

F. Taps for Transformers 25 kVA and Larger: Two 2.5 percent taps above and two 2.5 percent taps below normal full capacity.

G. Insulation Class, 30 kVA and Larger: 220 deg C, UL-component-recognized insulation system with a maximum of 150 deg C rise above 40 deg C ambient temperature.

H. Grounding: Provide ground-bar kit or a ground bar installed on the inside of the transformer enclosure.

2.4 IDENTIFICATION

A. Nameplates: Self-adhesive label for each distribution transformer. Self-adhesive labels are specified in Section 260553 "Identification for Electrical Systems."
2.5 SOURCE QUALITY CONTROL

A. Test and inspect transformers according to IEEE C57.12.01 and IEEE C57.12.91.

1. Resistance measurements of all windings at rated voltage connections and at all tap connections.
2. Ratio tests at rated voltage connections and at all tap connections.
3. Phase relation and polarity tests at rated voltage connections.
4. No load losses, and excitation current and rated voltage at rated voltage connections.
5. Impedance and load losses at rated current and rated frequency at rated voltage connections.
6. Applied and induced tensile tests.
7. Regulation and efficiency at rated load and voltage.
8. Insulation-Resistance Tests:
 a. High-voltage to ground.
 b. Low-voltage to ground.
 c. High-voltage to low-voltage.
9. Temperature tests.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine conditions for compliance with enclosure- and ambient-temperature requirements for each transformer.

B. Verify that field measurements are as needed to maintain working clearances required by NFPA 70 and manufacturer's written instructions.

C. Examine walls, floors, roofs, and concrete bases for suitable mounting conditions where transformers will be installed.

D. Verify that ground connections are in place and requirements in Section 260526 "Grounding and Bonding for Electrical Systems" have been met. Maximum ground resistance shall be 5 ohms at location of transformer.

E. Environment: Enclosures shall be rated for the environment in which they are located. Covers for NEMA 250, Type 4X enclosures shall not cause accessibility problems.

F. Proceed with installation only after unsatisfactory conditions have been corrected.
3.2 INSTALLATION

A. Install transformers level and plumb on a concrete base with vibration-dampening supports. Locate transformers away from corners and not parallel to adjacent wall surface.

B. Construct concrete bases according to Section 033000 "Cast-in-Place Concrete" and anchor floor-mounted transformers according to manufacturer's written instructions and requirements in Section 260529 "Hangers and Supports for Electrical Systems."

1. Coordinate size and location of concrete bases with actual transformer provided. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified with concrete.

C. Secure transformer to concrete base according to manufacturer's written instructions.

D. Secure covers to enclosure and tighten all bolts to manufacturer-recommended torques to reduce noise generation.

E. Remove shipping bolts, blocking, and wedges.

3.3 CONNECTIONS

A. Ground equipment according to Section 260526 "Grounding and Bonding for Electrical Systems."

B. Connect wiring according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

C. Tighten electrical connectors and terminals according to manufacturer's published torque-tightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A-486B.

D. Provide flexible connections at all conduit and conductor terminations and supports to eliminate sound and vibration transmission to the building structure.

3.4 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

B. Perform tests and inspections.

C. Small (Up to 167-kVA Single-Phase or 500-kVA Three-Phase) Dry-Type Transformer Field Tests:

1. Visual and Mechanical Inspection.

 a. Inspect physical and mechanical condition.

 b. Inspect anchorage, alignment, and grounding.
c. Verify that resilient mounts are free and that any shipping brackets have been removed.
d. Verify the unit is clean.
e. Perform specific inspections and mechanical tests recommended by manufacturer.
f. Verify that as-left tap connections are as specified.
g. Verify the presence of surge arresters and that their ratings are as specified.

2. Electrical Tests:
 a. Measure resistance at each winding, tap, and bolted connection.
 b. Perform insulation-resistance tests winding-to-winding and each winding-to-ground. Apply voltage according to manufacturer's published data. In the absence of manufacturer's published data, comply with NETA ATS, Table 100.5. Calculate polarization index: the value of the index shall not be less than 1.0.
 c. Perform turns-ratio tests at all tap positions. Test results shall not deviate by more than one-half percent from either the adjacent coils or the calculated ratio. If test fails, replace the transformer.
 d. Verify correct secondary voltage, phase-to-phase and phase-to-neutral, after energization and prior to loading.

D. Remove and replace units that do not pass tests or inspections and retest as specified above.

E. Infrared Scanning: Two months after Substantial Completion, perform an infrared scan of transformer connections.
 1. Use an infrared-scanning device designed to measure temperature or detect significant deviations from normal values. Provide documentation of device calibration.
 2. Perform two follow-up infrared scans of transformers, one at four months and the other at 11 months after Substantial Completion.
 3. Prepare a certified report identifying transformer checked and describing results of scanning. Include notation of deficiencies detected, remedial action taken, and scanning observations after remedial action.

F. Test Labeling: On completion of satisfactory testing of each unit, attach a dated and signed "Satisfactory Test" label to tested component.

3.5 ADJUSTING

A. Record transformer secondary voltage at each unit for at least 48 hours of typical occupancy period. Adjust transformer taps to provide optimum voltage conditions at secondary terminals. Optimum is defined as not exceeding nameplate voltage plus 5 percent and not being lower than nameplate voltage minus 3 percent at maximum load conditions. Submit recording and tap settings as test results.
B. Output Settings Report: Prepare a written report recording output voltages and tap settings.

3.6 CLEANING

A. Vacuum dirt and debris; do not use compressed air to assist in cleaning.

END OF SECTION
SECTION 262413
SWITCHBOARDS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

1. Service and distribution switchboards rated 600 V and less.
2. Transient voltage suppression devices.
3. Disconnecting and overcurrent protective devices.
4. Instrumentation.
5. Control power.
6. Accessory components and features.
7. Identification.
8. Mimic bus.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of switchboard, overcurrent protective device, transient voltage suppression device, ground-fault protector, accessory, and component indicated. Include dimensions and manufacturers' technical data on features, performance, electrical characteristics, ratings, accessories, and finishes.

B. Shop Drawings: For each switchboard and related equipment.

1. Include dimensioned plans, elevations, sections, and details, including required clearances and service space around equipment. Show tabulations of installed devices, equipment features, and ratings.
2. Detail enclosure types for types other than NEMA 250, Type 3R.
3. Detail bus configuration, current, and voltage ratings.
5. Include descriptive documentation of optional barriers specified for electrical insulation and isolation.
6. Include evidence of NRTL listing for series rating of installed devices.
7. Detail features, characteristics, ratings, and factory settings of individual overcurrent protective devices and auxiliary components.
8. Include time-current coordination curves for each type and rating of overcurrent protective device included in switchboards. Submit on translucent log-log graph paper; include selectable ranges for each type of overcurrent protective device.
9. Include diagram and details of proposed mimic bus.
10. Include schematic and wiring diagrams for power, signal, and control wiring.
C. **Samples:** Representative portion of mimic bus with specified material and finish, for color selection.

1.3 **INFORMATIONAL SUBMITTALS**

A. **Qualification Data:** For qualified Installer and testing agency.

B. **Field Quality-Control Reports:**
 1. Test procedures used.
 2. Test results that comply with requirements.
 3. Results of failed tests and corrective action taken to achieve test results that comply with requirements.

1.4 **CLOSEOUT SUBMITTALS**

A. **Operation and Maintenance Data:** For switchboards and components to include in emergency, operation, and maintenance manuals. In addition to items specified in Section 01 7823 "Operation and Maintenance Data," include the following:
 1. Routine maintenance requirements for switchboards and all installed components.
 2. Manufacturer's written instructions for testing and adjusting overcurrent protective devices.
 3. Time-current coordination curves for each type and rating of overcurrent protective device included in switchboards. Submit on translucent log-log graph paper; include selectable ranges for each type of overcurrent protective device.

1.5 **MAINTENANCE MATERIAL SUBMITTALS**

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. **Potential Transformer Fuses:** Equal to 10 percent of quantity installed for each size and type, but no fewer than two of each size and type.
 2. **Control-Power Fuses:** Equal to 10 percent of quantity installed for each size and type, but no fewer than two of each size and type.
 3. **Fuses and Fusible Devices for Fused Circuit Breakers:** Equal to 10 percent of quantity installed for each size and type, but no fewer than three of each size and type.
 4. **Fuses for Fused Switches:** Equal to 10 percent of quantity installed for each size and type, but no fewer than three of each size and type.
 5. **Fuses for Fused Power-Circuit Devices:** Equal to 10 percent of quantity installed for each size and type, but no fewer than three of each size and type.
 6. **Indicating Lights:** Equal to 10 percent of quantity installed for each size and type, but no fewer than one of each size and type.
1.6 QUALITY ASSURANCE

A. Installer Qualifications: An employer of workers qualified as defined in NEMA PB 2.1 and trained in electrical safety as required by NFPA 70E.

B. Testing Agency Qualifications: Member company of NETA or an NRTL.
 1. Testing Agency's Field Supervisor: Currently certified by NETA to supervise on-site testing.

C. Source Limitations: Obtain switchboards, overcurrent protective devices, components, and accessories from single source from single manufacturer.

D. Product Selection for Restricted Space: Drawings indicate maximum dimensions for switchboards including clearances between switchboards and adjacent surfaces and other items. Comply with indicated maximum dimensions.

E. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

F. Comply with NEMA PB 2.

G. Comply with NFPA 70.

H. Comply with UL 891.

1.7 DELIVERY, STORAGE, AND HANDLING

A. Deliver switchboards in sections or lengths that can be moved past obstructions in delivery path.

B. Remove loose packing and flammable materials from inside switchboards and to prevent condensation.

C. Handle and prepare switchboards for installation according to NECA 400 and NEMA PB 2.1.

1.8 PROJECT CONDITIONS

A. Installation Pathway: Remove and replace access fencing, doors, lift-out panels, and structures to provide pathway for moving switchboards into place.

B. Environmental Limitations:
 1. Do not deliver or install switchboards until spaces are enclosed and weathertight, wet work in spaces is complete and dry, work above switchboards is complete, and temporary HVAC system is operating and maintaining ambient temperature
and humidity conditions at occupancy levels during the remainder of the construction period.

2. Rate equipment for continuous operation under the following conditions unless otherwise indicated:
 a. Ambient Temperature: Not exceeding 104 deg F.
 b. Altitude: Not exceeding 6600 feet.

C. Service Conditions: NEMA PB 2, usual service conditions, as follows:
 1. Ambient temperatures within limits specified.
 2. Altitude not exceeding 6600 feet.

D. Interruption of Existing Electric Service: Do not interrupt electric service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary electric service according to requirements indicated:
 1. Notify Construction Manager and Owner no fewer than seven days in advance of proposed interruption of electric service.
 2. Indicate method of providing temporary electric service.
 3. Do not proceed with interruption of electric service without Construction Manager's and Owner's written permission.
 4. Comply with NFPA 70E.

1.9 COORDINATION

A. Coordinate layout and installation of switchboards and components with other construction that penetrates walls or is supported by them, including electrical and other types of equipment, raceways, piping, encumbrances to workspace clearance requirements, and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.

B. Coordinate sizes and locations of concrete bases with actual equipment provided. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified with concrete.

1.10 WARRANTY

A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace transient voltage suppression devices that fail in materials or workmanship within specified warranty period.
 1. Warranty Period: Five years from date of Substantial Completion.
PART 2 - PRODUCTS

2.1 MANUFACTURED UNITS

A. Basis-of-Design Product: Subject to compliance with requirements, provide Square D QED S Series 2; a brand of Schneider Electric or comparable product by one of the following:

1. Eaton Electrical Inc.; Cutler-Hammer Business Unit.

B. Front-Connected, Front-Accessible Switchboards:

1. Main Devices: Panel mounted.
3. Sections front and rear aligned.

C. Front- and Side-Accessible Switchboards:

1. Main Devices: Fixed, individually mounted.
3. Sections front and rear aligned.

D. Nominal System Voltage: 480/277 V.

E. Main-Bus Continuous: Refer to drawings

F. Outdoor Enclosures: Steel, NEMA 250, Type 3R.

G. Enclosure Finish for Indoor Units: Factory-applied finish in manufacturer's standard gray finish over a rust-inhibiting primer on treated metal surface.

H. Barriers: Between adjacent switchboard sections.

I. Insulation and isolation for main bus of main section and vertical buses of feeder sections.

J. Cubical Space Heaters: Factory-installed electric space heaters of sufficient wattage in each vertical section to maintain enclosure temperature above expected dew point.

1. Space-Heater Control: Thermostats to maintain temperature of each section above expected dew point and humidistat to control humidity of each section.

K. Bus Transition and Incoming Pull Sections: Matched and aligned with basic switchboard.
L. Removable, Hinged Rear Doors and Compartment Covers: Secured by captive thumb screws, for access to rear interior of switchboard.

M. Hinged Front Panels: Allow access to circuit breaker, metering, accessory, and blank compartments.

N. Buses and Connections: Three phase, four wire unless otherwise indicated.
 2. Load Terminals: Insulated, rigidly braced, runback bus extensions, of same material as through buses, equipped with mechanical connectors for outgoing circuit conductors. Provide load terminals for future circuit-breaker positions at full-ampere rating of circuit-breaker position.
 3. Ground Bus: 1/4-by-2-inch-hard-drawn copper of 98 percent conductivity, equipped with mechanical connectors for feeder and branch-circuit ground conductors. For busway feeders, extend insulated equipment grounding cable to busway ground connection and support cable at intervals in vertical run.
 4. Main Phase Buses and Equipment Ground Buses: Uniform capacity for entire length of switchboard's main and distribution sections. Provide for future extensions from both ends.
 5. Neutral Buses: 100 percent of the ampacity of phase buses unless otherwise indicated, equipped with mechanical connectors for outgoing circuit neutral cables. Brace bus extensions for busway feeder neutral bus.

O. Future Devices: Equip compartments with mounting brackets, supports, bus connections, and appurtenances at full rating of circuit-breaker compartment.

P. Bus-Bar Insulation: Factory-applied, flame-retardant, tape wrapping of individual bus bars or flame-retardant, spray-applied insulation. Minimum insulation temperature rating of 105 deg C.

2.2 DISCONNECTING AND OVERCURRENT PROTECTIVE DEVICES

A. Molded-Case Circuit Breaker (MCCB): Comply with UL 489, with to meet available fault currents.
 3. Electronic trip circuit breakers with rms sensing; field-replaceable rating plug or field-replicable electronic trip; and the following field-adjustable settings:
 a. Instantaneous trip.
 b. Long- and short-time pickup levels.
 c. Long- and short-time time adjustments.
d. Ground-fault pickup level, time delay, and I2t response.

4. Current-Limiting Circuit Breakers: Frame sizes 400 A and smaller; let-through ratings less than NEMA FU 1, RK-5.

5. Integrally Fused Circuit Breakers: Thermal-magnetic trip element with integral limiter-style fuse listed for use with circuit breaker; trip activation on fuse opening or on opening of fuse compartment door.

6. GFCI Circuit Breakers: Single- and two-pole configurations with Class A ground-fault protection (6-mA trip).

8. Molded-Case Circuit-Breaker (MCCB) Features and Accessories:
 a. Standard frame sizes, trip ratings, and number of poles.
 b. Lugs: Mechanical style, suitable for number, size, trip ratings, and conductor material.
 c. Application Listing: Appropriate for application; Type SWD for switching fluorescent lighting loads; Type HID for feeding fluorescent and high-intensity discharge (HID) lighting circuits.
 d. Ground-Fault Protection: Integrally mounted relay and trip unit with adjustable pickup and time-delay settings, push-to-test feature, and ground-fault indicator.
 e. Zone-Selective Interlocking: Integral with electronic trip unit; for interlocking ground-fault protection function.
 f. Communication Capability: Circuit-breaker-mounted communication module with functions and features compatible with power monitoring and control system specified in Section 26 0913 "Electrical Power Monitoring and Control."
 g. Shunt Trip: 120-V trip coil energized from separate circuit, set to trip at 75 percent of rated voltage.
 h. Undervoltage Trip: Set to operate at 35 to 75 percent of rated voltage without intentional time delay.
 i. Auxiliary Contacts: Two SPDT switches with "a" and "b" contacts; "a" contacts mimic circuit-breaker contacts, "b" contacts operate in reverse of circuit-breaker contacts.
 j. Key Interlock Kit: Externally mounted to prohibit circuit-breaker operation; key shall be removable only when circuit breaker is in off position.

B. Insulated-Case Circuit Breaker (ICCB): 80 percent rated, sealed, insulated-case power circuit breaker with interrupting capacity rating to meet available fault current.

1. Fixed circuit-breaker mounting.
2. Two-step, stored-energy closing.
3. Full-function, microprocessor-based trip units with interchangeable rating plug, trip indicators, and the following field-adjustable settings:
 a. Instantaneous trip.
 b. Long- and short-time time adjustments.
c. Ground-fault pickup level, time delay, and I2t response.

4. Zone-Selective Interlocking: Integral with electronic trip unit; for interlocking ground-fault protection function.
5. Remote trip indication and control.
6. Communication Capability: Integral communication module with functions and features compatible with power monitoring and control system.
7. Key Interlock Kit: Externally mounted to prohibit circuit-breaker operation; key shall be removable only when circuit breaker is in off position.
8. Control Voltage: 120-V ac.

C. Basis-of-Design Product: Subject to compliance with requirements, provide Square D; a brand of Schneider Electric

D. Main-Contact Interrupting Capability: Minimum of 12 times the switch current rating.

E. Operating Mechanism: Manual handle operation to close switch; stores energy in mechanism for opening and closing.
 1. Electrical Trip: Operation of lever or push-button trip switch, or trip signal from ground-fault relay or remote-control device, causes switch to open.
 2. Mechanical Trip: Operation of mechanical lever, push button, or other device causes switch to open.

F. Auxiliary Switches: Factory installed, single pole, double throw, with leads connected to terminal block, and including one set more than quantity required for functional performance indicated.

G. Service-Rated Switches: Labeled for use as service equipment.

H. Ground-Fault Relay: Comply with UL 1053; self-powered type with mechanical ground-fault indicator, test function, tripping relay with internal memory, and three-phase current transformer/sensor.
 1. Configuration: Integrally mounted relay and trip unit with adjustable pickup and time-delay settings, push-to-test feature, and ground-fault indicator.
 2. Internal Memory: Integrates the cumulative value of intermittent arcing ground-fault currents and uses the effect to initiate tripping.
 3. No-Trip Relay Test: Permits ground-fault simulation test without tripping switch.
 4. Test Control: Simulates ground fault to test relay and switch (or relay only if "no-trip" mode is selected).

I. Open-Fuse Trip Device: Arranged to trip switch open if a phase fuse opens.

2.3 INSTRUMENTATION

A. Instrument Transformers: IEEE C57.13, NEMA EI 21.1, and the following:
1. Voltage Transformers: IEEE C57.13; 120 V, 60 Hz, single secondary; disconnecting type with integral fuse mountings. Burden and accuracy shall be consistent with connected metering and relay devices.

2. Current Transformers: IEEE C57.13; 5 A, 60 Hz, secondary; wound type; single secondary winding and secondary shorting device. Burden and accuracy shall be consistent with connected metering and relay devices.

3. Control-Power Transformers: Dry type, mounted in separate compartments for units larger than 3 kVA.

B. Multifunction Digital-Metering Monitor: Microprocessor-based unit suitable for three- or four-wire systems and with the following features:

1. Switch-selectable digital display of the following values with maximum accuracy tolerances as indicated:
 a. Phase Currents, Each Phase: Plus or minus 1 percent.
 b. Phase-to-Phase Voltages, Three Phase: Plus or minus 1 percent.
 c. Phase-to-Neutral Voltages, Three Phase: Plus or minus 1 percent.
 d. Megawatts: Plus or minus 2 percent.
 e. Megavars: Plus or minus 2 percent.
 f. Power Factor: Plus or minus 2 percent.
 g. Frequency: Plus or minus 0.5 percent.
 h. Accumulated Energy, Megawatt Hours: Plus or minus 2 percent; accumulated values unaffected by power outages up to 72 hours.
 i. Megawatt Demand: Plus or minus 2 percent; demand interval programmable from five to 60 minutes.
 j. Contact devices to operate remote impulse-totalizing demand meter.

2. Mounting: Display and control unit flush or semiflush mounted in instrument compartment door.

1. Meters: 4-inch diameter or 6 inches square, flush or semiflush, with antiparallax 250-degree scales and external zero adjustment.

2. Voltmeters: Cover an expanded-scale range of nominal voltage plus 10 percent.

D. Instrument Switches: Rotary type with off position.

1. Voltmeter Switches: Permit reading of all phase-to-phase voltages and, where a neutral is indicated, phase-to-neutral voltages.

2. Ammeter Switches: Permit reading of current in each phase and maintain current-transformer secondaries in a closed-circuit condition at all times.
E. Feeder Ammeters: 2-1/2-inch minimum size with 90- or 120-degree scale. Meter and transfer device with off position, located on overcurrent device door for indicated feeder circuits only.

F. Watt-Hour Meters and Wattmeters:

2. Three-phase induction type with two stators, each with current and potential coil, rated 5 A, 120 V, 60 Hz.
3. Suitable for connection to three- and four-wire circuits.
4. Potential indicating lamps.
5. Adjustments for light and full load, phase balance, and power factor.
6. Four-dial clock register.
7. Integral demand indicator.
8. Contact devices to operate remote impulse-totalizing demand meter.
9. Ratchets to prevent reverse rotation.
10. Removable meter with drawout test plug.
11. Semiflush mounted case with matching cover.

G. Impulse-Totalizing Demand Meter:

2. Suitable for use with switchboard watt-hour meter, including two-circuit totalizing relay.
3. Cyclometer.
4. Four-dial, totalizing kilowatt-hour register.
5. Positive chart drive mechanism.
6. Capillary pen holding a minimum of one month’s ink supply.
7. Roll chart with minimum 31-day capacity; appropriate multiplier tag.
8. Capable of indicating and recording five-minute integrated demand of totalized system.

2.4 CONTROL POWER

A. Control Circuits: 24-V ac, supplied through secondary disconnecting devices from control-power transformer.

B. Control Circuits: 24-V ac, supplied from remote branch circuit.

C. Control Circuits: 24-V dc.

D. Control-Power Fuses: Primary and secondary fuses for current-limiting and overload protection of transformer and fuses for protection of control circuits.

E. Control Wiring: Factory installed, with bundling, lacing, and protection included. Provide flexible conductors for No. 8 AWG and smaller, for conductors across hinges, and for conductors for interconnections between shipping units.
2.5 ACCESSORY COMPONENTS AND FEATURES

A. Accessory Set: Include tools and miscellaneous items required for overcurrent protective device test, inspection, maintenance, and operation.

B. Portable Test Set: For testing functions of solid-state trip devices without removing from switchboard. Include relay and meter test plugs suitable for testing switchboard meters and switchboard class relays.

C. Spare-Fuse Cabinet: Suitably identified, wall-mounted, lockable, compartmented steel box or cabinet. Arrange for wall mounting.

2.6 IDENTIFICATION

A. Mimic Bus: Continuously integrated mimic bus factory applied to front of switchboard. Arrange in single-line diagram format, using symbols and letter designations consistent with final mimic-bus diagram.

B. Coordinate mimic-bus segments with devices in switchboard sections to which they are applied. Produce a concise visual presentation of principal switchboard components and connections.

C. Presentation Media: Painted graphics in color contrasting with background color to represent bus and components, complete with lettered designations.

2.7 FINISHES

A. Exterior constructed of code gauge type 304 stainless steel. Stainless steel front door, padlockable handle.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Receive, inspect, handle, and store switchboards according to NECA 400 and NEMA PB 2.1.

B. Examine switchboards before installation. Reject switchboards that are moisture damaged or physically damaged.

C. Examine elements and surfaces to receive switchboards for compliance with installation tolerances and other conditions affecting performance of the Work.

D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Install switchboards and accessories according to NEMA PB 2.1.
B. Equipment Mounting: Install switchboards on concrete base, 6-inch nominal thickness. Comply with requirements for concrete base specified in Section 03 3000 "Cast-in-Place Concrete."

1. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch centers around the full perimeter of concrete base.
2. For supported equipment, install epoxy-coated anchor bolts that extend through concrete base and anchor into structural concrete floor.
3. Place and secure anchorage devices. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
4. Install anchor bolts to elevations required for proper attachment to switchboards.

C. Temporary Lifting Provisions: Remove temporary lifting eyes, channels, and brackets and temporary blocking of moving parts from switchboard units and components.

D. Operating Instructions: Frame and mount the printed basic operating instructions for switchboards, including control and key interlocking sequences and emergency procedures. Fabricate frame of finished wood or metal and cover instructions with clear acrylic plastic. Mount on front of switchboards.

E. Install filler plates in unused spaces of panel-mounted sections.

F. Install overcurrent protective devices, transient voltage suppression devices, and instrumentation.

1. Set field-adjustable switches and circuit-breaker trip ranges.

G. Install spare-fuse cabinet.

H. Comply with NECA 1.

3.3 IDENTIFICATION

A. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs. complying with requirements for identification specified in Section 26 0553 "Identification for Electrical Systems."

B. Switchboard Nameplates: Label each switchboard compartment with a nameplate complying with requirements for identification specified in Section 26 0553 "Identification for Electrical Systems."

C. Device Nameplates: Label each disconnecting and overcurrent protective device and each meter and control device mounted in compartment doors with a nameplate complying with requirements for identification specified in Section 26 0553 "Identification for Electrical Systems."
3.4 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

B. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections.

C. Perform tests and inspections.
 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

D. Acceptance Testing Preparation:
 1. Test insulation resistance for each switchboard bus, component, connecting supply, feeder, and control circuit.
 2. Test continuity of each circuit.
 3. Tests and Inspections:
 5. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.
 6. Perform the following infrared scan tests and inspections and prepare reports:
 a. Initial Infrared Scanning: After Substantial Completion, but not more than 60 days after Final Acceptance, perform an infrared scan of each switchboard. Remove front and rear panels so joints and connections are accessible to portable scanner.
 b. Follow-up Infrared Scanning: Perform an additional follow-up infrared scan of each switchboard 11 months after date of Substantial Completion.
 c. Instruments and Equipment:
 1) Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.
 7. Test and adjust controls, remote monitoring, and safeties. Replace damaged and malfunctioning controls and equipment.

E. Switchboard will be considered defective if it does not pass tests and inspections.

F. Prepare test and inspection reports, including a certified report that identifies switchboards included and that describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.
3.5 ADJUSTING

A. Adjust moving parts and operable components to function smoothly, and lubricate as recommended by manufacturer.

B. Set field-adjustable circuit-breaker trip ranges as specified in Section 26 0573 "Overcurrent Protective Device Coordination Study."

3.6 PROTECTION

A. Temporary Heating: Apply temporary heat, to maintain temperature according to manufacturer's written instructions, until switchboard is ready to be energized and placed into service.

3.7 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain switchboards, overcurrent protective devices, instrumentation, and accessories, and to use and reprogram microprocessor-based trip, monitoring, and communication units.

END OF SECTION
SECTION 262416

PANELBOARDS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Distribution panelboards.
 2. Lighting and appliance branch-circuit panelboards.

1.3 SUBMITTALS

A. Product Data: For each type of panelboard, switching and overcurrent protective device, transient voltage suppression device, accessory, and component indicated. Include dimensions and manufacturers' technical data on features, performance, electrical characteristics, ratings, and finishes.

B. Shop Drawings: For each panelboard and related equipment.
 1. Include dimensioned plans, elevations, sections, and details. Show tabulations of installed devices, equipment features, and ratings.
 2. Detail enclosure types and details for types other than NEMA 250, Type 1.
 3. Detail bus configuration, current, and voltage ratings.
 4. Short-circuit current rating of panelboards and overcurrent protective devices.
 5. Detail features, characteristics, ratings, and factory settings of individual overcurrent protective devices and auxiliary components.
 6. Include wiring diagrams for power, signal, and control wiring.
 7. Include time-current coordination curves for each type and rating of overcurrent protective device included in panelboards. Submit on translucent log-log graph paper; include selectable ranges for each type of overcurrent protective device.

C. Qualification Data: For qualified testing agency.

D. Field Quality-Control Reports:
 1. Test procedures used.
 2. Test results that comply with requirements.
 3. Results of failed tests and corrective action taken to achieve test results that comply with requirements.
E. Panelboard Schedules: For installation in panelboards.

F. Operation and Maintenance Data: For panelboards and components to include in emergency, operation, and maintenance manuals. In addition to items specified in Division 01 Section "Operation and Maintenance Data," include the following:

1. Manufacturer's written instructions for testing and adjusting overcurrent protective devices.
2. Time-current curves, including selectable ranges for each type of overcurrent protective device that allows adjustments.

1.4 QUALITY ASSURANCE

A. Testing Agency Qualifications: Member company of NETA or an NRTL.

1. Testing Agency's Field Supervisor: Currently certified by NETA to supervise on-site testing.

B. Source Limitations: Obtain panelboards, overcurrent protective devices, components, and accessories from single source from single manufacturer.

C. Product Selection for Restricted Space: Drawings indicate maximum dimensions for panelboards including clearances between panelboards and adjacent surfaces and other items. Comply with indicated maximum dimensions.

D. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

E. Comply with NEMA PB 1.

F. Comply with NFPA 70.

1.5 DELIVERY, STORAGE, AND HANDLING

A. Remove loose packing and flammable materials from inside panelboards; install temporary electric heating (250 W per panelboard) to prevent condensation.

B. Handle and prepare panelboards for installation according to NEMA PB 1.

1.6 PROJECT CONDITIONS

A. Environmental Limitations:

1. Do not deliver or install panelboards until spaces are enclosed and weathertight, wet work in spaces is complete and dry, work above panelboards is complete, and temporary HVAC system is operating and maintaining ambient temperature and humidity conditions at occupancy levels during the remainder of the construction period.
2. Rate equipment for continuous operation under the following conditions unless otherwise indicated:
 a. Ambient Temperature: Not exceeding 23 deg F (minus 5 deg C) to plus 104 deg F (plus 40 deg C).

B. Service Conditions: NEMA PB 1, usual service conditions, as follows:
 1. Ambient temperatures within limits specified.
 2. Altitude not exceeding 6600 feet (2000 m).

1.7 COORDINATION

A. Coordinate layout and installation of panelboards and components with other construction that penetrates walls or is supported by them, including electrical and other types of equipment, raceways, piping, encumbrances to workspace clearance requirements, and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.

B. Coordinate sizes and locations of concrete bases with actual equipment provided. Cast anchor bolt inserts into bases. Concrete, reinforcement, and form-work requirements are specified in Division 03.

1.8 WARRANTY

A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace transient voltage suppression devices that fail in materials or workmanship within specified warranty period.

 1. Warranty Period: Five years from date of Substantial Completion.

1.9 EXTRA MATERIALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

 1. Keys: Two spares for each type of panelboard cabinet lock.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR PANELBOARDS

A. Fabricate and test panelboards according to IEEE 344 to withstand seismic forces defined in Division 26 Section ”Vibration and Seismic Controls for Electrical Systems.”

B. Enclosures: Flush and surface-mounted cabinets.
1. Rated for environmental conditions at installed location.
 a. Indoor Dry and Clean Locations: NEMA 250, Type 1.
 c. Wash-Down Areas: NEMA 250, Type 4X, stainless steel.
 d. Other Wet or Damp Indoor Locations: NEMA 250, Type 3R.
 e. Indoor Locations Subject to Dust, Falling Dirt, and Dripping Noncorrosive Liquids: NEMA 250, Type 12.

2. Hinged Front Cover: Entire front trim hinged to box and with standard door within hinged trim cover.

3. Finishes:
 a. Panels and Trim: Steel, factory finished immediately after cleaning and pretreating with manufacturer's standard two-coat, baked-on finish consisting of prime coat and thermosetting topcoat.
 b. Back Boxes: Same finish as panels and trim.

5. Multiple-Section Panelboards shall consist of two or more cabinets with identical interiors mounted under separate trims. Cabinets, trim, and doors shall be of the same size. Main lugs and busses of each section shall be rated as indicated on the Drawings. Where main breakers are indicated in multi-section panelboards, the main breaker shall be contained in one section with through-feed lugs and sub-feed cables installed within panel, equal to the incoming feeder size. All busses and lugs shall have ampere capacity equal to or greater than the main breaker ampere rating. Loads shall be divided as evenly as practical between the sections, in addition to being balanced over the phases.

C. Incoming Mains Location: Top and bottom.

D. Phase, Neutral, and Ground Buses:
 2. Equipment Ground Bus: Adequate for feeder and branch-circuit equipment grounding conductors; bonded to box.
 3. Isolated Ground Bus: Adequate for branch-circuit isolated ground conductors; insulated from box.
 4. Extra-Capacity Neutral Bus: Neutral bus rated 200 percent of phase bus and UL listed as suitable for nonlinear loads.

E. Conductor Connectors: Suitable for use with conductor material and sizes.
 2. Main and Neutral Lugs: Compression type.
 3. Ground Lugs and Bus-Configured Terminators: Compression type.
4. **Feed-Through Lugs**: Compression type, suitable for use with conductor material. Locate at opposite end of bus from incoming lugs or main device.

5. **Subfeed (Double) Lugs**: Compression type suitable for use with conductor material. Locate at same end of bus as incoming lugs or main device.

6. **Gutter-Tap Lugs**: Compression type suitable for use with conductor material. Locate at same end of bus as incoming lugs or main device.

7. **Extra-Capacity Neutral Lugs**: Rated 200 percent of phase lugs mounted on extra-capacity neutral bus.

F. Service Entrance Label: NRTL labeled for use as service equipment for panelboards with one or more main service disconnecting of overcurrent protective devices.

G. Future Devices: Mounting brackets, bus connections, filler plates, and necessary appurtenances required for future installation of devices.

H. Panelboard Short-Circuit Current Rating: Fully rated to interrupt symmetrical short-circuit current available at terminals.

2.2 DISTRIBUTION PANELBOARDS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Square D; a brand of Schneider Electric.
2. Eaton Electrical Inc.; Cutler-Hammer Products.

B. Panelboards: NEMA PB 1, power and feeder distribution type.

C. Doors: Secured with vault-type latch with tumbler lock; keyed alike.

1. For doors more than 36 inches (914 mm) high, provide two latches, keyed alike.

D. Mains: Circuit breaker or Lugs only, as indicated.

E. Branch Overcurrent Protective Devices for Circuit-Breaker Frame Sizes 125 A and Smaller: Bolt-on circuit breakers.

F. Branch Overcurrent Protective Devices for Circuit-Breaker Frame Sizes Larger Than 125 A: Bolt-on circuit breakers.

2.3 LIGHTING AND APPLIANCE BRANCH-CIRCUIT PANELBOARDS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Square D; a brand of Schneider Electric.
2. Eaton Electrical Inc.; Cutler-Hammer Business Unit.
B. Panelboards: NEMA PB 1, lighting and appliance branch-circuit type.

C. Mains: Circuit breaker or lugs only, as indicated.

D. Branch Overcurrent Protective Devices: Bolt-on circuit breakers, replaceable without disturbing adjacent units.

E. Doors: Concealed hinges; secured with flush latch with tumbler lock; keyed alike.

F. Column-Type Panelboards: Narrow gutter extension, with cover, to overhead junction box equipped with ground and neutral terminal buses.

2.4 DISCONNECTING AND OVERCURRENT PROTECTIVE DEVICES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Square D; a brand of Schneider Electric.
2. Eaton Electrical Inc.; Cutler-Hammer Business Unit.

B. Molded-Case Circuit Breaker (MCCB): Comply with UL 489, with interrupting capacity to meet available fault currents.

2. GFCI Circuit Breakers: Single- and two-pole configurations with Class A ground-fault protection (6-mA trip).
4. Molded-Case Circuit-Breaker (MCCB) Features and Accessories:
 a. Standard frame sizes, trip ratings, and number of poles.
 b. Lugs: Compression style, suitable for number, size, trip ratings, and conductor materials.
 c. Application Listing: Appropriate for application; Type SWD for switching fluorescent lighting loads; Type HID for feeding fluorescent and high-intensity discharge (HID) lighting circuits.
 d. Ground-Fault Protection: Integrally mounted relay and trip unit with adjustable pickup and time-delay settings, push-to-test feature, and ground-fault indicator.
 e. Shunt Trip: 120-V trip coil energized from separate circuit, set to trip at 55 percent of rated voltage.
 f. Undervoltage Trip: Set to operate at 35 to 75 percent of rated voltage without intentional time delay.
g. Auxiliary Contacts: One SPDT switch with "a" and "b" contacts; "a" contacts mimic circuit-breaker contacts and "b" contacts operate in reverse of circuit-breaker contacts.

h. Alarm Switch: Single-pole, normally open contact that actuates only when circuit breaker trips.

i. Handle Padlocking Device: Fixed attachment, for locking circuit-breaker handle in on or off position.

j. Handle Clamp: Loose attachment for holding circuit breaker handle in ON position for breakers serving clocks, telephone, and communications equipment, refrigerators, exit signs, fire alarm systems, controls, etc., to prevent accidental operation.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Receive, inspect, handle, and store panelboards according to NEMA PB 1.1.

B. Examine panelboards before installation. Reject panelboards that are damaged or rusted or have been subjected to water saturation.

C. Examine elements and surfaces to receive panelboards for compliance with installation tolerances and other conditions affecting performance of the Work.

D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Install panelboards and accessories according to NEMA PB 1.1.

B. Mount top of trim 90 inches (2286 mm) above finished floor unless otherwise indicated.

C. Mount panelboard cabinet plumb and rigid without distortion of box. Mount recessed panelboards with fronts uniformly flush with wall finish and mating with back box.

D. Install overcurrent protective devices and controllers not already factory installed.

 1. Set field-adjustable, circuit-breaker trip ranges.

E. Install filler plates in unused spaces.

F. Stub four 1-inch (27-GRC) empty conduits from panelboard into accessible ceiling space or space designated to be ceiling space in the future. Stub four 1-inch (27-GRC) empty conduits into raised floor space or below slab not on grade.

G. Arrange conductors in gutters into groups and bundle and wrap with wire ties after completing load balancing.
H. Comply with NECA 1.

I. All distribution panels shall be installed on galvanized formed steel channels designed to distribute the weight on the supporting wall.

J. Conduits entering the tops and bottoms of flush panels shall be located back from the front ledge of the panels to allow approximately 2-inches between the finished wall and the edge of the conduits.

K. Where panelboard is mounted flush in a wall or partition, provide 3/4-inch empty conduit, from panelboard to ceiling space for each three or less spare single pole breakers and/or spaces in the panel unless otherwise noted on the drawings.

L. Surge Protective Devices shall be installed immediately above or below panelboard enclosure, per manufacturer’s recommendations, connected to circuit breaker disconnecting means with lead length of conductors less than 18 inches.

3.3 IDENTIFICATION

A. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs complying with Division 26 Section "Identification for Electrical Systems."

B. Create a directory to indicate installed circuit loads after balancing panelboard loads; incorporate Owner’s final room designations. Obtain approval before installing. Use a computer or typewriter to create directory; handwritten directories are not acceptable.

C. Panelboard Nameplates: Label each panelboard with a nameplate complying with requirements for identification specified in Division 26 Section "Identification for Electrical Systems."

D. Device Nameplates: Label each branch circuit device in distribution panelboards with a nameplate complying with requirements for identification specified in Division 26 Section "Identification for Electrical Systems."

3.4 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

B. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections.

C. Perform tests and inspections.

1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.
D. Acceptance Testing Preparation:
 1. Test insulation resistance for each panelboard bus, component, connecting supply, feeder, and control circuit.
 2. Test continuity of each circuit.

E. Tests and Inspections:
 1. Perform each visual and mechanical inspection and electrical test stated in NETA Acceptance Testing Specification. Certify compliance with test parameters.
 2. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.

F. Panelboards will be considered defective if they do not pass tests and inspections.

G. Prepare test and inspection reports, including a certified report that identifies panelboards included and that describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

3.5 ADJUSTING

A. Adjust moving parts and operable component to function smoothly, and lubricate as recommended by manufacturer.

B. Set field-adjustable circuit-breaker trip ranges as indicated.

C. Load Balancing: After Substantial Completion, but not more than 60 days after Final Acceptance, measure load balancing and make circuit changes.
 1. Measure as directed during period of normal system loading.
 2. Perform load-balancing circuit changes outside normal occupancy/working schedule of the facility and at time directed. Avoid disrupting critical 24-hour services such as fax machines and on-line data processing, computing, transmitting, and receiving equipment.
 3. After circuit changes, recheck loads during normal load period. Record all load readings before and after changes and submit test records.
 4. Tolerance: Difference exceeding 20 percent between phase loads, within a panelboard, is not acceptable. Rebalance and recheck as necessary to meet this minimum requirement.

3.6 PROTECTION

A. Temporary Heating: Apply temporary heat to maintain temperature according to manufacturer's written instructions.

END OF SECTION
SECTION 262726
WIRING DEVICES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. This Section includes the following:
 1. Receptacles, receptacles with integral GFCI, and associated device plates.
 2. Twist-locking receptacles.
 3. Snap switches.
 4. Pendant cord-connector devices.
 5. Cord and plug sets.
B. Related sections include the following:
 1. Section 260923 – Lighting Control Devices.

1.3 DEFINITIONS
A. EMI: Electromagnetic interference.
B. GFCI: Ground-fault circuit interrupter.
C. Pigtail: Short lead used to connect a device to a branch-circuit conductor.
D. RFI: Radio-frequency interference.
E. SPD: Surge Protective Device.

1.4 SUBMITTALS
A. Product Data: For each type of product indicated.
B. Shop Drawings: List of legends and description of materials and process used for premarking wall plates.
C. Field quality-control test reports.
D. Operation and Maintenance Data: For wiring devices to include in all manufacturers’ packing label warnings and instruction manuals that include labeling conditions.

1.5 QUALITY ASSURANCE

A. Source Limitations: Obtain each type of wiring device and associated wall plate through one source from a single manufacturer. Insofar as they are available, obtain all wiring devices and associated wall plates from a single manufacturer and one source.

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

C. Comply with NFPA 70.

1.6 COORDINATION

A. Receptacles for Owner-Furnished Equipment: Match plug configurations.

1. Cord and Plug Sets: Match equipment requirements.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Subject to compliance with requirements manufacturers offering products that may be incorporated into the work include, but are not limited to, the following available manufacturers’ names:

1. Cooper Wiring Devices; a division of Cooper Industries, Inc. (Cooper).
2. Hubbell Incorporated; Wiring Device-Kellems (Hubbell).

2.2 STRAIGHT BLADE RECEPTACLES

A. Convenience Receptacles, 125 V, 20 A: Comply with NEMA WD 1, NEMA WD 6 configuration 5-20R, and UL 498.

1. Available Products: Subject to compliance with requirements, products that may be incorporated into the Work include, but are not limited to, the following:

a. Cooper; 5351 (single), 5352 (duplex).

b. Hubbell; HBL5351 (single), CR5352 (duplex).

c. Pass & Seymour; 5381 (single), 5352 (duplex).
2.3 **GFCI RECEPTACLES**

A. **General Description:** Straight blade, feed-through type. Comply with NEMA WD 1, NEMA WD 6, UL 498, and UL 943, Class A, and include indicator light that is lighted when device is tripped.

B. **Duplex GFCI Convenience Receptacles, 125 V, 20 A:**

 1. Available Products: Subject to compliance with requirements, products that may be incorporated into the Work include, but are not limited to, the following:

 a. Cooper; GF20.
 b. Pass & Seymour; 2084.

2.4 **TWIST-LOCKING RECEPTACLES**

A. **Single Convenience Receptacles, 125 V, 20 A:** Comply with NEMA WD 1, NEMA WD 6 configuration L5-20R, and UL 498.

 1. Available Products: Subject to compliance with requirements, products that may be incorporated into the Work include, but are not limited to, the following:

 a. Cooper; L520R.
 b. Hubbell; HBL2310.
 c. Pass & Seymour; L520-R.

2.5 **CORD AND PLUG SETS**

A. **Description:** Match voltage and current ratings and number of conductors to requirements of equipment being connected.

 1. **Cord:** Rubber-insulated, stranded-copper conductors, with Type SOW-A jacket; with green-insulated grounding conductor and equipment-rating ampacity plus a minimum of 30 percent.

 2. **Plug:** Nylon body and integral cable-clamping jaws. Match cord and receptacle type for connection.

2.6 **SNAP SWITCHES**

A. **Comply with NEMA WD 1 and UL 20.**

B. **Switches, 120/277 V, 20 A:**

 1. Available Products: Subject to compliance with requirements, products that may be incorporated into the Work include, but are not limited to, the following:

 a. Cooper; 2221 (single pole), 2222 (two pole), 2223 (three way), 2224 (four way).
b. Hubbell; CS1221 (single pole), CS1222 (two pole), CS1223 (three way), CS1224 (four way).

c. Pass & Seymour; 20AC1 (single pole), 20AC2 (two pole), 20AC3 (three way), 20AC4 (four way).

C. Pilot Light Switches, 20 A:

1. Available Products: Subject to compliance with requirements, products that may be incorporated into the Work include, but are not limited to, the following:

 a. Cooper; 2221PL for 120 V and 277 V.
 b. Hubbell; HPL1221PL for 120 V and 277 V.
 c. Pass & Seymour; PS20AC1-PLR for 120 V.

2. Description: Single pole, with neon-lighted handle, illuminated when switch is "ON."

D. Key-Operated Switches, 120/277 V, 20 A:

1. Available Products: Subject to compliance with requirements, products that may be incorporated into the Work include, but are not limited to, the following:

 a. Cooper; 2221L.
 b. Hubbell; HBL1221L.
 c. Pass & Seymour; PS20AC1-L.

2. Description: Single pole, with factory-supplied key in lieu of switch handle.

E. Single-Pole, Double-Throw, Momentary Contact, Center-Off Switches, 120/277 V, 20 A; for use with mechanically held lighting contactors.

1. Available Products: Subject to compliance with requirements, products that may be incorporated into the Work include, but are not limited to, the following:

 a. Wattstopper; LVS-1.
 b. Cooper; 1995.
 c. Hubbell; HBL1557.
 d. Pass & Seymour; 1251.

F. Key-Operated, Single-Pole, Double-Throw, Momentary Contact, Center-Off Switches, 120/277 V, 20 A; for use with mechanically held lighting contactors, with factory-supplied key in lieu of switch handle.

1. Available Products: Subject to compliance with requirements, products that may be incorporated into the Work include, but are not limited to, the following:

 a. Wattstopper; LVS-1K-G.
 b. Cooper; 1995L.
 c. Hubbell; HBL1557L.
 d. Pass & Seymour; 1251L.
2.7 WALL PLATES

A. Single and combination types to match corresponding wiring devices.
 1. Plate-Securing Screws: Metal with head color to match plate finish.
 2. Material for Finished Spaces: 0.035-inch (1-mm) thick, satin-finished stainless steel.
 4. Material for Damp Locations: Thermoplastic with spring-loaded lift cover, and listed and labeled for use in "wet locations."

B. Wet-Location, Weatherproof Cover Plates: NEMA 250, complying with type 3R weather-resistant, die-cast aluminum with lockable cover.

2.8 FINISHES

A. Color: Wiring device catalog numbers in Section Text do not designate device color.
 1. Wiring Devices Connected to Normal Power System: As selected by Architect, unless otherwise indicated or required by NFPA 70 or device listing.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Comply with NECA 1, including the mounting heights listed in that standard, unless otherwise noted.

B. Coordination with Other Trades:
 1. Take steps to ensure that devices and their boxes are protected. Do not place wall finish materials over device boxes and do not cut holes for boxes with routers that are guided by riding against outside of the boxes.
 2. Keep outlet boxes free of plaster, drywall joint compound, mortar, cement, concrete, dust, paint, and other material that may contaminate the raceway system, conductors, and cables.
 3. Install device boxes in brick or block walls so that the cover plate does not cross a joint unless the joint is troweled flush with the face of the wall.
 4. Install wiring devices after all wall preparation, including painting, is complete.

C. Conductors:
 1. Do not strip insulation from conductors until just before they are spliced or terminated on devices.
 2. Strip insulation evenly around the conductor using tools designed for the purpose. Avoid scoring or nicking of solid wire or cutting strands from stranded wire.
3. The length of free conductors at outlets for devices shall meet provisions of NFPA 70, Article 300, without pigtails.

D. Device Installation:

1. Replace all devices that have been in temporary use during construction or that show signs that they were installed before building finishing operations were complete.
2. Keep each wiring device in its package or otherwise protected until it is time to connect conductors.
3. Do not remove surface protection, such as plastic film and smudge covers, until the last possible moment.
4. Connect devices to branch circuits using pigtails that are not less than 6 inches (152 mm) in length.
5. When there is a choice, use side wiring with binding-head screw terminals. Wrap solid conductor tightly clockwise, 2/3 to 3/4 of the way around terminal screw.
6. Use a torque screwdriver when a torque is recommended or required by the manufacturer.
7. When conductors larger than No. 12 AWG are installed on 15- or 20-A circuits, splice No. 12 AWG pigtails for device connections.
8. Tighten unused terminal screws on the device.
9. When mounting into metal boxes, remove the fiber or plastic washers used to hold device mounting screws in yokes, allowing metal-to-metal contact.

E. Receptacle Orientation:

1. Install ground pin of vertically mounted receptacles up, and on horizontally mounted receptacles to the right.

F. Device Plates: Do not use oversized or extra-deep plates. Repair wall finishes and remount outlet boxes when standard device plates do not fit flush or do not cover rough wall opening.

G. Arrangement of Devices: Unless otherwise indicated, mount flush, with long dimension vertical and with grounding terminal of receptacles on top. Group adjacent switches under single, multigang wall plates.

H. Adjust locations of floor boxes to suit arrangement of partitions and furnishings.

3.2 IDENTIFICATION

A. Comply with Division 16 Section "Identification for Electrical Systems."

1. Receptacles: Identify panelboard and circuit number from which served. Use hot, stamped or engraved machine printing with black-filled lettering on face of plate, and durable wire markers or tags inside outlet boxes.
3.3 FIELD QUALITY CONTROL

A. Perform tests and inspections and prepare test reports.

1. In healthcare facilities, prepare reports that comply with recommendations in NFPA 99.
2. Test Instruments: Use instruments that comply with UL 1436.
3. Test Instrument for Convenience Receptacles: Digital wiring analyzer with digital readout or illuminated LED indicators of measurement.

B. Tests for Convenience Receptacles:

1. Line Voltage: Acceptable range is 105 to 132 V.
2. Percent Voltage Drop under 15-A Load: A value of 6 percent or higher is not acceptable.
3. Ground Impedance: Values of up to 2 ohms are acceptable.
4. GFCI Trip: Test for tripping values specified in UL 1436 and UL 943.
5. Using the test plug, verify that the device and its outlet box are securely mounted.
6. The tests shall be diagnostic, indicating damaged conductors, high resistance at the circuit breaker, poor connections, inadequate fault current path, defective devices, or similar problems. Correct circuit conditions, remove malfunctioning units and replace with new ones, and retest as specified above.

END OF SECTION
SECTION 262813

FUSES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Cartridge fuses rated 600-V ac and less for use in control circuits, enclosed switches, switchboards, and enclosed controllers.
2. Spare-fuse cabinets.

1.3 SUBMITTALS

A. Product Data: For each type of product indicated. Include construction details, material, dimensions, descriptions of individual components, and finishes for spare-fuse cabinets. Include the following for each fuse type indicated:

1. Ambient Temperature Adjustment Information: If ratings of fuses have been adjusted to accommodate ambient temperatures, provide list of fuses with adjusted ratings.
 a. For each fuse having adjusted ratings, include location of fuse, original fuse rating, local ambient temperature, and adjusted fuse rating.
 b. Provide manufacturer’s technical data on which ambient temperature adjustment calculations are based.

2. Dimensions and manufacturer's technical data on features, performance, electrical characteristics, and ratings.
4. Coordination charts and tables and related data.

B. Operation and Maintenance Data: For fuses to include in emergency, operation, and maintenance manuals. In addition to items specified in Division 01 Section "Operation and Maintenance Data," include the following:

1. Ambient temperature adjustment information.
2. Current-limitation curves for fuses with current-limiting characteristics.
3. Coordination charts and tables and related data.
1.4 QUALITY ASSURANCE

A. Source Limitations: Obtain fuses, for use within a specific product or circuit, from single source from single manufacturer.

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

C. Comply with NEMA FU 1 for cartridge fuses.

D. Comply with NFPA 70.

1.5 PROJECT CONDITIONS

A. Where ambient temperature to which fuses are directly exposed is less than 40 deg F (5 deg C) or more than 100 deg F (38 deg C), apply manufacturer's ambient temperature adjustment factors to fuse ratings.

1.6 COORDINATION

A. Coordinate fuse ratings with utilization equipment nameplate limitations of maximum fuse size and with system short-circuit current levels.

1.7 EXTRA MATERIALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Fuses: Equal to 10 percent of quantity installed for each size and type, but no fewer than two of each size and type.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Cooper Bussmann, Inc.
2. Edison Fuse, Inc.
3. Ferraz Shawmut, Inc.

2.2 CARTRIDGE FUSES

A. Characteristics: NEMA FU 1, nonrenewable cartridge fuses with voltage ratings consistent with circuit voltages.
2.3 SPARE-FUSE CABINET

A. Characteristics: Wall-mounted steel unit with full-length, recessed piano-hinged door and key-coded cam lock and pull.

 1. Size: Adequate for storage of spare fuses specified with 15 percent spare capacity minimum.
 2. Finish: Gray, baked enamel.
 3. Identification: "SPARE FUSES" in 1-1/2-inch (38-mm-) high letters on exterior of door.
 4. Fuse Pullers: For each size of fuse, where applicable and available, from fuse manufacturer.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine fuses before installation. Reject fuses that are moisture damaged or physically damaged.

B. Examine holders to receive fuses for compliance with installation tolerances and other conditions affecting performance, such as rejection features.

C. Examine utilization equipment nameplates and installation instructions. Install fuses of sizes and with characteristics appropriate for each piece of equipment.

D. Evaluate ambient temperatures to determine if fuse rating adjustment factors must be applied to fuse ratings.

E. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 FUSE APPLICATIONS

A. Cartridge Fuses:

 1. Feeders: Class J, time delay.
 2. Motor Branch Circuits: Class RK1, time delay.
 3. Other Branch Circuits: Class RK1, time delay, time delay.
 4. Control Circuits: Class CC, time delay.

3.3 INSTALLATION

A. Install fuses in fusible devices. Arrange fuses so rating information is readable without removing fuse.

B. Install spare-fuse cabinet(s).
3.4 IDENTIFICATION

A. Install labels complying with requirements for identification specified in Division 26 Section "Identification for Electrical Systems" and indicating fuse replacement information on inside door of each fused switch and adjacent to each fuse block, socket, and holder.

END OF SECTION
SECTION 262816
ENCLOSED SWITCHES AND CIRCUIT BREAKERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Fusible switches.
 2. Nonfusible switches.
 3. Molded-case circuit breakers (MCCBs).
 4. Enclosures.

1.3 DEFINITIONS

A. NC: Normally closed.

B. NO: Normally open.

C. SPDT: Single pole, double throw.

1.4 SUBMITTALS

A. Product Data: For each type of enclosed switch, circuit breaker, accessory, and component indicated. Include dimensioned elevations, sections, weights, and manufacturers’ technical data on features, performance, electrical characteristics, ratings, accessories, and finishes.
 1. Enclosure types and details for types other than NEMA 250, Type 1.
 2. Current and voltage ratings.
 3. Short-circuit current ratings (interrupting and withstand, as appropriate).
 4. Detail features, characteristics, ratings, and factory settings of individual overcurrent protective devices, accessories, and auxiliary components.
 5. Include time-current coordination curves (average melt) for each type and rating of overcurrent protective device; include selectable ranges for each type of overcurrent protective device.

B. Shop Drawings: For enclosed switches and circuit breakers. Include plans, elevations, sections, details, and attachments to other work.
1. Wiring Diagrams: For power, signal, and control wiring.

C. Qualification Data: For qualified testing agency.

D. Field quality-control reports.
 1. Test procedures used.
 2. Test results that comply with requirements.
 3. Results of failed tests and corrective action taken to achieve test results that comply with requirements.

E. Operation and Maintenance Data: For enclosed switches and circuit breakers to include in emergency, operation, and maintenance manuals. In addition to items specified in Division 01 Section "Operation and Maintenance Data," include the following:
 1. Manufacturer's written instructions for testing and adjusting enclosed switches and circuit breakers.
 2. Time-current coordination curves (average melt) for each type and rating of overcurrent protective device; include selectable ranges for each type of overcurrent protective device.

1.5 QUALITY ASSURANCE

A. Testing Agency Qualifications: Member company of NETA or an NRTL.
 1. Testing Agency's Field Supervisor: Currently certified by NETA to supervise on-site testing.

B. Source Limitations: Obtain enclosed switches and circuit breakers, overcurrent protective devices, components, and accessories, within same product category, from single source from single manufacturer.

C. Product Selection for Restricted Space: Drawings indicate maximum dimensions for enclosed switches and circuit breakers, including clearances between enclosures, and adjacent surfaces and other items. Comply with indicated maximum dimensions.

D. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

E. Comply with NFPA 70.

1.6 PROJECT CONDITIONS

A. Environmental Limitations: Rate equipment for continuous operation under the following conditions unless otherwise indicated:
 1. Ambient Temperature: Not less than minus 22 deg F (minus 30 deg C) and not exceeding 104 deg F (40 deg C).

1.7 COORDINATION
A. Coordinate layout and installation of switches, circuit breakers, and components with equipment served and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.

1.8 EXTRA MATERIALS
A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Fuses: Equal to 10 percent of quantity installed for each size and type, but no fewer than three of each size and type.
2. Fuse Pullers: Two for each size and type.

PART 2 - PRODUCTS

2.1 FUSIBLE SWITCHES
A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Square D; a brand of Schneider Electric.
2. General Electric Company; GE Consumer & Industrial-Electrical Division.

B. Type HD, Heavy Duty, Single Throw, 600-V ac, 1200 A and Smaller: UL 98 and NEMA KS 1, horsepower rated, with clips or bolt pads to accommodate specified fuses, lockable handle with capability to accept three padlocks, lockable in either open or closed positions, and interlocked with cover in closed position.

C. Accessories:

1. Equipment Ground Kit: Internally mounted and labeled for copper and aluminum ground conductors.
2. Neutral Kit: Internally mounted; insulated, capable of being grounded and bonded; labeled for copper and aluminum neutral conductors.
3. Class R Fuse Kit: Provides rejection of other fuse types when Class R fuses are specified.
4. Auxiliary Contact Kit: One NO/NC (Form “C”) auxiliary. Contacts would reactivate before blades open as indicated on the Drawings.
5. Lugs: Compression type, suitable for number, size, and conductor material.
6. Accessory Control Power Voltage: Remote-mounted and powered; 120-VAC. Provide as required with auxiliary contact kit.
2.2 NONFUSIBLE SWITCHES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Square D; a brand of Schneider Electric.
2. General Electric Company; GE Consumer & Industrial-Electrical Division.

B. Type HD, Heavy Duty, Single Throw, 600-V ac, 1200 A and Smaller: UL 98 and NEMA KS 1, horsepower rated, lockable handle with capability to accept three padlocks, lockable in either open or closed position, and interlocked with cover in closed position.

C. Accessories:

1. Equipment Ground Kit: Internally mounted and labeled for copper and aluminum ground conductors.
2. Neutral Kit: Internally mounted; insulated, capable of being grounded and bonded; labeled for copper and aluminum neutral conductors.
3. Auxiliary Contact Kit: One NO/NC (Form “C”) auxiliary contacts, arranged to activate before switch blades open, where indicated in the Drawings.
4. Lugs: Compression type, suitable for number, size, and conductor material.
5. Accessory Control Power Voltage: Remote mounted and powered; 120 VAC. Provide as required with auxiliary contact kit.

2.3 MOLDED-CASE CIRCUIT BREAKERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Square D; a brand of Schneider Electric.
2. General Electric Company; GE Consumer & Industrial-Electrical Division.

B. General Requirements: Comply with UL 489, NEMA AB 1, and NEMA AB 3, with interrupting capacity to comply with available fault currents.

D. Features and Accessories:

1. Standard frame sizes, trip ratings, and number of poles.
2. Lugs: Compression type, suitable for number, size, trip ratings, and conductor material.
3. Application Listing: Appropriate for application; Type SWD for switching fluorescent lighting loads; Type HID for feeding fluorescent and high-intensity discharge lighting circuits.
4. Shunt Trip: Trip coil energized from separate circuit, with coil-clearing contact.
5. Undervoltage Trip: Set to operate at 35 to 75 percent of rated voltage without intentional time delay.
6. Auxiliary Contacts: One SPDT switch with "a" and "b" contacts; "a" contacts mimic circuit-breaker contacts, "b" contacts operate in reverse of circuit-breaker contacts.
7. Alarm Switch: One NO contact that operates only when circuit breaker has tripped.
8. Accessory Control Power Voltage: Remote mounted and powered; 120-V ac.

2.4 ENCLOSURES

A. Enclosed Switches and Circuit Breakers: NEMA AB 1, NEMA KS 1, NEMA 250, and UL 50, to comply with environmental conditions at installed location.

1. Indoor, Dry and Clean Locations: NEMA 250, Type 1.
2. Outdoor Locations: NEMA 250, Type 3R.
3. Other Wet or Damp, Indoor Locations: NEMA 250, Type 4.
4. Indoor Locations Subject to Dust, Falling Dirt, and Dripping Noncorrosive Liquids: NEMA 250, Type 12.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine elements and surfaces to receive enclosed switches and circuit breakers for compliance with installation tolerances and other conditions affecting performance of the Work.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Install individual wall-mounted switches and circuit breakers with tops at uniform height unless otherwise indicated.

B. Comply with mounting and anchoring requirements specified in Division 26.

C. Temporary Lifting Provisions: Remove temporary lifting eyes, channels, and brackets and temporary blocking of moving parts from enclosures and components.

D. Install fuses in fusible devices.

E. Comply with NECA 1.
3.3 IDENTIFICATION

A. Comply with requirements in Division 26 Section "Identification for Electrical Systems."
 1. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs.
 2. Label each enclosure with engraved metal or laminated-plastic nameplate.

3.4 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
B. Perform tests and inspections.
C. Acceptance Testing Preparation:
 1. Test insulation resistance for each enclosed switch and circuit breaker, component, connecting supply, feeder, and control circuit.
 2. Test continuity of each circuit.
D. Tests and Inspections:
 1. Perform each visual and mechanical inspection and electrical test stated in NETA Acceptance Testing Specification. Certify compliance with test parameters.
 2. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.
 3. Test and adjust controls, remote monitoring, and safeties. Replace damaged and malfunctioning controls and equipment.
E. Enclosed switches and circuit breakers will be considered defective if they do not pass tests and inspections.

3.5 ADJUSTING

A. Adjust moving parts and operable components to function smoothly, and lubricate as recommended by manufacturer.

END OF SECTION
SECTION 262913
ENCLOSED CONTROLLERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. This Section includes ac, enclosed controllers rated 600 V and less, of the following types:
 1. Across-the-line, manual and magnetic controllers.
 2. Multispeed controllers.
B. Related Sections include the following:
 1. Division 26 Section "Surge Protective Devices" for low-voltage power, control, and communication surge suppressors.

1.3 SUBMITTALS
A. Product Data: For each type of enclosed controller. Include dimensions and manufacturer's technical data on features, performance, electrical characteristics, ratings, and finishes.
B. Shop Drawings: For each enclosed controller.
 1. Include dimensioned plans, elevations, sections, and details, including required clearances and service space around equipment. Show tabulations of installed devices, equipment features, and ratings. Include the following:
 a. Each installed unit's type and details.
 b. Nameplate legends.
 c. Short-circuit current rating of integrated unit.
 d. Features, characteristics, ratings, and factory settings of individual overcurrent protective devices in combination controllers.
 2. Wiring Diagrams: Power, signal, and control wiring.
C. Coordination Drawings: Floor plans, drawn to scale, showing dimensioned layout, required working clearances, and required area above and around enclosed controllers where pipe and ducts are prohibited. Show enclosed controller layout and relationships.
between electrical components and adjacent structural and mechanical elements. Show support locations, type of support, and weight on each support. Indicate field measurements.

D. Qualification Data: For manufacturer and testing agency.

E. Field quality-control test reports.

F. Operation and Maintenance Data: For enclosed controllers to include in emergency, operation, and maintenance manuals. In addition to items specified in Division 01 Section "Operation and Maintenance Data," include the following:

1. Routine maintenance requirements for enclosed controllers and all installed components.
2. Manufacturer's written instructions for testing and adjusting overcurrent protective devices.

G. Load-Current and List of Settings of Adjustable Overload Relays: Compile after motors have been installed and arrange to demonstrate that dip switch settings for motor running overload protection suit actual motor to be protected.

1.4 QUALITY ASSURANCE

A. Manufacturer Qualifications: A qualified manufacturer. Maintain, within 100 miles (160 km) of Project site, a service center capable of providing training, parts, and emergency maintenance and repairs.

B. Testing Agency Qualifications: An independent agency, with the experience and capability to conduct the testing indicated, that is a member company of the InterNational Electrical Testing Association or is a nationally recognized testing laboratory (NRTL) as defined by OSHA in 29 CFR 1910.7, and that is acceptable to authorities having jurisdiction.

1. Testing Agency's Field Supervisor: Person currently certified by the InterNational Electrical Testing Association or the National Institute for Certification in Engineering Technologies to supervise on-site testing specified in Part 3.

C. Source Limitations: Obtain enclosed controllers of a single type through one source from a single manufacturer.

D. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

E. Comply with NFPA 70.
F. Product Selection for Restricted Space: Drawings indicate maximum dimensions for enclosed controllers, minimum clearances between enclosed controllers, and for adjacent surfaces and other items. Comply with indicated maximum dimensions and clearances.

1.5 DELIVERY, STORAGE, AND HANDLING

A. Store enclosed controllers indoors in clean, dry space with uniform temperature to prevent condensation. Protect enclosed controllers from exposure to dirt, fumes, water, corrosive substances, and physical damage.

B. If stored in areas subject to weather, cover enclosed controllers to protect them from weather, dirt, dust, corrosive substances, and physical damage. Remove loose packing and flammable materials from inside controllers; install electric heating of sufficient wattage to prevent condensation.

1.6 COORDINATION

A. Coordinate layout and installation of enclosed controllers with other construction including conduit, piping, equipment, and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.

B. Coordinate installation of roof curbs, equipment supports, and roof penetrations. These items are specified in Division 07 Section "Roof Accessories."

C. Coordinate features of enclosed controllers and accessory devices with pilot devices and control circuits to which they connect.

D. Coordinate features, accessories, and functions of each enclosed controller with ratings and characteristics of supply circuit, motor, required control sequence, and duty cycle of motor and load.

1.7 EXTRA MATERIALS

A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Spare Fuses: Furnish one spare for every five installed, but no fewer than one set of three of each type and rating.

2. Indicating Lights: Two of each type installed.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
1. Square D.
2. General Electric Company; GE Consumer & Industrial-Electrical Division.

2.2 ACROSS-THE-LINE ENCLOSED CONTROLLERS

A. Manual Controller: NEMA ICS 2, general purpose, Class A, with "quick-make, quick-break" toggle or pushbutton action, and marked to show whether unit is "OFF," "ON," or "TRIPPED."

1. Overload Relay: Ambient-compensated type with inverse-time-current characteristics and NEMA ICS 2, Class 10 tripping characteristics. Relays shall have heaters and sensors in each phase, matched to nameplate, full-load current of specific motor to which they connect and shall have appropriate adjustment for duty cycle.

B. Magnetic Controller: NEMA ICS 2, Class A, full voltage, nonreversing, across the line, unless otherwise indicated.

1. Control Circuit: 120 V; obtained from integral control power transformer with a control power transformer source of sufficient capacity to operate connected pilot, indicating and control devices, plus 100 percent spare capacity. Control power transformers shall have primary and secondary fuse protection.

2. Overload Relay: Ambient-compensated type with inverse-time-current characteristic and NEMA ICS 2, Class 20 tripping characteristic. Provide with heaters or sensors in each phase matched to nameplate full-load current of specific motor to which they connect and with appropriate adjustment for duty cycle.

C. Combination Magnetic Controller: Factory-assembled combination controller and disconnect switch.

2.3 MULTISPEED ENCLOSED CONTROLLERS

A. Multispeed Enclosed Controller: Match controller to motor type, application, and number of speeds; include the following accessories:

1. Compelling relay to ensure that motor will start only at low speed.
2. Accelerating relay to ensure properly timed acceleration through speeds lower than that selected.
3. Decelerating relay to ensure automatically timed deceleration through each speed.

2.4 ENCLOSURES

A. Description: Surface-mounting cabinets as indicated. NEMA 250, Type 1, unless otherwise indicated to comply with environmental conditions at installed location.
1. Outdoor Locations: NEMA 250, Type 3R.
2. Other Wet or Damp Indoor Locations: NEMA 250, Type 4.
3. Hazardous Areas Indicated on Drawings: NEMA 250, Type 7C.

2.5 ACCESSORIES
A. Devices shall be factory installed in controller enclosure, unless otherwise indicated.
C. Control Relays: Two (2) NO/NC auxiliary contacts and adjustable time-delay relays as required by automatic control sequence.

2.6 FACTORY FINISHES
A. Finish: Manufacturer's standard paint applied to factory-assembled and -tested enclosed controllers before shipping.

PART 3 - EXECUTION
3.1 EXAMINATION
A. Examine areas and surfaces to receive enclosed controllers for compliance with requirements, installation tolerances, and other conditions affecting performance.
 1. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 APPLICATIONS
A. Select features of each enclosed controller to coordinate with ratings and characteristics of supply circuit and motor; required control sequence; duty cycle of motor, controller, and load; and configuration of pilot device and control circuit affecting controller functions.
B. Select horsepower rating of controllers to suit motor controlled.

3.3 INSTALLATION
A. For control equipment at walls, bolt units to wall or mount on lightweight structural-steel channels bolted to wall. For controllers not at walls, provide freestanding racks complying with Division 26 Section "Hangers and Supports for Electrical Systems."
B. Enclosed Controller Fuses: Install fuses in each fusible switch. Comply with requirements in Division 26 Section "Fuses."

C. Install Power Factor Correction Capacitors furnished under Mechanical Divisions with disconnects, overcurrent protection, wire, conduit and ground for capacitor enclosure, all in accordance with the recommendations of the capacitor manufacturer and the National Electric Code.

3.4 IDENTIFICATION

A. Identify enclosed controller, components, and control wiring according to Division 26 Section "Identification for Electrical Systems."

3.5 CONTROL WIRING INSTALLATION

A. Install wiring between enclosed controllers according to Division 26 Section "Low-Voltage Electrical Power Conductors and Cables."

B. Bundle, train, and support wiring in enclosures.

C. Connect hand-off-automatic switch and other automatic-control devices where applicable.
 1. Connect selector switches to bypass only manual- and automatic-control devices that have no safety functions when switch is in hand position.
 2. Connect selector switches with enclosed controller circuit in both hand and automatic positions for safety-type control devices such as low- and high-pressure cutouts, high-temperature cutouts, and motor overload protectors.

3.6 CONNECTIONS

A. Conduit installation requirements are specified in other Division 26 Sections. Drawings indicate general arrangement of conduit, fittings, and specialties.

B. Ground equipment according to Division 26 Section "Grounding and Bonding for Electrical Systems."

3.7 FIELD QUALITY CONTROL

A. Prepare for acceptance tests as follows:
 1. Test insulation resistance for each enclosed controller element, bus, component, connecting supply, feeder, and control circuit.
 2. Test continuity of each circuit.

B. Manufacturer's Field Service: Engage a factory-authorized service representative to perform the following:
1. Inspect controllers, wiring, components, connections, and equipment installation. Test and adjust controllers, components, and equipment.
2. Assist in field testing of equipment including pretesting and adjusting of solid-state controllers.

C. Testing Agency: Engage a qualified testing and inspecting agency to perform the following field tests and inspections and prepare test reports:

D. Perform the following field tests and inspections and prepare test reports:

1. Perform each electrical test and visual and mechanical inspection, except optional tests, stated in NETA ATS, "Motor Control - Motor Starters." Certify compliance with test parameters.
2. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.

3.8 ADJUSTING
A. Set field-adjustable switches and circuit-breaker trip ranges.

3.9 DEMONSTRATION
A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain enclosed controllers. Refer to Division 01 Section "Demonstration and Training."

END OF SECTION
THIS PAGE INTENTIONALLY LEFT BLANK
SECTION 263213.14
DIESEL ENGINE GENERATORS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes packaged engine generators used to supply non-emergency power, with the following features:

1. Diesel engine.
2. Diesel fuel-oil system.
3. Control and monitoring.
4. Generator overcurrent and fault protection.
5. Generator, exciter, and voltage regulator.
6. Outdoor engine generator enclosure.
7. Remote radiator motors.
8. Vibration isolation devices.

B. Related Requirements:

1. Section 263600 "Transfer Switches" for transfer switches including sensors and relays to initiate automatic-starting and stopping signals for engine generators.

1.3 DEFINITIONS

A. Operational Bandwidth: The total variation from the lowest to highest value of a parameter over the range of conditions indicated, expressed as a percentage of the nominal value of the parameter.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product.

1. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.
2. Include thermal damage curve for generator.
3. Include time-current characteristic curves for generator protective device.
4. Include fuel consumption in gallons per hour at 0.8 power factor at 0.5, 0.75, and 1.0 times generator capacity.
5. Include generator efficiency at 0.8 power factor at 0.5, 0.75, and 1.0 times generator capacity.
6. Include airflow requirements for cooling and combustion air in cubic feet per minute at 0.8 power factor, with air-supply temperature of 95, 80, 70, and 50 deg F. Provide Drawings indicating requirements and limitations for location of air intake and exhausts.
7. Include generator characteristics, including, but not limited to, kilowatt rating, efficiency, reactances, and short-circuit current capability.

B. Shop Drawings:

1. Include plans and elevations for engine generator and other components specified. Indicate access requirements affected by height of subbase fuel tank.
2. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
3. Identify fluid drain ports and clearance requirements for proper fluid drain.
4. Design calculations for selecting vibration isolators and seismic restraints and for designing vibration isolation bases.
5. Include diagrams for power, signal, and control wiring. Complete schematic, wiring, and interconnection diagrams showing terminal markings for engine generators and functional relationship between all electrical components.

1.5 INFORMATIONAL SUBMITTALS

A. Qualification Data: For Installer, manufacturer, and testing agency.

B. Source Quality-Control Reports: Including, but not limited to, the following:

1. Certified summary of prototype-unit test report.
2. Certified Test Reports: For components and accessories that are equivalent, but not identical, to those tested on prototype unit.
4. Report of factory test on units to be shipped for this Project, showing evidence of compliance with specified requirements.
6. Report of exhaust emissions showing compliance with applicable regulations.

C. Field quality-control reports.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For packaged engine generators to include in emergency, operation, and maintenance manuals.

1. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:
a. List of tools and replacement items recommended to be stored at Project for ready access. Include part and drawing numbers, current unit prices, and source of supply.
b. Operating instructions laminated and mounted adjacent to generator location.
c. Training plan.

1.7 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Fuses: One for every 10 of each type and rating, but no fewer than one of each.
 2. Indicator Lamps: Two for every six of each type used, but no fewer than two of each.
 3. Filters: One set each of lubricating oil, fuel, and combustion-air filters.
 4. Tools: Each tool listed by part number in operations and maintenance manual.

1.8 QUALITY ASSURANCE

A. Installer Qualifications: An authorized representative who is trained and approved by manufacturer.

B. Testing Agency Qualifications: Accredited by NETA.
 1. Testing Agency's Field Supervisor: Certified by NETA to supervise on-site testing.

1.9 WARRANTY

A. Manufacturer's Warranty: Manufacturer agrees to repair or replace components of packaged engine generators and associated auxiliary components that fail in materials or workmanship within specified warranty period.
 1. Warranty Period: 2 years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Basis of design is paralleled Caterpillar model C15 generators or approved equal by:

B. Source Limitations: Obtain packaged engine generators and auxiliary components from single source from single manufacturer.
2.2 PERFORMANCE REQUIREMENTS

A. NFPA Compliance:
 2. Comply with NFPA 70.

B. UL Compliance: Comply with UL 2200.

C. Engine Exhaust Emissions: Comply with EPA Stationary Emergency requirements and applicable state and local government requirements.

D. Noise Emission: Comply with applicable state and local government requirements for maximum noise level at adjacent property boundaries due to sound emitted by engine generator including engine, engine exhaust, engine cooling-air intake and discharge, and other components of installation.

E. Environmental Conditions: Engine generator system shall withstand the following environmental conditions without mechanical or electrical damage or degradation of performance capability:
 1. Ambient Temperature: 5 to 104 deg F.
 2. Relative Humidity: Zero to 95 percent.
 3. Altitude: Sea level to 1000 feet.

2.3 ENGINE GENERATOR ASSEMBLY DESCRIPTION

A. Factory-assembled and -tested, water-cooled engine, with brushless generator and accessories.

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and use.

C. Power Rating: Industrial.

D. Power Factor: 0.8, lagging.

E. Frequency: 60 Hz.

F. Voltage: 480-V ac.

G. Phase: Three-phase, four wire, wye.

H. Induction Method: Turbocharged and aftercooled.

I. Governor: Adjustable isochronous, with speed sensing.
J. Mounting Frame: Structural steel framework to maintain alignment of mounted components without depending on concrete foundation. Provide lifting attachments sized and spaced to prevent deflection of base during lifting and moving.

1. Rigging Diagram: Inscribed on metal plate permanently attached to mounting frame to indicate location and lifting capacity of each lifting attachment and engine generator center of gravity.

K. Capacities and Characteristics:

1. Power Output Ratings: Nominal ratings as indicated excluding power required for the continued and repeated operation of the unit and auxiliaries.
2. Nameplates: For each major system component to identify manufacturer's name and address, and model and serial number of component.

L. Engine Generator Performance:

1. Steady-State Voltage Operational Bandwidth: 3 percent of rated output voltage from no load to full load.
2. Transient Voltage Performance: Not more than 20 percent variation for 50 percent step-load increase or decrease. Voltage shall recover and remain within the steady-state operating band within three seconds.
3. Steady-State Frequency Operational Bandwidth: 0.5 percent of rated frequency from no load to full load.
4. Steady-State Frequency Stability: When system is operating at any constant load within the rated load, there shall be no random speed variations outside the steady-state operational band and no hunting or surging of speed.
5. Transient Frequency Performance: Less than 5 percent variation for 50 percent step-load increase or decrease. Frequency shall recover and remain within the steady-state operating band within five seconds.
6. Output Waveform: At no load, harmonic content measured line to line or line to neutral shall not exceed 5 percent total and 3 percent for single harmonics. Telephone influence factor, determined according to NEMA MG 1, shall not exceed 50 percent.
7. Sustained Short-Circuit Current: For a three-phase, bolted short circuit at system output terminals, system shall supply a minimum of 250 percent of rated full-load current for not less than 10 seconds and then clear the fault automatically, without damage to generator system components.
8. Start Time: 10 seconds.

2.4 DIESEL ENGINE

A. Fuel: ASTM D975, diesel fuel oil, Grade 2-D S15.

B. Rated Engine Speed: 1800 rpm.

C. Lubrication System: Engine or skid-mounted.
1. Filter and Strainer: Rated to remove 90 percent of particles 5 micrometers and smaller while passing full flow.
2. Thermostatic Control Valve: Control flow in system to maintain optimum oil temperature. Unit shall be capable of full flow and is designed to be fail-safe.
3. Crankcase Drain: Arranged for complete gravity drainage to an easily removable container with no disassembly and without use of pumps, siphons, special tools, or appliances.

D. Jacket Coolant Heater: Electric-immersion type, factory installed in coolant jacket system. Comply with UL 499. Include isolation valves to permit changing of heater element without draining cooling system.

E. Cooling System: Closed loop, liquid cooled, with radiator factory mounted on engine generator set mounting frame and integral engine-driven coolant pump.

1. Coolant: Solution of 50 percent ethylene-glycol-based antifreeze and 50 percent water, with anticorrosion additives as recommended by engine manufacturer.
2. Size of Radiator: Adequate to contain expansion of total system coolant from cold start to 110 percent load condition.
3. Temperature Control: Self-contained, thermostatic-control valve modulates coolant flow automatically to maintain optimum constant coolant temperature as recommended by engine manufacturer.
 a. Rating: 50-psig maximum working pressure with coolant at 180 deg F, and noncollapsible under vacuum.
 b. End Fittings: Flanges or steel pipe nipples with clamps to suit piping and equipment connections.

F. Muffler/Silencer: Critical type, sized as recommended by engine manufacturer and selected with exhaust piping system to not exceed engine manufacturer's engine backpressure requirements.

1. Minimum sound attenuation of 25 dB at 500 Hz.
2. Sound level measured at a distance of 25 feet from exhaust discharge after installation is complete shall be 78 dBA or less.
3. Muffler selection shall be coordinated with enclosure design to achieve overall package attenuation.

G. Air-Intake Filter: Heavy-duty, engine-mounted air cleaner with replaceable dry-filter element and "blocked filter" indicator.

H. Starting System: 24-V electric, with negative ground.

1. Components: Sized so they are not damaged during a full engine-cranking cycle with ambient temperature at maximum specified in "Performance Requirements" Article.
2. Cranking Motor: Heavy-duty unit that automatically engages and releases from engine flywheel without binding.
4. Battery: Lead acid, with capacity within ambient temperature range specified in "Performance Requirements" Article to provide specified cranking cycle at least three times without recharging.
5. Battery Cable: Size as recommended by engine manufacturer for cable length indicated. Include required interconnecting conductors and connection accessories.
6. Battery Rack: Factory fabricated of metal with acid-resistant finish. Include accessories required to support and fasten batteries in place. Provide ventilation to exhaust battery gases.
8. Battery Charger: Current-limiting, automatic-equalizing, and float-charging type designed for lead-acid batteries. Unit shall comply with UL 1236 and include the following features:
 a. Operation: Equalizing-charging rate of 10 A shall be initiated automatically after battery has lost charge until an adjustable equalizing voltage is achieved at battery terminals. Unit shall then be automatically switched to a lower float-charging mode and shall continue to operate in that mode until battery is discharged again.
 b. Automatic Temperature Compensation: Adjust float and equalize voltages for variations in ambient temperature from minus 40 to 140 deg F to prevent overcharging at high temperatures and undercharging at low temperatures.
 c. Automatic Voltage Regulation: Maintain constant output voltage regardless of input voltage variations up to plus or minus 10 percent.
 e. Safety Functions: Sense abnormally low battery voltage and close contacts providing low battery voltage indication on control and monitoring panel. Sense high battery voltage and loss of ac input or dc output of battery charger. Either condition shall close contacts that provide a battery-charger malfunction indication at system control and monitoring panel.
 f. Enclosure and Mounting: NEMA 250, Type 1, wall-mounted cabinet.

2.5 DIESEL FUEL-OIL SYSTEM

A. Comply with NFPA 30.

B. Piping: Fuel-oil piping shall be Schedule 40 black steel, complying with requirements in Section 231113 "Facility Fuel-Oil Piping." Cast iron, aluminum, copper, and galvanized steel shall not be used in the fuel-oil system.

C. Main Fuel Pump: Mounted on engine to provide primary fuel flow under starting and load conditions.
D. Fuel Filtering: Remove water and contaminants larger than 1 micron.

E. Relief-Bypass Valve: Automatically regulates pressure in fuel line and returns excess fuel to source.

F. Fuel-Oil Storage Tank: Comply with requirements in Section 231323 "Facility Aboveground Fuel-Oil Storage Tanks."

1. Fuel Tank Capacity: As recommended by engine manufacturer for an uninterrupted period of 48 hours' operation at 100 percent of rated power output of engine generator system without being refilled.

2.6 CONTROL AND MONITORING

A. Automatic Starting System Sequence of Operation: When mode-selector switch on the control and monitoring panel is in the automatic position, remote-control contacts in the automatic transfer switch initiate starting and stopping of engine generator. When mode-selector switch is switched to the on position, engine generator starts. The off position of same switch initiates engine generator shutdown. When engine generator is running, specified system or equipment failures or derangements automatically shut down engine generator and initiate alarms.

B. Manual Starting System Sequence of Operation: Switching on-off switch on the generator control panel to the on position starts engine generator. The off position of same switch initiates engine generator shutdown. When engine generator is running, specified system or equipment failures or derangements automatically shut down engine generator and initiate alarms.

C. Provide minimum run time control set for 15 minutes with override only by operation of a remote emergency-stop switch.

D. Comply with UL 508A.

E. Configuration: Operating and safety indications, protective devices, basic system controls, and engine gages shall be grouped in a common control and monitoring panel mounted on the engine generator. Mounting method shall isolate the control panel from engine generator vibration. Panel shall be powered from the engine generator battery.

F. Generator Paralleling Control Panel:

1. Provide a full function generator paralleling and control panel capable of automatically synchronizing and paralleling two generator sets to a common bus. Paralleling shall be accomplished without the need for a system master controller.

2. Paralleling functions shall include:

 a. Automatic paralleling
 b. Manual paralleling
c. Semi-automatic paralleling

d. Dead bus arbitration

e. Automatic synchronization

f. Real and reactive load sharing

g. Lead sense/load demand

h. Load shed

i. Load add

3. Digital engine generator controller with integrated LCD display, controls, and microprocessor, capable of local and remote control, monitoring, and programming, with battery backup.

4. Instruments: Located on the control and monitoring panel and viewable during operation.

a. Engine lubricating-oil pressure gage.

b. Engine-coolant temperature gage.

c. DC voltmeter (alternator battery charging).

d. Running-time meter.

e. AC voltmeter, for each phase connected to a phase selector switch.

f. AC ammeter, for each phase connected to a phase selector switch.

g. AC frequency meter.

h. Generator-voltage adjusting rheostat.

5. Controls and Protective Devices: Controls, shutdown devices, and common alarm indication, including the following:

a. Cranking control equipment.

c. Control switch not in automatic position alarm.

d. Overcrank alarm.

e. Overcrank shutdown device.

f. Low-water temperature alarm.

g. High engine temperature.

h. High engine temperature shutdown device.

i. Overspeed alarm.

j. Overspeed shutdown device.

k. Low fuel main tank.

l. Coolant low-level alarm.

m. Coolant low-level shutdown device.

n. Coolant high-temperature alarm.

o. Coolant low-temperature alarm.

p. Coolant high-temperature shutdown device.

q. Battery high-voltage alarm.

r. Low cranking voltage alarm.

s. Battery-charger malfunction alarm.

t. Battery low-voltage alarm.

u. Lamp test.

v. Contacts for local and remote common alarm.
w. Remote manual stop shutdown device.
x. Generator overcurrent-protective-device not-closed alarm.
y. Hours of operation.
z. Engine generator metering, including voltage, current, hertz, kilowatt, kilovolt ampere, and power factor.

G. Remote Alarm Annunciator: An LED indicator light labeled with proper alarm conditions shall identify each alarm event, and a common audible signal shall sound for each alarm condition. Silencing switch in face of panel shall silence signal without altering visual indication. Connect so that after an alarm is silenced, clearing of initiating condition will reactivate alarm until silencing switch is reset. Cabinet and faceplate are surface- or flush-mounting type to suit mounting conditions indicated.

1. Overcrank alarm.
2. Low water-temperature alarm.
3. High engine temperature pre-alarm.
4. High engine temperature alarm.
5. Low lube oil pressure alarm.
6. Overspeed alarm.
7. Low fuel main tank alarm.
8. Low coolant level alarm.
9. Low cranking voltage alarm.
10. Contacts for local and remote common alarm.
12. Air shutdown damper when used.
14. Control switch not in automatic position alarm.
15. Fuel tank high-level shutdown of fuel supply alarm.
16. Lamp test.

H. Supporting Items: Include sensors, transducers, terminals, relays, and other devices and include wiring required to support specified items. Locate sensors and other supporting items on engine or generator unless otherwise indicated.

I. Remote Emergency-Stop Switch: Flush; control panel mounted unless otherwise indicated; and labeled. Push button shall be protected from accidental operation.

2.7 GENERATOR OVERCURRENT AND FAULT PROTECTION

A. Provide a generator mounted UL listed 100% rated circuit breaker, insulated case, electrically operated, 800 amp trip, 3 pole. The breaker shall utilize a solid state trip unit and shall be tied in to the control panel safety shutdowns. The circuit breaker shall be housed in an extension terminal box which is isolated from engine vibration.

B. Overcurrent protective device shall be coordinated to optimize selective tripping when a short circuit occurs.

C. Generator Circuit Breaker: Electrically operated electronic-trip type; 100 percent rated; complying with UL 489.
2. Trip Settings: Selected to coordinate with generator thermal damage curve.
3. Shunt Trip: Connected to trip breaker when engine generator is shut down by other protective devices.
4. Mounting: Adjacent to control and monitoring panel.

2.8 GENERATOR, EXCITER, AND VOLTAGE REGULATOR

A. Comply with NEMA MG 1.

B. Drive: Generator shaft shall be directly connected to engine shaft. Exciter shall be rotated integrally with generator rotor.

C. Electrical Insulation: Class H.

D. Stator-Winding Leads: Brought out to terminal box to permit future reconnection for other voltages if required. Provide six-lead alternator.

E. Range: Provide broad range of output voltage by adjusting the excitation level.

F. Construction shall prevent mechanical, electrical, and thermal damage due to vibration, overspeed up to 125 percent of rating, and heat during operation at 110 percent of rated capacity.

G. Enclosure: Dripproof.

H. Instrument Transformers: Mounted within generator enclosure.

I. Voltage Regulator: Solid-state type, separate from exciter, providing performance as specified.

1. Adjusting Rheostat on Control and Monitoring Panel: Provide plus or minus 5 percent adjustment of output-voltage operating band.
2. Maintain voltage within 20 percent on one step, full load.
3. Provide anti-hunt provision to stabilize voltage.
4. Maintain frequency within 10 percent and stabilize at rated frequency within 2 seconds.

J. Strip Heater: Thermostatically controlled unit arranged to maintain stator windings above dew point.

K. Windings: Two-thirds pitch stator winding and fully linked amortisseur winding.

L. Subtransient Reactance: 15 percent, maximum.
2.9 OUTDOOR ENGINE GENERATOR ENCLOSURE

A. Description: Vandal-resistant, sound-attenuating, weatherproof aluminum housing; wind resistant up to 150 mph. Multiple doors shall be lockable and provide adequate access to components requiring maintenance. Instruments and control shall be mounted within enclosure.

1. Sound Attenuation Level: 75 dBA at 23’ from the enclosure.

B. Description: Prefabricated or pre-engineered, aluminum integral structural-steel-framed; erected on concrete foundation.

C. Structural Design and Anchorage: Comply with ASCE/SEI 7 for wind loads up to 150 mph.

D. Hinged Doors: With padlocking provisions.

E. Thermal Insulation: Manufacturer's standard materials and thickness selected in coordination with space heater to maintain winter interior temperature within operating limits required by engine generator components.

F. Muffler Location: Within enclosure.

G. Engine-Cooling Airflow through Enclosure: Maintain temperature rise of system components within required limits when unit operates at 110 percent of rated load for two hours with ambient temperature at top of range specified in system service conditions.

1. Automatic Dampers: At engine cooling-air inlet and discharge. Dampers shall be closed to reduce enclosure heat loss in cold weather when unit is not operating.
2. Ventilation: Provide temperature-controlled exhaust fan interlocked to prevent operation when engine is running.

H. Enclosure Load Center: Factory installed 125 amp, 120/208V load center in the sound attenuated enclosure. Factory shall wire jacket water heater, battery charger, generator heater and lighting to load center prior to shipment.

I. Enclosure Lighting: Factory installed and wired AC and DC lighting in the enclosure to facilitate operation and maintenance.

J. Convenience Outlets: Factory-wired, GFCI. Arrange for external electrical connection.

2.10 VIBRATION ISOLATION DEVICES

A. Provide integral vibration isolators installed between the generator set and the support base. Isolators shall be selected and installed by the manufacturer.

B. Vibration isolation devices shall not be used to accommodate misalignments or to make bends.
2.11 FINISHES

A. Indoor and Outdoor Enclosures and Components: Manufacturer's standard finish over corrosion-resistant pretreatment and compatible primer.

2.12 SOURCE QUALITY CONTROL

A. Prototype Testing: Factory test engine generator using same engine model, constructed of identical or equivalent components and equipped with identical or equivalent accessories.

B. Project-Specific Equipment Tests: Before shipment, factory test engine generator and other system components and accessories manufactured specifically for this Project. Perform tests at rated load and power factor. Include the following tests:
 1. Test components and accessories furnished with installed unit that are not identical to those on tested prototype to demonstrate compatibility and reliability.
 2. Test generator, exciter, and voltage regulator as a unit.
 3. Full load run.
 4. Maximum power.
 5. Voltage regulation.
 6. Transient and steady-state governing.
 8. Safety shutdown.
 9. Provide 14 days' advance notice of tests and opportunity for observation of tests by Owner's representative.
 10. Report factory test results within 10 days of completion of test.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas, equipment bases, and conditions, with Installer present, for compliance with requirements for installation and other conditions affecting packaged engine generator performance.

B. Examine roughing-in for piping systems and electrical connections. Verify actual locations of connections before packaged engine generator installation.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Interruption of Existing Electrical Service: Do not interrupt electrical service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary electrical service according to requirements indicated:
1. Notify Construction Manager no fewer than two working days in advance of proposed interruption of electrical service.
2. Do not proceed with interruption of electrical service without Construction Manager's written permission.

3.3 INSTALLATION

A. Comply with NECA 1 and NECA 404.
B. Comply with packaged engine generator manufacturers' written installation and alignment instructions.
C. Equipment Mounting:
 1. Install packaged engine generators on cast-in-place concrete equipment bases. Comply with requirements for equipment bases and foundations specified in Section 033000 "Cast-in-Place Concrete."
 2. Coordinate size and location of concrete bases for packaged engine generators. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified with concrete.
 3. Install packaged engine generator on 4-inch-high concrete base. Secure generator sets to anchor bolts installed in concrete bases.
D. Install packaged engine generator to provide access, without removing connections or accessories, for periodic maintenance.
E. Fuel Piping:
 1. Diesel storage tanks, tank accessories, piping, valves, and specialties for fuel systems are specified in Section 231113 "Facility Fuel-Oil Piping."
 2. Copper and galvanized steel shall not be used in the fuel-oil piping system.
F. Install electrical devices furnished by equipment manufacturers but not specified to be factory mounted.

3.4 CONNECTIONS

A. Piping installation requirements are specified in other Sections. Drawings indicate general arrangement of piping and specialties.
B. Connect fuel, cooling-system, and exhaust-system piping adjacent to packaged engine generator to allow space for service and maintenance.
C. Connect engine exhaust pipe to engine with flexible connector.
D. Connect fuel piping to engines with a gate valve and union and flexible connector.
E. Ground equipment according to Section 260526 "Grounding and Bonding for Electrical Systems."
F. Connect wiring according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables." Provide a minimum of one 90-degree bend in flexible conduit routed to the engine generator from a stationary element.

G. Balance single-phase loads to obtain a maximum of 10 percent unbalance between any two phases.

3.5 IDENTIFICATION

A. Identify system components according to Section 230553 "Identification for HVAC Piping and Equipment" and Section 260553 "Identification for Electrical Systems."

3.6 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

B. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.

C. Perform tests and inspections with the assistance of a factory-authorized service representative.

D. Tests and Inspections:

1. Perform tests recommended by manufacturer and each visual and mechanical inspection and electrical and mechanical test listed in first two subparagraphs below, as specified in NETA ATS. Certify compliance with test parameters.

 a. Visual and Mechanical Inspection:

 1) Compare equipment nameplate data with Drawings and the Specifications.
 2) Inspect physical and mechanical condition.
 3) Inspect anchorage, alignment, and grounding.
 4) Verify that the unit is clean.

 b. Electrical and Mechanical Tests:

 1) Perform insulation-resistance tests according to IEEE 43.

 a) Machines Larger Than 200 hp Test duration shall be 10 minutes. Calculate polarization index.
 b) Machines 200 hp or Less: Test duration shall be one minute. Calculate the dielectric-absorption ratio.

 2) Test protective relay devices.
 3) Verify phase rotation, phasing, and synchronized operation as required by the application.
4) Functionally test engine shutdown for low oil pressure, overtemperature, overspeed, and other protection features as applicable.

5) Verify correct functioning of the governor and regulator.

6) Perform 4 hour resistive only load bank test with generator set

2. Perform generator paralleling system testing
 a. Demonstrate the ability of the generator sets to start and parallel automatically upon initiation of a start signal from the automatic transfer switch
 b. Demonstrate the ability of the machines to share load evenly

3. Battery Tests: Equalize charging of battery cells according to manufacturer's written instructions. Record individual cell voltages.
 a. Measure charging voltage and voltages between available battery terminals for full-charging and float-charging conditions. Check electrolyte level and specific gravity under both conditions.
 b. Test for contact integrity of all connectors. Perform an integrity load test and a capacity load test for the battery.
 c. Verify acceptance of charge for each element of the battery after discharge.
 d. Verify that measurements are within manufacturer's specifications.

4. Battery-Charger Tests: Verify specified rates of charge for both equalizing and float-charging conditions.

5. System Integrity Tests: Methodically verify proper installation, connection, and integrity of each element of engine generator system before and during system operation. Check for air, exhaust, and fluid leaks.

6. Noise Level Tests: Measure A-weighted level of noise emanating from engine generator installation, including engine exhaust and cooling-air intake and discharge, at four locations 25 feet from edge of the generator enclosure, and compare measured levels with required values.

E. Coordinate tests with tests for transfer switches and run them concurrently.

F. Test instruments shall have been calibrated within the past 12 months, traceable to NIST Calibration Services, and adequate for making positive observation of test results. Make calibration records available for examination on request.

G. Leak Test: After installation, charge exhaust, coolant, and fuel systems and test for leaks. Repair leaks and retest until no leaks exist.

H. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation for generator and associated equipment.
I. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

J. Remove and replace malfunctioning units and retest as specified above.

K. Retest: Correct deficiencies identified by tests and observations, and retest until specified requirements are met.

L. Report results of tests and inspections in writing. Record adjustable relay settings and measured insulation resistances, time delays, and other values and observations. Attach a label or tag to each tested component indicating satisfactory completion of tests.

M. Infrared Scanning: After Substantial Completion, but not more than 60 days after final acceptance, perform an infrared scan of each power wiring termination and each bus connection while running with maximum load. Remove all access panels so terminations and connections are accessible to portable scanner.

 1. Follow-up Infrared Scanning: Perform an additional follow-up infrared scan 11 months after date of Substantial Completion.
 2. Instrument: Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.
 3. Record of Infrared Scanning: Prepare a certified report that identifies terminations and connections checked and that describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

3.7 MAINTENANCE SERVICE

A. Initial Maintenance Service: Beginning at Substantial Completion, maintenance service shall include 24 months' full maintenance by skilled employees of manufacturer's authorized service representative. Include quarterly preventive maintenance and exercising to check for proper starting, load transfer, and running under load. Include routine preventive maintenance as recommended by manufacturer and adjusting as required for proper operation. Parts shall be manufacturer's authorized replacement parts and supplies.

3.8 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain packaged engine generators.

END OF SECTION
THIS PAGE INTENTIONALLY LEFT BLANK
SECTION 263600
AUTOMATIC TRANSFER SWITCH

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes:

1. Service entrance automatic transfer switch (ATS) and controls rated 600 V and under.

1.3 SCOPE

A. Furnish and install service entrance automatic transfer switch (ATS) with number of poles, amperage, voltage, withstand and close-on ratings as shown on the plans. The automatic transfer switch shall consist of an inherently double throw power transfer switch mechanism and a microprocessor controller to provide automatic operation. Transfer switch and controller shall be the products of the same manufacturer.

B. Furnish an enclosure for the ATS that is suitable for service entry. It shall provide all of the proper disconnecting, protection, grounding and bonding required for service entrance equipment.

1.4 REMOTE ANNUNCIATION SYSTEM

A. Functional Description: Provide annunciation at a remote annunciator panel of conditions at transfer switch as follows:

B. Sources available (as defined by actual pick-up and dropout settings of ATS controls).

1. Switch position.
2. Switch in test mode.
3. Switch controls in time-delay sequence.
4. Failure of communication link.

C. Malfunction of the annunciator or communication link shall not affect any function of the ATS. In the event of a failure of the communication link the ATS shall automatically revert to stand-alone, self-contained operation. No ATS sensing or control function shall depend on the annunciator/control panel for proper operation.
1.5 SUBMITTALS

A. General: Submit the following in accordance with Conditions of Contract and Division 01 Specification Sections.

B. Product data for the transfer switch including dimensioned plans, sections, and elevations showing minimum clearances, conductor entry provisions, gutter space, installed features and devices, and materials lists.

C. Wiring diagrams, elementary or schematic, differentiating between manufacturer-installed and field-installed wiring.

D. Single line diagram of the unit showing connections between the automatic transfer switch, the bypass and isolation switch, the power source and the load, plus interlocking provisions.

E. Operation and maintenance data for products, for inclusion in Operating and Maintenance Manual specified in Division 01 and in Division 26 Section "Basic Electrical Requirements." Operating and maintenance data shall cover each type of product, including all features and operating sequences, both automatic and manual. List all factory settings of relays and provide relay setting and calibration instructions. Provide spare parts data.

F. Manufacturer’s certificate of compliance to the referenced standards and manufacturer’s certification of tested short circuit closing and withstand ratings.

1.6 QUALITY ASSURANCE

A. Installer Qualifications: Manufacturer's authorized representative who is trained and approved for installation of units required for this Project.

1. Maintenance Proximity: Not more than four hours' normal travel time from Installer's place of business to Project site.

B. Testing Agency Qualifications: An independent agency, with the experience and capability to conduct the testing indicated, that is a member company of the InterNational Electrical Testing Association or is a nationally recognized testing laboratory (NRTL), and that is acceptable to authorities having jurisdiction.

1. Testing Agency's Field Supervisor: Person currently certified by the InterNational Electrical Testing Association or the National Institute for Certification in Engineering Technologies to supervise on-site testing specified in Part 3.

2. Electrical Component Standard: Comply with NFPA 70 "National Electrical Code" for components and installation.

D. **NEMA Compliance:** Comply with NEMA standards: ICS 1, "General Standards for Industrial Control"; ICS 2, "Industrial Control Devices, Controllers and Assemblies"; and ICS 6, "Enclosures for Industrial Controls and Systems."

E. **UL Listing and Labeling:** Provided items specified in this section that are listed and labeled by UL for emergency service under UL 1008.

F. **UL Compliance:** Comply with UL Standard 1008, "Automatic Transfer Switches."

G. **IEC 947-6-1 Low-voltage Switchgear and Control gear; Multifunction equipment; Automatic Transfer Switching Equipment.**

H. **IEEE Standard 446 - IEEE Recommended Practice for Emergency and Standby Power Systems for Commercial and Industrial Applications.**

I. **NEMA Standard ICS10 - 2005 (formerly ICS2-447) - AC Automatic Transfer Switches.**

J. **UL 508 Industrial Control Equipment.**

K. **UL 891** According to this UL standard the equipment shall be labeled “Suitable for use only as service Entrance.”

L. **Single Source Responsibility:** Obtain ATS, and remote annunciator and control panels from a single manufacturer who assumes responsibility for all system components furnished.

1.7 WARRANTY

A. **Special Warranty:** Manufacturer's standard form in which manufacturer agrees to repair or replace components of ATS and associated auxiliary components that fail in materials or workmanship within specified warranty period.

1. **Warranty Period:** 2 years from date of Substantial Completion.

1.8 MAINTENANCE SERVICE

A. **Initial Maintenance Service:** Beginning at Substantial Completion, provide 12 months' full maintenance by skilled employees of manufacturer's designated service organization. Include routine preventive maintenance as recommended by manufacturer and adjusting as required for proper operation. Provide parts and supplies same as those used in the manufacture and installation of original equipment.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. **Manufacturers:** Subject to compliance with requirements, provide products by the following:
1. Service Entrance Automatic Transfer Switches shall be ASCO 1600A.

2.2 TRANSFER SWITCH PRODUCTS, GENERAL

A. Ratings: Apply as defined in UL 1008 for continuous loading and total system transfer, including tungsten filament lamp loads not exceeding 30 percent of switch ampere rating, unless otherwise indicated.

B. Tested-Fault Current Rating: Exceed the indicated available rms symmetrical fault current at the equipment terminals for closing and withstand ratings based on testing in accordance with UL 1008, conducted at full-rated system voltage and 20 percent power factor. Test each product for withstand duration time for rated short-circuit current correlated with the actual type of circuit protective device indicated for the transfer switch as follows:

1. Molded-Case Circuit Breakers: 3 closing and withstand duration cycles.
2. Solid-State Controls: Repetitive accuracy of all settings shall be plus or minus 2 percent or better over an operating temperature range of minus 20 deg C to 70 deg C. Components shall meet or exceed voltage surge withstand capability when tested in accordance with ANSI Standard C37.90.1, "IEEE Guide for Surge Withstand Capability (SWC) Tests."

C. Neutral Terminal: Provide fully rated, solid, neutral terminal switched simultaneously with phase poles.

D. Enclosure: Type 3RX enclosure. Free standing. Floor mounted. Designed for front and rear access.

E. Heater: Within enclosure of unit exposed to outdoor-type temperature and humidity conditions. Provide thermostat within enclosure connected to control heater.

F. Factory Wiring: Train and bundle factory wiring and identify consistently with shop drawings, either by color code or by numbered or lettered wire and cable tape markers at all terminations. Provide designated terminal blocks for field wiring, and arrange power terminal and field wiring space to be suitable for top, side, or bottom entrance of feeder conductors as indicated. Provide pressure-type terminals suitable for copper or aluminum conductors of sizes indicated.

G. Electrical operation: The transfer switch shall be electrically operated and mechanically held. The electrical operator shall be a momentarily energized, single-solenoid mechanism. Main operators which include overcurrent disconnect devices, linear motors or gears shall not be acceptable. The switch shall be mechanically interlocked to ensure only two possible positions, normal or emergency.

H. Switch action for double-throw-type switches shall be mechanically held in both directions.

I. Switch Contacts: Silver composition for switching load current with separate arching contacts.
2.3 AUTOMATIC TRANSFER SWITCH (ATS).

A. Comply with requirements for Level 1 equipment per NFPA 110, "Standard for Emergency and Standby Power Systems."

B. Features and Characteristics: Include the following:
 1. Open transition (break before make operation).
 2. Double throw type switching arrangement, incapable of pauses or intermediate position stops during normal functioning unless otherwise indicated.

C. Shall use only one type of main operator for ease of maintenance and commonality of parts.

D. Inspection of all main contacts shall be possible from the front of the switch without disassembly of operating linkages and without disconnection of power conductors. Switches shall have front removable and replaceable contacts. All stationary and moveable contacts shall be replaceable without removing power conductors and/or bus bars.

E. The ATS shall be provided with fully rated overlapping neutral transfer contacts. The neutrals of the normal and emergency power sources shall be connected together only during the transfer and retransfer operation and remain connected together until power source contacts close on the source to which the transfer is being made. The overlapping neutral contacts shall not overlap for a period greater than 100 milliseconds. Neutral switching contacts which do not overlap are not acceptable.

F. The switch shall be positively locked and unaffected by momentary outages, so that contact pressure is maintained at a constant value and contact temperature rise is minimized for maximum reliability and operating life.

G. Close differential voltage sensing on each phase of normal source. Pick-up voltage shall be adjustable from 85 percent to 100 percent of nominal, and dropout shall be adjustable from 75 percent to 98 percent of the pick up value. Factory set for pick-up at 90 percent and dropout at 85 percent.

H. Time-delay override of normal source voltage sensing shall delay all transfer and engine start signals. Adjustable 0 to 6 seconds, and factory set at 1 second.

I. Voltage/frequency lockout relay and sensing of the emergency source shall be provided to prevent premature transfer. Voltage pick-up shall be adjustable from 85 to 100 percent of nominal. Factory set to pick-up at 90 percent of nominal. Pick-up frequency shall be adjustable from 90 percent to 100 percent of nominal. Factory set to pick-up at 95 percent.

J. System test switch, momentary type.
K. Retransfer time delay to normal or preferred power source: adjustable from 0 to 30 minutes and factory set at 30 minutes. Provide automatic defeat of the delay upon loss of voltage or sustained under voltage of the emergency source, provided the normal supply has been restored.

L. Pilot lights to indicate source to which the load is connected.

M. Engine starting contacts, one isolated normally closed and one isolated normally open. Contacts shall be gold flashed or plated and rated 10 amperes at 32 V d.c.

N. Engine Shutdown Contacts: Instantaneous, to initiate shutdown sequence at remote engine-generator controls after retransfer of the load to normal or preferred source.

O. Unassigned Auxiliary Contacts: Two normally open, single-pole, double-throw contacts for each switch position, rated 10 A at 240 V ac.

P. Source Available Indicating Lights: A green indicating light to supervise the normal power source with a nameplate engraved "NORMAL SOURCE AVAILABLE," and a red indicating light to supervise the emergency power source with a nameplate engraved "EMERGENCY SOURCE AVAILABLE." Supervision of sources shall be via the transfer switch normal and emergency source sensing circuits, respectively.

Q. Transfer Override Switch: To override automatic retransfer control so the ATS will remain connected to the emergency power source regardless of the condition of the normal source. Provide a pilot light to indicate the override status.

2.4 MICROPROCESSOR CONTROLLER

A. The controller's sensing and logic shall be provided by a single built-in microprocessor for maximum reliability, minimum maintenance, and the ability to communicate serially through an optional serial communication module.

B. A single controller shall provide twelve selectable nominal voltages for maximum application flexibility and minimal spare part requirements. Voltage sensing shall be true RMS type and shall be accurate to ±1% of nominal voltage. Frequency sensing shall be accurate to ±0.2%. The controller shall be capable of operating over a temperature range of -20 to +60 degrees C and storage from -55 to +85 degrees C.

C. The controller shall be connected to the transfer switch by an interconnecting wiring harness. The harness shall include a keyed disconnect plug to enable the controller to be disconnected from the transfer switch for routine maintenance. Sensing and control logic shall be provided on multi-layer printed circuit boards. Interfacing relays shall be industrial grade plug-in type with dust covers. The panel shall be enclosed with a protective cover and be mounted separately from the transfer switch unit for safety and ease of maintenance. The protective cover shall include a built-in pocket for storage of the operator’s manuals.

D. All customer connections shall be wired to a common terminal block to simplify field-wiring connections.
E. The controller shall meet or exceed the requirements for Electromagnetic Compatibility (EMC) as follows:

1. EN 55011:1991 Emission standard - Group 1, Class A
2. EN 50082-2:1995 Generic immunity standard, from which:
 3. EN 61000-4-2:1995 Electrostatic discharge (ESD) immunity
 4. ENV 50140:1993 Radiated Electro-Magnetic field immunity
 5. EN 61000-4-4:1995 Electrical fast transient (EFT) immunity
 6. EN 61000-4-5:1995 Surge transient immunity
 7. EN 61000-4-6:1996 Conducted Radio-Frequency field immunity
 8. IEEE472 (ANSI C37.90A) Ring Wave Test.

2.5 CONTROLLER DISPLAY AND KEYPAD

A. A four line, 20-character LCD display and keypad shall be an integral part of the controller for viewing all available data and setting desired operational parameters. Operational parameters shall also be available for viewing and limited control through the serial communications input port. The following parameters shall only be adjustable via DIP switches on the controller:

1. Nominal line voltage and frequency
2. Single or three phase sensing
3. Operating parameter protection
4. Transfer operating mode configuration
 (Open transition, Closed transition, or Delayed transition)

All instructions and controller settings shall be easily accessible, readable and accomplished without the use of codes, calculations, or instruction manuals.

2.6 VOLTAGE, FREQUENCY AND PHASE ROTATION SENSING

A. Voltage and frequency on both the normal and emergency sources (as noted below) shall be continuously monitored, with the following pickup, dropout, and trip setting capabilities (values shown as % of nominal unless otherwise specified):

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Sources</th>
<th>Dropout / Trip</th>
<th>Pickup / Reset</th>
</tr>
</thead>
<tbody>
<tr>
<td>Undervoltage</td>
<td>N&E,3φ</td>
<td>70 to 98%</td>
<td>85 to 100%</td>
</tr>
<tr>
<td>Overvoltage</td>
<td>N&E,3φ</td>
<td>102 to 115%</td>
<td>2% below trip</td>
</tr>
<tr>
<td>Underfrequency</td>
<td>N&E</td>
<td>85 to 98%</td>
<td>90 to 100%</td>
</tr>
<tr>
<td>Overfrequency</td>
<td>N&E</td>
<td>102 to 110%</td>
<td>2% below trip</td>
</tr>
<tr>
<td>Voltage unbalance</td>
<td>N&E</td>
<td>5 to 20%</td>
<td>1% below dropout</td>
</tr>
</tbody>
</table>

B. Repetitive accuracy of all settings shall be within ± 0.5% over an operating temperature range of -20°C to 60°C.

C. Voltage and frequency settings shall be field adjustable in 1% increments either locally with the display and keypad or remotely via serial communications port access.
D. The controller shall be capable (when activated by the keypad or through the serial port) of sensing the phase rotation of both the normal and emergency sources. The source shall be considered unacceptable if the phase rotation is not the preferred rotation selected (ABC or CBA).

E. Source status screens shall be provided for both normal & emergency to provide digital readout of voltage on all 3 phases, frequency, and phase rotation.

F. The controller shall include a user selectable algorithm to prevent repeated transfer cycling to a source on an installation which experiences primary side, single phase failures on a Grounded Wye – Grounded Wye transformer which regenerate voltage when unloaded. The algorithm shall also inhibit retransfer to the normal (utility) source upon detection of a single phasing condition until a dedicated timer expires, the alternate source fails, or the normal source fails completely and is restored during this time delay period. The time delays associated with this feature shall be adjustable by the user through the controller keypad and LCD.

2.7 TIME DELAYS

A. An adjustable time delay of 0 to 6 seconds shall be provided to override momentary normal source outages and delay all transfer and engine starting signals. Capability shall be provided to extend this time delay to 60 minutes by providing an external 24 VDC power supply.

B. A time delay shall be provided on transfer to emergency, adjustable from 0 to 60 minutes, for controlled timing of transfer of loads to emergency.

C. Two-time delay modes (which are independently adjustable) shall be provided on re-transfer to normal. One-time delay shall be for actual normal power failures and the other for the test mode function. The time delays shall be adjustable from 0 to 60 minutes. Time delay shall be automatically bypassed if the emergency source fails and the normal source is acceptable.

D. A time delay shall be provided on shut down of engine generator for cool down, adjustable from 0 to 60 minutes.

E. A time delay activated output signal shall also be provided to drive an external relay(s) for selective load disconnect control. The controller shall have the ability to activate an adjustable 0 to 5-minute time delay in any of the following modes:

1. Prior to transfer only.
2. Prior to and after transfer.
3. Normal to emergency only.
4. Emergency to normal only.
5. Normal to emergency and emergency to normal.
6. All transfer conditions or only when both sources are available.
F. The controller shall also include the following built-in time delays for optional Closed Transition and Delayed Transition operation:

1. 1 to 5-minute time delay on failure to synchronize normal and emergency sources prior to closed transition transfer.
2. 0.1 to 9.99 second time delay on an extended parallel condition of both power sources during closed transition operation.
3. 0 to 5-minute time delay for the load disconnect position for delayed transition operation.

G. All time delays shall be adjustable in 1 second increments, except the extended parallel time, which shall be adjustable in .01 second increments.

H. All time delays shall be adjustable by using the LCD display and keypad or with a remote device connected to the serial communications port.

2.8 ADDITIONAL FEATURES

A. A three-position momentary-type test switch shall be provided for the test / automatic / reset modes. The test position will simulate a normal source failure. The reset position shall bypass the time delays on either transfer to emergency or retransfer to normal.

B. A SPDT contact, rated 5 amps at 30 VDC, shall be provided for a low-voltage engine start signal. The start signal shall prevent dry cranking of the engine by requiring the generator set to reach proper output, and run for the duration of the cool down setting, regardless of whether the normal source restores before the load is transferred.

C. Auxiliary contacts, rated 10 amps, 250 VAC shall be provided consisting of one contact, closed when the ATS is connected to the normal source and one contact closed, when the ATS is connected to the emergency source.

D. LED indicating lights (16 mm industrial grade, type 12) shall be provided; one to indicate when the ATS is connected to the normal source (green) and one to indicate when the ATS is connected to the emergency source (red).

E. LED indicating lights (16 mm industrial grade, type 12) shall be provided and energized by controller outputs. The lights shall provide true source availability of the normal and emergency sources, as determined by the voltage sensing trip and reset settings for each source.

The following features shall be built-in to the controller, but capable of being activated through keypad programming or the serial port only when required by the user:

F. Provide the ability to select “commit/no commit to transfer” to determine whether the load should be transferred to the emergency generator if the normal source restores before the generator is ready to accept the load.
G. Terminals shall be provided for a remote contact which opens to signal the ATS to transfer to emergency and for remote contacts which open to inhibit transfer to emergency and/or retransfer to normal. Both of these inhibit signals can be activated through the keypad or serial port.

H. An Inphase monitor shall be provided in the controller. The monitor shall control transfer so that motor load inrush currents do not exceed normal starting currents, and shall not require external control of power sources. The Inphase monitor shall be specifically designed for and be the product of the ATS manufacturer. The Inphase monitor shall be equal to ASCO Feature 27.

I. The controller shall be capable of accepting a normally open contact that will allow the transfer switch to function in a non-automatic mode using an external control device.

J. Engine Exerciser - The controller shall provide an internal engine exerciser. The engine exerciser shall allow the user to program up to seven different exercise routines. For each routine, the user shall be able to:

1. Enable or disable the routine.
2. Enable or disable transfer of the load during routine.
3. Set the start time:
 a. time of day
 b. day of week
 c. week of month (1st, 2nd, 3rd, 4th, alternate or every)
4. Set the duration of the run.

At the end of the specified duration the switch shall transfer the load back to normal and run the generator for the specified cool down period. A 10-year life battery that supplies power to the real-time clock in the event of a power loss will maintain all time and date information.

K. System Status - The controller LCD display shall include a “System Status” screen which shall be readily accessible from any point in the menu by depressing the “ESC” key a maximum of two times. This screen shall display a clear description of the active operating sequence and switch position. For example,

1. Normal Failed
2. Load on Normal
3. TD Normal to Emerg
4. 2min15s

Controllers that require multiple screens to determine system status or display “coded” system status messages, which must be explained by references in the operator’s manual, are not permissible.
L. Self-Diagnostics - The controller shall contain a diagnostic screen for the purpose of detecting system errors. This screen shall provide information on the status input signals to the controller which may be preventing load transfer commands from being completed.

M. Data Logging – The controller shall have the ability to log data and to maintain the last 99 events, even in the event of total power loss. The following events shall be time and date stamped and maintained in a non-volatile memory:

1. Event Logging
 a. Data and time and reason for transfer normal to emergency.
 b. Data and time and reason for transfer emergency to normal.
 c. Data and time and reason for engine start.
 d. Data and time engine stopped.
 e. Data and time emergency source available.
 f. Data and time emergency source not available.

2. Statistical Data
 a. Total number of transfers.
 b. Total number of transfers due to source failure.
 c. Total number of days controller is energized.
 d. Total number of hours both normal and emergency sources are available.

N. Communications and Metering - Provide a graphical touch display interface local to the transfer/bypass switch, power/energy metering, enable remote Ethernet monitoring via open protocols and a web app accessible from any mobile phone, tablet or computer on the network. The local touchscreen interface shall interface to the ATS controller, power/energy meter and communications module. The following is included:

1. 7 inch color touchscreen display with dual-Ethernet, front-accessible USB ports, (2) function push buttons and (2) alarm LED and audible buzzer.
2. Four (4) 100 Mbps Ethernet copper RJ-45 ports, five (5) serial ports, Termination dip-switches and LEDs for diagnostics.
3. Metering (Cat. 5210) which includes the following measurements: voltage, current, power, energy and total harmonic distortion%.
4. 25 seconds of power ride-through module for the ATS controller, power meter and remote monitoring, and 11 seconds for the display’s computer.
5. Display color-coded dynamic one line of transfer and bypass switch including ability to transfer and retransfer.
6. Display with active and historical alarms by name, logic level and severity. Date, time and acknowledgement for each alarm shall be included.
7. Display metering data including volts, amps, real power, reactive power, apparent power, max power demand, unbalance and energy usage from each source.
8. Four (4) 100 Mbps Ethernet copper RJ-45 ports, five (5) serial ports, Termination dip-switches and LEDs for diagnostics.
9. Metering (Cat. 5210) which includes the following measurements: voltage, current, power, energy and total harmonic distortion%.
10. Historical trending chart for the last 4-weeks of volts, amps, power and frequency. Option to switch to real-time trend view.
11. Historical statistics chart displaying source availability and transfers due to source failure.
12. Single unified event log including the last 1000 events by transfer switch, bypass switch and engine-generator starts.
13. Operational and maintenance notes and logs for users can be entered to help keep track of transfer switch history.
14. All available controls, metering and monitoring settings shall be viewable and can be changed with proper user privileges.
15. There shall be a minimum of 3 user privilege levels, monitor (view only), control (view and control) and administrator (view, control and change settings).
16. Data shall be encrypted for remote communications using AES 128-bit advanced encryption standards in compliance with NIST.
17. Modbus TCP/IP, SNMP, HTTP, SMTP open protocols shall be simultaneously supported.
18. Email notifications and SNMP traps of selectable events and alarms may be sent to a smart phone, smart watch and PC.
19. Web app interface to monitor and control the transfer switch supporting modern smart phones, tablets and PC browsers. User will be able to view the dynamic one-line, ATS controls status, alarms, metering, event logging as well as settings.
20. The USB ports shall be capable of updating software and downloading event log and note log reports.

2.9 WITHSTAND AND CLOSING RATINGS

A. The ATS shall be rated to close on and withstand the available RMS symmetrical short circuit current at the ATS terminals with the type of overcurrent protection shown on the plans.

B. The automatic transfer switch shall be UL listed in accordance with UL 1008 and be labeled in accordance with that standard's 0.025 and 0.05 second, time based ratings. ATSSs which are not tested and labeled with time based ratings and have series, or specific breaker ratings only, are not acceptable.

2.10 WIRING

A. Hard-Wired Connections: Conform to Division 26 Section "Low-Voltage Electrical Power Conductors and Cables".

B. Data Circuits: Conform to manufacturer instructions.

2.11 ENCLOSURE

A. The ATS shall be furnished in a Type 1 enclosure unless otherwise shown on the plans.

B. The Service Entrance ATS shall be furnished in a multi-section switchboard as follows: a service equipment section containing the service (utility source) disconnect circuit breaker,
grounding, and bonding provisions; plus, a second non-service section containing the power transfer switch and controls.

C. All standard and optional door-mounted switches and pilot lights shall be 16-mm industrial grade type or equivalent for easy viewing & replacement. Door controls shall be provided on a separate removable plate, which can be supplied loose for open type units.

D. A pressure disconnect link shall be provided to disconnect the normal source neutral connection from the emergency and load neutral connections for 4-mm wire applications. A ground bus shall be provided for connection of the grounding conductor to the grounding electrode. A pressure disconnect link for the neutral to ground bonding jumper shall be provided to connect the normal neutral connection to the ground bus.

2.12 DISCONNECTING AND OVERCURRENT PROTECTION DEVICE

A. The normal connection shall be provided with a 3 pole, stationary mounted circuit breaker with current ratings as shown on the plans. The circuit breaker shall be provided with instantaneous and ground fault trip settings. The circuit breaker shall trip open when the ground fault setting is exceeded.

2.13 FINISHES

A. Exterior constructed of code gauge type 304 stainless steel. Stainless steel front door, padlockable handle.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Floor-Mounting Switch: Anchor to floor by bolting.

3.2 CONTROL WIRING INSTALLATION

3.3 CONNECTIONS

A. Check connectors, terminals, bus joints, and mountings for tightness. Tighten field connected connectors and terminals, including screws and bolts, in accordance with equipment manufacturer's published torque tightening values. Where manufacturer's torquing requirements are not indicated, tighten connectors and terminals to comply with tightening torques specified in UL 486A and UL 486B.
3.4 GROUNDING

A. Provide equipment grounding connections for transfer switch units as indicated and as required by NEC. Tighten connectors to comply with tightening torques specified in UL Standard 486A to assure permanent and effective grounding.

3.5 FIELD QUALITY CONTROL

A. Preliminary Tests: Perform electrical tests as follows:

B. Measure, with insulation resistance tester, phase-to-phase and phase-to-ground insulation resistance levels to assure requirements are fulfilled. Disconnect control circuits for this test to prevent damage.

C. Check for electrical continuity of circuits and for short circuits.

D. The complete ATS shall be factory tested to ensure proper operation of the individual components and correct overall sequence of operation and to ensure that the operating transfer time, voltage, frequency and time delay settings are in compliance with the specification requirements.

E. Upon request, the manufacturer shall provide a notarized letter certifying compliance with all of the requirements of this specification including compliance with the above codes and standards, and withstand and closing ratings. The certification shall identify, by serial number(s), the equipment involved. No exceptions to the specifications, other than those stipulated at the time of the submittal, shall be included in the certification.

F. The ATS manufacturer shall be certified to ISO 9001:2008 International Quality Standard and the manufacturer shall have third party certification verifying quality assurance in design/development, production, installation and servicing in accordance with ISO 9001:2008

G. The transfer switch system must contain a disconnect device on the normal source as well as a disconnect link on the utility neutral and a disconnect link between neutral and ground. The ATS manufacturer shall be certified to NEC 230.70, 230.70(B), 230.75 and 230.95.

H. Manufacturer's Field Services: Provide services of a factory service representative to assist with demonstrations and field tests.

I. Field Tests: Energize transfer switches and demonstrate functioning of all devices, components, and sequences. Give seven calendar days' advance notice of the tests, and perform tests in presence of Owner's representative.

J. Tests shall be coordinated with tests of generator plant and run concurrently with them. Tests shall include the following:
1. Tests for Transfer Switches: Demonstrate each sequence and operational function at least five times.
2. Simulate power failure of normal source.
3. Simulate power failure of emergency source with normal sources available.
4. Simulate low phase to ground voltage for each phase of normal source.
5. Checking, measuring, and optimizing all adjustable time delays.

K. Test Failures: Correct deficiencies identified by tests and make ready for retest. Verify equipment meets the specified requirements.

L. Reports: Maintain a written record of observations and tests. Report defective materials and workmanship and retest corrected defective items. Submit written test reports. Include a record of all adjustable relay settings and measured time delays. Attach a label or tag to each tested component indicating satisfactory completion of tests.

3.6 SERVICE REPRESENTATION

A. The ATS manufacturer shall maintain a national service organization of company-employed personnel located throughout the contiguous United States. The service center's personnel must be factory trained and must be on call 24 hours a day, 365 days a year.

B. The manufacturer shall maintain records of each switch, by serial number, for a minimum of 20 years.

3.7 DEMONSTRATION

A. Training: Furnish the services of a factory authorized service representative to instruct Owner's personnel in the operation and maintenance of transfer switches and related equipment. Provide a minimum of two hours of instruction scheduled seven days in advance.

3.8 CLEANING

A. Upon completion of installation, inspect interiors and exteriors of accessible components. Remove dust, dirt, foreign matter, paint splatters and other spots, dirt, and construction debris. Vacuum interior. Touch up scratches and mars of finish to match original finish.

END OF SECTION
SECTION 265100
INTERIOR LIGHTING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary
 Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Interior lighting fixtures, lamps, and drivers.
 2. Emergency lighting units.
 3. Exit signs.
 4. Lighting fixture supports.
 B. Related Sections:
 C. Division 26 Section "Wiring Devices" for snap switches and wall switches.

1.3 DEFINITIONS
 A. CCT: Correlated color temperature.
 B. CRI: Color-rendering index.
 C. LER: Luminaire efficacy rating.
 D. Lumen: Measured output of lamp and luminaire, or both.
 E. Luminaire: Complete lighting fixture, including ballast housing if provided.

1.4 SUBMITTALS
 A. Product Data: For each type of lighting fixture, arranged in order of fixture designation.
 Include data on features, accessories, finishes, and the following:
 1. Physical description of lighting fixture including dimensions.
 2. Emergency lighting units including battery and charger.
 3. Driver.
 5. Life, output (lumens, CCT, and CRI), and energy-efficiency data for lamps.
B. Photometric data and adjustment factors based on laboratory tests, complying with IESNA Lighting Measurements Testing & Calculation Guides, of each lighting fixture type. The adjustment factors shall be for lamps, ballasts, and accessories identical to those indicated for the lighting fixture as applied in this Project.

1. Manufacturer Certified Data: Photometric data shall be certified by a manufacturer's laboratory with a current accreditation under the National Voluntary Laboratory Accreditation Program for Energy Efficient Lighting Products.

C. Shop Drawings: For nonstandard or custom lighting fixtures. Include plans, elevations, sections, details, and attachments to other work.

1. Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.

2. Wiring Diagrams: For power and control wiring.

D. Samples: For each lighting fixture indicated in the Interior Lighting Fixture Schedule. Each Sample shall include the following:

1. Lamps and driver, installed.

2. Cords and plugs.

E. Installation instructions.

F. Product Certificates: For each type of driver from manufacturer.

G. Field quality-control reports.

H. Operation and Maintenance Data: For lighting equipment and fixtures to include in emergency, operation, and maintenance manuals.

1. Provide a list of all lamp types used on Project; use ANSI and manufacturers' codes.

I. Warranty: Sample of special warranty.

1.5 QUALITY ASSURANCE

A. Luminaire Photometric Data Testing Laboratory Qualifications: Provided by manufacturers' laboratories that are accredited under the National Volunteer Laboratory Accreditation Program for Energy Efficient Lighting Products.

B. "Luminaire Photometric Data Testing Laboratory Qualifications" Paragraph below is to set qualifications for testing laboratories performing testing, in lighting fixture manufacturer's factory, that are creating the photometric data required in "Submittals" Article.
C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

D. Comply with NFPA 70.

E. Coordinate "FM Global Compliance" Paragraph below with Drawings.

F. Mockup lighting fixtures are often part of a typical room or module mockup used to evaluate and demonstrate an overall interior concept, not just lighting.

1.6 COORDINATION

A. Coordinate layout and installation of lighting fixtures and suspension system with other construction that penetrates ceilings or is supported by them, including HVAC equipment, fire-suppression system, and partition assemblies.

1.7 WARRANTY

A. Special Warranty for drivers: Manufacturer’s standard form in which driver manufacturer agrees to repair or replace drivers that fail in materials or workmanship within specified warranty period.

1. Warranty Period for Drivers: Five years from date of Substantial Completion.

B. Special Warranty for LED Lamps: Manufacturer’s standard form, made out to Owner and signed by lamp manufacturer agreeing to replace lamps that fail in materials or workmanship, f.o.b. the nearest shipping point to Project site, within specified warranty period indicated below.

1. Warranty Period: Five years from date of Substantial Completion.

1.8 EXTRA MATERIALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Lamps: 10 for every 100 of each type and rating installed. Furnish at least one of each type.

2. Plastic Diffusers and Lenses: One for every 100 of each type and rating installed. Furnish at least one of each type.

3. Battery and Charger Data: One for each emergency lighting unit.

4. Driver: One for every 100 of each type and rating installed. Furnish at least one of each type.

5. Globes and Guards: One for every 20 of each type and rating installed. Furnish at least one of each type.
PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. In Interior Lighting Fixture Schedule where titles below are column or row headings that introduce lists, the following requirements apply to product selection.

1. Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are limited to manufacturers specified, per Lighting Fixture Schedule.

2.2 GENERAL REQUIREMENTS FOR LIGHTING FIXTURES AND COMPONENTS

A. Provide luminaires complete with power supplies (drivers) and light sources. Provide design information including lumen output and design life in luminaire schedule on project plans for LED luminaires.

B. Metal Parts: Free of burrs and sharp corners and edges.

C. Sheet Metal Components: Steel unless otherwise indicated. Form and support to prevent warping and sagging.

D. Doors, Frames, and Other Internal Access: Smooth operating, free of light leakage under operating conditions, and designed to permit relamping without use of tools. Designed to prevent doors, frames, lenses, diffusers, and other components from falling accidentally during relamping and when secured in operating position.

E. Diffusers and Globes:

1. Acrylic Lighting Diffusers: 100 percent virgin acrylic plastic. High resistance to yellowing and other changes due to aging, exposure to heat, and UV radiation.
 a. Lens Thickness: At least 0.125-inch (3.175 mm) minimum unless otherwise indicated.
 b. UV stabilized.

2. Glass: Annealed crystal glass unless otherwise indicated.

2.3 LED LUMINAIRES

A. Luminaires must have a minimum 5-year manufacturer's warranty.

B. Luminaires must have a minimum L70 lumen maintenance value of 50,000 hours as calculated by IES TM-21, with data obtained per IES LM-80 requirements.

C. Luminaire drive current value must be identical to that provided by test data for luminaire in question.

D. Luminaires must be tested to IES LM-79 and IES LM-80 standards.
E. Luminaires must be listed when falling into category of "General Application" luminaires, i.e. Interior Directional, Display Case, Troffer, Linear Ambient, or Low/High Bay.

F. Provide Department of Energy 'Lighting Facts' label for each luminaire.

2.4 EXIT SIGNS

A. General Requirements for Exit Signs: Comply with UL 924; for sign colors, visibility, luminance, and lettering size, comply with authorities having jurisdiction.

B. Internally Lighted Signs: Lamps for AC Operation: LEDs, 70,000 hours minimum rated lamp life.

2.5 LIGHTING FIXTURE SUPPORT COMPONENTS

A. Comply with Division 26 Section "Hangers and Supports for Electrical Systems" for channel- and angle-iron supports and nonmetallic channel and angle supports.

B. Single-Stem Hangers: 1/2-inch (13-mm) steel tubing with swivel ball fittings and ceiling canopy. Finish same as fixture.

C. Twin-Stem Hangers: Two, 1/2-inch (13-mm) steel tubes with single canopy designed to mount a single fixture. Finish same as fixture.

D. Wires: ASTM A 641/A 641M, Class 3, soft temper, zinc-coated steel, 12 gauge (2.68 mm).

E. Wires for Humid Spaces: ASTM A 580/A 580M, Composition 302 or 304, annealed stainless steel, 12 gauge (2.68 mm).

F. Rod Hangers: 3/16-inch (5-mm) minimum diameter, cadmium-plated, threaded steel rod.

G. Hook Hangers: Integrated assembly matched to fixture and line voltage and equipped with threaded attachment, cord, and locking-type plug.

PART 3 - EXECUTION

3.1 GENERAL:

A. Comply with NECA/IESNA 500-2006 “Standard for Installing Indoor Commercial Lighting systems.”

3.2 INSTALLATION

A. Lighting fixtures:
 1. Set level, plumb, and square with ceilings and walls unless otherwise indicated.
2. Install lamps in each luminaire.

B. Temporary Lighting: If it is necessary, and approved by Architect, to use permanent luminaires for temporary lighting, install and energize the minimum number of luminaires necessary. When construction is sufficiently complete, remove the temporary luminaires, disassemble, clean thoroughly, install new lamps, and reinstall.

C. Remote Mounting of driver: Distance between the ballast and fixture shall not exceed that recommended by manufacturer. Verify, with driver manufacturers, maximum distance between driver and luminaire.

D. Lay-in Ceiling Lighting Fixtures Supports: Use grid as a support element.
 1. Install ceiling support system rods or wires, independent of the ceiling suspension devices, for each fixture. Locate not more than 6 inches (150 mm) from lighting fixture corners.
 2. Support Clips: Fasten to lighting fixtures and to ceiling grid members at or near each fixture corner with clips that are UL listed for the application.
 3. Fixtures of Sizes Less Than Ceiling Grid: Install as indicated on reflected ceiling plans or center in acoustical panel, and support fixtures independently with at least two 3/4-inch (20-mm) metal channels spanning and secured to ceiling tees.

E. Suspended Lighting Fixture Support:
 1. Pendants and Rods: Where longer than 48 inches (1200 mm), brace to limit swinging.
 3. Continuous Rows: Use tubing or stem for wiring at one point and tubing or rod for suspension for each unit length of fixture chassis, including one at each end.
 4. Do not use grid as support for pendant luminaires. Connect support wires or rods to building structure.

F. Connect wiring according to Division 26 Section "Low-Voltage Electrical Power Conductors and Cables."

3.3 IDENTIFICATION

A. Install labels with panel and circuit numbers on concealed junction and outlet boxes. Comply with requirements for identification specified in Division 26 Section "Identification for Electrical Systems."

3.4 FIELD QUALITY CONTROL

A. Test for Emergency Lighting: Interrupt power supply to demonstrate proper operation. Verify transfer from normal power to battery and retransfer to normal.

B. Prepare a written report of tests, inspections, observations, and verifications indicating and interpreting results. If adjustments are made to lighting system, retest to demonstrate compliance with standards.
3.5 STARTUP SERVICE

A. Burn-in all lamps that require specific aging period to operate properly, prior to occupancy by Owner.

3.6 ADJUSTING

A. Occupancy Adjustments: When requested within 12 months of date of Substantial Completion, provide on-site assistance in adjusting aimable luminaires to suit actual occupied conditions. Provide up to two visits to Project during other-than-normal occupancy hours for this purpose. Some of this work may be required after dark.

1. Adjust aimable luminaires in the presence of Architect.

END OF SECTION
THIS PAGE INTENTIONALLY LEFT BLANK
SECTION 265600
EXTERIOR LIGHTING

PART 1 - GENERAL

1.1 SUMMARY:

A. Extent of exterior lighting fixture work is indicated on Drawings and schedules.

B. Types of exterior lighting fixtures in this section include the following:

 1. LED

C. Applications of exterior lighting fixtures required for the project include the following:

 1. Outdoor area lighting.

1.2 SUBMITTALS:

A. Product Data: Submit manufacturer's product data and installation instructions on each type exterior building lighting fixture and component. Data shall include all information necessary to indicate compliance with the contract documents, and shall include, but not be limited to, catalog number, certified photometrics from an independent source, driver information, and lamp information.

B. Shop Drawings: Submit fixture shop drawings in booklet form with separate sheet for each fixture, assembled in "luminaire type" alphabetical and/or numerical order, with proposed fixture and accessories clearly indicated on each sheet.

C. Wiring Diagrams: Submit wiring diagrams for exterior lighting fixtures showing connections to electrical power panels, switches, dimmers, controllers, and feeders. Differentiate between portions of wiring which are manufacturer-installed and portions which are field-installed.

D. Samples: Submit one complete operating unit for each type of exterior lighting fixture specified.

E. Illumination Data: Provide isofootcandle (isolux) plot diagram of footcandles on horizontal pavement surface which shows composite values of illuminance projected from the arrangement of light sources from indicated fixture locations and heights. Show on the graphic plots the locations, spacings and heights of luminaires.

1. LED fixtures:

 a. Computer generated photometric analysis of proposed DAY 1 (defined as the initial illuminance values), of the lighting installation.
b. Computer generated photometric analysis of End-of-useful life date of the lighting installation.

c. C. Provide documentation of the expected useful life including the testing and calculation of useful life and verification of site lighting performance at that life.

1.3 QUALITY ASSURANCE:

A. Installer's Qualifications: Firm with at least 3 years of successful installation experience on projects with exterior lighting fixture work similar to that required for project.

B. Codes and Standards:

1. Electrical Code Compliance: Comply with applicable local code requirements of the authority having jurisdiction and NEC Articles 225, 250, 410, and 501 as applicable to installation, and construction of exterior building lighting fixtures.

2. NEMA Compliance: Comply with applicable requirements of NEMA Stds Pub/No. LE 2 pertaining to lighting equipment.

3. IES Compliance: Comply with IES RP-8, 19, 20 and PB-15 pertaining to exterior, parking, and roadway lighting practices and fixtures.

4. UL Compliance: Comply with requirements of UL standards, including Stds 486A and B, pertaining to exterior lighting fixtures. Provide exterior lighting fixtures and components which are UL-listed and labeled.

5. NFPA Compliance: Comply with applicable requirements of NFPA 780, "Lightning Protection Code," pertaining to installation of exterior lighting fixtures.

C. LED

1. Site Owner may request standard production model luminaire samples identical (including LED package) to product proposed to be installed for inspection.

2. If luminaires are believed to be underperforming in early life, the Site Owner may choose to take field measurements between 2,000 and 3,000 operating hours of the completion of installation to confirm that lighting levels are in accordance with the site-specific photometric requirements in this specification. If uniformity is more than 15% worse or average light levels are more than 15% below the DAY 1 submittal and the luminaire locations in the field are designed, the luminaire manufacturer must provide additional luminaires to achieve the specified light levels and uniformity. Variance from specified tolerances may be allowed provided prior approval by Owner.

1.4 DELIVERY, STORAGE AND HANDLING:

A. Deliver exterior lighting fixtures in factory-fabricated containers or wrappings, which properly protect fixtures from construction debris and physical damage.

B. Store exterior lighting fixtures in original wrappings in a clean dry space. Protect from weather, dirt, fumes, water, construction debris, and damage.
C. Handle exterior lighting fixtures carefully to prevent damage, breaking, and scoring. Do not install damaged fixtures or components; remove units from site and replace with new.

1.5 LED WARRANTY

A. Standard Warranty – Provide 50,000 hours or greater and:

1. A written five-year minimum on-site replacement material, fixture finish, and workmanship. On-site replacement includes transportation, removal, and installation of new products. Finish warranty must include warranty against failure or substantial deterioration such as blistering, cracking, peeling, chalking, or fading.

2. A written five-year replacement material warranty for defective or non-starting LED source assemblies.

3. A written five-year replacement material warranty on all power supply units (PSU’s) or drivers.

4. Provide a written five-year replacement warranty for luminaires producing inadequately-maintained illuminance levels at end of warranty period, as prorated from levels expected at end of useful life. For example, a luminaire expected to produce 70% of initial lumens at 100,000 hours would be expected to last over 11 years (continuous operation), so levels would be expected to be at 87% of initial at end of five-year warranty period. Warranty must cover all light sources (LED package, LED array, or LED module) including, but not limited to the LED die, encapsulate, and phosphor. If the expected useful life of the luminaire system is not maintained, then the manufacturer must replace the light source(s) or luminaire as needed.

5. Warranty period will begin on date of final acceptance. The supplier will provide the site Owner with appropriate signed and dated warranty certificates at the completion of the project and included into the Record and Information Booklet.

1.6 SEQUENCING AND SCHEDULING:

A. Coordinate with other electrical work including wires/cables, electrical boxes and fittings, and raceways, to properly interface installation of exterior lighting fixtures with other work.

B. Sequence exterior lighting installation with other work to reduce possibility of damage and soiling of fixtures during remainder of construction period.

1.7 MAINTENANCE:

A. Maintenance Data: Submit maintenance data and parts list for each exterior lighting fixture and accessory; including "trouble-shooting" maintenance guide. Include that data, product data, and shop drawings in a maintenance manual; in accordance with requirements of Division 1.

B. Extra Stock:

1. Furnish stock or replacement LED boards/cards in the amount of 3 or a minimum of 12 individual LED lamps. Also, provide 3 spare drivers.
PART 2 - PRODUCTS

2.1 FIXTURES:

A. General:

1. Provide lighting fixtures, of sizes, types and ratings indicated on Drawings; complete with, but not limited to, housings, lamps, lamp holders, reflectors, drivers and wiring. Ship fixtures factory-assembled, with those components required for a complete installation.
2. Provide required dimensional thickness of metal so that all fixtures are rigid, stable and will resist deflection, twisting, warping under normal installation procedures, loading, relamping, etc.
3. All cast parts, including die-cast members, shall be of uniform quality, free from blow holes, pores, hard spots, shrinkage defects, cracks or other imperfections that affect strength and appearance, or are indicative of interior metals or alloys.
4. Reflectors, cones or baffles shall be absolutely free of spinning lines, ripples or any marks or indentations caused by riveting or other assembly techniques. No rivets or hardware shall be visible after installation.
5. Prior to finishing, all metal surfaces shall be hot cleaned by chemical means and shall receive corrosion inhibiting (phosphating) treatment assuring positive paint adhesion.
6. Where modified fixtures are specified, fixtures shall be modified as required with lamp sockets positioned to provide desired photometric performance.
7. Where custom color is indicated on the schedule, a color other than the manufacturer's standard will be required for all parts and components visible after installation. The finish material will be of the same type and process as applied to the standard catalogued item.
8. All castings and extrusions shall be machined, sanded or similarly treated, and given minimum one coat of baked-on clear methacrylate lacquer, unless a painted finish is specified.
9. Aluminum surfaces exposed to corrosive atmospheres shall receive a duranodic or polyester powder paint finish for corrosion resistance.

B. Acceptable Manufacturers:

1. HOLOPHANE – MONGOOSE LED
2. As specified in the lighting fixture schedule and drawings

2.2 LAMPS:

A. LED

1. Luminaires must be rated for -40°C to +50°C operation.
2. Correlated Color Temperature (CCT) shall be one Nominal CCT: 4000 K.
3. Duv tolerance of 0.001± 0.006.
5. Luminaire manufacturer must submit reliability reports indicating that the manufacturer of the LED (chip, diode, or package) has performed JEDEC (Joint Electron Devices Engineering Council) reliability tests on the LEDs as follows:

a. High Temperature Operating Life (HTOL)
b. Room Temperature Operating Life (RTOL)
c. Low Temperature Operating Life (LTOL)
d. Powered Temperature Cycle (PTMCL)
e. Non-Operating Thermal Shock (TMSK)
f. Mechanical Shock
g. Variable Vibration Frequency
h. Solder Heat Resistance (SHR)

2.3 LED DRIVERS

A. Power supply Units (PSUs) including drivers must meet the following requirements:

1. Must have a minimum efficiency of 85%.
2. Must be rated to operate between -40ºC to +50ºC.
3. Input Voltage: capable of 120 (±10%) volt, single phase as required by the site.
4. Power supplies can be UL Class I or II output.
5. Operating frequency must be 50/60 Hz.
6. Drivers must have a Power Factor (PF) of: > 0.90.
7. Drivers must have a Total Harmonic Distortion (THD) of: ≤ 20%.

PART 3 - EXECUTION

3.1 EXAMINATION:

A. Examine areas and conditions under which lighting fixtures are to be installed, and substrate which will support lighting fixtures. Notify Contractor in writing of conditions detrimental to proper completion of the Work. Do not proceed with the Work until unsatisfactory conditions have been corrected in a manner acceptable to Installer.

3.2 INSTALLATION OF EXTERIOR LIGHTING FIXTURES:

A. Install exterior lighting fixtures at locations and heights as indicated, in accordance with fixture manufacturer's written instructions, applicable requirements of NEC, NECA's "Standard of Installation", NEMA standards, and with recognized industry practices to ensure that lighting fixtures fulfill requirements.

B. Tighten connectors and terminals, including screws and bolts, in accordance with equipment manufacturer's published torque tightening values for equipment connectors. Where manufacturer's torquing requirements are not indicated, tighten connectors and terminals to comply with tightening torques specified in UL Stds 486A-1991 and B, and the National Electrical Code.
SECTION 283111
DIGITAL, ADDRESSABLE FIRE ALARM SYSTEMS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

1. Fire-alarm control unit.
3. Smoke detectors.
7. Addressable interface device.
8. Digital alarm communicator transmitter.

1.2 SYSTEM DESCRIPTION

A. Non-coded, addressable system, with multiplexed signal transmission, dedicated to fire-alarm service only. Reports to main campus security station and has outputs to Johnson Controls Metasys system for remote paging.

1.3 SUBMITTALS

A. General Submittal Requirements:

1. Submittals shall be approved by authorities having jurisdiction prior to submitting them to Architect.
2. Shop Drawings shall be prepared by persons with the following qualifications:
 a. Trained and certified by manufacturer in fire-alarm system design.
 b. NICET-certified fire-alarm technician, Level III minimum.

B. Product Data: For each type of product indicated.

C. Shop Drawings: For fire-alarm system. Include plans, elevations, sections, details, and attachments to other work.

2. Include voltage drop calculations for notification appliance circuits.
3. Include battery-size calculations.
4. Include performance parameters and installation details for each detector, verifying that each detector is listed for complete range of air velocity.
temperature, and humidity possible when air-handling system is operating.

5. Include floor plans to indicate final outlet locations showing address of each addressable device. Where detectors are mounted in ducts indicate the general duct arrangement in that area. Show size and route of cable and conduits.

D. Qualification Data: For qualified Installer.

E. Field quality-control reports.

F. Operation and Maintenance Data: For fire-alarm systems and components to include in emergency, operation, and maintenance manuals. In addition to items specified in Division 1 Section "Operation and Maintenance Data," deliver copies to authorities having jurisdiction and include the following:

1. Comply with the "Records" Section of the "Inspection, Testing and Maintenance" Chapter in NFPA 72.
2. Provide "Record of Completion Documents" according to NFPA 72 article "Permanent Records" in the "Records" Section of the "Inspection, Testing and Maintenance" Chapter.
3. Record copy of site-specific software.
4. Provide "Maintenance, Inspection and Testing Records" according to NFPA 72 article of the same name and include the following:
 a. Frequency of testing of installed components.
 b. Frequency of inspection of installed components.
 c. Requirements and recommendations related to results of maintenance.
 d. Manufacturer's user training manuals.
5. Manufacturer's required maintenance related to system warranty requirements.
6. Abbreviated operating instructions for mounting at fire-alarm control unit.
7. Copy of NFPA 25.

G. Software and Firmware Operational Documentation:

1. Software operating and upgrade manuals.
2. Program Software Backup: On magnetic media or compact disk, complete with data files.
3. Device address list.
4. Printout of software application and graphic screens.

1.4 QUALITY ASSURANCE

A. Installer Qualifications: Personnel shall be trained and certified by manufacturer for installation of units required for this Project.

B. Source Limitations for Fire-Alarm System and Components: Obtain fire-alarm system from single source from single manufacturer. System shall be capable of output reporting to the UL Listed Central Station.
C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

1.5 SOFTWARE SERVICE AGREEMENT

A. Comply with UL 864.

B. Technical Support: Beginning with Substantial Completion, provide software support for two years.

C. Upgrade Service: Update software to latest version at Project completion. Install and program software upgrades that become available within two years from date of Substantial Completion. Upgrading software shall include operating system. Upgrade shall include new or revised licenses for use of software.

1. Provide 30 days' notice to Owner to allow scheduling and access to system and to allow owner to upgrade computer equipment if necessary.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by Edwards Signaling and Security Systems, a GE Company or equal as pre-approved by the Owner.

2.2 SYSTEMS OPERATIONAL DESCRIPTION

A. Fire-alarm signal initiation shall be by one or more of the following devices and systems:

2. Heat detectors.
3. Smoke detectors.
4. Duct smoke detectors.

B. Fire-alarm signal shall initiate the following actions:

2. Identify alarm at the fire-alarm control unit and remote annunciator.
3. Transmit an alarm signal to the remote alarm receiving station.
4. Unlock electric door locks in egress paths.
5. Switch heating, ventilating, and air-conditioning equipment controls to fire alarm mode.
6. Activate emergency shutoffs for gas and fuel supplies.
7. Record events in the system memory.

C. Supervisory signal initiation shall be by one or more of the following devices and actions:
1. Valve supervisory switch.
2. Clean Agent Fire Suppression System.

D. System trouble signal initiation shall be by one or more of the following devices and actions:

1. Open circuits, shorts, and grounds in designated circuits.
2. Opening, tampering with, or removing alarm-initiating and supervisory signal-initiating devices.
3. Loss of primary power at fire-alarm control unit.
4. Ground or a single break in fire-alarm control unit internal circuits.
5. Abnormal ac voltage at fire-alarm control unit.
7. Failure of battery charging.
8. Abnormal position of any switch at fire-alarm control unit or annunciator.

E. System Trouble and Supervisory Signal Actions: Initiate notification appliance and annunciator at fire-alarm control unit and remote annunciator.

2.3 FIRE-ALARM CONTROL UNIT

A. General Requirements for Fire-Alarm Control Unit:

1. Field-programmable, microprocessor-based, modular, power-limited design with electronic modules, complying with UL 864 and listed and labeled by an NRTL.

 a. System software and programs shall be held in flash electrically erasable programmable read-only memory (EEPROM), retaining the information through failure of primary and secondary power supplies.

 b. Include a real-time clock for time annotation of events on the event recorder and printer.

2. Addressable control circuits for operation of mechanical equipment.

B. Alphanumeric Display and System Controls: Arranged for interface between human operator at fire-alarm control unit and addressable system components including annunciation and supervision. Display alarm, supervisory, and component status messages and the programming and control menu.

1. Annunciator and Display: Liquid-crystal type, 3 lines of 80 characters each, minimum.

2. Keypad: Arranged to permit entry and execution of programming, display, and control commands and to indicate control commands to be entered into the system for control of smoke-detector sensitivity and other parameters.

C. Circuits:

1. Initiating Device, Notification Appliance, and Signaling Line Circuits: NFPA 72, Class A
a. Initiating Device Circuits: Style D.
b. Notification Appliance Circuits: Style Z.
d. Install no more than 50 addressable devices on each signaling line circuit. D. Automatically transmit alarm, supervisory, and trouble signals to BAS-Metasys System.

D. Primary Power: 24-V dc obtained from 120-V ac service and a power-supply module. Initiating devices, notification appliances, signaling lines, trouble signals, supervisory signals and digital alarm communicator transmitters shall be powered by 24-V dc source.

1. Alarm current draw of entire fire-alarm system shall not exceed 80 percent of the power-supply module rating.

E. Secondary Power: 24-V dc supply system with sealed, valve-regulated, recombinant lead acid batteries, automatic battery charger, and automatic transfer switch.

F. Instructions: Computer printout or typewritten instruction card mounted behind a plastic or glass cover in a stainless-steel or aluminum frame. Include interpretation and describe appropriate response for displays and signals. Briefly describe the functional operation of the system under normal, alarm, and trouble conditions.

2.4 MANUAL FIRE-ALARM BOXES

A. General Requirements for Manual Fire-Alarm Boxes: Comply with UL 38. Boxes shall be finished in red with molded, raised-letter operating instructions in contrasting color; shall show visible indication of operation; and shall be mounted on recessed outlet box. If indicated as surface mounted, provide manufacturer's surface back box.

1. Double-action mechanism requiring two actions to initiate an alarm, pull-lever type; with integral addressable module arranged to communicate manual-station status (normal, alarm, or trouble) to fire-alarm control unit.
2. Station Reset: Key- or wrench-operated switch.

2.5 SYSTEM SMOKE DETECTORS

A. General Requirements for System Smoke Detectors:

1. Comply with UL 268; operating at 24-V dc, nominal.
2. Base Mounting: Detector and associated electronic components shall be mounted in a twist-lock module that connects to a fixed base. Provide terminals in the fixed base for connection to building wiring.
3. Self-Restoring: Detectors do not require resetting or readjustment after actuation to restore them to normal operation.
4. Integral Visual-Indicating Light: LED type indicating detector has operated and power-on status.
B. Photoelectric Smoke Detectors:
 1. Detector address shall be accessible from fire-alarm control unit and shall be able to identify the detector's location within the system and its sensitivity setting.
 2. An operator at fire-alarm control unit, having the designated access level, shall be able to manually access the following for each detector:
 a. Primary status.
 b. Device type.
 c. Present average value.
 d. Present sensitivity selected.
 e. Sensor range (normal, dirty, etc.).

C. Duct Smoke Detectors: Photoelectric type complying with UL 268A
 1. Detector address shall be accessible from fire-alarm control unit and shall be able to identify the detector's location within the system and its sensitivity setting.
 2. An operator at fire-alarm control unit, having the designated access level, shall be able to manually access the following for each detector:
 a. Primary status.
 b. Device type.
 c. Present average value.
 d. Present sensitivity selected.
 e. Sensor range (normal, dirty, etc.).
 3. Weatherproof Duct Housing Enclosure: NEMA 250, Type 4X; NRTL listed for use with the supplied detector.
 4. Sampling Tubes: Design and dimensions as recommended by manufacturer for specific duct size, air velocity, and installation conditions where applied.
 Minimum of eight equidistantly spaced holes across tube length.
 5. Relay Fan Shutdown: Rated to interrupt fan motor-control circuit

2.6 HEAT DETECTORS
A. General Requirements for Heat Detectors: Comply with UL 521.
B. Heat Detector, Combination Type: Actuated by either a fixed temperature of 135 deg F (57 deg C)
 1. Mounting: Twist-lock base interchangeable with smoke-detector bases.
 2. Integral Addressable Module: Arranged to communicate detector status (normal, alarm, or trouble) to fire-alarm control unit.

2.7 NOTIFICATION APPLIANCES
A. General Requirements for Notification Appliances: Connected to notification appliance signal circuits, zoned as indicated, equipped for mounting as indicated and with screw terminals for system connections.
 1. Combination Devices: Factory-integrated audible and visible devices in a single-mounting assembly, equipped for mounting as indicated and with screw terminals for system connections.
B. Horns: Electric-vibrating-polarized type, 24-Vde; with provision for housing the operating mechanism behind a grille. Comply with UL 464. Horns shall produce a sound-pressure level of 90 dBA, measured 10 feet from the horn, using the coded signal prescribed in UL 464 test protocol.

C. Visible Notification Appliances: Xenon strobe lights comply with UL 1971, with clear or nominal white polycarbonate lens mounted on an aluminum faceplate. The word "FIRE" is engraved in minimum 1-inch-high letters on the lens.

1. Rated Light Output:
 a. 15/30/75/110 cd, selectable in the field.
2. Mounting: Wall mounted unless otherwise indicated.
3. Flashing shall be in a temporal pattern, synchronized with other units.

2.8 REMOTE GRAPHIC ANNUNCIATOR

A. Description: Annunciator functions shall match those of fire-alarm control unit for alarm, supervisory, and trouble indications. Mount in flush NEMA 250, Type 1 cabinet. Provide controls to acknowledge, silence, reset, and test functions for alarm, supervisory, and trouble signals.

B. Display Type and Functional Performance: Graphic display of the floor plans with alphanumeric display and LED indicating lights shall match those of fire-alarm control unit.

2.9 ADDRESSABLE INTERFACE DEVICE

A. Description: Microelectronic monitor module, NRTL listed for use in providing a system address for alarm-initiating devices for wired applications with normally open contacts.

2.10 DIGITAL ALARM COMMUNICATOR TRANSMITTER

A. Digital alarm communicator transmitter shall be acceptable to the Building A remote central station and shall comply with UL 632 and be listed and labeled by an NRTL.

B. Functional Performance: Unit shall receive an alarm, supervisory, or trouble signal from fire- alarm control unit and automatically capture two telephone lines and dial a preset number for a remote central station. When contact is made with central station(s), signals shall be transmitted. If service on either line is interrupted for longer than 45 seconds, transmitter shall initiate a local trouble signal and transmit the signal indicating loss of telephone line to the remote alarm receiving station over the remaining line. Transmitter shall automatically report telephone service restoration to the central station. If service is lost on both telephone lines, transmitter shall initiate the local trouble signal.

C. Local functions and display at the digital alarm communicator transmitter shall include the following:
1. Verification that both telephone lines are available.
2. Programming device.
3. LED display.
5. Communications failure with the central station or fire-alarm control unit.

D. Digital data transmission shall include the following:
1. Address of the alarm-initiating device.
2. Address of the supervisory signal.
3. Address of the trouble-initiating device.
4. Loss of ac supply or loss of power.
6. Low battery.
7. Abnormal test signal.

E. Self-Test: Conducted automatically every 24 hours with report transmitted to central station.

PART 3 - EXECUTION

3.1 EQUIPMENT INSTALLATION

A. Comply with NFPA 72 for installation of fire-alarm equipment.

B. Install wall-mounted equipment, with tops of cabinets not more than 72 inches above the finished floor.

C. Smoke- or Heat-Detector Spacing:
3. HVAC: Locate detectors not closer than 3 feet from air-supply diffuser or return-air opening.
4. Lighting Fixtures: Locate detectors not closer than 12 inches from any part of a lighting fixture.

D. Duct Smoke Detectors: Comply with NFPA 72 and NFPA 90A. Install sampling tubes so they extend the full width of duct.

E. Remote Status and Alarm Indicators: Install near each sprinkler water-flow switch and valve-tamper switch that is not readily visible from normal viewing position.

3.2 CONNECTIONS

A. Make addressable connections with a supervised interface device to the following devices
and systems. Install the interface device less than 3 feet from the device controlled. Make an addressable confirmation connection when such feedback is available at the device or system being controlled.

1. Alarm-initiating connection to activate emergency shutoffs for gas and fuel supplies.
2. Supervisory connections at valve supervisory switches.

3.3 IDENTIFICATION

A. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification specified in Division 16 Section "Electrical Identification."

B. Install framed instructions in a location visible from fire-alarm control unit.

3.4 GROUNDING

A. Ground fire-alarm control unit and associated circuits; comply with IEEE 1100. Install a ground wire from main service ground to fire-alarm control unit.

3.5 FIELD QUALITY CONTROL

A. Field tests shall be witnessed by Owner's Representative.

B. Tests and Inspections:
 1. Visual Inspection: Conduct visual inspection prior to testing.
 a. Inspection shall be based on completed Record Drawings and system documentation that is required by NFPA 72 in its “Completion Documents, Preparation” Table in the "Documentation" Section of the "Fundamentals of Fire Alarm Systems" Chapter.
 b. Comply with "Visual Inspection Frequencies" Table in the "Inspection" Section of the "Inspection, Testing and Maintenance" Chapter in NFPA 72; retain the "Initial/Reacceptance" column and list only the installed components.

C. Reacceptance Testing: Redo acceptance testing to verify the proper operation of added or replaced devices and appliances.

D. Fire-alarm system will be considered defective if it does not pass tests and inspections.

E. Prepare test and inspection reports.

END OF SECTION